
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 2

Taylor Johnson

Summary from Last Time

• This course aims to answer the question: how do
computers compute?

• Complex and fundamental question
• Organization of computer
• Multilevel architectures

• Assembly programming
• QEMU, ARM, gcc tools (as), and gdb (GNU debugger)

August 26, 2014 CSE2312, Fall 2014 2

Announcements and Outline

• Quiz 1 on Blackboard site (due by end of week)
• Review binary arithmetic, Boolean operations, and

representing numbers in binary

• Homework 1 on course website
• Read chapter 1

• Review from last time
• Binary review
• Structured computers
• Performance metrics

August 26, 2014 CSE2312, Fall 2014 3

Review: Digital Computers

• Machine for carrying out instructions
• Program = sequence of instructions

• Instructions = primitive operations
• Add numbers
• Check if a number is zero
• Copy data between different memory locations (addresses)
• Represented as machine language (binary numbers of a certain

length)

• Example: 00

𝑜𝑝𝑐𝑜𝑑𝑒

 10

𝑑𝑒𝑠𝑡

 01

𝑠𝑟𝑐0

 00

𝑠𝑟𝑐1

on an 8-bit computer may mean:
• Take numbers in registers 0 and 1 (special memory locations inside the

processor) and add them together, putting their sum into register 2
• That is, to this computer, 00100100means 𝑟2 = 𝑟1 + 𝑟0
• In assembly, this could be written: add r2 r1 r0

• Question: for this same computer, what does 00000000 mean?
• add r0 r0 r0, that is: 𝑟0 = 𝑟0 + 𝑟0

August 26, 2014 CSE2312, Fall 2014 4

Review: Computer Examples: Our PC/Laptop

Intel Core i7-3960X die

The die is 21 by 21 mm
and has 2.27 billion
transistors

ISA: x86-64

August 26, 2014 CSE2312, Fall 2014 5

© 2011 Intel Corporation

Review: Computer Examples: Our Phone

Nvidia Tegra 2 system on
a chip (SoC)

ISA: ARM

August 26, 2014 CSE2312, Fall 2014 6

© 2011 Nvidia Corporation

Review: Computer Examples: Our Server

Oracle (Sun) SPARC T4

ISA: SPARC

Intel Xeon 7500

ISA: x86-64

August 26, 2014 CSE2312, Fall 2014 7

Review: Computer Examples: Our Car

Atmel ATmega

Microchip PIC

Intel 8051

Many others from TI,
Cypress, etc.

August 26, 2014 CSE2312, Fall 2014 8

Review: Computer Examples: Others?

• What other examples can you come up with?
• Moral: everywhere and in everything

August 26, 2014 CSE2312, Fall 2014 9

Announcements and Outline

• Quiz 1 on Blackboard site (due by end of week)

• Homework 1 on course website

• Review from last time

• Binary review

• Structured computers

• Performance metrics

August 26, 2014 CSE2312, Fall 2014 10

Numeral Systems and Place Values

• Integer numbers
N=(anan-1….a1a0)R=anR

n+an-1R
n-1+…+a1R+a0

• Fractional numbers
F=(.a-1a-2….a-m)R=a-1R

-1+a-2R
-2+…+a-mR-m

• Decimal (Base-10) Numbers (R = 10)
953.7810 = 9x102 + 5x101 + 3x100 + 7x10-1 + 8x10-2

• Binary (Base-2) Numbers (R = 2)

1011.112 = 1x23 + 0x22 + 1x21 + 1x20 + 1x2-1 + 1x2-2

= 8 + 0 + 2 + 1 + 1/2 + ¼
= 11.7510

August 26, 2014 CSE2312, Fall 2014 11

Decimal to Binary Conversion

• Division method: divide by two, take remainder until
zero

35 10 = 𝑥 2
35 / 2 = 17, remainder 1
17 / 2 = 8, remainder 1
8 / 2 = 4, remainder 0
4 / 2 = 2, remainder 0
2 / 2 = 1, remainder 0
1 / 2 = 0, remainder 1
Result from bottom up: 100011

