
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 6: Sign Extension, Registers vs. Memory,

Logical Operations, and Instructions.

Taylor Johnson

Important Concepts from Previous Lectures

• Signed Numbers, Hexadecimal, Instructions, and
Endianess

• Instruction Set
• MIPS
• ARM

• Arithmetic Operations

• Some Processor Components
• Register Operands
• Memory Operands

September 9, 2014 CSE2312, Fall 2014 2

Announcements and Outline

• Homework 2 on course website
• Read chapter 2 (ARM version on Blackboard site)

• Review from last time / Chapter 2
• Instruction Set, Arithmetic Operations

• Sign Extension, Registers vs. Memory, Logical
Operations, and Instructions

September 9, 2014 CSE2312, Fall 2014 3

Review: Unsigned Binary Integers
• Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

September 9, 2014 4CSE2312, Fall 2014

Review: 2s-Complement Signed Integers

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 to +2,147,483,647

September 9, 2014 5CSE2312, Fall 2014

Review: Two’s Complement Signed Negation

x1x

11111...111xx 2

 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102

September 9, 2014 6CSE2312, Fall 2014

Review: Instruction Set

• The repertoire of instructions of a computer

• Different computers have different instruction sets
• But with many aspects in common
• Will discuss a few in this course, primarily will focus on

ARM for assignments

• Early computers had very simple instruction sets
• Simplified implementation

• Many modern computers also have simple
instruction sets

September 9, 2014 7CSE2312, Fall 2014

Review: MIPS and ARM Instruction Sets

• MIPS
• Used as examples throughout the book
• Stanford MIPS commercialized by MIPS Technologies

(www.mips.com)
• Large share of embedded core market

• Applications in consumer electronics, network/storage equipment, cameras,
printers, …

• Typical of many modern ISAs
• See MIPS Reference Data tear-out card, and Appendixes B and E

• ARM
• Commercially much more successful (nearly every phone)
• Similar to MIPS
• ARM version of chapters on Blackboard
• Use this for programming assignments

September 9, 2014 8CSE2312, Fall 2014

http://www.mips.com/

Review: Arithmetic Operations

• Add and subtract, three operands
• Operand: quantity on which an operation is performed
• Two sources and one destination

add a, b, c # a updated to b + c

• All arithmetic operations have this form

• Design Principle 1: Simplicity favours regularity
• Regularity makes implementation simpler
• Simplicity enables higher performance at lower cost

September 9, 2014 9CSE2312, Fall 2014

Review: Arithmetic Example

• C code:

f = (g + h) - (i + j);

• Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

• Compiled ARM code:

add r0, g, h # temp r0 = g + h
add r1, i, j # temp r1 = i + j
sub f, r0, r1 # f = t0 - t1

• Notice: registers “=“ variables

September 9, 2014 10CSE2312, Fall 2014

Review: Some Processor Components

September 9, 2014 CSE2312, Fall 2014 11

CPU

Register File
• Program Counter (PC)
• Instruction Register (IR)
• General Purpose

Registers
• Word size
• Typically 16-32 of these
• PC sometimes one of these

• Floating Point Registers

Arithmetic logic
unit (ALU)

Floating Point Unit
(FPU)

Review: Register Operands

• Arithmetic instructions use register operands

• MIPS has a 32 × 32-bit register file
• Use for frequently accessed data
• Numbered 0 to 31
• 32-bit data called a “word”

• Assembler names
• $t0, $t1, …, $t9 for temporary values
• $s0, $s1, …, $s7 for saved variables

• Design Principle 2: Smaller is faster
• c.f. main memory: millions of locations

September 9, 2014 12CSE2312, Fall 2014

Review: ARM 7 Registers

• 16 32-bit general purpose registers

• 32 32-bit floating-point registers (not available on every
device)

13Version 7 ARM’s general registers.September 9, 2014 CSE2312, Fall 2014

Review: ARM 7 Registers

• The Vx registers hold data needed by procedures (functions)

