UNIVERSITY OF TEXASAARLINGTON

Computer Organization &
Assembly Language
Programming (CSE 2312)

Lecture 8: Instructions Review and Addressing Modes

Taylor Johnson

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

* Quiz 3 on Blackboard site (due 11:59PM Friday)
* Review binary arithmetic and Boolean operations

* Homework 2 due today

* Homework 3 assigned today
* Finish reading chapter 2 (ARM version on Blackboard site)

* [nstructions Review
* Addressing Modes

UNIVERSITY OF TEXAS%ARLINGTON

Review: Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from
memory)

EXECUTE
(Execute instruction

fetched from memory)

Handle
Interrupt Interrupt
(Input/Output ?
Event)

PC++
(Increment

the Program
Counter)

September 16, 2014 CSE2312, Fall 2014 3

UNIVERSITY OF TEXASAARLINGTON

Review: Memory Cells and Addresses

* Memory cell: a piece of memory that contains a
specific number of bits
* How many bits depends on the architecture

* |In modern architectures, it is almost universal that a cell
contains 8 bits (1 byte), and that will be also our
convention in this course

* Memory address: a number specifying a location of
a memory cell containing data

* Essentially, a number specifying the location of a byte of
memory

UNIVERSITY OF TEXASAARLINGTON

Review: Operands Types

» Register operand: operand comes from the binary
valued stored in a particular register in the CPU
* Example: add r0, rl, r2
eCcode:r0 = rl + r2;

* Immediate operand: operand value comes from
instruction itself
e Example: add r0, rl, #1
*Ccode:r0 = rl + 1;

* Memory operand: operand refers to memory
e Example: str r0, [rl]
e Ccode (roughly): MEM[r1] = rO0;
* Only for load / store instructions!
 Several addressing modes (more on this later)

UNIVERSITY OF TEXAS A @ ARLINGTON

Review: Memory Operand Example 1

e C code:

g =h + A[8];
*ginrl, hinr2, base address of Ainr3

* Compiled ARM code:

* Index 8 requires offset of 8 words
* 4 bytes per word

@ load word
1dr r0, [r3, #32] @ r0O = MEM[r3 + 32]
add rl, /r2, ro0

September 16, 2014 CSE2312, Fall 2014 6

UNIVERSITY OF TEXASAARLINGTON

Review: Memory Operand Example 2

e C code:

A[l12] = h + A[8];
*hinr2, base address of Ainr3

* Compiled ARM code:
 Index 8 requires offset of 32 (8 bytes, 4 bytes per word)

@ load word

1dr r0, [r3,#32] @ r0 = MEM[r3 + 32]
add r0, r2, r0

@ store word
str rO0, [r3, #48] @ MEM[r3 + 48] = r0

UNIVERSITY OF TEXASAARLINGTON

Review: Immediate Operands

* Constant data specified in an instruction
add r3, r3, #4

* Design Principle 3: Make the common case fast
* Small constants are common
* Immediate operand avoids a load instruction

UNIVERSITY OF TEXASAARLINGTON

ARM Instruction Formats

31 2827 1615 av 0
Cond |0 0]|I|Opcode|S] HRn Rd Operand2
Cond | 000000 |A|IS|] Rd Rn RS 1001 Rm
Cond 00001 |UIAIS| RdHi | RdLo RS 1001 Rm
Cond |O0010|B|OO] Rn Rd | 0000|1001 Rm
Cond [0 1][I|P|UIBIWIL] Rn Rd Offset
Cond |1 00|PIUISIWIL] An Register List
Cond |[O0O0|P|UITWIL] Rn Rd | Offsetl |1|S|H|1| Offset2
Cond |00O0[P[UJOJWIL] Rn Rd | 0000 |1|S|H|1| BEm
Cond |101]|L Offset
Cond |O001|001011T11 11111111]0001 Rn
Cond |110]|P|U le L| Rn CHRd |CPNum Offset
Cond |1110| Opi CHn CHd |CPNum| Op2 |0] CEm
Cond |1110| Opt1 |L] CHn Rd |CPNum| Op2 |1] CRHRm
Cond |1111 SWI Number

