
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 8: Instructions Review and Addressing Modes

Taylor Johnson

Announcements and Outline

•Quiz 3 on Blackboard site (due 11:59PM Friday)
• Review binary arithmetic and Boolean operations

•Homework 2 due today

•Homework 3 assigned today
• Finish reading chapter 2 (ARM version on Blackboard site)

• Instructions Review

•Addressing Modes

September 16, 2014 CSE2312, Fall 2014 2

Review: Abstract Processor Execution Cycle

September 16, 2014 CSE2312, Fall 2014 3

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

Review: Memory Cells and Addresses

•Memory cell: a piece of memory that contains a
specific number of bits
• How many bits depends on the architecture
• In modern architectures, it is almost universal that a cell

contains 8 bits (1 byte), and that will be also our
convention in this course

•Memory address: a number specifying a location of
a memory cell containing data
• Essentially, a number specifying the location of a byte of

memory

4September 16, 2014 CSE2312, Fall 2014

Review: Operands Types

• Register operand: operand comes from the binary
valued stored in a particular register in the CPU
• Example: add r0, r1, r2
• C code: r0 = r1 + r2;

• Immediate operand: operand value comes from
instruction itself
• Example: add r0, r1, #1
• C code: r0 = r1 + 1;

• Memory operand: operand refers to memory
• Example: str r0, [r1]

• C code (roughly): MEM[r1] = r0;
• Only for load / store instructions!
• Several addressing modes (more on this later)

September 16, 2014 5CSE2312, Fall 2014

Review: Memory Operand Example 1

•C code:

g = h + A[8];

• g in r1, h in r2, base address of A in r3

•Compiled ARM code:
• Index 8 requires offset of 8 words

• 4 bytes per word

@ load word

ldr r0, [r3, #32] @ r0 = MEM[r3 + 32]

add r1, r2, r0

offsetbase register
September 16, 2014 6CSE2312, Fall 2014

Review: Memory Operand Example 2

•C code:
A[12] = h + A[8];

• h in r2, base address of A in r3

•Compiled ARM code:
• Index 8 requires offset of 32 (8 bytes, 4 bytes per word)

@ load word

ldr r0, [r3,#32] @ r0 = MEM[r3 + 32]
add r0, r2, r0

@ store word
str r0, [r3, #48] @ MEM[r3 + 48] = r0

September 16, 2014 7CSE2312, Fall 2014

Review: Immediate Operands

•Constant data specified in an instruction

add r3, r3, #4

•Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction

September 16, 2014 8CSE2312, Fall 2014

ARM Instruction Formats

September 16, 2014 CSE2312, Fall 2014 9

ARM Instruction Formats

September 16, 2014 CSE2312, Fall 2014 10

• DP: data processing instructions: transform data (arithmetic, etc.)
• DT: data transfer instructions: move data around (load from

memory, store to memory, etc.)

ARM Instructions

September 16, 2014 CSE2312, Fall 2014 11

ARM Instructions

September 16, 2014 CSE2312, Fall 2014 12

Addressing Modes

• Many instructions have operands (inputs), so where do they
come from?
• Addressing mode specifies this

• Addressing modes
• Immediate addressing
• Direct addressing
• Register addressing
• Register indirect addressing
• Indexed addressing
• Based-index addressing
• Stack addressing
• …

• Only some of these are available in typical modern ISAs
• ARM has many addressing modes
• Don’t have to use them all, but good to be aware of them

September 16, 2014 CSE2312, Fall 2014 13

Immediate/Literal Addressing

• Operand comes from the instruction
• Example: 32-bit instruction to move 4 into R1

• Result is R1 := 4
MOV R1 #4

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 #4
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑

• Useful for specifying small integer constants (avoids extra memory
access)

• Can only specify small constants (limited by size of immediate field)
• ARM: typically 8-12-bits

September 16, 2014 CSE2312, Fall 2014 14

Register/Register-Direct Addressing

•Operand(s) come(s) from register(s)
• Seen this many times already: ADD R0 R1 R2 does R0 :=

R1 + R2
• Also: MOV R1 R2: the destination operand is specified by

its register address (Result is R1 := R2)

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 𝑅2
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑

September 16, 2014 CSE2312, Fall 2014 15

• Uses a value from a register and modifies it (here, LSL is
logical shift left, i.e., move number 2 bits left)
• Equivalent to multiplying by 4 (each bit shift is *2)

• Allows combining a couple operations (efficiency)

ADD r2, r0, r1, LSL #2

• Suppose r0 = 7, r1 = 3
• What is r2 afterward?

• R2 = 7 + (3*2*2) = 19

Scaled Register Addressing

September 16, 2014 CSE2312, Fall 2014 16

Direct/Absolute Addressing

• Operand comes from accessing its full address in memory
• Example: 32-bit instruction to move data from memory

location (address) 4 into R1 (result is R1 := MEM[4])

MOV R1 #4

• Useful for specifying global variables
• Problem with example? How many memory locations? How

big are the immediate fields?
• While the value at the address can change, the address

(location) cannot
• Not available in ARM

September 16, 2014 CSE2312, Fall 2014 17

Register Indirect Addressing

•Operand comes from memory, with address
specified by the value in a register (i.e., by a
pointer) or by an immediate

•Example: ARM instruction to copy value from
MEM[R4] into R1 (e.g., R1 := MEM[R4])

LDR R1 [R4]

September 16, 2014 CSE2312, Fall 2014 18

PC-Relative Indirect

September 16, 2014 CSE2312, Fall 2014 19

• Uses the current PC value with an immediate offset to
determine the value

• Example: branch if equal to location PC + 1000
• Updates PC = MEM[PC + 1000]

• Example: LDR r6, [PC]
• Updates r6 = MEM[PC]

Indirect with Immediate Offset

September 16, 2014 CSE2312, Fall 2014 20

• Uses a register value and an immediate offset
• Example: LDR r2, [r0, #8]

• Updates r2 = MEM[r0 + #8]

PC-Relative Addressing

•Same as indexed mode, but register used is the PC:
operand comes from MEM[PC + offset]

•Shows up in control flow (branch) instructions

•Note that the offset may be signed (negative)

•Why is this useful?

