UNIVERSITY OF TEXASAARLINGTON

Computer Organization &
Assembly Language
Programming (CSE 2312)

Lecture 2

Taylor Johnson

UNIVERSITY OF TEXASAARLINGTON

Summary from Last Time

* This course aims to answer the question: how do
computers compute?

* Complex and fundamental question
* Organization of computer
* Multilevel architectures

* Assembly programming
* QEMU, ARM, gcc tools (as), and gdb (GNU debugger)

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

* Quiz 1 on Blackboard site (due by end of week)

* Review binary arithmetic, Boolean operations, and
representing numbers in binary

e Homework 1 on course website
* Read chapter 1

* Review from last time
*Binary review
 Structured computers
* Performance metrics

UNIVERSITY OF TEXASAARLINGTON

Review: Digital Computers

* Machine for carrying out instructions
* Program = sequence of instructions

* Instructions = primitive operations
* Add numbers
* Check if a number is zero
* Copy data between different memory locations (addresses)
* Represented as machine language (binary numbers of a certain

length) opcode srcl
* Example: 00 00 on an 8-bit computer may mean:

* Take numbers in registers 0 and 1 (special memory locations inside the
processor) and add them together, putting their sum into register

* That is, to this computer, 00 00 means r0
* |In assembly, this could be written: add r0
* Question: for this same computer, what does 00 00 mean?

e add 0, that is: r0

August 26, 2014 CSE2312, Fall 2014 4

UNIVERSITY OF TEXAS%ARLINGTON

Review: Computer Examples: Our PC/Laptop

R Intel Core i7-3960X die
Il Queue, Uncore
& 1/0

L eaSE B

The dieis 21 by 21 mm
and has 2.27 billion
transistors

ISA: x86-64

© 2011 Intel Corporation

August 26, 2014 CSE2312, Fall 2014

UNIVERSITY OF TEXAS%ARLINGTON

Review: Computer Examples: Our Phone

Nvidia Tegra 2 system on

V:Encod 1 == :
| Processor : eg ; a chip (SoC)
==
—
ceE ISA: ARM
Iz
e;< 9
CPU PU
AUle '
Processor
- =R
]Dllal 3
Dlsplayjl
SHDMI ‘@3 " -_-‘_ S © 2011 Nvidia Corporation

August 26, 2014 CSE2312, Fall 2014

UNIVERSITY OF TEXAS%ARLINGTON

Review: Computer Examples: Our Server

August 26, 2014

Xeon® 7500

® o

g
7
g

ooooooooo

CSE2312, Fall 2014

Oracle (Sun) SPARC T4
ISA: SPARC

Intel Xeon 7500
ISA: x86-64

UNIVERSITY OF TEXAS%ARLINGTON

Review: Computer Examples: Our Car

Atmel ATmega

~ Microchip PIC

Intel 8051

Many others from TI,
Cypress, etc.

August 26, 2014 CSE2312, Fall 2014 8

UNIVERSITY OF TEXAS

@ ARLINGTON

Review: Computer Examples: Others?

* What other examples can you come up with?

* Moral: everywhere and in everything
O Cell Phones B PCs OTVs

August 26, 2014

1200

1100 A
1000 A
900 -
800 A
700 -
600 -
500 -
400 -
300 -
200 -

:ﬂﬁﬂ

O
S P
’\Q) \Q> \0_,

100
0

I

%

T

Q’\
O O
S S

4%

T

%

CSE2312, Fall 2014

T

O & x
& S

%

1]

T

© &
S

Q/Q

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

* Quiz 1 on Blackboard site (due by end of week)
* Homework 1 on course website

* Review from last time
* Binary review
 Structured computers
* Performance metrics

UNIVERSITY OF TEXASAARLINGTON

Numeral Systems and Place Values

* Integer numbers
N=(a,a,;..--2,8,)rg=a,R"+ta, ;R"1+...+a,R+a,

* Fractional numbers
F=(.a,a,....a,)g=aR1+a R?+...+a R™

« Decimal (Base-10) Numbers (R = 10)
953.78,, = 9x10% + 5x10% + 3x10° + 7x10* + 8x102

* Binary (Base-2) Numbers (R = 2)
1011.11, =1x23+0x22+ 1x21 + 1x2%+ 1x21 + 1x272
=8 + 0 + 2 + 1 +1, +%
=11.75,,