September 16, 2014

CSE2312, Fall 2014

Instruction type

Data processing / PSR Transfer
Multiply

Long Multiply

Swap

| oad/Store Byte/Word
Load/Store Multiple

Halfword transfer: Immediate offset
Halfword transfer: Register offsat
Branch

Branch Exchange

Coprocessor data transfer
Coprocessor data operation
Coprocessor register transfer

Software interrupt

UNIVERSITY OF TEXAS%ARLINGTON

ARM Instruction Formats
mm“m

0 2 1 ADD rd,r2,r3
SUB DP 14 0 0 2 0 2 1 3 SUB r1,r2,r3
LDR DT 14 1 24 2 1 100 LDR r1,100(r2)
STR DT 14 1 25 2 1 100 STR r1,100(r2)
All ARM instructions
Field size 4 bits 2 bits 1 bit 4 bits 1 bit 4 bits 4 bits 12 bits)
are 32 bits long
Arithmetic
DP format DP Cond F | Opcode S Rn Rd Operand2 |]
instruction format
DT format DT Cond F Opcode Rn Rd Offset12 | Data transfer format

* DP: data processing instructions: transform data (arithmetic, etc.)
e DT: data transfer instructions: move data around (load from
memory, store to memory, etc.)

Field size 4 bits | 2 bits 1 bit 4 bits | 1L bit | 4 bits | 4 bits| 12 bits | All ARM instructions are 32 bits long
DP format DP Cond F I Opcode S Rn Rd | Operand2 | Arithmetic instruction format

DT format DT Cond F Opcode Rn Rd Offset12 | Data transfer format

Field size 4 bits | 2 bits | 2 bits 24 bits

BR format BR Cond F Opcode signed_immed_24 B and BL instructions

September 16, 2014 CSE2312, Fall 2014 10

UNIVERSITY OF TEXASAARLINGTON

ARM Instructions

| cads Shifts/rotates
LDRSE DST,ADDR | Load signed byte (8 bits) LSL DST,51,52IMM Logical shift left
LDRB DST,ADDR Load unsigned byte (8 bits) LSR DST,51,52IMM Logical shift right

LDRSH DST,ADDR | Load signed halfwords (16 bits] | ASR DST,51,52IMM Arithmetic shift right
LDRH DST,ADDR Load unsigned halfwords (16 bits)] | ROR DSR,51,52IMM | Rotate right
LDR DST,ADDR Load word (32 bits)

LDM S1.REGLIST |Load multiple words Boolean
TST DST,S1,52IMM | Test bits
Stores TEQ DST,51,52IMM Test equivalence

STRB DST,ADDR | Store byte (8 bits) AND DST,S1,S2IMM | Boolean AND

STHH DST,ADDR Store halfword (16 bits) EOR DST,51,52IMM Boolean Exclusive-OR

STR DST,ADDR Store word (32 bits) ORR D5T,51,52IMM Boolean OR

STM SRC,REGLIST | Store multiple words BIC DST,51,52IMM Bit clear
S1 = source register ADDR = memory address
S2IMM = source register or immediate IMM = immediate value
53 = source register (when 3 are used) BEGLIST = list of registers
DST = destination register PSH = processor status reqgister
D1 = destination register (1 of 2) cc = branch condition

D2 = destination reqister (2 of 2)

