
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 5: Instructions, Memory, and Endianness

Taylor Johnson

Important Concepts from Previous Lectures

• How do computers compute?

• Binary to decimal, decimal to binary, ASCII, signed
numbers, hexadecimal

• Structured computers

• Performance metrics
• Clock rates, cycle time/period, CPI, response time,

throughput

September 4, 2014 CSE2312, Fall 2014 2

Announcements and Outline

• Quiz 2 on Blackboard site (due 11:59PM Friday)
• Review binary arithmetic, Boolean operations, and representing

signed and unsigned numbers in binary
• Homework 1 due today
• Homework 2 assigned today

• Reading chapter 2 (ARM version on Blackboard site)

• Review from last time
• Signed vs. Unsigned Numbers (Two’s Complement), Hex
• Intro assembly

• Instructions: the Language of the Computer
• Memory
• Endianness

September 4, 2014 CSE2312, Fall 2014 3

Review: Von Neumann Architecture

• Both data and program
stored in memory

• Allows the computer to
be “re-programmed”

• Input/output (I/O) goes
through CPU

• I/O part is not
representative of
modern systems (direct
memory access [DMA])

• Memory layout is
representative of
modern systems

September 4, 2014 CSE2312, Fall 2014 4

Memory
(Data + Program [Instructions])

CPU I/O

DMA

Review: Abstract Processor Execution Cycle

September 4, 2014 CSE2312, Fall 2014 5

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

Review: Two’s Complement Signed Negation
• Complement and add 1

• Complement means 1 → 0, 0 → 1
• Representation called one’s complement

x1x

11111...111xx 2

−=+

−==+

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

September 4, 2014 6CSE2312, Fall 2014

Review: Hexadecimal
• Base 16

• Compact representation of bit strings
• 4 bits (also called a nibble or nybble) per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

 Example: 0xECA8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

September 4, 2014 7CSE2312, Fall 2014

Review: Arithmetic Operations

• Add and subtract, three operands
• Operand: quantity on which an operation is performed
• Two sources and one destination
add a, b, c # a updated to b + c

• All arithmetic operations have this form
• Design Principle 1: Simplicity favours regularity

• Regularity makes implementation simpler
• Simplicity enables higher performance at lower cost

September 4, 2014 8CSE2312, Fall 2014

Review: Arithmetic Example

• C code:
f = (g + h) - (i + j);

• Compiled MIPS code:
add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

• Compiled ARM code:
add r0, g, h # temp r0 = g + h
add r1, i, j # temp r1 = i + j
sub f, r0, r1 # f = t0 - t1

• Notice: registers “=“ variables

September 4, 2014 9CSE2312, Fall 2014

Review: Some Processor Components

September 4, 2014 CSE2312, Fall 2014 10

CPU

Register File
• Program Counter (PC)
• Instruction Register (IR)
• General Purpose

Registers
• Word size
• Typically 16-32 of these
• PC sometimes one of these

• Floating Point Registers

Arithmetic logic
unit (ALU)

Floating Point Unit
(FPU)

Review: ARM: Load/Store Architecture

• ARM is a load/store architecture
• This means that memory can only be accessed by load

and store instructions
• All arguments for arithmetic and logical instructions

must either:
• Come from registers
• Be constants specified within the instruction

• (more examples of that later)

• This may not seem like a big deal to you, as you have
not experienced the alternative

• However, it makes life much easier
• This is one reason why we chose ARM 7 for this course

11September 4, 2014 CSE2312, Fall 2014

ARM 7 Registers

• 16 32-bit general purpose registers
• 32 32-bit floating-point registers (not available on every

device)

12Version 7 ARM’s general registers.September 4, 2014 CSE2312, Fall 2014

ARM 7 Registers

• The Vx registers hold data needed by procedures (functions)
• They should be stored in memory when calling another

procedure
• They should be restored from memory when returning from

another procedure

13Version 7 ARM’s general registers.September 4, 2014 CSE2312, Fall 2014

ARM 7 Registers

• The Ax registers are used for passing parameters to
procedures

• Four dedicated registers have special roles: IP, SP, LR, PC.
• We will see more details on these registers are later.

• Who ensures that these registers are used as specified here?