UNIVERSITY OF TEXASAARLINGTON

Decimal to Binary Conversion

* Division method: divide by two, take remainder until
Zero

(35)10 = (%)

35/2 =17, remainder 1
17 /2 = 8, remainder 1
8/2 =4, remainder 0
4/?2 = 2, remainder 0
2/2 =1, remainder 0
1/2 =0, remainder 1

Result from bottom up: 100011
* Trick: divide by two and taking remainder = odd/even

UNIVERSITY OF TEXASAARLINGTON

Decimal to Binary Conversion

e Subtraction method: subtract largest power of 2
until O; if negative, O; else 1

(23)10 = (%)

23 —2%=23 —-16 =7

7 —2% =7 -8 =-1

7 —2% =7 —4 =

3 -2t =3 -2 =

1 -2 =1 -1 =
Result (read from top): 10111

N Y = = I =

UNIVERSITY OF TEXASAARLINGTON

Binary to Decimal Conversion

* Exponent summation: sum powers of two
(1011), = ()10
=1%234+0%2°+1%2+1%2°
=8+0+2+1
=11

UNIVERSITY OF TEXASAARLINGTON

ASCIl Encoding of Text

Binary Glyph Binary Glyph Binary Glyph Binary Glyph
100 0001 A 100 1110 N 1100001 a 1101110 n
100 0010 B 100 1111 O 110 0010 b 110 1111 o
100 0011 C 101 0000 P 1100011 c 111 0000 p
100 0100 D 101 0001 Q 110 0100 d 111 0001 g
100 0101 E 101 0010 R 110 0101 e 111 0010 r
100 0110 F 101 0011 S 110 0110 f 1110011 s
1000111 G 101 0100 T 1100111 g 111 0100 t
100 1000 H 1010101 U 110 1000 h 1110101 u
100 1001 | 1010110 V 110 1001 i 111 0110 v
100 1010 J 1010111 W 110 1010 | 1110111 w
100 1011 K 101 1000 X 110 1011 k 111 1000 x
100 1100 L 1011001 Y 110 1100 | 1111001 vy
1001101 M 1011010 Z 1101101 m 111 1010 z

CSE=1000011 101 0011 100 0101

August 26, 2014

CSE2312, Fall 2014

15

http://en.wikipedia.org/wiki/A
http://en.wikipedia.org/wiki/B
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/D
http://en.wikipedia.org/wiki/E
http://en.wikipedia.org/wiki/F
http://en.wikipedia.org/wiki/G
http://en.wikipedia.org/wiki/H
http://en.wikipedia.org/wiki/I
http://en.wikipedia.org/wiki/J
http://en.wikipedia.org/wiki/K
http://en.wikipedia.org/wiki/L
http://en.wikipedia.org/wiki/M
http://en.wikipedia.org/wiki/N
http://en.wikipedia.org/wiki/O
http://en.wikipedia.org/wiki/P
http://en.wikipedia.org/wiki/Q
http://en.wikipedia.org/wiki/R
http://en.wikipedia.org/wiki/S
http://en.wikipedia.org/wiki/T
http://en.wikipedia.org/wiki/U
http://en.wikipedia.org/wiki/V
http://en.wikipedia.org/wiki/W
http://en.wikipedia.org/wiki/X
http://en.wikipedia.org/wiki/Y
http://en.wikipedia.org/wiki/Z
http://en.wikipedia.org/wiki/A
http://en.wikipedia.org/wiki/B
http://en.wikipedia.org/wiki/C
http://en.wikipedia.org/wiki/D
http://en.wikipedia.org/wiki/E
http://en.wikipedia.org/wiki/F
http://en.wikipedia.org/wiki/G
http://en.wikipedia.org/wiki/H
http://en.wikipedia.org/wiki/I
http://en.wikipedia.org/wiki/J
http://en.wikipedia.org/wiki/K
http://en.wikipedia.org/wiki/L
http://en.wikipedia.org/wiki/M
http://en.wikipedia.org/wiki/N
http://en.wikipedia.org/wiki/O
http://en.wikipedia.org/wiki/P
http://en.wikipedia.org/wiki/Q
http://en.wikipedia.org/wiki/R
http://en.wikipedia.org/wiki/S
http://en.wikipedia.org/wiki/T
http://en.wikipedia.org/wiki/U
http://en.wikipedia.org/wiki/V
http://en.wikipedia.org/wiki/W
http://en.wikipedia.org/wiki/X
http://en.wikipedia.org/wiki/Y
http://en.wikipedia.org/wiki/Z

