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Important Concepts from Previous Lectures

• How do computers compute?

• Binary to decimal, decimal to binary, ASCII, signed 
numbers, hexadecimal

• Structured computers

• Performance metrics
• Clock rates, cycle time/period, CPI, response time, 

throughput
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Announcements and Outline

• Quiz 2 on Blackboard site (due 11:59PM Friday)
• Review binary arithmetic, Boolean operations, and representing 

signed and unsigned numbers in binary
• Homework 1 due today
• Homework 2 assigned today

• Reading chapter 2 (ARM version on Blackboard site)

• Review from last time
• Signed vs. Unsigned Numbers (Two’s Complement), Hex
• Intro assembly

• Instructions: the Language of the Computer
• Memory
• Endianness
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Review: Von Neumann Architecture

• Both data and program 
stored in memory

• Allows the computer to 
be “re-programmed”

• Input/output (I/O) goes 
through CPU

• I/O part is not 
representative of 
modern systems (direct 
memory access [DMA])

• Memory layout is 
representative of 
modern systems
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Review: Abstract Processor Execution Cycle
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Review: Two’s Complement Signed Negation
• Complement and add 1

• Complement means 1 → 0, 0 → 1
• Representation called one’s complement

x1x

11111...111xx 2

−=+

−==+

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102
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Review: Hexadecimal
• Base 16

• Compact representation of bit strings
• 4 bits (also called a nibble or nybble) per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

 Example: 0xECA8 6420
 1110 1100 1010 1000 0110 0100 0010 0000
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Review: Arithmetic Operations

• Add and subtract, three operands
• Operand: quantity on which an operation is performed
• Two sources and one destination
add a, b, c  # a updated to b + c

• All arithmetic operations have this form
• Design Principle 1: Simplicity favours regularity

• Regularity makes implementation simpler
• Simplicity enables higher performance at lower cost
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Review: Arithmetic Example

• C code:
f = (g + h) - (i + j);

• Compiled MIPS code:
add t0, g, h   # temp t0 = g + h
add t1, i, j   # temp t1 = i + j
sub f, t0, t1  # f = t0 - t1

• Compiled ARM code:
add r0, g, h   # temp r0 = g + h
add r1, i, j   # temp r1 = i + j
sub f, r0, r1  # f = t0 - t1

• Notice: registers “=“ variables
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Review: Some Processor Components
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CPU

Register File
• Program Counter (PC)
• Instruction Register (IR)
• General Purpose 

Registers
• Word size
• Typically 16-32 of these
• PC sometimes one of these

• Floating Point Registers

Arithmetic logic 
unit (ALU)

Floating Point Unit 
(FPU)



Review: ARM: Load/Store Architecture

• ARM is a load/store architecture
• This means that memory can only be accessed by load 

and store instructions
• All arguments for arithmetic and logical instructions 

must either:
• Come from registers
• Be constants specified within the instruction

• (more examples of that later)

• This may not seem like a big deal to you, as you have 
not experienced the alternative

• However, it makes life much easier
• This is one reason why we chose ARM 7 for this course
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ARM 7 Registers

• 16 32-bit general purpose registers
• 32 32-bit floating-point registers (not available on every 

device)
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ARM 7 Registers

• The Vx registers hold data needed by procedures (functions)
• They should be stored in memory when calling another 

procedure
• They should be restored from memory when returning from 

another procedure
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ARM 7 Registers

• The Ax registers are used for passing parameters to 
procedures

• Four dedicated registers have special roles: IP, SP, LR, PC.
• We will see more details on these registers are later.

• Who ensures that these registers are used as specified here?
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ARM 7 Registers

• The Ax registers  are used for passing parameters to 
procedures

• Four dedicated registers have special roles: IP, SP, LR, PC.
• We will see more details on these registers are later

• Who ensures that these registers are used as specified here?
• You!!! (The programmer)
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Memory Operands

• Main memory used for composite data
• Arrays, structures, dynamic data

• To apply arithmetic operations
• Load values from memory into registers
• Store result from register to memory

• Memory is byte addressed
• Each address identifies an 8-bit byte

• Words are aligned in memory
• Address must be a multiple of 4

• MIPS/ARM are Big Endian
• Most-significant byte at least address of a word
• c.f. Little Endian: least-significant byte at least address
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Register Operand Example

• C code:
f = (g + h) - (i + j);

• f, …, j in:
• $s0, …, $s4 (MIPS)
• r0, …, r4 (ARM)

• Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

• Compiled ARM code:
add r0, r1, r2
add r1, r3, r4 // overwrite r1
sub r0, r0, r1

• Note: syntax and semantics (meaning) differences
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Representing Instructions

• Instructions are encoded in binary
• Called machine code

• ARM (and MIPS) instructions
• Encoded as 32-bit instruction words
• Small number of formats encoding operation code (opcode), 

register numbers, …
• Regularity!