14Version 7 ARM’s general registers.September 4, 2014 CSE2312, Fall 2014

ARM 7 Registers

• The Ax registers are used for passing parameters to
procedures

• Four dedicated registers have special roles: IP, SP, LR, PC.
• We will see more details on these registers are later

• Who ensures that these registers are used as specified here?
• You!!! (The programmer)

15Version 7 ARM’s general registers.September 4, 2014 CSE2312, Fall 2014

Memory Operands

• Main memory used for composite data
• Arrays, structures, dynamic data

• To apply arithmetic operations
• Load values from memory into registers
• Store result from register to memory

• Memory is byte addressed
• Each address identifies an 8-bit byte

• Words are aligned in memory
• Address must be a multiple of 4

• MIPS/ARM are Big Endian
• Most-significant byte at least address of a word
• c.f. Little Endian: least-significant byte at least address

September 4, 2014 16CSE2312, Fall 2014

Register Operand Example

• C code:
f = (g + h) - (i + j);

• f, …, j in:
• $s0, …, $s4 (MIPS)
• r0, …, r4 (ARM)

• Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

• Compiled ARM code:
add r0, r1, r2
add r1, r3, r4 // overwrite r1
sub r0, r0, r1

• Note: syntax and semantics (meaning) differences

September 4, 2014 17CSE2312, Fall 2014

Representing Instructions

• Instructions are encoded in binary
• Called machine code

• ARM (and MIPS) instructions
• Encoded as 32-bit instruction words
• Small number of formats encoding operation code (opcode),

register numbers, …
• Regularity!

• Register numbers
• r0 referenced (addressed) by b0000
• r1 referenced by b0001
• …
• r15 referenced by b1111

September 4, 2014 18CSE2312, Fall 2014

ARM Arithmetic Instructions in Machine Language

• Opcode: Basic operation of the instruction
• Rd: The register destination operand. It gets the result of the

operation
• Rn: The first register source operand
• Operand2: The second source operand
• I: Immediate. If I is 0, the second source operand is a register. If I

is 1, the second source operand is a 12-bit immediate
• S: Set Condition Code. This field is related to conditional branch

instructions
• Cond: Condition. Related to conditional branch instructions
• F: Instruction Format. This field allows ARM to different

instruction formats when needed

September 4, 2014 CSE2312, Fall 2014 19

Cond F I Opcode S Rn
4 bits 4 bits2 bits 1 bit 4 bits 1 bit

Rd Operand2
4 bits 12 bits

ARM Arithmetic Instructions in Machine Language

• Example: add r5, r1, r2
• C equivalent: r5 = r1 + r2
• Machine language encoding above
• Opcode: 0100 means add (dependent on digital logic, some encoding)
• Rd: register destination operand. It gets the result of the operation
• Rn: first register source operand
• Operand2: second source operand
• I: Immediate. If I is 0, the second source operand is a register. If I is 1,

the second source operand is a 12-bit immediate
• S: Set Condition Code
• Cond: Condition. Related to conditional branch instructions
• F: Instruction Format
September 4, 2014 CSE2312, Fall 2014 20

1110 00 0 0100 0 0001
4 bits 4 bits2 bits 1 bit 4 bits 1 bit

0101 0000 0000 0010
4 bits 12 bits

Cond F I Opcode S Rn Rd Operand2

Machine Code: MIPS R-format Instructions

• Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number
• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 4, 2014 21CSE2312, Fall 2014

Machine Code: R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 4, 2014 22CSE2312, Fall 2014

Machine Code: MIPS I-format Instructions

• Immediate arithmetic and load/store instructions
• rt: destination or source register number
• Constant: –215 to +215 – 1
• Address: offset added to base address in rs

• Design Principle 4: Good design demands good
compromises

• Different formats complicate decoding, but allow 32-bit
instructions uniformly

• Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

September 4, 2014 23CSE2312, Fall 2014

Memory Cells and Addresses

• Memory cell: a piece of memory that contains a
specific number of bits

• How many bits depends on the architecture
• In modern architectures, it is almost universal that a cell

contains 8 bits (1 byte), and that will be also our
convention in this course

• Memory address: a number specifying a location of
a memory cell containing data

• Essentially, a number specifying the location of a byte of
memory

24September 4, 2014 CSE2312, Fall 2014

Memory Cells and Addresses

• The number of unique memory addresses depends
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.
• If each cell is 8 bits, we have ??? addresses?
• If each cell is 12 bits, we have ??? addresses?
• If each cell is 16 bits, we have ??? addresses?