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

* Quiz 1 on Blackboard site (due by end of week)
* Homework 1 on course website

* Review from last time
* Binary review
 Structured computers
* Performance metrics

N
UNIVERSITY OF TEXAS f¢§ ARLINGTON

Multilevel Computers

Level 3 | Java Virtual Machine (Java Bytecode)

Level 2 QEMU (ARM)

Level 1 VMWare Virtual Machine (x86)

Level O Hardware (x86)

UNIVERSITY OF TEXAS%ARLINGTON

Multilevel Architectures

Level 4 Operating System Level / ...

Instruction Set Architecture (ISA) Asseml?'y/
Level Machine

Language

n/a/

Microcode

Level 3

Level 2 Microarchitecture Level

VHDL /
Verilog

n/a/

Level 1 Digital Logic Level

Level O J physical Device Level (Electronics)

Physics

August 26, 2014 CSE2312, Fall 2014 18

UNIVERSITY OF TEXASAARLINGTON

Multiple Ways To Defining Levels

e Decomposition into these specific e
levels pﬁascribes nicely some standard \-\oa\\‘)%
and widely used abstractions ?99 e
* As you look closely, you may find that Sefe Sof’%,
a specific level itself can be &Y ®
decomposed into more levels
e Examples:

e A virtual machine

* A compiler may go through two or
three translation steps to produce
the final compiled program. We
can think of each of these steps as

an intermediate level L

* A more sophisticated operating
system (e.g., Windows? may run
on top of a more simple operating
system (e.g., DOS), adding extra
capabilities (e.g., window
management and graphical
interfaces)

August 26, 2014 CSE2312, Fall 2014 19

UNIVERSITY OF TEXASAARLINGTON

Virtual Machines (1)

* Some virtual machines only get implemented in
software:
e Why?
* Examples?

UNIVERSITY OF TEXASAARLINGTON

Virtual Machines (1)

* Some virtual machines only get implemented in
software:

* Why? Because a hardware implementation is not cost-
effective.

* Examples? The virtual machines defined by C, Java, Python.
They would be way more complex and expensive than
typical hardware.

* Some virtual machines get first implemented in
software, and then in hardware.
e Why?

UNIVERSITY OF TEXASAARLINGTON

Virtual Machines (1)

* Some virtual machines only get implemented in
software:

* Why? Because a hardware implementation is not cost-
effective.

* Examples? The virtual machines defined by C, Java, Python.
They would be way more complex and expensive than
typical hardware.

* Some virtual machines get first implemented in
software, and then in hardware.

* Why? Because software implementations are much cheaper
to make, and also much easier to test, debug, and modify.

UNIVERSITY OF TEXASAARLINGTON

Virtual Machines (2)

* Some virtual machines are used by the public in both
hardware and software versions.
e Why?

UNIVERSITY OF TEXASAARLINGTON

Virtual Machines (2)

* Some virtual machines are used by the public in both
hardware and software versions.

* Why? We may have a Macintosh computer, on which we
want to run Windows software, or the other way around.

UNIVERSITY OF TEXASAARLINGTON

Compilation vs. Interpretation

* Compilation:
* n-level program is translated into a program at a lower level

 the program at the lower level is stored in memory, and
executed

* while running, the lower-level program controls the computer

* Interpretation:
* An interpreter, implemented at a lower level, executes your n-
level program line-by-line
* The interpreter translates each line into lower-level code, and
executes that code

* The interpreter is the program that is running, not your code

UNIVERSITY OF TEXASAARLINGTON

Levels of Program Code

. High-level swap(int vl], int k)
* High-level language onage I o vkl
(in C) vik] = v[k+17;
* Level of abstraction closer , Vkrd] = temp;

to problem domain

* Provides for productivity o
and portability

Assembly swap:
language muli $2, $5,4
dd $2, $4.,%2
. Assembly Ianguage i o $is. oien)
Tw $16, 4(%2)
. sw o $16, 0(3%2)
* Textual representation of w462
Instructions
: Assembler
e Hardware representation =
* Blnary dlglts (bItS) Binary machine 00000000101000010000000000011000
. . language 00000000000110000001100000100001
10001100011000100000000000000000
° EnCOded InStrUCtlonS and ?froorgl\:fla:sﬁ 10001100111100100000000000000100
10101100111100100000000000000000
data 10101100011000100000000000000100