September 16, 2014 CSE2312, Fall 2014 21

Indirect Register Offset

September 16, 2014 CSE2312, Fall 2014 22

• Uses a register value and another register value as an
offset

• Example: LDR r2, [r0, r1]
• Updates r2 = MEM[r0 + r1]

Indirect Scaled Register Offset

September 16, 2014 CSE2312, Fall 2014 23

• Uses a register value and another register value as an
offset, that is scaled

• Example: LDR r2, [r0, r1, LSL #2]
• Updates r2 = MEM[r0 + r1*4]
• As before, LSL #2 multiplies by 4 (two bit shifts left)

Immediate Offset Pre-Indexed

September 16, 2014 CSE2312, Fall 2014 24

• Uses a register value and an immediate to compute address,
and also updates the register offset (before transfer)

• Example: LDR r2, [r0, #4]!
• Updates:

• r0 = r0 + 4

• r2 = MEM[r0] (using the new value)

Immediate Offset Post-Indexed

September 16, 2014 CSE2312, Fall 2014 25

• Uses a register value and an immediate to compute address,
and also updates the register offset (after transfer)

• Example: LDR r2, [r0], #4
• Updates:

• r2 = MEM[r0]

• r0 = r0 + 4

Register Offset Pre-Indexed

September 16, 2014 CSE2312, Fall 2014 26

• Uses two registers to compute address, and also updates the
register offset (before transfer)

• Example: LDR r2, [r0, r1]!
• Updates:

• r0 = r0 + r1

• r2 = MEM[r0] (using the new value)

Scaled Register Offset Pre-Indexed

September 16, 2014 CSE2312, Fall 2014 27

• Uses two registers to compute address, and also updates the
register offset (before transfer), and scales

• Example: LDR r2, [r0, r1, LSL #2]!
• Updates:

• r0 = r0 + r1*4

• r2 = MEM[r0] (using the new value)

Register Offset Pre-Indexed

September 16, 2014 CSE2312, Fall 2014 28

• Uses two register values, and also updates the register offset
(after transfer)

• Example: LDR r2, [r0], r1
• Updates:

• r2 = MEM[r0]

• r0 = r0 + r1

Stack Addressing

•Operand specified by stack pointer register, SP

•Example: reverse Polish notation computation

•Operand comes from MEM[SP]

•SP then usually incremented or decremented
depending on order of memory (to accomplish the
stack POP)

•Not available in ARM
• Not typically available in hardware anymore (no registers)

• Some examples: Java byte-code and JVM

September 16, 2014 CSE2312, Fall 2014 29

Addressing Modes

•Specify where to get operands (inputs) for
instructions

•Why have all these different modes?

•What are some tradeoffs?

•What could machine language instruction formats
look like for each of the addressing modes?

September 16, 2014 CSE2312, Fall 2014 30

Assembly Language

• Assembly: source language is symbolic representation
for numerical machine language
• Assembler (not compiler) used in this case to perform

translation

• Pure assembly: one-to-one correspondence between
assembly language and machine language

• Practical assembly: extra commands that the assembler
takes care of
• Examples: computing addresses from labels, filling consecutive

addreses with zeros, placing strings in memory, etc.

September 16, 2014 CSE2312, Fall 2014 31

Assembly Language Format

September 16, 2014 CSE2312, Fall 2014 32

Label Opcode Operands Comments

iloop: add r1,r1,#1 @ r1 := r1 + 1

b iloop @ pc := iloop

val: .byte 0x9F @ put 0x96 at

address val

s: .asciz “hello!” @ put “hello!”

at sequential

addresses

starting at

address s

Assembly Instructions vs. Directives

• Instructions
• Machine language equivalents

•Directives / Pseudoinstructions
• Special commands given to the assembler that are

converted to equivalent machine language during
assembly process

• Used for placing data in memory, etc.

September 16, 2014 CSE2312, Fall 2014 33

Summary

•Many addressing modes

•Be familiar with types available for architecture you
are working with, will influence efficiency (e.g.,
number of memory accesses, code size, etc.)
• Major source of compiler optimizations

September 16, 2014 CSE2312, Fall 2014 34

Questions?

September 16, 2014 CSE2312, Fall 2014 35

Translation Example

• Suppose our ISA does not have a multiply instruction

• How can we perform multiplication?
• Create equivalent sequence of computations yielding the same result
• Use addition, branch, comparisons, etc.

• 𝐴 ∗ 𝐵 = 𝑖=1
𝐵 𝐴 = 𝐴 + 𝐴 +⋯+ 𝐴

𝐵 𝑡𝑖𝑚𝑒𝑠
• Example: 5 ∗ 9 = 𝑖=1

9 5 = 5 + 5 +⋯+ 5
9 𝑡𝑖𝑚𝑒𝑠

= 45

• Generalizing: this is the basis of all our modern
computations

• CPU does not have “visit website, buy shoes“ instruction

September 16, 2014 CSE2312, Fall 2014 36