• Trick: divide by two and taking remainder = odd/even

August 26, 2014 CSE2312, Fall 2014 12

Decimal to Binary Conversion

• Subtraction method: subtract largest power of 2
until 0; if negative, 0; else 1

23 10 = 𝑥 2
23 − 24 = 23 − 16 = 7 1
7 − 23 = 7 − 8 = -1 0
7 − 22 = 7 − 4 = 3 1
3 − 21 = 3 − 2 = 1 1
1 − 20 = 1 − 1 = 0 1

Result (read from top): 10111

August 26, 2014 CSE2312, Fall 2014 13

Binary to Decimal Conversion

• Exponent summation: sum powers of two

1011 2 = 𝑥 10
= 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20

= 8 + 0 + 2 + 1

= 11

August 26, 2014 CSE2312, Fall 2014 14

ASCII Encoding of Text
Binary Glyph

100 0001 A

100 0010 B

100 0011 C

100 0100 D

100 0101 E

100 0110 F

100 0111 G

100 1000 H

100 1001 I

100 1010 J

100 1011 K

100 1100 L

100 1101 M

August 26, 2014 CSE2312, Fall 2014 15

Binary Glyph

100 1110 N

100 1111 O

101 0000 P

101 0001 Q

101 0010 R

101 0011 S

101 0100 T

101 0101 U

101 0110 V

101 0111 W

101 1000 X

101 1001 Y

101 1010 Z

Binary Glyph

110 0001 a

110 0010 b

110 0011 c

110 0100 d

110 0101 e

110 0110 f

110 0111 g

110 1000 h

110 1001 i

110 1010 j

110 1011 k

110 1100 l

110 1101 m

Binary Glyph

110 1110 n

110 1111 o

111 0000 p

111 0001 q

111 0010 r

111 0011 s

111 0100 t

111 0101 u

111 0110 v

111 0111 w

111 1000 x

111 1001 y

111 1010 z

CSE = 100 0011 101 0011 100 0101

http://en.wikipedia.org/wiki/A
http://en.wikipedia.org/wiki/B
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/D
http://en.wikipedia.org/wiki/E
http://en.wikipedia.org/wiki/F
http://en.wikipedia.org/wiki/G
http://en.wikipedia.org/wiki/H
http://en.wikipedia.org/wiki/I
http://en.wikipedia.org/wiki/J
http://en.wikipedia.org/wiki/K
http://en.wikipedia.org/wiki/L
http://en.wikipedia.org/wiki/M
http://en.wikipedia.org/wiki/N
http://en.wikipedia.org/wiki/O
http://en.wikipedia.org/wiki/P
http://en.wikipedia.org/wiki/Q
http://en.wikipedia.org/wiki/R
http://en.wikipedia.org/wiki/S
http://en.wikipedia.org/wiki/T
http://en.wikipedia.org/wiki/U
http://en.wikipedia.org/wiki/V
http://en.wikipedia.org/wiki/W
http://en.wikipedia.org/wiki/X
http://en.wikipedia.org/wiki/Y
http://en.wikipedia.org/wiki/Z
http://en.wikipedia.org/wiki/A
http://en.wikipedia.org/wiki/B
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/D
http://en.wikipedia.org/wiki/E
http://en.wikipedia.org/wiki/F
http://en.wikipedia.org/wiki/G
http://en.wikipedia.org/wiki/H
http://en.wikipedia.org/wiki/I
http://en.wikipedia.org/wiki/J
http://en.wikipedia.org/wiki/K
http://en.wikipedia.org/wiki/L
http://en.wikipedia.org/wiki/M
http://en.wikipedia.org/wiki/N
http://en.wikipedia.org/wiki/O
http://en.wikipedia.org/wiki/P
http://en.wikipedia.org/wiki/Q
http://en.wikipedia.org/wiki/R
http://en.wikipedia.org/wiki/S
http://en.wikipedia.org/wiki/T
http://en.wikipedia.org/wiki/U
http://en.wikipedia.org/wiki/V
http://en.wikipedia.org/wiki/W
http://en.wikipedia.org/wiki/X
http://en.wikipedia.org/wiki/Y
http://en.wikipedia.org/wiki/Z

