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Administration

• Overview
• CSE2312 (Section 002)
• Topic: Computer Organization and Assembly Language Programming
• Time: T/R 2:00pm~3:20pm
• Location: NH109
• Website: http://www.taylortjohnson.com/class/cse2312/f14/
• Instructor: Taylor Johnson

• Office: ERB 559
• Office Hours: 3:30pm~4:30pm and by appointment (email me to schedule 

taylor.johnson@uta.edu)
• Background: Electrical/Computer Engineering (BSc, MSc, PhD)
• Research: ensuring computer systems that interact with the physical world do what 

they’re supposed to do (i.e., avoiding bugs)
• GTA: Nathan Harvey

• Office: TBA
• Office Hours: TBA
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Prerequisites and Materials

• Required courses / course credit
• CSE1320: Intermediate Programming
• CSE1310: Introduction to Computers and Programming
• You should know:

• How to program in at least one language
• How to compile, execute, and debug programs
• Elementary discrete math (binary, Boolean operations, etc.) and 

programs/algorithms

• Materials
• Textbook: David A. Patterson and John L. Hennessy, Computer 

Organization and Design, Fifth Edition: The Hardware/Software 
Interface, Morgan Kaufmann, September 2013

• More references on website
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Syllabus Overview

• See website:
http://www.taylortjohnson.com/class/cse2312/f14/

• Homework, programming assignments, slides, and 
other updates will appear on the website, so please 
CHECK OFTEN
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Expectations

• From course, instructor, and GTA:
• Cover key issues and concepts in class
• Homework
• Programming assignments (projects)

• May add more homeworks and remove some programming assignments
• May have in class quizzes

• Mid-term exam and final exam
• From you:

• Come to class and to office hours if you need help
• Read the textbook
• Work through problems in textbook and homeworks
• Do the programming assignments, start early
• Ask questions (ESSENTIAL)
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Administration Questions?
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What is this Course About?

• This course is about one fundamental question in 
computer science and engineering

• You probably do not yet know the answer

• How do computers compute?

• What does the computer actually do when you ask 
it to do something (i.e., run a program you’ve 
written)?
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Topic of this Course

• Structured Computer Organization
• Different levels of abstraction at which we can 

conceptualize a computer
• Each level is useful for specific tasks, hiding useless details 

of lower levels

• Understanding some lower levels (hardware level, 
assembly instruction level)

• In many applications, understanding these levels is 
necessary for writing effective code
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Why Computer Organization

• At this point, you know how to program

• This course will teach you how your programs 
actually get executed

• There are several levels of translation between your 
code and the actual machine execution level

• Understanding these levels can help you write 
better code:

• Example: understanding the role of memory cache 11



Why Computer Organization

• Understanding computer architecture will help you 
write code for different systems

• Right now, probably all your programs run on a 
desktop or laptop

• There are vast numbers of computers that are not 
desktops or laptops

• Examples?
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Why Computer Organization

• Understanding computer architecture will help you 
write code for different systems

• Right now, probably all your programs run on a desktop 
or laptop

• There are vast numbers of computers that are not 
desktops or laptops

• Examples: 
• RFIDs
• microcontrollers on radios, clocks, cars
• cell phones/smart phones
• music players
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Course Objectives

• Answer the question: how do computer compute?

• Understand computer components and levels (structure)

• Be able to write assembly programs to solve problems
• Many problems that need assembly are for getting systems started 

(bootloading), interacting with hardware (drivers), or performance
• Write code for ARM processors and virtual machines (QEMU)

• Even if you don’t think you’ll ever do this again, it’s 
important conceptual knowledge that you need to know
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Assembly Language

• Assembly language is a programming language that 
is very low-level

• Hard/painful for humans to use
• Closer to the machine execution level

• Contains only simple instructions, that closely 
match the instructions that the hardware can 
execute in a single step
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Why Assembly

• At the end of the day, all our code is converted to 
machine code

• Who does this conversion?
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Why Assembly

• At the end of the day, all our code is converted to 
machine code

• Who does this conversion?
• Compilers (and assemblers)

• While you will not learn how to write compilers in 
this class, understanding assembly is a prerequisite 
for being able to write a compiler

17



Why Assembly

• Understanding of assembly language can be useful 
for:

• Optimizing code (when compiler optimization is not 
available or sufficient)

• Designing virtual machines, that simulate hardware using 
software

• Designing and programming various computer devices 
and peripherals
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Digital Computers

• Machine for carrying out instructions
• Program = sequence of instructions

• Instructions = primitive operations
• Add numbers
• Check if a number is zero
• Copy data between different memory locations (addresses)
• Represented as machine language (binary numbers of a certain 

length)

• Example: �00
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

�10
𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑

�01
𝑑𝑑𝑠𝑠𝑜𝑜𝑠

�00
𝑑𝑑𝑠𝑠𝑜𝑜𝑠

on an 8-bit computer may mean:
• Take numbers in registers 0 and 1 (special memory locations inside the 

processor) and add them together, putting their sum into register 2
• That is, to this computer, 00100100 means 𝑟𝑟𝑟 = 𝑟𝑟𝑟 + 𝑟𝑟𝑟
• In assembly, this could be written: add r2 r1 r0