• They should be stored in memory when calling another
procedure

• They should be restored from memory when returning from
another procedure

14Version 7 ARM’s general registers.September 9, 2014 CSE2312, Fall 2014

Review: ARM 7 Registers

• The Ax registers are used for passing parameters to
procedures

• Four dedicated registers have special roles: IP, SP, LR, PC.
• We will see more details on these registers are later

• Who ensures that these registers are used as specified here?
• You!!! (The programmer)

15Version 7 ARM’s general registers.September 9, 2014 CSE2312, Fall 2014

Review: ARM: Load/Store Architecture

• ARM is a load/store architecture

• This means that memory can only be accessed by load
and store instructions

• All arguments for arithmetic and logical instructions
must either:

• Come from registers
• Be constants specified within the instruction

• (more examples of that later)

• This may not seem like a big deal to you, as you have
not experienced the alternative

• However, it makes life much easier
• This is one reason why we chose ARM 7 for this course

16September 9, 2014 CSE2312, Fall 2014

Review: Memory Operands

• Main memory used for composite data
• Arrays, structures, dynamic data

• To apply arithmetic operations
• Load values from memory into registers
• Store result from register to memory

• Memory is byte addressed
• Each address identifies an 8-bit byte

• Words are aligned in memory
• Address must be a multiple of 4

• MIPS/ARM are Big Endian
• Most-significant byte at least address of a word
• c.f. Little Endian: least-significant byte at least address

September 9, 2014 17CSE2312, Fall 2014

Review: Register Operand Example

• C code:
f = (g + h) - (i + j);

• f, …, j in:
• $s0, …, $s4 (MIPS)
• r0, …, r4 (ARM)

• Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

• Compiled ARM code:
add r0, r1, r2
add r1, r3, r4 // overwrite r1
sub r0, r0, r1

• Note: syntax and semantics (meaning) differences

September 9, 2014 18CSE2312, Fall 2014

Byte Ordering - Endianness

• How do we store an integer in memory?

• Simple answer: in binary

• Actual answer: yes, in binary, but this does not fully
specify how we store the number

• Unfortunately, we have two choices

• Common architectures may follow either choice,
and mess ensues, unless we are aware of this issue
and we deal with it explicitly

• This is the problem of endianness

19September 9, 2014 CSE2312, Fall 2014

Endianness

• Little-endian: increasing numeric significance with
increasing memory addresses

• Big-endian: decreasing numeric significance with
increasing memory addresses

• Little-Endian Examples
• x86, x86-64, 8051, DEC Alpha, Atmel AVR

• Big-Endian Examples
• Motorola 6800 and 68k series, Xilinx Microblaze, IBM POWER,

and System/360

• Bi-Endianness
• Ability for computer to operate using either
• SPARC
• ARM architecture: little-endian before version 3, now bi-endian

September 9, 2014 CSE2312, Fall 2014 20

Endianness Example

September 9, 2014 CSE2312, Fall 2014 21

Byte Ordering Visualization

(a) Big endian memory. (b) Little endian memory.

Main difference: ordering of bytes in a word

- Left-to-right in big endian.

- Right-to-left in little-endian.
September 9, 2014 CSE2312, Fall 2014 22

Memory: Words and Alignment

• Bytes are grouped into words

• Depending on the machine, a word can be:
• 32 bits (4 bytes) , or
• 64 bits (8 bytes), or … (16-bits, 128 bits, etc.)

• Oftentimes it is required that words are aligned

• This means that:
• 4-byte words can only begin at memory addresses that

are multiples of 4: 0, 4, 8, 12, 16…
• 8-byte words can only begin at memory addresses that

are multiples of 8: 0, 8, 16, 24, 32, …

23September 9, 2014 CSE2312, Fall 2014

Memory Models

An 8-byte word in a little-endian memory.
(a) Aligned. (b) Not aligned. Some machines
require that words in memory be aligned.

September 9, 2014 CSE2312, Fall 2014 24

Memory Cells and Addresses

• Memory cell: a piece of memory that contains a
specific number of bits

• How many bits depends on the architecture
• In modern architectures, it is almost universal that a cell

contains 8 bits (1 byte), and that will be also our
convention in this course

• Memory address: a number specifying a location of
a memory cell containing data

• Essentially, a number specifying the location of a byte of
memory

25September 9, 2014 CSE2312, Fall 2014

Memory Cells and Addresses

• The number of unique memory addresses depends
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.