Announcements and Outline

• Quiz 1 on Blackboard site (due by end of week)

• Homework 1 on course website

• Review from last time

• Binary review

• Structured computers

• Performance metrics

August 26, 2014 CSE2312, Fall 2014 16

Multilevel Computers

Java Virtual Machine (Java Bytecode)

QEMU (ARM)

VMWare Virtual Machine (x86)

Hardware (x86)

August 26, 2014 CSE2312, Fall 2014 17

Level 3

Level 2

Level 1

Level 0

Multilevel Architectures

August 26, 2014 CSE2312, Fall 2014 18

Physical Device Level (Electronics)

Digital Logic Level

Microarchitecture Level

Instruction Set Architecture (ISA)
Level

Operating System Level

Level 0

Level 1

Level 2

Level 3

Level 4

n/a /
Physics

VHDL /
Verilog

n/a /
Microcode

Assembly /
Machine
Language

C / …

Multiple Ways To Defining Levels

• Decomposition into these specific
levels describes nicely some standard
and widely used abstractions

• As you look closely, you may find that
a specific level itself can be
decomposed into more levels

• Examples:
• A virtual machine
• A compiler may go through two or

three translation steps to produce
the final compiled program. We
can think of each of these steps as
an intermediate level

• A more sophisticated operating
system (e.g., Windows) may run
on top of a more simple operating
system (e.g., DOS), adding extra
capabilities (e.g., window
management and graphical
interfaces)

19August 26, 2014 CSE2312, Fall 2014

Virtual Machines (1)
• Some virtual machines only get implemented in

software:
• Why?
• Examples?

20August 26, 2014 CSE2312, Fall 2014

Virtual Machines (1)
• Some virtual machines only get implemented in

software:
• Why? Because a hardware implementation is not cost-

effective.
• Examples? The virtual machines defined by C, Java, Python.

They would be way more complex and expensive than
typical hardware.

• Some virtual machines get first implemented in
software, and then in hardware.

• Why?

21August 26, 2014 CSE2312, Fall 2014

Virtual Machines (1)
• Some virtual machines only get implemented in

software:
• Why? Because a hardware implementation is not cost-

effective.
• Examples? The virtual machines defined by C, Java, Python.

They would be way more complex and expensive than
typical hardware.

• Some virtual machines get first implemented in
software, and then in hardware.

• Why? Because software implementations are much cheaper
to make, and also much easier to test, debug, and modify.

22August 26, 2014 CSE2312, Fall 2014

Virtual Machines (2)
• Some virtual machines are used by the public in both

hardware and software versions.
• Why?

23August 26, 2014 CSE2312, Fall 2014

Virtual Machines (2)
• Some virtual machines are used by the public in both

hardware and software versions.
• Why? We may have a Macintosh computer, on which we

want to run Windows software, or the other way around.

24August 26, 2014 CSE2312, Fall 2014

Compilation vs. Interpretation

• Compilation:
• n-level program is translated into a program at a lower level
• the program at the lower level is stored in memory, and

executed
• while running, the lower-level program controls the computer

• Interpretation:
• An interpreter, implemented at a lower level, executes your n-

level program line-by-line
• The interpreter translates each line into lower-level code, and

executes that code
• The interpreter is the program that is running, not your code

25August 26, 2014 CSE2312, Fall 2014

Levels of Program Code

• High-level language
• Level of abstraction closer

to problem domain

• Provides for productivity
and portability

• Assembly language
• Textual representation of

instructions

• Hardware representation
• Binary digits (bits)

