
Computer Organization & 
Assembly Language 

Programming (CSE 2312)
Lecture 1

Taylor Johnson



Outline

• Administration
• Course Objectives
• Computer Organization Overview

August 21, 2014 CSE2312, Fall 2014 2



Administration

• Overview
• CSE2312 (Section 002)
• Topic: Computer Organization and Assembly Language Programming
• Time: T/R 2:00pm~3:20pm
• Location: NH109
• Website: http://www.taylortjohnson.com/class/cse2312/f14/
• Instructor: Taylor Johnson

• Office: ERB 559
• Office Hours: 3:30pm~4:30pm and by appointment (email me to schedule 

taylor.johnson@uta.edu)
• Background: Electrical/Computer Engineering (BSc, MSc, PhD)
• Research: ensuring computer systems that interact with the physical world do what 

they’re supposed to do (i.e., avoiding bugs)
• GTA: Nathan Harvey

• Office: TBA
• Office Hours: TBA

August 21, 2014 CSE2312, Fall 2014 3

http://www.taylortjohnson.com/class/cse2312/f14/
mailto:taylor.johnson@uta.edu


Prerequisites and Materials

• Required courses / course credit
• CSE1320: Intermediate Programming
• CSE1310: Introduction to Computers and Programming
• You should know:

• How to program in at least one language
• How to compile, execute, and debug programs
• Elementary discrete math (binary, Boolean operations, etc.) and 

programs/algorithms

• Materials
• Textbook: David A. Patterson and John L. Hennessy, Computer 

Organization and Design, Fifth Edition: The Hardware/Software 
Interface, Morgan Kaufmann, September 2013

• More references on website

August 21, 2014 CSE2312, Fall 2014 4



Syllabus Overview

• See website:
http://www.taylortjohnson.com/class/cse2312/f14/

• Homework, programming assignments, slides, and 
other updates will appear on the website, so please 
CHECK OFTEN

August 21, 2014 CSE2312, Fall 2014 5

http://www.taylortjohnson.com/class/cse2312/f14/


Expectations

• From course, instructor, and GTA:
• Cover key issues and concepts in class
• Homework
• Programming assignments (projects)

• May add more homeworks and remove some programming assignments
• May have in class quizzes

• Mid-term exam and final exam
• From you:

• Come to class and to office hours if you need help
• Read the textbook
• Work through problems in textbook and homeworks
• Do the programming assignments, start early
• Ask questions (ESSENTIAL)

August 21, 2014 CSE2312, Fall 2014 6



Administration Questions?

August 21, 2014 CSE2312, Fall 2014 7



Outline

• Administration
• Course Objectives
• Computer Organization Overview

August 21, 2014 CSE2312, Fall 2014 8



What is this Course About?

• This course is about one fundamental question in 
computer science and engineering

• You probably do not yet know the answer

• How do computers compute?

• What does the computer actually do when you ask 
it to do something (i.e., run a program you’ve 
written)?

August 21, 2014 CSE2312, Fall 2014 9



Topic of this Course

• Structured Computer Organization
• Different levels of abstraction at which we can 

conceptualize a computer
• Each level is useful for specific tasks, hiding useless details 

of lower levels

• Understanding some lower levels (hardware level, 
assembly instruction level)

• In many applications, understanding these levels is 
necessary for writing effective code

10



Why Computer Organization

• At this point, you know how to program

• This course will teach you how your programs 
actually get executed

• There are several levels of translation between your 
code and the actual machine execution level

• Understanding these levels can help you write 
better code:

• Example: understanding the role of memory cache 11



Why Computer Organization

• Understanding computer architecture will help you 
write code for different systems

• Right now, probably all your programs run on a 
desktop or laptop

• There are vast numbers of computers that are not 
desktops or laptops

• Examples?

12



Why Computer Organization

• Understanding computer architecture will help you 
write code for different systems

• Right now, probably all your programs run on a desktop 
or laptop

• There are vast numbers of computers that are not 
desktops or laptops

• Examples: 
• RFIDs
• microcontrollers on radios, clocks, cars
• cell phones/smart phones
• music players

13



Course Objectives

• Answer the question: how do computer compute?

• Understand computer components and levels (structure)

• Be able to write assembly programs to solve problems
• Many problems that need assembly are for getting systems started 

(bootloading), interacting with hardware (drivers), or performance
• Write code for ARM processors and virtual machines (QEMU)

• Even if you don’t think you’ll ever do this again, it’s 
important conceptual knowledge that you need to know

August 21, 2014 CSE2312, Fall 2014 14



Assembly Language

• Assembly language is a programming language that 
is very low-level

• Hard/painful for humans to use
• Closer to the machine execution level

• Contains only simple instructions, that closely 
match the instructions that the hardware can 
execute in a single step

15



Why Assembly

• At the end of the day, all our code is converted to 
machine code

• Who does this conversion?

