
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 7: More on Logical Operations , Conditional

Operations, and Procedure.

Taylor Johnson

Important Concepts from Previous Lectures

•Arithmetic Operations

•Some Processor Components
• Register Operands
• Memory Operands

September 11, 2014 CSE2312, Fall 2014 2

Announcements and Outline

• Homework 2 Due
• Read chapter 2 (ARM version on Blackboard site)

• Review from last time / Chapter 2
• Arithmetic Operations
• Logical Operations

• More on Logical Operations
• Conditional Operations
• Procedure

September 11, 2014 CSE2312, Fall 2014 3

Review: Byte Ordering - Endianness

•How do we store an integer in memory?

•Simple answer: in binary

•Actual answer: yes, in binary, but this does not fully
specify how we store the number

•Unfortunately, we have two choices

•Common architectures may follow either choice,
and mess ensues, unless we are aware of this issue
and we deal with it explicitly

•This is the problem of endianness

4September 11, 2014 CSE2312, Fall 2014

Review: Endianness

• Little-endian: increasing numeric significance with
increasing memory addresses
• Big-endian: decreasing numeric significance with

increasing memory addresses
• Little-Endian Examples

• x86, x86-64, 8051, DEC Alpha, Atmel AVR

• Big-Endian Examples
• Motorola 6800 and 68k series, Xilinx Microblaze, IBM POWER,

and System/360

• Bi-Endianness
• Ability for computer to operate using either
• SPARC
• ARM architecture: little-endian before version 3, now bi-endian

September 11, 2014 CSE2312, Fall 2014 5

Review: Endianness Example

September 11, 2014 CSE2312, Fall 2014 6

Review: Byte Ordering Visualization

(a) Big endian memory. (b) Little endian memory.

Main difference: ordering of bytes in a word

- Left-to-right in big endian.

- Right-to-left in little-endian.
September 11, 2014 CSE2312, Fall 2014 7

Review: Memory: Words and Alignment

•Bytes are grouped into words

•Depending on the machine, a word can be:
• 32 bits (4 bytes) , or
• 64 bits (8 bytes), or … (16-bits, 128 bits, etc.)

•Oftentimes it is required that words are aligned

•This means that:
• 4-byte words can only begin at memory addresses that

are multiples of 4: 0, 4, 8, 12, 16…
• 8-byte words can only begin at memory addresses that

are multiples of 8: 0, 8, 16, 24, 32, …

8September 11, 2014 CSE2312, Fall 2014

Review: Memory Models

An 8-byte word in a little-endian memory.
(a) Aligned. (b) Not aligned. Some machines
require that words in memory be aligned.

September 11, 2014 CSE2312, Fall 2014 9

Review: Memory Cells and Addresses

•Memory cell: a piece of memory that contains a
specific number of bits
• How many bits depends on the architecture
• In modern architectures, it is almost universal that a cell

contains 8 bits (1 byte), and that will be also our
convention in this course

•Memory address: a number specifying a location of
a memory cell containing data
• Essentially, a number specifying the location of a byte of

memory

10September 11, 2014 CSE2312, Fall 2014

Review: Memory Cells and Addresses

•The number of unique memory addresses depends
on the size of the memory and the size of each cell

•For example, suppose we have a 96-bit memory.

• If each cell is 8 bits, we have ??? addresses?

• If each cell is 12 bits, we have ??? addresses?

• If each cell is 16 bits, we have ??? addresses?

11September 11, 2014 CSE2312, Fall 2014

Review: Memory Cells and Addresses

•The number of unique memory addresses depends
on the size of the memory and the size of each cell
•For example, suppose we have a 96-bit memory.
• If each cell is 8 bits, we have 12 addresses?
• If each cell is 12 bits, we have 8 addresses?
• If each cell is 16 bits, we have 6 addresses?

•Convention used almost everywhere, and in this
course: if a memory has n cells, the addresses of
these cells will be from 0 to n-1.