00000011111000000000000000001000

August 26, 2014 CSE2312, Fall 2014 26

UNIVERSITY OF TEXAS%ARLINGTON

Computer Organization Overview

A Compiler
* CP U Interface mﬁ

e Executes instructions B

* Memory
* Stores programs and data

* Buses
* Transfers data

* Storage
* Permanent |
* |/O devices e
* Input: keypad, mouse, touch

e Output: printer, screen

* Both (input and output), such
as:

* USB, network, Wifi, touch screen,
hard drive

Computer

Datapath

1 """“ f
1 Ll \“ - B

Processor

August 26, 2014 CSE2312, Fall 2014 27

UNIVERSITY OF TEXASAARLINGTON

Instruction Set Architectures

* Interface between software and hardware

* High-level language to computer instructions

 How do we translate from a high-level language (e.g., C,
Python, Java) to instructions the computer can
understand?

* Compilation (translation before execution)
* Interpretation (translation-on-the-fly during execution)

* What are examples of each of these?

UNIVERSITY OF TEXAS%ARLINGTON

Von Neumann Architecture

* Both data and program
stored in memory

Memory

(Data + Program [Instructions]) * Allows the computer to
be “re-programmed

* Input/output (I/0) goes
through CPU

* 1/O partis not
representative of
modern systems (direct
memory access [DMA])

* Memory layout is
representative of
modern systems

August 26, 2014 CSE2312, Fall 2014 29

UNIVERSITY OF TEXAS%ARLINGTON

Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from
memory)

EXECUTE
(Execute instruction

fetched from memory)

Handle
Interrupt Interrupt
(Input/Output ?
Event)

PC++
(Increment

the Program
Counter)

August 26, 2014 CSE2312, Fall 2014 30

UNIVERSITY OF TEXASAARLINGTON

Demonstration

* VMWare, QEMU, and ARM ISA and gdb

* We will use QEMU and ARM later in this course
e Particularly for programming assignments

* ARM versus x86

* ARM isFrevaIent in embedded systems and handheld devices,
many of which have more limited resources than your x86/x86-

64 PC

* Limited resources sometimes requires being very efficient (in
space/memory or time/processing complexity)

» Potentially greater need to interface with hardware

UNIVERSITY OF TEXASAARLINGTON

Ubuntu - VMware Player (Non-commercial use only) = [“

OEMy . T b r iy v

M WNRONDIAWNRS

Reading symbols from example.elf...done.
(gdb) ¢
Continuing.

TRl s v 1)l

UNIVERSITY OF TEXASAARLINGTON

Ubuntu - VMware Player (Non-commercial use only) - o “

ile View Search Terminal Helbp t3 =)
E; tjohnson@ubuntu: /mnt/hgfs/Dropbox/Class/cse2312/2013-fall/slides/cse2312 2013-10-08/ex005 1s
= ex00. tws example.elf example.list example_memmap example.s
&= example.bin example.gdb example.log example.o Makefile

tjohnson@ubuntu: /mnt/hgfs/Dropbox/Class/cse2312/2013-fall/slides/cse2312 2013-10-08/ex005 gemu-system-arm -s -M versatile
i!i pb -daemonize -m 128M -S -d in_asm,cpu,exec -kernel example.bin ; gdb-multiarch
i pulseaudio: set_sink_input_volume() failed

pulseaudio: Reason: Invalid argument
b pulseaudio: set_sink_input_mute() failed

pulseaudio: Reason: Invalid argument

.GNU gdb (Ubuntu 7.7-Qubuntu3.1) 7.7

Copyright (C) 2014 Free Software Foundation, Inc.
.’F' License GPLv3+: GNU GPL version 3 or later <http://gnu.0rg/l1‘.censes/gpl.html>

"This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "i686-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

(gdb) set architecture arm

The target architecture is assumed to be arm

(gdb) target :1234

Undefined target command: ":1234". Try "help target".

