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Important Concepts from Previous Lectures

• How do computers compute?

• Binary to decimal, decimal to binary, ASCII

• Structured computers
• Multilevel computers and architectures

• Abstraction layers

• Performance metrics
• Clock rates, cycle time/period, CPI, response time, throughput
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Announcements and Outline

• Quiz 2 on Blackboard site (due 11:59PM Friday)
• Review binary arithmetic, Boolean operations, and 

representing signed and unsigned numbers in binary

• Homework 1 due Thursday
• Read chapter 1

• Homework 2 assigned Thursday
• Start reading chapter 2 (ARM version on Blackboard site)

• Review from last time / Chapter 1
• Performance metrics

• Signed vs. Unsigned Numbers (Two’s Complement)
• Instructions: the Language of the Computer

September 2, 2014 CSE2312, Fall 2014 3



Review: Computer Organization Overview

• CPU
• Executes instructions 

• Memory
• Stores programs and data 

• Buses
• Transfers data 

• Storage
• Permanent

• I/O devices
• Input: keypad, mouse, touch
• Output: printer, screen
• Both (input and output), such 

as:
• USB, network, Wifi, touch screen, 

hard drive
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Review: Von Neumann Architecture

• Both data and program 
stored in memory

• Allows the computer to 
be “re-programmed”

• Input/output (I/O) goes 
through CPU

• I/O part is not 
representative of 
modern systems (direct 
memory access [DMA])

• Memory layout is 
representative of 
modern systems
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Review: Abstract Processor Execution Cycle
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FETCH[PC]
(Get instruction from 

memory)
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(Execute instruction 

fetched from memory)
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Interrupt
(Input/Output

Event)



Review: Units of Memory

• One bit (binary digit): the smallest amount of 
information that we can store: 

• Either a 1 or a 0
• Sometimes refer to 1 as high/on/true, 0 as low/off/false

• One byte = 8 bits
• Can store a number from 0 to 255

• Kilobyte (KB): 103 = 1000 bytes
• Kibibyte (KiB): 210 = 1024 bytes
• Kilobit: (Kb): 103 = 1000 bits (125 bytes)
• Kibibit: (Kib): 210 = 1024 bits (128 bytes)
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Review: Moore's Law  for the Intel Family
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Review: The Power Wall
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Review: Relative Performance
• Define Performance = 1/Execution Time

• “X is n time faster than Y”

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program

 10s on A, 15s on B

 Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

 So A is 1.5 times faster than B
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Review: CPU Clocking
• Operation of digital hardware governed by a constant-

rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

 Clock period: duration of a clock cycle

 e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz
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Review: Instruction Count and CPI

• Instruction Count for a program = number of 
instructions in program

• Determined by program, ISA and compiler

• Average cycles per instruction (CPI) = number of cycles 
to execute an instruction (on average)

• Determined by CPU hardware
• If different instructions have different CPI

• Average CPI affected by instruction mix 

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock







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Review: Performance Summary

• Performance depends on
• Algorithm: affects IC, possibly CPI
• Programming language: affects IC, CPI
• Compiler: affects IC, CPI
• Instruction set architecture: affects IC, CPI, Tc

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 
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Pitfall: Amdahl’s Law
• Improving an aspect of a computer and expecting a 

proportional improvement in overall performance

20
80

20 
n

 Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T 

 Example: multiply accounts for 80s/100s

 How much improvement in multiply performance to 

get 5× overall?

 Corollary: make the common case fast
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Review: Chapter 1 Summary

• Cost/performance is improving
• Due to underlying technology development

• Hierarchical layers of abstraction
• In both hardware and software

• Instruction set architecture
• The hardware/software interface

• Execution time: the best performance measure

• Power is a limiting factor
• Use parallelism to improve performance
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Announcements and Outline

• Quiz 2 on Blackboard site (due 11:59PM Friday)
• Review binary arithmetic, Boolean operations, and 

representing signed and unsigned numbers in binary

• Homework 1 due Thursday
• Read chapter 1

• Homework 2 assigned Thursday
• Start reading chapter 2 (ARM version on Blackboard site)

• Review from last time / Chapter 1
• Performance metrics

• Signed vs. Unsigned Numbers (Two’s Complement)
• Instructions: the Language of the Computer
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Unsigned Binary Integers
• Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits

 0 to +4,294,967,295
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2s-Complement Signed Integers

• Given an n-bit number
0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 to +2,147,483,647
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2s-Complement Signed Integers

• Bit 31 is sign bit
• 1 for negative numbers
• 0 for non-negative numbers

• –(–2n – 1) can’t be represented
• Non-negative numbers have the same unsigned and 

2s-complement representation
• Some specific numbers

• 0: 0000 0000 … 0000
• –1: 1111 1111 … 1111
• Most-negative: 1000 0000 … 0000
• Most-positive: 0111 1111 … 1111
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Two’s Complement Signed Negation
• Complement and add 1

• Complement means 1 → 0, 0 → 1
• Representation called one’s complement

x1x

11111...111xx 2





 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102
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Hexadecimal
• Base 16

• Compact representation of bit strings
• 4 bits (also called a nibble or nybble) per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: 0xECA8 6420

 1110 1100 1010 1000 0110 0100 0010 0000
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Announcements and Outline

• Quiz 2 on Blackboard site (due 11:59PM Friday)
• Review binary arithmetic, Boolean operations, and 

representing signed and unsigned numbers in binary

• Homework 1 due Thursday
• Read chapter 1

• Homework 2 assigned Thursday
• Start reading chapter 2 (ARM version on Blackboard site)

• Review from last time / Chapter 1
• Performance metrics

• Signed vs. Unsigned Numbers (Two’s Complement)
• Instructions: the Language of the Computer
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Instruction Set

• The repertoire of instructions of a computer

• Different computers have different instruction sets
• But with many aspects in common
• Will discuss a few in this course, primarily will focus on 

ARM for assignments

• Early computers had very simple instruction sets
• Simplified implementation

• Many modern computers also have simple 
instruction sets
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MIPS and ARM Instruction Sets

• MIPS
• Used as examples throughout the book
• Stanford MIPS commercialized by MIPS Technologies 

(www.mips.com)
• Large share of embedded core market

• Applications in consumer electronics, network/storage equipment, cameras, 
printers, …

• Typical of many modern ISAs
• See MIPS Reference Data tear-out card, and Appendixes B and E

• ARM
• Commercially much more successful (nearly every phone)
• Similar to MIPS
• ARM version of chapters on Blackboard
• Use this for programming assignments
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Arithmetic Operations

• Add and subtract, three operands
• Operand: quantity on which an operation is performed
• Two sources and one destination

add a, b, c  # a updated to b + c

• All arithmetic operations have this form

• Design Principle 1: Simplicity favours regularity
• Regularity makes implementation simpler
• Simplicity enables higher performance at lower cost
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Arithmetic Example

• C code:

f = (g + h) - (i + j);

• Compiled MIPS code:

add t0, g, h   # temp t0 = g + h
add t1, i, j   # temp t1 = i + j
sub f, t0, t1  # f = t0 - t1

• Compiled ARM code:

add r0, g, h   # temp r0 = g + h
add r1, i, j   # temp r1 = i + j
sub f, r0, r1  # f = t0 - t1

• Notice: registers “=“ variables
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Some Processor Components
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CPU

Register File
• Program Counter (PC)
• Instruction Register (IR)
• General Purpose 

Registers
• Word size
• Typically 16-32 of these
• PC sometimes one of these

• Floating Point Registers

Arithmetic logic 
unit (ALU)

Floating Point Unit 
(FPU)



Register Operands

• Arithmetic instructions use register operands

• MIPS has a 32 × 32-bit register file
• Use for frequently accessed data
• Numbered 0 to 31
• 32-bit data called a “word”

• Assembler names
• $t0, $t1, …, $t9 for temporary values
• $s0, $s1, …, $s7 for saved variables

• Design Principle 2: Smaller is faster
• c.f. main memory: millions of locations
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ARM 7 Registers

• 16 32-bit general purpose registers

• 32 32-bit floating-point registers (not available on every 
device)
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ARM 7 Registers

• The Vx registers hold data needed by procedures (functions)

• They should be stored in memory when calling another 
procedure

• They should be restored from memory when returning from 
another procedure
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ARM 7 Registers

• The Ax registers are used for passing parameters to 
procedures

• Four dedicated registers have special roles: IP, SP, LR, PC.
• We will see more details on these registers are later.