September 16, 2014 CSE2312, Fall 2014 11

UNIVERSITY OF TEXASAARLINGTON

ARM Instructions

Arithmetic Transfer of control

ADD DST,51,52IMM | Add Bce IMM Branch to PC+IMM
ADD DST,51,52IMM | Add with carry BlLcc IMM Branch with link to PC+IMM
SUB DST,51,52IMM | Subtract Blcc S1 Branch with link to reg add
SUB D5T,51,52IMM | Subtract with carry
RSB DST,51,52IMM | Reverse subtract Miscellaneous
RSC DST,51,52IMM | Reverse subtract with carry MOV DST,51 Move register
MUL DST,51,52 Multiply MOVT DST,IMM Move imm to upper bits
MLA DST,51,52,53 | Multiple and accumulate MVN DST,S1 MNOT register
UMULL D1,D2,51,52 | Unsigned long multiple MRS DST,PSH Head PSH
SMULL D1,D2,51,52 | Signed long multiple MSRH PSR,51 Write PSR
UMLAL D1,D2,51,52 | Unsigned long MLA SWP D5T,51,ADDR Swap reg/mem word
SMLAL D1,D2,51,52 | Signed long MLA SWPB DST,51,ADDR | Swap reg/mem byie
CMP 51,52IMM Compare and set PSH SWI IMM Software interrupt

S1 = source register ADDR = memory address

S2IMM = source register or immediate IMM = immediate value

S3 = source register (when 3 are used) REGLIST = list of registers

DST = destination register PSH = processor status register

D1 = destination register (1 of 2) cc = branch condition

D2 = destination reqister (2 of 2)

September 16, 2014 CSE2312, Fall 2014 12

UNIVERSITY OF TEXASAARLINGTON

Addressing Modes

* Many instructions have operands (inputs), so where do they
come from?

* Addressing mode specifies this

* Addressing modes
* Immediate addressing
* Direct addressing
* Register addressing
* Register indirect addressing
* Indexed addressing
* Based-index addressing
 Stack addressing

* Only some of these are available in typical modern ISAs
* ARM has many addressing modes
* Don’t have to use them all, but good to be aware of them

UNIVERSITY OF TEXASAARLINGTON

Immediate/Literal Addressing

1. Immediate: ADD r2, r0, #5

cond| f |opcode | rn | rd |Immediate

* Operand comes from the instruction

* Example: 32-bit instruction to move 4 into R1
* ResultisRl1:=4

. Useful)for specifying small integer constants (avoids extra memory
access

* Can only specify small constants (limited by size of immediate field)
* ARM: typically 8-12-bits

September 16, 2014 CSE2312, Fall 2014 14

UNIVERSITY OF TEXASAARLINGTON

Register/Register-Direct Addressing

* Operand(s) come(s) from register(s)
* Seen this many times already: ADD RO R1 R2 does RO :=
R1+ R2

* Also: MOV R1 R2: the destination operand is specified by
its register address (Result is R1 := R2)

2. Register: ADD r2, r0, r1

cond| f [opcode| m | rd |...|rm Register

Register

!

UNIVERSITY OF TEXASAARLINGTON

Scaled Register Addressing

* Uses a value from a register and modifies it (here, LSL is
logical shift left, i.e., move number 2 bits left)

* Equivalent to multiplying by 4 (each bit shift is *2)
 Allows combining a couple operations (efficiency)

3. Scaled register: ADD r2, rO, r1, LSL #2

cond| f |opcode| m |rd |...|rm Register

|
ADD r2, r0O, rl, LSL #2

*Supposer0=7,r1=3 ﬁ

e What is r2 afterward?
e« R2=7+(3*2*%2)=19

\

Register

September 16, 2014 CSE2312, Fall 2014 16

UNIVERSITY OF TEXASAARLINGTON

Direct/Absolute Addressing

* Operand comes from accessing its full address in memory

* Example: 32-bit instruction to move data from memory
location (address) 4 into R1 (result is R1 := MEM[4])

i

 Useful for specifying global variables

* Problem with example? How many memory locations? How
big are the immediate fields?