16



Why Assembly

• At the end of the day, all our code is converted to 
machine code

• Who does this conversion?
• Compilers (and assemblers)

• While you will not learn how to write compilers in 
this class, understanding assembly is a prerequisite 
for being able to write a compiler

17



Why Assembly

• Understanding of assembly language can be useful 
for:

• Optimizing code (when compiler optimization is not 
available or sufficient)

• Designing virtual machines, that simulate hardware using 
software

• Designing and programming various computer devices 
and peripherals

18



Outline

• Administration
• Course Objectives
• Computer Organization Overview

August 21, 2014 CSE2312, Fall 2014 19



Digital Computers

• Machine for carrying out instructions
• Program = sequence of instructions

• Instructions = primitive operations
• Add numbers
• Check if a number is zero
• Copy data between different memory locations (addresses)
• Represented as machine language (binary numbers of a certain 

length)

• Example: �00
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

�10
𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑

�01
𝑑𝑑𝑠𝑠𝑜𝑜𝑠

�00
𝑑𝑑𝑠𝑠𝑜𝑜𝑠

on an 8-bit computer may mean:
• Take numbers in registers 0 and 1 (special memory locations inside the 

processor) and add them together, putting their sum into register 2
• That is, to this computer, 00100100 means 𝑟𝑟𝑟 = 𝑟𝑟𝑟 + 𝑟𝑟𝑟
• In assembly, this could be written: add r2 r1 r0

• Question: for this same computer, what does 00000000 mean?
• add r0 r0 r0, that is: 𝑟𝑟0 = 𝑟𝑟0 + 𝑟𝑟𝑟

August 21, 2014 CSE2312, Fall 2014 20



Computer Examples: Our PC/Laptop

Intel Core i7-3960X die

The die is 21 by 21 mm 
and has 2.27 billion 
transistors

ISA: x86-64

August 21, 2014 CSE2312, Fall 2014 21

© 2011 Intel Corporation



Computer Examples: Our Phone

Nvidia Tegra 2 system on 
a chip (SoC)

ISA: ARM

August 21, 2014 CSE2312, Fall 2014 22

© 2011 Nvidia Corporation



Computer Examples: Our Server

Oracle (Sun) SPARC T4
ISA: SPARC

Intel Xeon 7500
ISA: x86-64

August 21, 2014 CSE2312, Fall 2014 23



Computer Examples: Our Car

Atmel ATmega

Microchip PIC

Intel 8051

Many others from TI, 
Cypress, etc.

August 21, 2014 CSE2312, Fall 2014 24



Computer Examples: Others?

• What other examples can you come up with?
• Moral: everywhere and in everything

August 21, 2014 CSE2312, Fall 2014 25



Multilevel Computers

Java Virtual Machine (Java Bytecode)

QEMU (ARM)

VMWare Virtual Machine (x86)

Hardware (x86)

August 21, 2014 CSE2312, Fall 2014 26

Level 3

Level 2

Level 1

Level 0



Multilevel Architectures

August 29, 2013 CSE2312, Fall 2013 27

Physical Device Level (Electronics)

Digital Logic Level

Microarchitecture Level

Instruction Set Architecture (ISA) 
Level

Operating System Level

Level 0

Level 1

Level 2

Level 3

Level 4

n/a / 
Physics

VHDL / 
Verilog

n/a / 
Microcode

Assembly / 
Machine 
Language

C / …



Multiple Ways To Defining Levels 

• Decomposition into these specific 
levels describes nicely some standard 
and widely used abstractions

• As you look closely, you may find that 
a specific level itself can be 
decomposed into more levels

• Examples:
• A virtual machine
• A compiler may go through two or 

three translation steps to produce 
the final compiled program. We 
can think of each of these steps as 
an intermediate level

• A more sophisticated operating 
system (e.g., Windows) may run 
on top of a more simple operating 
system (e.g., DOS), adding extra 
capabilities (e.g., window 
management and graphical 
interfaces)

28



Virtual Machines (1)
• Some virtual machines only get implemented in 

software:
• Why? 
• Examples? 

29



Virtual Machines (1)
• Some virtual machines only get implemented in 

software:
• Why? Because a hardware implementation is not cost-

effective.
• Examples? The virtual machines defined by C, Java, Python. 

They would be way more complex and expensive than 
typical hardware.

• Some virtual machines get first implemented in 
software, and then in hardware.

• Why? 