12September 11, 2014 CSE2312, Fall 2014

Review: Address Spaces For Instructions and Data

•Typically memory can be accessed using a single
address space
• For example, if we have 4 GB of memory, each byte has

an address from 0 to 232 - 1.
• Each memory location may store instructions at some

point and data at some other point

•An alternative is to have separate address spaces
for instructions and data
• In that case, a memory location is permanently dedicated

to either storing instructions or to storing data
• Instead of a single load instruction, we have
load_instructions and load_data

13September 11, 2014 CSE2312, Fall 2014

Review: Effects of Separate Address Spaces

• If A is a valid memory address, load_instructions A and
load_data A access different memory locations.
• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

•This makes it harder for malware to cause trouble. Why?

14September 11, 2014 CSE2312, Fall 2014

Review: Effects of Separate Address Spaces

• If A is a valid memory address, load_instructions A and
load_data A access different memory locations.
• load_instructions A accesses address A in the instructions space.
• load_data A accesses address A in the data space.

•This makes it harder for malware to cause trouble. Why?

•A common way for malware to attack is to:
• Run as regular program.
• Modify memory locations that store instructions, thus modifying

other programs (such as the operating system).

• If instruction memory is accessed with different
instructions, such behavior can easily be prevented.

15September 11, 2014 CSE2312, Fall 2014

Review: Registers vs. Memory

•Registers are faster to access than memory

•Operating on memory data requires loads and
stores
• More instructions to be executed

•Compiler must use registers for variables as much
as possible
• Only spill to memory for less frequently used variables
• Register optimization is important!

September 11, 2014 16CSE2312, Fall 2014

Review: Stored Program Computers

• Instructions represented in
binary, just like data

• Instructions and data stored in
memory

•Programs can operate on
programs
• e.g., compilers, linkers, …

•Binary compatibility allows
compiled programs to work on
different computers
• Standardized ISAs

September 11, 2014 17CSE2312, Fall 2014

Questions?

September 11, 2014 CSE2312, Fall 2014 18

Review: Memory Operand Example 1

•C code:

g = h + A[8];
• g in $s1, h in $s2, base address of A in $s3

•Compiled MIPS code:
• Index 8 requires offset of 32

• 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

September 11, 2014 19CSE2312, Fall 2014

Review: Memory Operand Example 2

•C code:

A[12] = h + A[8];
• h in $s2, base address of A in $s3

•Compiled MIPS code:
• Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

September 11, 2014 20CSE2312, Fall 2014

Review: Immediate Operands

•Constant data specified in an instruction

addi $s3, $s3, 4

•No subtract immediate instruction
• Just use a negative constant
addi $s2, $s1, -1

•Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction

September 11, 2014 21CSE2312, Fall 2014

Review: Sign Extension

•Representing a number using more bits
• Preserve the numeric value

• In MIPS instruction set
• addi: extend immediate value
• lb, lh: extend loaded byte/halfword
• beq, bne: extend the displacement

•Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

•Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110

September 11, 2014 22CSE2312, Fall 2014

Review: Representing Instructions

• Instructions are encoded in binary
• Called machine code

•ARM (and MIPS) instructions
• Encoded as 32-bit instruction words
• Small number of formats encoding operation code

(opcode), register numbers, …
• Regularity!

•Register numbers
• $t0 – $t7 are reg’s 8 – 15
• $t8 – $t9 are reg’s 24 – 25
• $s0 – $s7 are reg’s 16 – 23

September 11, 2014 23CSE2312, Fall 2014

Review: MIPS R-format Instructions

• Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number

• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 11, 2014 24CSE2312, Fall 2014

Review: R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 11, 2014 25CSE2312, Fall 2014

Review: MIPS I-format Instructions

• Immediate arithmetic and load/store instructions
• rt: destination or source register number
• Constant: –215 to +215 – 1
• Address: offset added to base address in rs