25September 4, 2014 CSE2312, Fall 2014

Memory Cells and Addresses

• The number of unique memory addresses depends
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.
• If each cell is 8 bits, we have 12 addresses?
• If each cell is 12 bits, we have 8 addresses?
• If each cell is 16 bits, we have 6 addresses?

• Convention used almost everywhere, and in this
course: if a memory has n cells, the addresses of
these cells will be from 0 to n-1.

26September 4, 2014 CSE2312, Fall 2014

Cells and Addresses

Three ways of organizing a 96-bit memory
September 4, 2014 CSE2312, Fall 2014 27

Words

• These days, memory cells are 8-bit
• That is why we have a special term for 8 bits, and

we call them a byte
• The term octet is also used instead of a byte

• The next memory unit is a word
• The size of a word is not universally fixed, but it

depends on the architecture
• A 32-bit architecture has 4-byte words
• A 64-bit architecture (standard on PCs these days)

has 8-byte words

28September 4, 2014 CSE2312, Fall 2014

Byte Ordering - Endianness

• How do we store an integer in memory?
• Simple answer: in binary
• Actual answer: yes, in binary, but this does not fully

specify how we store the number
• Unfortunately, we have two choices
• Common architectures may follow either choice,

and mess ensues, unless we are aware of this issue
and we deal with it explicitly

• This is the problem of endianness

29September 4, 2014 CSE2312, Fall 2014

Endianness

• Little-endian: increasing numeric significance with
increasing memory addresses

• Big-endian: decreasing numeric significance with
increasing memory addresses

• Little-Endian Examples
• x86, x86-64, 8051, DEC Alpha, Atmel AVR

• Big-Endian Examples
• Motorola 6800 and 68k series, Xilinx Microblaze, IBM POWER,

and System/360, MIPS
• Bi-Endianness

• Ability for computer to operate using either
• SPARC
• ARM architecture: little-endian before version 3, now bi-endian

September 4, 2014 CSE2312, Fall 2014 30

Endianness Example

September 4, 2014 CSE2312, Fall 2014 31

Byte Ordering Visualization

(a) Big endian memory. (b) Little endian memory.
Main difference: ordering of bytes in a word
- Left-to-right in big endian.
- Right-to-left in little-endian.

September 4, 2014 CSE2312, Fall 2014 32

Memory: Words and Alignment

• Bytes are grouped into words
• Depending on the machine, a word can be:

• 32 bits (4 bytes) , or
• 64 bits (8 bytes), or … (16-bits, 128 bits, etc.)

• Oftentimes it is required that words are aligned
• This means that:

• 4-byte words can only begin at memory addresses that
are multiples of 4: 0, 4, 8, 12, 16…

• 8-byte words can only begin at memory addresses that
are multiples of 8: 0, 8, 16, 24, 32, …

33September 4, 2014 CSE2312, Fall 2014

Memory Models

An 8-byte word in a little-endian memory.
(a) Aligned. (b) Not aligned. Some machines
require that words in memory be aligned.

September 4, 2014 CSE2312, Fall 2014 34

Memory as an Array

• Think of memory and addressing like you think of arrays

MEM[ADDR-1] 0x05
MEM[ADDR] 0xAB
MEM[ADDR+1] 0xF1

Suppose ADDR = 0x1000
MEM[0x0FFF] 0x05
MEM[0x1000] 0xAB
MEM[0x1001] 0xF1
MEM[...] ...

How large is this memory?

September 4, 2014 CSE2312, Fall 2014 35

Address Spaces For Instructions and Data

• Typically memory can be accessed using a single
address space

• For example, if we have 4 GB of memory, each byte has
an address from 0 to 232 - 1

• Each memory location may store instructions at some
point and data at some other point

• An alternative is to have separate address spaces
for instructions and data

• In that case, a memory location is permanently dedicated
to either storing instructions or to storing data

• Instead of a single load instruction, we have
load_instructions and load_data

36September 4, 2014 CSE2312, Fall 2014

Effects of Separate Address Spaces
• If A is a valid memory address, load_instructions A and

load_data A access different memory locations.
• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?