* While the value at the address can change, the address
(location) cannot

 Not available in ARM

UNIVERSITY OF TEXASAARLINGTON

Register Indirect Addressing

* Operand comes from memory, with address
specified by the value in a register (i.e., by a
pointer) or by an immediate

e Example: ARM instruction to copy value from
MEMI[R4] into R1 (e.g., R1 := MEM[R4])

UNIVERSITY OF TEXASAARLINGTON

PC-Relative Indirect

4. PC-relative: BEQ 1000

cond opcode offset Memory

PC @ - [Byte] Half Word
|

e Uses the current PC value with an immediate offset to
determine the value
 Example: branch if equal to location PC + 1000
 Updates PC= MEM[PC + 1000]
 Example: LDR r6, [PC]
 Updates r6 = MEMI[PC]

September 16, 2014 CSE2312, Fall 2014 19

UNIVERSITY OF TEXASAARLINGTON

Indirect with Immediate Offset

5. Immediate offset: LDR r2, [r0, #8]

cond| f |opcode | rn | rd | address Memory

[Byte| Half Word

>l register

* Uses a register value and an immediate offset
e Example: LDR r2, [rO, #8]
e Updates r2 = MEM|[rO + #8]

September 16, 2014 CSE2312, Fall 2014 20

UNIVERSITY OF TEXASAARLINGTON

PC-Relative Addressing

e Same as indexed mode, but register used is the PC:
operand comes from MEM|[PC + offset]

e Shows up in control flow (branch) instructions
* Note that the offset may be signed (negative)
* Why is this useful?

UNIVERSITY OF TEXASAARLINGTON

Indirect Register Offset

6. Register offset: LDR r2, [rO, r1]

cond| f |opcode| m | rd [...]| rm Memory
|
~| register ~ [[Byte] Half Word
> register

* Uses a register value and another register value as an
offset
 Example: LDR r2, [rO, rl1]
e Updatesr2 = MEMJrO + r1]

September 16, 2014 CSE2312, Fall 2014 22

Indirect Scaled Register Offset

UNIVERSITY OF TEXASAARLINGTON

7. Scaled register offset: LDR r2, [rO, r1, LSL #2]

cond

f

opcode

m

rd

L rm

-

register

Memory

~ [[Byte] Half Word

T

register

9

* Uses a register value and another register value as an

offset, that is scaled

e Example: LDRr2, [rO, r1, LSL #2]
Updates r2 = MEM[r0 + r1*4]
* As before, LSL #2 multiplies by 4 (two bit shifts left)

September 16, 2014

CSE2312, Fall 2014

23

UNIVERSITY OF TEXASAARLINGTON

Immediate Offset Pre-Indexed

8. Immediate offset pre-indexed: LDR r2, [rO, #4]!

cond

f

opcode

n

rd

address

>
=

Memory

—

R

reqgister

®_._,

[[Byte] Half Word

* Uses a register value and an immediate to compute address,
and also updates the register offset (before transfer)

e Example: LDR r2,

Updates:

= r0 + 4

e r2 = MEM[rO0] (using the new value)

* 10

September 16, 2014

[0,

#4]!

CSE2312, Fall 2014

24

UNIVERSITY OF TEXASAARLINGTON

Immediate Offset Post-Indexed

9. Immediate offset post-indexed: LDR r2, [r0], #4

cond

f

opcode

m

rd

address

\—&
—@ ~ |[Byte] Half Word

Y

~| register

l

Memory

Uses a register value and an immediate to compute address,
and also updates the register offset (after transfer)

Example: LDR r2,

Updates:
= MEM|[rO]
= 1r0 + 4

* 12
* 1(

September 16, 2014

[r0],

#4

CSE2312, Fall 2014 25

UNIVERSITY OF TEXASAARLINGTON

Register Offset Pre-Indexed

10. Register offset pre-indexed: LDR r2, [rO, r1]!

cond| f |opcode| rm |rd |...]|rm Memory

Y

[Byte] Half Word

> register

1

>| register

* Uses two registers to compute address, and also updates the
register offset (before transfer)
e Example: LDR r2, [r0O, rl]!
* Updates:
e r0 = r0 + rl
e r2 = MEM[rO0] (using the new value)