30



Virtual Machines (1)
• Some virtual machines only get implemented in 

software:
• Why? Because a hardware implementation is not cost-

effective.
• Examples? The virtual machines defined by C, Java, Python. 

They would be way more complex and expensive than 
typical hardware.

• Some virtual machines get first implemented in 
software, and then in hardware.

• Why? Because software implementations are much cheaper 
to make, and also much easier to test, debug, and modify.

31



Virtual Machines (2)
• Some virtual machines are used by the public in both 

hardware and software versions.
• Why? 

32



Virtual Machines (2)
• Some virtual machines are used by the public in both 

hardware and software versions.
• Why? We may have a Macintosh computer, on which we 

want to run Windows software, or the other way around.

33



Compilation vs. Interpretation
• Compilation: 

• your n-level program is translated into a program at a lower 
level

• the program at the lower level is stored in memory, and 
executed

• while running, the lower-level program controls the computer
• Interpretation:

• An interpreter, implemented at a lower level, executes your n-
level program line-by-line

• The interpreter translates each line into lower-level code, and 
executes that code

• The interpreter is the program that is running, not your code

34



C program compiled into assembly language and 
then assembled into binary machine language

August 21, 2014 CSE2312, Fall 2014 35



System Overview

• CPU
• Executes instructions 

• Memory
• Stores programs and data 

• Buses
• Transfers data 

• Storage
• Permanent

• I/O devices
• Input: keypad, mouse, touch
• Output: printer, screen
• Both (input and output), such 

as:
• USB, network, Wifi, touch screen, 

hard drive

August 21, 2014 CSE2312, Fall 2014 36



Instruction Set Architectures

• Interface between software and hardware

• High-level language to computer instructions
• How do we translate from a high-level language (e.g., C, 

Python, Java) to instructions the computer can 
understand?

• Compilation (translation before execution)
• Interpretation (translation-on-the-fly during execution)

• What are examples of each of these?

August 21, 2014 CSE2312, Fall 2014 37



Demonstration

• VMWare, QEMU, and ARM ISA and gdb

• We will use QEMU and ARM later in this course
• Particularly for programming assignments

• ARM versus x86
• ARM is prevalent in embedded systems and handheld devices, 

many of which have more limited resources than your x86/x86-
64 PC

• Limited resources sometimes requires being very efficient (in 
space/memory or time/processing complexity)

• Potentially greater need to interface with hardware

August 21, 2014 CSE2312, Fall 2014 38



August 21, 2014 CSE2312, Fall 2014 39



August 21, 2014 CSE2312, Fall 2014 40



August 21, 2014 CSE2312, Fall 2014 41



August 21, 2014 CSE2312, Fall 2014 42



Summary

• This course aims to answer the question: how do computers 
compute?

• Complex and fundamental question
• Organization of computer
• Multilevel architectures

• Assembly programming
• QEMU, ARM, gcc tools (as), and gdb (GNU debugger)

• Homework
• Read chapter 1

• Review binary arithmetic, Boolean operations, and representing 
numbers in binary

August 21, 2014 CSE2312, Fall 2014 43



Questions?

August 21, 2014 CSE2312, Fall 2014 44



Von Neumann Architecture

• Both data and 
program stored in 
memory

• Allows the computer 
to be “re-
programmed”

August 21, 2014 CSE2312, Fall 2014 45



Processor Overview

August 21, 2014 CSE2312, Fall 2014 46

FETCH[PC]

EXECUTE

Interrupt
? PC++

NoYesHandle 
Interrupt


	Computer Organization & Assembly Language Programming (CSE 2312)
	Outline
	Administration
	Prerequisites and Materials
	Syllabus Overview
	Expectations
	Administration Questions?
	Outline
	What is this Course About?
	Topic of this Course
	Why Computer Organization
	Why Computer Organization
	Why Computer Organization
	Course Objectives
	Assembly Language
	Why Assembly
	Why Assembly
	Why Assembly
	Outline
	Digital Computers
	Computer Examples: Our PC/Laptop
	Computer Examples: Our Phone
	Computer Examples: Our Server
	Computer Examples: Our Car
	Computer Examples: Others?
	Multilevel Computers
	Multilevel Architectures
	Multiple Ways To Defining Levels 
	Virtual Machines (1)
	Virtual Machines (1)
	Virtual Machines (1)
	Virtual Machines (2)
	Virtual Machines (2)
	Compilation vs. Interpretation
	C program compiled into assembly language and then assembled into binary machine language
	System Overview
	Instruction Set Architectures
	Demonstration
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Summary
	Questions?
	Von Neumann Architecture
	Processor Overview