• Register numbers
• r0 referenced (addressed) by b0000
• r1 referenced by b0001
• …
• r15 referenced by b1111
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ARM Arithmetic Instructions in Machine Language

• Opcode: Basic operation of the instruction
• Rd: The register destination operand. It gets the result of the 

operation
• Rn:   The first register source operand
• Operand2:   The second source operand
• I:  Immediate. If I is 0, the second source operand is a register. If I 

is 1, the second source operand is a 12-bit immediate
• S:   Set Condition Code. This field is related to conditional branch 

instructions
• Cond:   Condition. Related to conditional branch instructions
• F:   Instruction Format. This field allows ARM to different 

instruction formats when needed
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Cond F I Opcode S Rn
4 bits 4 bits2 bits 1 bit 4 bits 1 bit

Rd Operand2
4 bits 12 bits



ARM Arithmetic Instructions in Machine Language

• Example: add r5, r1, r2
• C equivalent: r5 = r1 + r2
• Machine language encoding above
• Opcode: 0100 means add (dependent on digital logic, some encoding)
• Rd: register destination operand. It gets the result of the operation
• Rn:   first register source operand
• Operand2:   second source operand
• I:  Immediate. If I is 0, the second source operand is a register. If I is 1, 

the second source operand is a 12-bit immediate
• S:   Set Condition Code
• Cond:   Condition. Related to conditional branch instructions
• F:   Instruction Format
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1110 00 0 0100 0 0001
4 bits 4 bits2 bits 1 bit 4 bits 1 bit

0101 0000 0000 0010
4 bits 12 bits

Cond F I Opcode S Rn Rd Operand2



Machine Code: MIPS R-format Instructions

• Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number
• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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Machine Code: R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits
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Machine Code: MIPS I-format Instructions

• Immediate arithmetic and load/store instructions
• rt: destination or source register number
• Constant: –215 to +215 – 1
• Address: offset added to base address in rs

• Design Principle 4: Good design demands good 
compromises

• Different formats complicate decoding, but allow 32-bit 
instructions uniformly

• Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits
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Memory Cells and Addresses

• Memory cell: a piece of memory that contains a 
specific number of bits

• How many bits depends on the architecture
• In modern architectures, it is almost universal that a cell 

contains 8 bits (1 byte), and that will be also our 
convention in this course

• Memory address: a number specifying a location of 
a memory cell containing data

• Essentially, a number specifying the location of a byte of 
memory
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Memory Cells and Addresses

• The number of unique memory addresses depends 
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.
• If each cell is 8 bits, we have ??? addresses?
• If each cell is 12 bits, we have ??? addresses?
• If each cell is 16 bits, we have ??? addresses?

25September 4, 2014 CSE2312, Fall 2014



Memory Cells and Addresses

• The number of unique memory addresses depends 
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.
• If each cell is 8 bits, we have 12 addresses?
• If each cell is 12 bits, we have 8 addresses?
• If each cell is 16 bits, we have 6 addresses?

• Convention used almost everywhere, and in this 
course: if a memory has n cells, the addresses of 
these cells will be from 0 to n-1. 
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Cells and Addresses

Three ways of organizing a 96-bit memory
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Words

• These days, memory cells are 8-bit
• That is why we have a special term for 8 bits, and 

we call them a byte
• The term octet is also used instead of a byte

• The next memory unit is a word
• The size of a word is not universally fixed, but it 

depends on the architecture
• A 32-bit architecture has 4-byte words
• A 64-bit architecture (standard on PCs these days) 

has 8-byte words
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Byte Ordering - Endianness

• How do we store an integer in memory? 
• Simple answer: in binary
• Actual answer: yes, in binary, but this does not fully 

specify how we store the number
• Unfortunately, we have two choices
• Common architectures may follow either choice, 

and mess ensues, unless we are aware of this issue 
and we deal with it explicitly

• This is the problem of endianness
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Endianness

• Little-endian: increasing numeric significance with 
increasing memory addresses

• Big-endian: decreasing numeric significance with 
increasing memory addresses

• Little-Endian Examples
• x86, x86-64, 8051, DEC Alpha, Atmel AVR

• Big-Endian Examples
• Motorola 6800 and 68k series, Xilinx Microblaze, IBM POWER, 

and System/360, MIPS
• Bi-Endianness

• Ability for computer to operate using either
• SPARC
• ARM architecture: little-endian before version 3, now bi-endian
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Endianness Example
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Byte Ordering Visualization

(a) Big endian memory. (b) Little endian memory.
Main difference: ordering of bytes in a word
- Left-to-right in big endian.
- Right-to-left in little-endian.
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Memory: Words and Alignment

• Bytes are grouped into words
• Depending on the machine, a word can be:

• 32 bits (4 bytes) , or
• 64 bits (8 bytes), or … (16-bits, 128 bits, etc.)