• Question: for this same computer, what does 00000000 mean?
• add r0 r0 r0, that is: 𝑟𝑟0 = 𝑟𝑟0 + 𝑟𝑟𝑟
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Computer Examples: Our PC/Laptop

Intel Core i7-3960X die

The die is 21 by 21 mm 
and has 2.27 billion 
transistors

ISA: x86-64
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Computer Examples: Our Phone

Nvidia Tegra 2 system on 
a chip (SoC)

ISA: ARM
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Computer Examples: Our Server

Oracle (Sun) SPARC T4
ISA: SPARC

Intel Xeon 7500
ISA: x86-64
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Computer Examples: Our Car

Atmel ATmega

Microchip PIC

Intel 8051

Many others from TI, 
Cypress, etc.
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Computer Examples: Others?

• What other examples can you come up with?
• Moral: everywhere and in everything
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Multilevel Computers

Java Virtual Machine (Java Bytecode)

QEMU (ARM)

VMWare Virtual Machine (x86)

Hardware (x86)
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Multilevel Architectures
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Physical Device Level (Electronics)

Digital Logic Level

Microarchitecture Level

Instruction Set Architecture (ISA) 
Level

Operating System Level

Level 0

Level 1

Level 2

Level 3

Level 4

n/a / 
Physics

VHDL / 
Verilog

n/a / 
Microcode

Assembly / 
Machine 
Language

C / …



Multiple Ways To Defining Levels 

• Decomposition into these specific 
levels describes nicely some standard 
and widely used abstractions

• As you look closely, you may find that 
a specific level itself can be 
decomposed into more levels

• Examples:
• A virtual machine
• A compiler may go through two or 

three translation steps to produce 
the final compiled program. We 
can think of each of these steps as 
an intermediate level

• A more sophisticated operating 
system (e.g., Windows) may run 
on top of a more simple operating 
system (e.g., DOS), adding extra 
capabilities (e.g., window 
management and graphical 
interfaces)
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Virtual Machines (1)
• Some virtual machines only get implemented in 

software:
• Why? 
• Examples? 
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Virtual Machines (1)
• Some virtual machines only get implemented in 

software:
• Why? Because a hardware implementation is not cost-

effective.
• Examples? The virtual machines defined by C, Java, Python. 

They would be way more complex and expensive than 
typical hardware.

• Some virtual machines get first implemented in 
software, and then in hardware.

• Why? 
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Virtual Machines (1)
• Some virtual machines only get implemented in 

software:
• Why? Because a hardware implementation is not cost-

effective.
• Examples? The virtual machines defined by C, Java, Python. 

They would be way more complex and expensive than 
typical hardware.

• Some virtual machines get first implemented in 
software, and then in hardware.

• Why? Because software implementations are much cheaper 
to make, and also much easier to test, debug, and modify.
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Virtual Machines (2)
• Some virtual machines are used by the public in both 

hardware and software versions.
• Why? 
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Virtual Machines (2)
• Some virtual machines are used by the public in both 

hardware and software versions.
• Why? We may have a Macintosh computer, on which we 

want to run Windows software, or the other way around.
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Compilation vs. Interpretation
• Compilation: 

• your n-level program is translated into a program at a lower 
level

• the program at the lower level is stored in memory, and 
executed

• while running, the lower-level program controls the computer
• Interpretation:

• An interpreter, implemented at a lower level, executes your n-
level program line-by-line

• The interpreter translates each line into lower-level code, and 
executes that code

• The interpreter is the program that is running, not your code
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C program compiled into assembly language and 
then assembled into binary machine language
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System Overview

• CPU
• Executes instructions 

• Memory
• Stores programs and data 

• Buses
• Transfers data 

• Storage
• Permanent

• I/O devices
• Input: keypad, mouse, touch
• Output: printer, screen
• Both (input and output), such 

as:
• USB, network, Wifi, touch screen, 

hard drive
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Instruction Set Architectures

• Interface between software and hardware

• High-level language to computer instructions
• How do we translate from a high-level language (e.g., C, 

Python, Java) to instructions the computer can 
understand?

• Compilation (translation before execution)
• Interpretation (translation-on-the-fly during execution)

• What are examples of each of these?
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Demonstration

• VMWare, QEMU, and ARM ISA and gdb

• We will use QEMU and ARM later in this course
• Particularly for programming assignments

• ARM versus x86
• ARM is prevalent in embedded systems and handheld devices, 

many of which have more limited resources than your x86/x86-
64 PC

• Limited resources sometimes requires being very efficient (in 
space/memory or time/processing complexity)

• Potentially greater need to interface with hardware
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Summary

• This course aims to answer the question: how do computers 
compute?

• Complex and fundamental question
• Organization of computer
• Multilevel architectures

• Assembly programming
• QEMU, ARM, gcc tools (as), and gdb (GNU debugger)

• Homework
• Read chapter 1

• Review binary arithmetic, Boolean operations, and representing 
numbers in binary
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Questions?
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Von Neumann Architecture

• Both data and 
program stored in 
memory

• Allows the computer 
to be “re-
programmed”
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Processor Overview
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