• If each cell is 8 bits, we have ??? addresses?

• If each cell is 12 bits, we have ??? addresses?

• If each cell is 16 bits, we have ??? addresses?

26September 9, 2014 CSE2312, Fall 2014

Memory Cells and Addresses

• The number of unique memory addresses depends
on the size of the memory and the size of each cell

• For example, suppose we have a 96-bit memory.
• If each cell is 8 bits, we have 12 addresses?
• If each cell is 12 bits, we have 8 addresses?
• If each cell is 16 bits, we have 6 addresses?

• Convention used almost everywhere, and in this
course: if a memory has n cells, the addresses of
these cells will be from 0 to n-1.

27September 9, 2014 CSE2312, Fall 2014

Address Spaces For Instructions and Data

• Typically memory can be accessed using a single
address space

• For example, if we have 4 GB of memory, each byte has
an address from 0 to 232 - 1.

• Each memory location may store instructions at some
point and data at some other point

• An alternative is to have separate address spaces
for instructions and data

• In that case, a memory location is permanently dedicated
to either storing instructions or to storing data

• Instead of a single load instruction, we have
load_instructions and load_data

28September 9, 2014 CSE2312, Fall 2014

Effects of Separate Address Spaces

• If A is a valid memory address, load_instructions A and
load_data A access different memory locations.

• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?

29September 9, 2014 CSE2312, Fall 2014

Effects of Separate Address Spaces

• If A is a valid memory address, load_instructions A and
load_data A access different memory locations.

• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

• This makes it harder for malware to cause trouble. Why?

• A common way for malware to attack is to:
• Run as regular program.
• Modify memory locations that store instructions, thus modifying

other programs (such as the operating system).

• If instruction memory is accessed with different
instructions, such behavior can easily be prevented.

30September 9, 2014 CSE2312, Fall 2014

Registers vs. Memory

• Registers are faster to access than memory

• Operating on memory data requires loads and
stores

• More instructions to be executed

• Compiler must use registers for variables as much
as possible

• Only spill to memory for less frequently used variables
• Register optimization is important!

September 9, 2014 31CSE2312, Fall 2014

Stored Program Computers
• Instructions represented in

binary, just like data

• Instructions and data stored in
memory

• Programs can operate on
programs

• e.g., compilers, linkers, …

• Binary compatibility allows
compiled programs to work on
different computers

• Standardized ISAs

September 9, 2014 32CSE2312, Fall 2014

Questions?

September 9, 2014 CSE2312, Fall 2014 33

Memory Operand Example 1

• C code:

g = h + A[8];
• g in $s1, h in $s2, base address of A in $s3

• Compiled MIPS code:
• Index 8 requires offset of 32

• 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

September 9, 2014 34CSE2312, Fall 2014

Memory Operand Example 2

• C code:

A[12] = h + A[8];
• h in $s2, base address of A in $s3

• Compiled MIPS code:
• Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

September 9, 2014 35CSE2312, Fall 2014

Immediate Operands

• Constant data specified in an instruction

addi $s3, $s3, 4

• No subtract immediate instruction
• Just use a negative constant
addi $s2, $s1, -1

• Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction

September 9, 2014 36CSE2312, Fall 2014

Sign Extension

• Representing a number using more bits
• Preserve the numeric value

• In MIPS instruction set
• addi: extend immediate value
• lb, lh: extend loaded byte/halfword
• beq, bne: extend the displacement

• Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110

September 9, 2014 37CSE2312, Fall 2014

Representing Instructions

• Instructions are encoded in binary
• Called machine code

• ARM (and MIPS) instructions
• Encoded as 32-bit instruction words
• Small number of formats encoding operation code

(opcode), register numbers, …
• Regularity!