•Design Principle 4: Good design demands good
compromises
• Different formats complicate decoding, but allow 32-bit

instructions uniformly
• Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

September 11, 2014 26CSE2312, Fall 2014

Review: ARMR-format Instructions

• Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number

• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

September 11, 2014 27CSE2312, Fall 2014

Review: ARM Instructions in Machine Language

• Opcode: Basic operation of the instruction
• Rd: The register destination operand. It gets the result of the

operation
• Rn: The first register source operand
• Operand2: The second source operand
• I: Immediate. If I is 0, the second source operand is a register. If

I is 1, the second source operand is a 12-bit immediate
• S: Set Condition Code. This field is related to conditional branch

instructions
• Cond: Condition. Related to conditional branch instructions
• F: Instruction Format. This field allows ARM to different

instruction formats when needed

September 11, 2014 CSE2312, Fall 2014 28

Cond F I Opcode S Rn

4 bits 6 bits2 bits 1 bit 4 bits 1 bit

Rd Operand2

6 bits 12 bits

Review: ARM Instructions in Machine Language

September 11, 2014 CSE2312, Fall 2014 29

• “reg” means a register number between 0 and 15
“constant” means a 12-bit constant

• “address” means a 12-bit address

• “n.a.” (not applicable) means this field does not appear in
this format

• Op stands for opcode.

Review: Logical Operations

September 11, 2014 30CSE2312, Fall 2014

C and Java logical operators and their corresponding ARM
instructions.
ARM implements NOT using a NOR with one operand being
zero.

Instructions for bitwise manipulation
Useful for extracting and inserting groups of bits in a word

Review: Shift Operations

September 11, 2014 31CSE2312, Fall 2014

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

• shamt: how many positions to shift

•Shift left logical
• Shift left and fill with 0 bits
• sll by i bits multiplies by 2i

•Shift right logical
• Shift right and fill with 0 bits
• srl by i bits divides by 2i (unsigned only)

Questions?

September 11, 2014 CSE2312, Fall 2014 32

Review: Shift Operations (for ARM)

September 11, 2014 33CSE2312, Fall 2014

ARM allows shifting by the value found in a register. The following
instruction shifts register r5 right by the amount in register r3 and places
the result in r6.

MOV r6, r5, LSR r3 ; r6 = r5 >> r3

Review: AND Operations

September 11, 2014 34CSE2312, Fall 2014Chapter 2 — Instructions: Language of the Computer — 34

• Useful to mask bits in a word
• Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Review: OR Operations

September 11, 2014 35CSE2312, Fall 2014Chapter 2 — Instructions: Language of the Computer — 35

• Useful to include bits in a word
• Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Review: NOT Operations

September 11, 2014 36CSE2312, Fall 2014Chapter 2 — Instructions: Language of the Computer — 36

•Useful to invert bits in a word
• Change 0 to 1, and 1 to 0

•MIPS has NOR 3-operand instruction
• a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Conditional Operations

September 11, 2014 37CSE2312, Fall 2014

•Branch to a labeled instruction if a condition is true
• Otherwise, continue sequentially

•beq rs, rt, L1
• if (rs == rt) branch to instruction labeled L1;

•bne rs, rt, L1
• if (rs != rt) branch to instruction labeled L1;

•j L1
• unconditional jump to instruction labeled L1

Conditional Operations

September 11, 2014 38CSE2312, Fall 2014

ARM-7:

This pair of instructions means go to the statement labeled L1 if

the value in register1 equals the value in register2.

The mnemonic CMP stands for compare and BEQ stands
for branch if equal.