37September 4, 2014 CSE2312, Fall 2014

Effects of Separate Address Spaces
• If A is a valid memory address, load_instructions A and

load_data A access different memory locations.
• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?
• A common way for malware to attack is to:

• Run as regular program.
• Modify memory locations that store instructions, thus modifying

other programs (such as the operating system).
• If instruction memory is accessed with different

instructions, such behavior can easily be prevented.

38September 4, 2014 CSE2312, Fall 2014

Registers vs. Memory

• Registers are faster to access than memory
• Operating on memory data requires loads and

stores
• More instructions to be executed

• Compiler must use registers for variables as much
as possible

• Only spill to memory for less frequently used variables
• Register optimization is important!

September 4, 2014 39CSE2312, Fall 2014

Stored Program Computers
• Instructions represented in

binary, just like data
• Instructions and data stored in

memory
• Programs can operate on

programs
• e.g., compilers, linkers, …

• Binary compatibility allows
compiled programs to work on
different computers

• Standardized ISAs

September 4, 2014 40CSE2312, Fall 2014

Operands Types

• Register operand: operand comes from the binary
valued stored in a particular register in the CPU

• Example: add r0, r1, r2
• C code: r0 = r1 + r2;

• Immediate operand: operand value comes from
instruction itself

• Example: add r0, r1, #1
• C code: r0 = r1 + 1;

• Memory operand: operand refers to memory
• Example: str r0, [r1]
• C code (roughly): MEM[r1] = r0;
• Only for load / store instructions!
• Several addressing modes (more on this later)

September 4, 2014 41CSE2312, Fall 2014

Memory Operand Example 1

• C code:
g = h + A[8];

• g in r1, h in r2, base address of A in r3
• Compiled ARM code:

• Index 8 requires offset of 8 words
• 4 bytes per word

@ load word
ldr r0, [r3, #32] @ r0 = MEM[r3 + 32]
add r1, r2, r0

offsetbase register
September 4, 2014 42CSE2312, Fall 2014

Memory Operand Example 2

• C code:
A[12] = h + A[8];

• h in r2, base address of A in r3
• Compiled ARM code:

• Index 8 requires offset of 32 (8 bytes, 4 bytes per word)
@ load word
ldr r0, [r3,#32] @ r0 = MEM[r3 + 32]
add r0, r2, r0
@ store word
str r0, [r3, #48] @ MEM[r3 + 48] = r0

September 4, 2014 43CSE2312, Fall 2014

Immediate Operands

• Constant data specified in an instruction
add r3, r3, #4

• Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction

September 4, 2014 44CSE2312, Fall 2014

Sign Extension

• Representing a number using more bits
• Preserve the numeric value

• Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110

September 4, 2014 45CSE2312, Fall 2014

Summary

• Operations (instructions), operands
• Machine encoding of assembly
• Assembly to C and C to assembly (for basic

examples, no functions yet)
• Memory
• Endianness

September 4, 2014 CSE2312, Fall 2014 46

Questions?

September 4, 2014 CSE2312, Fall 2014 47

	Computer Organization & Assembly Language Programming (CSE 2312)
	Important Concepts from Previous Lectures
	Announcements and Outline
	Review: Von Neumann Architecture
	Review: Abstract Processor Execution Cycle
	Review: Two’s Complement Signed Negation
	Review: Hexadecimal
	Review: Arithmetic Operations
	Review: Arithmetic Example
	Review: Some Processor Components
	Review: ARM: Load/Store Architecture
	ARM 7 Registers
	ARM 7 Registers
	ARM 7 Registers
	ARM 7 Registers
	Memory Operands
	Register Operand Example
	Representing Instructions
	ARM Arithmetic Instructions in Machine Language
	ARM Arithmetic Instructions in Machine Language
	Machine Code: MIPS R-format Instructions
	Machine Code: R-format Example
	Machine Code: MIPS I-format Instructions
	Memory Cells and Addresses
	Memory Cells and Addresses
	Memory Cells and Addresses
	Cells and Addresses
	Words
	Byte Ordering - Endianness
	Endianness
	Endianness Example
	Byte Ordering Visualization
	Memory: Words and Alignment
	Memory Models
	Memory as an Array
	Address Spaces For Instructions and Data
	Effects of Separate Address Spaces
	Effects of Separate Address Spaces
	Registers vs. Memory
	Stored Program Computers
	Operands Types
	Memory Operand Example 1
	Memory Operand Example 2
	Immediate Operands
	Sign Extension
	Summary
	Questions?