• Oftentimes it is required that words are aligned
• This means that: 

• 4-byte words can only begin at memory addresses that 
are multiples of 4: 0, 4, 8, 12, 16…

• 8-byte words can only begin at memory addresses that 
are multiples of 8: 0, 8, 16, 24, 32, …

33September 4, 2014 CSE2312, Fall 2014



Memory Models

An 8-byte word in a little-endian memory. 
(a) Aligned. (b) Not aligned. Some machines 
require that words in memory be aligned.
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Memory as an Array

• Think of memory and addressing like you think of arrays

MEM[ADDR-1] 0x05
MEM[ADDR] 0xAB
MEM[ADDR+1] 0xF1

Suppose ADDR = 0x1000
MEM[0x0FFF] 0x05
MEM[0x1000] 0xAB
MEM[0x1001] 0xF1
MEM[...] ...

How large is this memory?
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Address Spaces For Instructions and Data

• Typically memory can be accessed using a single 
address space

• For example, if we have 4 GB of memory, each byte has 
an address from 0 to 232 - 1

• Each memory location may store instructions at some 
point and data at some other point

• An alternative is to have separate address spaces 
for instructions and data

• In that case, a memory location is permanently dedicated 
to either storing instructions or to storing data

• Instead of a single load instruction, we have 
load_instructions and load_data
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Effects of Separate Address Spaces
• If A is a valid memory address, load_instructions A and 

load_data A access different memory locations.
• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?
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Effects of Separate Address Spaces
• If A is a valid memory address, load_instructions A and 

load_data A access different memory locations.
• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?
• A common way for malware to attack is to:

• Run as regular program.
• Modify memory locations that store instructions, thus modifying 

other programs (such as the operating system).
• If instruction memory is accessed with different 

instructions, such behavior can easily be prevented.

38September 4, 2014 CSE2312, Fall 2014



Registers vs. Memory

• Registers are faster to access than memory
• Operating on memory data requires loads and 

stores
• More instructions to be executed

• Compiler must use registers for variables as much 
as possible

• Only spill to memory for less frequently used variables
• Register optimization is important!
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Stored Program Computers
• Instructions represented in 

binary, just like data
• Instructions and data stored in 

memory
• Programs can operate on 

programs
• e.g., compilers, linkers, …

• Binary compatibility allows 
compiled programs to work on 
different computers

• Standardized ISAs
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Operands Types

• Register operand: operand comes from the binary 
valued stored in a particular register in the CPU

• Example: add r0, r1, r2
• C code: r0 = r1 + r2;

• Immediate operand: operand value comes from
instruction itself

• Example: add r0, r1, #1
• C code: r0 = r1 + 1;

• Memory operand: operand refers to memory
• Example: str r0, [r1]
• C code (roughly): MEM[r1] = r0;
• Only for load / store instructions!
• Several addressing modes (more on this later)

September 4, 2014 41CSE2312, Fall 2014



Memory Operand Example 1

• C code:
g = h + A[8];

• g in r1, h in r2, base address of A in r3
• Compiled ARM code:

• Index 8 requires offset of 8 words
• 4 bytes per word

@ load word
ldr r0, [r3, #32] @ r0 = MEM[r3 + 32]
add r1, r2, r0

offsetbase register
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Memory Operand Example 2

• C code:
A[12] = h + A[8];

• h in r2, base address of A in r3
• Compiled ARM code:

• Index 8 requires offset of 32 (8 bytes, 4 bytes per word)
@ load word
ldr r0, [r3,#32] @ r0 = MEM[r3 + 32]
add r0, r2, r0
@ store word
str r0, [r3, #48] @ MEM[r3 + 48] = r0
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Immediate Operands

• Constant data specified in an instruction
add r3, r3, #4

• Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction
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Sign Extension

• Representing a number using more bits
• Preserve the numeric value

• Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110
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Summary

• Operations (instructions), operands
• Machine encoding of assembly
• Assembly to C and C to assembly (for basic 

examples, no functions yet)
• Memory
• Endianness
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Questions?
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