CMP register1, register2
BEQ L1

Compiling If Statements

September 11, 2014 39CSE2312, Fall 2014

•C code:

if (i==j) f = g+h;
else f = g-h;

• f, g, … in $s0, $s1, …

•Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Compiling if-then-else into Conditional Branches

September 11, 2014 40CSE2312, Fall 2014

•C code:

if (i == j) f = g + h; else f = g – h;

• f through j correspond to the five r0 throught r4

•Compiled ARM code:

CMP r3,r4 ; compare i and j
BNE, Else ; go to Else if i ≠ j
Add r0,r1,r2 ; f = g + h (skipped if i ≠ j)

B Exit ; Go to Exit (unconditional branch)

Else: SUB r0,r1, r2 ; f = g – h (skipped if i = j)

Exit: ; Go to Exit

Compiling Loop Statements

September 11, 2014 41CSE2312, Fall 2014

•C code:

while (save[i] == k) i += 1;

• i in $s3, k in $s5, address of save in $s6

•Compiled MIPS code:

Loop: sll $t1, $s3, 2 # Temp reg $t1 = I * 4

add $t1, $t1, $s6 # $t1 = addr of save[i]

lw $t0, 0($t1) # Temp reg $t0 = save[i]

bne $t0, $s5, Exit # Go to Exit if save[i] = k
addi $s3, $s3, 1 # i = i + 1
j Loop # Go to Loop

Exit: …

Branch Instruction Design

September 11, 2014 42CSE2312, Fall 2014

•Why not blt, bge, etc?

•Hardware for <, ≥, … slower than =, ≠
• Combining with branch involves more work per instruction,

requiring a slower clock
• All instructions penalized!

•beq and bne are the common case

•This is a good design compromise

Basic Blocks

September 11, 2014 43CSE2312, Fall 2014

 A basic block is a sequence of instructions with
 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor can
accelerate execution of
basic blocks

Branch Instruction Design

September 11, 2014 44CSE2312, Fall 2014

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠
 Combining with branch involves more work per instruction,

requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

Signed vs. Unsigned

September 11, 2014 45CSE2312, Fall 2014

•Signed comparison: slt, slti

•Unsigned comparison: sltu, sltui

•Example
• $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
• $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

• slt $t0, $s0, $s1 # signed set on less than

• –1 < +1  $t0 = 1

• sltu $t0, $s0, $s1 # unsigned set on less than

• +4,294,967,295 > +1  $t0 = 0

Procedure Calling

September 11, 2014 46CSE2312, Fall 2014

 Steps required
1. Place parameters in registers
2. Transfer control to procedure
3. Acquire storage for procedure
4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call

Register Usage

September 11, 2014 47CSE2312, Fall 2014

 $a0 – $a3: arguments (reg’s 4 – 7)

 $v0, $v1: result values (reg’s 2 and 3)

 $t0 – $t9: temporaries

- Can be overwritten by callee

 $s0 – $s7: saved

- Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)

 $sp: stack pointer (reg 29)

 $fp: frame pointer (reg 30)

 $ra: return address (reg 31)

Procedure Call Instructions

September 11, 2014 48CSE2312, Fall 2014

• Procedure call: jump and link

jal ProcedureLabel
• Address of following instruction put in $ra
• Jumps to target address

• Procedure return: jump register

jr $ra
• Copies $ra to program counter
• Can also be used for computed jumps

• e.g., for case/switch statements

Leaf Procedure Example

September 11, 2014 49CSE2312, Fall 2014

•C code:

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}
• Arguments g, …, j in $a0, …, $a3
• f in $s0 (hence, need to save $s0 on stack)
• Result in $v0

Leaf Procedure Example

September 11, 2014 50CSE2312, Fall 2014

 MIPS code:

leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Non-Leaf Procedures

September 11, 2014 51CSE2312, Fall 2014

 Procedures that call other procedures

 For nested call, caller needs to save on the
stack:
 Its return address

 Any arguments and temporaries needed after the call

 Restore from the stack after the call

Non-Leaf Procedure Example

September 11, 2014 52CSE2312, Fall 2014

 C code:
int fact (int n)
{

if (n < 1) return f;
else return n * fact(n - 1);

}

 Argument n in $a0

 Result in $v0

Non-Leaf Procedure Example

September 11, 2014 53CSE2312, Fall 2014

 MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Local Data on the Stack

September 11, 2014 54CSE2312, Fall 2014

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