(gdb) target remote :1234

= Remote debugglng using :1234

GXGOGGGGGO in 2?2 ()

AC | sl o] R

UNIVERSITY OF TEXASAARLINGTON

Ubuntu - VMware Player (Non-commercial use only) - g “

ile ~View Search Terminal Help t3 =)
E; This GDB was configured as "1686-1linux-gnu".
Type "show configuration" for configuration details.
& For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
i!jFind the GDB manual and other documentation resources online at:
i <http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
j!i Type "apropos word" to search for commands related to "word".
(gdb) set architecture arm
) .The target architecture is assumed to be arm
(gdb) target :1234
~vUndef1ned target command: ":1234". Try "help target".
~ (gdb) target remote :1234
Remote debugging using :1234
0x00000000 in ?? ()
(gdb) symbol-file example.elf
Reading symbols from example.elf...done.
(gdb) ¢
Continuing.
(T
Program received signal SIGINT, Interrupt.
loop () at example.s:7
i /* 0x00010008 */ add ri1,r1,#1 @rl1 :=r1+1

(gdb) q
A debugging session is active.

Inferior 1 [Remote target] will be killed.

= Uit anyway? (y or n) y
tJohnson@ubuntu /mnt/hgfs/Dropbox/Class/cse2312/2013 fall/slides/cse2312_2013-10-08/ex005

AC| =i Jg)|] TR

UNIVERSITY OF TEXASAARLINGTON

Ubuntu - VMware Player (Non-commercial use only) - 8 “
ile Fait View Search lermipglHelp ...~ ...t 3= T
File: example.s
= /* ADDR */ /* Instructions / Data */
6 _start
/* 0x00010000 */ 1ldr r0,=0x101f1000 @ r@ := 0x 101f 1000
i /* 0x00010004 */ mov ril,#0 @rl1:=0
6 /* 0x00010008 */ add ri,r1,#1 @rl :=r1+1
./* Ox0001000c */ and ri,r1,#7 @rl :=r1 and 1111
/* 0x00010010 */ add ri,r1,#0x30 @rl :=r1+ 0011 000
/* 0x00010014 */ str r1,[r0] @ iGN = 1
/* 0x00010018 */ mov r2,#0x0D @ r2 := 0x0D
/* 0x0001001c */ str r2,[r0] (@ 70 8= (2
/* 0x00010020 */ mov r2,#0x0A @ r2 := Ox0A
/* 0x00010024 */ str r2,[r0] (@ [r0] :=r2
‘* 0x00010028 */ b loop @ goto loop

Wrote 16 lines
= RY Get Help WriteOut Read File "Y Prev Page Cut Text Cur Pos
_ M Exit a8 Justify Al Where Is A Next Page &Y UnCut Text Al To Spell

— " E O & e

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

* Quiz 1 on Blackboard site (due by end of week)
* Homework 1 on course website

* Review from last time
* Binary review
 Structured computers
* Performance metrics

UNIVERSITY OF TEXASAARLINGTON

Performance Metrics

e Performance is important in computer systems

* How to quantitatively compare different computer systems?

* How to do this in general?

* Cars: MPG, speed, acceleration, towing capability,
passengers, ...

¢ Computer processors
» execution time of a program (seconds)
* instruction count (instructions executed in a program)

* CPI: clock cycles per instruction (average number of clock cycles per
instruction)

* Clock cycle time (seconds per clock cycle)

UNIVERSITY OF TEXASAARLINGTON

Some Units You Must Know

* Hertz (Hz): unit of * second: unit of time
frequency — 1 millisecond (1ms):

*1 Hz: once per second a thousandth of a second.

*1 Megahertz (1 MHz): — 1 microsecond (1ps):
one million times per a millionth of a second.
second — 1 nanosecond (1ns):

* 1 Gigahertz (1 GHz): a billionth of a second.
one billion times per * Similarly for meters:
second — millimeter: a thousandth

— micrometer: a millionth
— nanometer: a billionth

UNIVERSITY OF TEXASAARLINGTON

Units of Memory

* One bit (binary digit): the smallest amount of
information that we can store:

e EitheraloraO
* Sometimes refer to 1 as high/on/true, 0 as low/off/false

* One byte = 8 bits
e Can store a number from 0 to 255

* Kilobyte (KB): 103 = 1000 bytes
e Kibibyte (KiB): 219 = 1024 bytes
e Kilobit: (Kb): 103 = 1000 bits (125 bytes)
e Kibibit: (Kib): 210 = 1024 bits (128 bytes)