• Register numbers
• $t0 – $t7 are reg’s 8 – 15
• $t8 – $t9 are reg’s 24 – 25
• $s0 – $s7 are reg’s 16 – 23

September 9, 2014 38CSE2312, Fall 2014

MIPS R-format Instructions

• Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number

• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 9, 2014 39CSE2312, Fall 2014

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 9, 2014 40CSE2312, Fall 2014

MIPS I-format Instructions

• Immediate arithmetic and load/store instructions
• rt: destination or source register number
• Constant: –215 to +215 – 1
• Address: offset added to base address in rs

• Design Principle 4: Good design demands good
compromises

• Different formats complicate decoding, but allow 32-bit
instructions uniformly

• Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

September 9, 2014 41CSE2312, Fall 2014

ARMR-format Instructions

• Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number

• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 9, 2014 42CSE2312, Fall 2014

ARM Instructions in Machine Language

• Opcode: Basic operation of the instruction
• Rd: The register destination operand. It gets the result of the

operation
• Rn: The first register source operand
• Operand2: The second source operand
• I: Immediate. If I is 0, the second source operand is a register. If

I is 1, the second source operand is a 12-bit immediate
• S: Set Condition Code. This field is related to conditional branch

instructions
• Cond: Condition. Related to conditional branch instructions
• F: Instruction Format. This field allows ARM to different

instruction formats when needed

September 9, 2014 CSE2312, Fall 2014 43

Cond F I Opcode S Rn

4 bits 6 bits2 bits 1 bit 4 bits 1 bit

Rd Operand2

6 bits 12 bits

ARM Instructions in Machine Language

September 9, 2014 CSE2312, Fall 2014 44

• “reg” means a register number between 0 and 15
“constant” means a 12-bit constant

• “address” means a 12-bit address

• “n.a.” (not applicable) means this field does not appear in
this format

• Op stands for opcode.

Logical Operations

September 9, 2014 45CSE2312, Fall 2014

C and Java logical operators and their corresponding ARM
instructions.
ARM implements NOT using a NOR with one operand being
zero.

Instructions for bitwise manipulation
Useful for extracting and inserting groups of bits in a word

Shift Operations

September 9, 2014 46CSE2312, Fall 2014

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

• shamt: how many positions to shift

• Shift left logical
• Shift left and fill with 0 bits
• sll by i bits multiplies by 2i

• Shift right logical
• Shift right and fill with 0 bits
• srl by i bits divides by 2i (unsigned only)

Questions?

September 9, 2014 CSE2312, Fall 2014 47

Shift Operations (for ARM)

September 9, 2014 48CSE2312, Fall 2014

ARM allows shifting by the value found in a register. The following
instruction shifts register r5 right by the amount in register r3 and places
the result in r6.

MOV r6, r5, LSR r3 ; r6 = r5 >> r3

AND Operations

September 9, 2014 49CSE2312, Fall 2014Chapter 2 — Instructions: Language of the Computer — 49

• Useful to mask bits in a word
• Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

OR Operations

September 9, 2014 50CSE2312, Fall 2014Chapter 2 — Instructions: Language of the Computer — 50

• Useful to include bits in a word
• Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

NOT Operations

September 9, 2014 51CSE2312, Fall 2014Chapter 2 — Instructions: Language of the Computer — 51

• Useful to invert bits in a word
• Change 0 to 1, and 1 to 0

• MIPS has NOR 3-operand instruction
• a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Conditional Operations

September 9, 2014 52CSE2312, Fall 2014

• Branch to a labeled instruction if a condition is true
• Otherwise, continue sequentially

•beq rs, rt, L1
• if (rs == rt) branch to instruction labeled L1;

•bne rs, rt, L1
• if (rs != rt) branch to instruction labeled L1;

•j L1
• unconditional jump to instruction labeled L1

Conditional Operations

September 9, 2014 53CSE2312, Fall 2014

ARM-7:

This pair of instructions means go to the statement labeled L1 if

the value in register1 equals the value in register2.

The mnemonic CMP stands for compare and BEQ stands
for branch if equal.

CMP register1, register2
BEQ L1

Compiling If Statements

September 9, 2014 54CSE2312, Fall 2014

• C code:

if (i==j) f = g+h;
else f = g-h;

• f, g, … in $s0, $s1, …

• Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

