
CSE2312-002/003, Fall 2014, Homework 4

Due October 7, 2014 in Class (at 2:00pm for 002, 3:30pm for 003)

The following problems are from Chapter 2 of the ARM Edition of the Patterson and Hennessy textbook

(available on Blackboard as PDFs under Course Materials). In addition to the resources available in

Chapter 2, you may find Appendices B1 and B2 of the ARM Edition useful for these problems (also

available as PDFs on Blackboard). Appendix A of the book may also be useful.

The problems below respectively correspond to the book problems 2.19 (2.19.1 through 2.19.4), 2.20

(2.20.4 through 2.20.6), and 2.24 (all), and a Bonus: 2.28 (all).

Exercise 2.19

For the following problems, the table holds C code functions. Assume that the first function listed in the

table is called first. You will be asked to translate these C code routines into ARM Assembly.

a. int compare(int a, int b) {

 if (sub(a, b) >= 0)

 return 1;

 else

 return 0;

}

int sub (int a, int b) {

 return a–b;

}

b. int fib_iter(int a, int b, int n){

 if(n == 0)

 return b;

 else

 return fib_iter(a+b, a, n–1);

}

2.19.1 [15] <2.8> Implement the C code in the table in ARM assembly. What is the total number of

ARM instructions needed to execute the function?

2.19.2 [5] <2.8> Functions can often be implemented by compilers “in-line”. An in-line function is

when the body of the function is copied into the program space, allowing the overhead of the function call

to be eliminated. Implement an “in-line” version of the C code in the table in ARM assembly. What is the

reduction in the total number of ARM assembly instructions needed to complete the function? Assume

that the C variable n is initialized to 5.

2.19.3 [5] <2.8> For each function call, show the contents of the stack after the function call is made.

Assume the stack pointer is originally at address 0x7ffffffc, and follow the register conventions as

specified in Figure 2.11.

The following three problems in this exercise refer to a function f that calls another function func. The

code for C function func is already compiled in another module using the ARM calling convention from

Figure 2.14. The function declaration for func is “int func(int a, int b);”. The code for

function f is as follows:

a. int f(int a, int b, int c){

 return func(func(a,b),c);

}

b. int f(int a, int b, int c){

 return func(a,b)+func(b,c);

}

2.19.4 [10] <2.8> Translate function f into ARM assembler, also using the ARM calling convention

from Figure 2.14. If you need to use registers r4 through r11, use the lower-numbered registers first.

Exercise 2.20

For the following problems, the table has an assembly code fragment that computes a Fibonacci number.

However, the entries in the table have errors, and you will be asked to fix these errors.

a. FIB: SUB sp, sp, #12

 STR lr,[sp,#0]

 STR r2,[sp,#4]

 STR r1,[sp,#8]

 CMP r1,#1

 BGE L1

 MOV r0,r1

 B EXIT

L1: SUB r1,r1,#1

 BL FIB

 MOV r2,r0

 SUB r1,r1,#1

 BL FIB

 ADD r0,r0,r2

EXIT: LDR lr,[sp,#0]

 LDR r1,[sp,#8]

 LDR r2,[sp,#4]

 ADD sp,sp,#12

 MOV pc,lr

b. FIB: SUB sp,sp,#12

 STR lr,[sp,#0]

 STR r2,[sp,#4]

 STR r1,[sp,#8]

 CMP r1,#1

 BGE L1

 MOV r0,r1

 B EXIT

 L1: SUB r1,r1,#1

 BL FIB

 MOV r2,r0

 SUB r1,r1,#1

 BL FIB

 ADD r0,r0,r2

 EXIT: LDR lr,[sp,#0]

 LDR r1,[sp,#8]

 LDR r2,[sp,#4]

 ADD sp,sp,#12

 MOV pc,lr

2.20.4 [5] <2.8> The ARM assembly program above computes the Fibonacci of a given input. The

integer input is passed through register r1, and the result is returned in register r0. In the assembly code,

there are a few errors. Correct the ARM errors.

2.20.5 [10] <2.8> For the recursive Fibonacci ARM program above, assume that the input is 4. Rewrite

the Fibonacci program to operate in a nonrecursive manner. What is the total number of instructions used

to execute your solution?

2.20.6 [5] <2.8> Show the contents of the stack after each function call, assuming that the input is 4.

Exercise 2.24

Assume that the register r1 contains the address 0x1000 0000 and the register r2 contains the address

0x1000 0010.

a. LDRB r0, [r1,#0]

STRH r0, [r2,#0]

b. LDRB r0, [r1,#0]

STRB r0, [r2,#0]

2.24.1 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 12 34 56 78

What value is stored at the address pointed to by register r2? Assume that the memory location pointed to

r2 is initialized to 0xFFFF FFFF.

2.24.2 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 80 80 80 80

What value is stored at the address pointed to by register r2? Assume that the memory location pointed to

r2 is initialized to 0x0000 0000.

2.24.3 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 11 00 00 FF

What value is stored at the address pointed to by register r2? Assume that the memory location pointed to

r2 is initialized to 0x5555 5555.

Exercise 2.28 (Bonus)

The following table contains ARM assembly code for a lock.

try: MOV R3,#1

SWP R2,R3,[R1,#0]

CMP R2,#1

BEQ try

 LDR R4,[R2,#0]

ADD R3,R4,#1

STR R3,[R2,#0]

SWP R2,R3,[R1,#0]

2.28.1 [5] <2.11> For each test and fail of the “swp”, how many instructions need to be executed?

2.28.2 [5] <2.11> For the swp-based lock-unlock code above, explain why this code may fail.

2.28.3 [15] <2.11> Re-write the code above so that the code may operate correct. Be sure to avoid any

race conditions.

Each entry in the following table has code and also shows the contents of various registers. The notation,

“(r1)” shows the contents of a memory location pointed to by register r1. The assembly code in each table

is executed in the cycle shown on parallel processors with a shared memory space.

a.

Processor 1

Processor 2

Cycle

Processor 1 MEM

(r1)

Processor 2

r2 r3 r2 r3

 0 1 2 99 30 40

SWP R2,R3,

[R1,#0]

1

 SWP

R2,R3,[R1,#0]

2

b.

Processor 1

Processor 2

Cycle

Processor 1 MEM

(r1)

Processor 2

r2 r3 r2 r3
 0 2 3 1 10 20

 try: MOV R3,#1 1
try: MOV R3,#1 SWP R2,R3,[R1,#0] 2
SWP R2,R3,[R1,#0] 3

CMP R2,#1 4
BEQ try CMP R2,#1 5

 BEQ try 6

2.28.4 [5] <2.11> Fill out the table with the value of the registers for each given cycle.