UNIVERSITY OF TEXASAARLINGTON

Metric Units

Exp. Explicit Prefix | Exp. Explicit Prefix
1073 0.001 milli 10° 1,000 | kilo
107° 0.000001 micro | 10° 1,000,000 | mega
107 0.000000001 nhano | 10° 1,000,000,000 | giga
10'? | 0.000000000001 pico 10" 1,000,000,000,000 | tera
10"° | 0.000000000000001 femto | 10" 1,000,000,000,000,000 | peta
10'® | 0.0000000000000000001 atto 108 1,000,000,000,000,000,000 | exa
102! | 0.0000000000000000000001 zepto | 10% 1,000,000,000,000,000,000,000 | zetta
107 | 0.0000000000000000000000001 | yocto | 10** | 1,000,000,000.000,000,000,000,000 | yotta

UNIVERSITY OF TEXAS%ARLINGTON

The Power Wall

— 120

(snem) 1emod

o o
o0} ©
|
1

+ 100

o
<
I
|

+ 20

3600

2667

2000

|
|

1)
(o))

103

75.3

[

Clock Rate 200

66
[

Power

29.1

(£002)
ploysiuay|
2 2100

(¥002)
H0osalid

¥ wnnpuad
(L00Z2)

SHETETTY)
¥ wninuad

—

(,661) 01d
wnijusad

(c661)
wnnuad

(6861)
9808

(c861)
98£08

(zg6l)
98208

10000 +

1000 +
100 +

I
1
o
ot

(ZHIN) 8rey 001D

41

CSE2312, Fall 2014

August 26, 2014

UNIVERSITY OF TEXASAARLINGTON

Moore's Law for the Intel Family

Transistors

Figure 1-13. Moore’s law for (Intel) CPU chips.

3 Core 2

Core if
%

Core Duo, A
Pentium 4 1l."'

B Pentium III\
Pentium Il

Moore’s law

80286

Pentium
Fro

1970 1975 1980 1985 1990 1995 2000 2005 2010

Year of introduction

UNIVERSITY OF TEXASAARLINGTON

Moore's Law

* Not a real "law" of nature, just a practical
observation that has remained surprisingly accurate
for decades.

* Predicts a 60% annual increase in the number of
transistors per chip.

* Number of transistors on a chip doubles every 18
months.

* Memory capacity doubles every 2 years.
* Disk capacity doubles every year.

UNIVERSITY OF TEXASAARLINGTON

Moore's Law

* These observations are more like rules of thumb.

* However, they have been good predictors since the
1960's, more than half a century!

* Moore's law originally was stated in 1965.

* How long will this exponential growth in hardware
capabilities grow?
* Nobody really knows.
* Expected to continue for the next few years.

* When transistors get to be the size of an atom, hard to
predict if and how this growth can continue.

UNIVERSITY OF TEXASAARLINGTON

Moore Law Example 1

* Suppose average disk capacity right now is 1TB.
e Suppose disk capacity doubles each year.
* What will average disk capacity be in 5 years?

UNIVERSITY OF TEXASAARLINGTON

Moore Law Example 1

* Suppose average disk capacity right now is 1TB.
e Suppose disk capacity doubles each year.

* What will average disk capacity be in 5 years?

* Answer: 32 TB.

UNIVERSITY OF TEXASAARLINGTON

Moore Law Example 2

e Suppose average number of instructions per second
in 1960 was 100,000 (this number is made up).

* Suppose average number of instructions per second
in 1970 was 10,000,000 (this number is made up).

* What would be Moore's law for the average
number of instructions? How often does it double?

UNIVERSITY OF TEXASAARLINGTON

Moore Law Example 2

e Suppose average number of instructions per second
in 1960 was 100,000 (this number is made up).

* Suppose average number of instructions per second
in 1970 was 10,000,000 (this number is made up).

* What would be Moore's law for the average
number of instructions? How often does it double?

* Answer:
* In 10 years, this number increased by 100 times.
* 100 = 26:64,
* Thus, this number doubles every 10/6.64 years = about 18
months.

UNIVERSITY OF TEXASAARLINGTON

Moore's Law

100G
10G
16
100M
10M
™
100K
10K
1K
100

10
1 | | | | | | | | |
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

Number of transistors

Figure 1-8. Moore’s law predicts a 60 percent annual
Increase In the number of transistors that can be put on
a chip. The data points given above and below the line

are memory sizes, in bits.