• Who ensures that these registers are used as specified here?
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ARM 7 Registers

• The Ax registers  are used for passing parameters to 
procedures

• Four dedicated registers have special roles: IP, SP, LR, PC.
• We will see more details on these registers are later

• Who ensures that these registers are used as specified here?
• You!!! (The programmer)
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ARM: Load/Store Architecture

• ARM is a load/store architecture

• This means that memory can only be accessed by load 
and store instructions

• All arguments for arithmetic and logical instructions 
must either:

• Come from registers
• Be constants specified within the instruction

• (more examples of that later)

• This may not seem like a big deal to you, as you have 
not experienced the alternative

• However, it makes life much easier
• This is one reason why we chose ARM 7 for this course
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Memory Operands

• Main memory used for composite data
• Arrays, structures, dynamic data

• To apply arithmetic operations
• Load values from memory into registers
• Store result from register to memory

• Memory is byte addressed
• Each address identifies an 8-bit byte

• Words are aligned in memory
• Address must be a multiple of 4

• MIPS/ARM are Big Endian
• Most-significant byte at least address of a word
• c.f. Little Endian: least-significant byte at least address
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Register Operand Example

• C code:
f = (g + h) - (i + j);

• f, …, j in:
• $s0, …, $s4 (MIPS)
• r0, …, r4 (ARM)

• Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

• Compiled ARM code:
add r0, r1, r2
add r1, r3, r4 // overwrite r1
sub r0, r0, r1

• Note: syntax and semantics (meaning) differences

September 2, 2014 35CSE2312, Fall 2014



ARM Instructions in Machine Language

• Opcode: Basic operation of the instruction
• Rd: The register destination operand. It gets the result of the 

operation
• Rn:   The first register source operand
• Operand2:   The second source operand
• I:  Immediate. If I is 0, the second source operand is a register. If I 

is 1, the second source operand is a 12-bit immediate
• S:   Set Condition Code. This field is related to conditional branch 

instructions
• Cond:   Condition. Related to conditional branch instructions
• F:   Instruction Format. This field allows ARM to different 

instruction formats when needed
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4 bits 6 bits2 bits 1 bit 4 bits 1 bit

Rd Operand2

6 bits 12 bits



Byte Ordering - Endianness

• How do we store an integer in memory? 

• Simple answer: in binary

• Actual answer: yes, in binary, but this does not fully 
specify how we store the number

• Unfortunately, we have two choices

• Common architectures may follow either choice, 
and mess ensues, unless we are aware of this issue 
and we deal with it explicitly

• This is the problem of endianness
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Endianness

• Little-endian: increasing numeric significance with 
increasing memory addresses

• Big-endian: decreasing numeric significance with 
increasing memory addresses

• Little-Endian Examples
• x86, x86-64, 8051, DEC Alpha, Atmel AVR

• Big-Endian Examples
• Motorola 6800 and 68k series, Xilinx Microblaze, IBM POWER, 

and System/360

• Bi-Endianness
• Ability for computer to operate using either
• SPARC
• ARM architecture: little-endian before version 3, now bi-endian
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Endianness Example
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Byte Ordering Visualization

(a) Big endian memory. (b) Little endian memory.

Main difference: ordering of bytes in a word

- Left-to-right in big endian.

- Right-to-left in little-endian.
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Memory: Words and Alignment

• Bytes are grouped into words

• Depending on the machine, a word can be:
• 32 bits (4 bytes) , or
• 64 bits (8 bytes), or … (16-bits, 128 bits, etc.)

• Oftentimes it is required that words are aligned

• This means that: 
• 4-byte words can only begin at memory addresses that 

are multiples of 4: 0, 4, 8, 12, 16…
• 8-byte words can only begin at memory addresses that 

are multiples of 8: 0, 8, 16, 24, 32, …
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Memory Models

An 8-byte word in a little-endian memory. 
(a) Aligned. (b) Not aligned. Some machines 
require that words in memory be aligned.
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Memory Cells and Addresses

• Memory cell: a piece of memory that contains a 
specific number of bits

• How many bits depends on the architecture
• In modern architectures, it is almost universal that a cell 

contains 8 bits (1 byte), and that will be also our 
convention in this course

• Memory address: a number specifying a location of 
a memory cell containing data

• Essentially, a number specifying the location of a byte of 
memory
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Memory Cells and Addresses

• The number of unique memory addresses depends 
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.