September 16, 2014 CSE2312, Fall 2014 26

UNIVERSITY OF TEXASAARLINGTON

Scaled Register Offset Pre-Indexed

11. Scaled register offset pre-indexed: LDR r2, [rO, r1, LSL #2]!

cond| f |opcode | m [rd |...]| rm Memory
[register - |[Byte] Half Word
l
*| register

* Uses two registers to compute address, and also updates the
register offset (before transfer), and scales
e Example: LDR r2, [r0O, rl, LSL #2]!
* Updates:
e 0 = r0 + rl*4
e r2 = MEM[rO0] (using the new value)

September 16, 2014 CSE2312, Fall 2014 27

UNIVERSITY OF TEXASAARLINGTON

Register Offset Pre-Indexed

12. Register offset post-indexed: LDR r2, [r0], r1

cond | f opcode | rn rd | ... | rm Memory
|
-~ register - |[Byte] Half Word
A
> register
|

e Uses two register values, and also updates the register offset
(after transfer)
e Example: LDR r2, [r0], rl
* Updates:
* r2 = MEM[rO]
* vrO = r0 + rl

September 16, 2014 CSE2312, Fall 2014 28

UNIVERSITY OF TEXASAARLINGTON

Stack Addressing

* Operand specified by stack pointer register, SP
* Example: reverse Polish notation computation
* Operand comes from MEM|[SP]

* SP then usually incremented or decremented
depending on order of memory (to accomplish the
stack POP)

* Not available in ARM

* Not typically available in hardware anymore (no registers)
* Some examples: Java byte-code and JVM

UNIVERSITY OF TEXASAARLINGTON

Addressing Modes

 Specify where to get operands (inputs) for
instructions

* Why have all these different modes?
* What are some tradeoffs?

* What could machine language instruction formats
look like for each of the addressing modes?

UNIVERSITY OF TEXASAARLINGTON

Assembly Language

* Assembly: source language is symbolic representation
for numerical machine language

e Assembler (not compiler) used in this case to perform
translation

* Pure assembly: one-to-one correspondence between
assembly language and machine language

* Practical assembly: extra commands that the assembler
takes care of

* Examples: computing addresses from labels, filling consecutive
addreses with zeros, placing strings in memory, etc.

UNIVERSITY OF TEXAS%ARLINGTON

Assembly Language Format

Label Opcode Operands Comments
iloop: add rl,rl,#1 @ rl :=rl + 1
b iloop @ pc := iloop

val: .byte 0x9F @ put 0x96 at
address val

S : .asciz “hello!” @ put “hello!”
at sequential
addresses

starting at
address s

September 16, 2014 CSE2312, Fall 2014 32

UNIVERSITY OF TEXASAARLINGTON

Assembly Instructions vs. Directives

* |[nstructions
* Machine language equivalents

* Directives / Pseudoinstructions

» Special commands given to the assembler that are
converted to equivalent machine language during
assembly process

» Used for placing data in memory, etc.

UNIVERSITY OF TEXASAARLINGTON

Ssummary

* Many addressing modes

* Be familiar with types available for architecture you
are working with, will influence efficiency (e.g.,
number of memory accesses, code size, etc.)

Addressing mode Corei7 | OMAP4430 ARM ATmegai68 AVR

Immediate b X W

Direct

Register

A
A
A

Register indirect

X | X | X | X

Indexed

O I S I O

Based-indexed

UNIVERSITY OF TEXASAARLINGTON

Questions?

UNIVERSITY OF TEXASAARLINGTON

Translation Example

* Suppose our ISA does not have a multiply instruction

* How can we perform multiplication?

* Create equivalent sequence of computations yielding the same result
* Use addition, branch, comparisons, etc.

*AxB =YL A=A+A+-+A
* Example: 5 *9 = ?=1fgnis+5+---+§=45

9 times

* Generalizing: this is the basis of all our modern
computations

* CPU does not have “visit website, buy shoes” instruction