• Encoded instructions and
data

August 26, 2014 CSE2312, Fall 2014 26

Computer Organization Overview

• CPU
• Executes instructions

• Memory
• Stores programs and data

• Buses
• Transfers data

• Storage
• Permanent

• I/O devices
• Input: keypad, mouse, touch
• Output: printer, screen
• Both (input and output), such

as:
• USB, network, Wifi, touch screen,

hard drive

August 26, 2014 CSE2312, Fall 2014 27

Instruction Set Architectures

• Interface between software and hardware

• High-level language to computer instructions
• How do we translate from a high-level language (e.g., C,

Python, Java) to instructions the computer can
understand?

• Compilation (translation before execution)

• Interpretation (translation-on-the-fly during execution)

• What are examples of each of these?

August 26, 2014 CSE2312, Fall 2014 28

Von Neumann Architecture

• Both data and program
stored in memory

• Allows the computer to
be “re-programmed”

• Input/output (I/O) goes
through CPU

• I/O part is not
representative of
modern systems (direct
memory access [DMA])

• Memory layout is
representative of
modern systems

August 26, 2014 CSE2312, Fall 2014 29

Memory
(Data + Program [Instructions])

CPU I/O

DMA

Abstract Processor Execution Cycle

August 26, 2014 CSE2312, Fall 2014 30

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

Demonstration

• VMWare, QEMU, and ARM ISA and gdb

• We will use QEMU and ARM later in this course
• Particularly for programming assignments

• ARM versus x86
• ARM is prevalent in embedded systems and handheld devices,

many of which have more limited resources than your x86/x86-
64 PC

• Limited resources sometimes requires being very efficient (in
space/memory or time/processing complexity)

• Potentially greater need to interface with hardware

August 26, 2014 CSE2312, Fall 2014 31

August 26, 2014 CSE2312, Fall 2014 32

August 26, 2014 CSE2312, Fall 2014 33

August 26, 2014 CSE2312, Fall 2014 34

August 26, 2014 CSE2312, Fall 2014 35

Announcements and Outline

• Quiz 1 on Blackboard site (due by end of week)

• Homework 1 on course website

• Review from last time

• Binary review

• Structured computers

• Performance metrics

August 26, 2014 CSE2312, Fall 2014 36

Performance Metrics

• Performance is important in computer systems

• How to quantitatively compare different computer systems?

• How to do this in general?
• Cars: MPG, speed, acceleration, towing capability,

passengers, …
• Computer processors

• execution time of a program (seconds)

• instruction count (instructions executed in a program)

• CPI: clock cycles per instruction (average number of clock cycles per
instruction)

• Clock cycle time (seconds per clock cycle)

August 26, 2014 CSE2312, Fall 2014 37

Some Units You Must Know

• Hertz (Hz): unit of
frequency

• 1 Hz: once per second

• 1 Megahertz (1 MHz):
one million times per
second

• 1 Gigahertz (1 GHz):
one billion times per
second

38

• second: unit of time

– 1 millisecond (1ms):
a thousandth of a second.

– 1 microsecond (1μs):
a millionth of a second.

– 1 nanosecond (1ns):
a billionth of a second.

• Similarly for meters:

– millimeter: a thousandth

– micrometer: a millionth

– nanometer: a billionth

Units of Memory

• One bit (binary digit): the smallest amount of
information that we can store:

• Either a 1 or a 0
• Sometimes refer to 1 as high/on/true, 0 as low/off/false

• One byte = 8 bits
• Can store a number from 0 to 255

• Kilobyte (KB): 103 = 1000 bytes
• Kibibyte (KiB): 210 = 1024 bytes
• Kilobit: (Kb): 103 = 1000 bits (125 bytes)
• Kibibit: (Kib): 210 = 1024 bits (128 bytes)

39

Metric Units

The Power Wall

August 26, 2014 CSE2312, Fall 2014 41

Moore's Law for the Intel Family

Figure 1-13. Moore’s law for (Intel) CPU chips.