• If each cell is 8 bits, we have ??? addresses?

• If each cell is 12 bits, we have ??? addresses?

• If each cell is 16 bits, we have ??? addresses?
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Memory Cells and Addresses

• The number of unique memory addresses depends 
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.
• If each cell is 8 bits, we have 12 addresses?
• If each cell is 12 bits, we have 8 addresses?
• If each cell is 16 bits, we have 6 addresses?

• Convention used almost everywhere, and in this 
course: if a memory has n cells, the addresses of 
these cells will be from 0 to n-1. 
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Address Spaces For Instructions and Data

• Typically memory can be accessed using a single 
address space

• For example, if we have 4 GB of memory, each byte has 
an address from 0 to 232 - 1.

• Each memory location may store instructions at some 
point and data at some other point

• An alternative is to have separate address spaces 
for instructions and data

• In that case, a memory location is permanently dedicated 
to either storing instructions or to storing data

• Instead of a single load instruction, we have 
load_instructions and load_data
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Effects of Separate Address Spaces

• If A is a valid memory address, load_instructions A and 
load_data A access different memory locations.

• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?
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Effects of Separate Address Spaces

• If A is a valid memory address, load_instructions A and 
load_data A access different memory locations.

• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?

• A common way for malware to attack is to:
• Run as regular program.
• Modify memory locations that store instructions, thus modifying 

other programs (such as the operating system).

• If instruction memory is accessed with different 
instructions, such behavior can easily be prevented.
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Registers vs. Memory

• Registers are faster to access than memory

• Operating on memory data requires loads and 
stores

• More instructions to be executed

• Compiler must use registers for variables as much 
as possible

• Only spill to memory for less frequently used variables
• Register optimization is important!
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Stored Program Computers
• Instructions represented in 

binary, just like data

• Instructions and data stored in 
memory

• Programs can operate on 
programs

• e.g., compilers, linkers, …

• Binary compatibility allows 
compiled programs to work on 
different computers

• Standardized ISAs
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Announcements and Outline

• Quiz 2 on Blackboard site (due 11:59PM Friday)
• Review binary arithmetic, Boolean operations, and 

representing signed and unsigned numbers in binary

• Homework 1 due Thursday
• Read chapter 1

• Homework 2 assigned Thursday
• Start reading chapter 2 (ARM version on Blackboard site)

• Review from last time / Chapter 1
• Performance metrics

• Signed vs. Unsigned Numbers (Two’s Complement)
• Instructions: the Language of the Computer
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Questions?
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Memory Operand Example 1

• C code:

g = h + A[8];
• g in $s1, h in $s2, base address of A in $s3

• Compiled MIPS code:
• Index 8 requires offset of 32

• 4 bytes per word

lw  $t0, 32($s3)    # load word
add $s1, $s2, $t0

offset base register
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Memory Operand Example 2

• C code:

A[12] = h + A[8];
• h in $s2, base address of A in $s3

• Compiled MIPS code:
• Index 8 requires offset of 32

lw $t0, 32($s3)    # load word
add $t0, $s2, $t0
sw $t0, 48($s3)    # store word
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Immediate Operands

• Constant data specified in an instruction

addi $s3, $s3, 4

• No subtract immediate instruction
• Just use a negative constant
addi $s2, $s1, -1

• Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction
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Sign Extension

• Representing a number using more bits
• Preserve the numeric value

• In MIPS instruction set
• addi: extend immediate value
• lb, lh: extend loaded byte/halfword
• beq, bne: extend the displacement

• Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110
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Representing Instructions

• Instructions are encoded in binary
• Called machine code

• ARM (and MIPS) instructions
• Encoded as 32-bit instruction words
• Small number of formats encoding operation code 

(opcode), register numbers, …
• Regularity!

• Register numbers
• $t0 – $t7 are reg’s 8 – 15
• $t8 – $t9 are reg’s 24 – 25
• $s0 – $s7 are reg’s 16 – 23
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MIPS R-format Instructions

• Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number

• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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MIPS I-format Instructions

• Immediate arithmetic and load/store instructions
• rt: destination or source register number
• Constant: –215 to +215 – 1
• Address: offset added to base address in rs

• Design Principle 4: Good design demands good 
compromises

• Different formats complicate decoding, but allow 32-bit 
instructions uniformly

• Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits
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