UNIVERSITY OF TEXASAARLINGTON
Growth in processor performance since the

mid-1980 (relative to VAX 11/780 on SPECint
benchmarks)

10,000 Intel Xeon, 3.6 GHz __64-bit Intel Xeon, 3.6 GHz
AMD Opteron, 2.2 GHz g—= 57646505
=" 5364
4195
1000
<)
0]
I
2 ~20%
>
g 100
(0]
o
c
(]
=
o
b5 24 52%l/year
o
10 Sun-4/260
VAX 8700 o~

VAX-11/780 ==

/ . 25%lyear
o et

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

1.5, VAX-11/785

1 1 1 1 1 L L

August 26, 2014 CSE2312, Fall 2014 50

UNIVERSITY OF TEXAS%ARLINGTON

SPECint2006 Benchmarks on AMD Opteron
X4

Execut ion | Reference
Inst ruct ion Clockcy clet ime Time Time
Desc rip tion Nam e Count x10° (seco nds x10°) | (seco nds) | (seco nds) SPE Crat io
Interpreted string proces sing | perl 2118 0.75 04 637 9,770 15.3
Block-sor ting bzip2 2,389 0.85 04 817 9,650 11.8
compression
GNU C compile r gcc 1,050 1.72 04 724 8,050 11.1
Combinatorial optimization | mcf 336 10.00 0.4 1,345 9,120 6.8
Go game (Al) go 1,658 1.09 0.4 721 10,490 14.6
Search gene sequ ence hmmer 2,783 0.80 0.4 890 9,330 10.5
Chess game (Al) sjeng 2,176 0.96 04 837 12,100 14.5
Quantum computer libquantum 1,623 1.61 04 1,047 20,720 19.8
simulation
Video compressio n h264a vc 3,102 0.80 0.4 993 22,130 223
Discre te event omnetpp 587 2.94 0.4 690 6,250 9.1
simulation library
Games/path finding astar 1,082 1.79 0.4 773 7,020 9.1
XML parsing xalancbmk 1,058 2.70 0.4 1,143 6,900 6.0
Geometric Mean 1.7

August 26, 2014

CSE2312, Fall 2014

51

UNIVERSITY OF TEXASAARLINGTON

Technological and Economic Forces

* Improvements in hardware creates opportunities
for new applications.

* New applications attract new businesses.
* New businesses drive competition.
* Competition drives improvements in hardware.

UNIVERSITY OF TEXASAARLINGTON

Technological and Economic Forces

» "Software is a gas. It expands to fill the container
holding it."

- Nathan Myhrvold, former Microsoft executive.

* Software expands with additional features, to exploit
new hardware capabilities.

e Software expansion creates need for better hardware.

UNIVERSITY OF TEXASAARLINGTON

Summary

 Structured computers
* Binary and decimal numbers, ASCI|
* Basic performance metrics, units

* Quiz 1 on Blackboard
e Homework 1

UNIVERSITY OF TEXASAARLINGTON

Questions?

Process

Silicon ingot

o -E—-)

Bond die to
package

|

Packaged dies

-~

UNIVERSITY OF TEXAS%ARLINGTON
Silicon Integrated Circuit Manufacturing

Blank
wafers

Tested dies Tested

00 wafer
E]EEIIEDDD&D —
oorgg ™~ | Dicer k“ﬁ) S

Ooano ;
OO

.

Part
tester

August 26, 2014

Tested packaged dies

CSE2312, Fall 2014

Ship to
customers

20 to 40
processing steps

Wafer
tester

Patterned wafers

N

AR A

56

UNIVERSITY OF TEXAS%ARLINGTON

A 12-inch (300mm) wafer of AMD
Opteron X2 chips, the predecessor
of Opteron X4 chips (Courtesy
AMD). The number of dies per
wafer at 100% yield is 117. The
several dozen partially rounded
chips at the boundaries of the wafer
are useless; they are included

because it’s easier to create the I : TeE

masks used to pattern the silicon. P DR e 1 1

This die uses a 90-nanometer 55 i IEa O R I A
technology, which means that the 5 7 R R ﬁ ; o
smallest transistors are . e e o e T ' -
approximately 90 nm in size, L e ———
although they are typically IR [T o——
somewhat smaller than the actual e e : 3%2 e
feature size, which refers to the size = =

of the transistors as “drawn” versus
the final manufactured size.

August 26,2014 CSE2312, Fall 2014 57