Moore's Law

• Not a real "law" of nature, just a practical
observation that has remained surprisingly accurate
for decades.

• Predicts a 60% annual increase in the number of
transistors per chip.

• Number of transistors on a chip doubles every 18
months.

• Memory capacity doubles every 2 years.

• Disk capacity doubles every year.

43

Moore's Law

• These observations are more like rules of thumb.

• However, they have been good predictors since the
1960's, more than half a century!

• Moore's law originally was stated in 1965.

• How long will this exponential growth in hardware
capabilities grow?

• Nobody really knows.
• Expected to continue for the next few years.
• When transistors get to be the size of an atom, hard to

predict if and how this growth can continue.

44

Moore Law Example 1

• Suppose average disk capacity right now is 1TB.

• Suppose disk capacity doubles each year.

• What will average disk capacity be in 5 years?

45

Moore Law Example 1

• Suppose average disk capacity right now is 1TB.

• Suppose disk capacity doubles each year.

• What will average disk capacity be in 5 years?

• Answer: 32 TB.

46

Moore Law Example 2

• Suppose average number of instructions per second
in 1960 was 100,000 (this number is made up).

• Suppose average number of instructions per second
in 1970 was 10,000,000 (this number is made up).

• What would be Moore's law for the average
number of instructions? How often does it double?

47

Moore Law Example 2

• Suppose average number of instructions per second
in 1960 was 100,000 (this number is made up).

• Suppose average number of instructions per second
in 1970 was 10,000,000 (this number is made up).

• What would be Moore's law for the average
number of instructions? How often does it double?

• Answer:
• In 10 years, this number increased by 100 times.
• 100 = 26.64.
• Thus, this number doubles every 10/6.64 years = about 18

months.

48

Moore's Law

Figure 1-8. Moore’s law predicts a 60 percent annual
increase in the number of transistors that can be put on
a chip. The data points given above and below the line

are memory sizes, in bits.

Growth in processor performance since the
mid-1980 (relative to VAX 11/780 on SPECint
benchmarks)

August 26, 2014 CSE2312, Fall 2014 50

SPECint2006 Benchmarks on AMD Opteron
X4

August 26, 2014 CSE2312, Fall 2014 51

Technological and Economic Forces

• Improvements in hardware creates opportunities
for new applications.

• New applications attract new businesses.

• New businesses drive competition.

• Competition drives improvements in hardware.

52

Technological and Economic Forces

• "Software is a gas. It expands to fill the container
holding it."

- Nathan Myhrvold, former Microsoft executive.

• Software expands with additional features, to exploit
new hardware capabilities.

• Software expansion creates need for better hardware.

53

Summary

• Structured computers

• Binary and decimal numbers, ASCII

• Basic performance metrics, units

• Quiz 1 on Blackboard

• Homework 1

August 26, 2014 CSE2312, Fall 2014 54

Questions?

August 26, 2014 CSE2312, Fall 2014 55

Silicon Integrated Circuit Manufacturing
Process

August 26, 2014 CSE2312, Fall 2014 56

August 26, 2014 CSE2312, Fall 2014 57

A 12-inch (300mm) wafer of AMD
Opteron X2 chips, the predecessor
of Opteron X4 chips (Courtesy
AMD). The number of dies per
wafer at 100% yield is 117. The
several dozen partially rounded
chips at the boundaries of the wafer
are useless; they are included
because it’s easier to create the
masks used to pattern the silicon.
This die uses a 90-nanometer
technology, which means that the
smallest transistors are
approximately 90 nm in size,
although they are typically
somewhat smaller than the actual
feature size, which refers to the size
of the transistors as “drawn” versus
the final manufactured size.

