
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 9: Control Flow and Procedure Introduction

Taylor Johnson

Announcements and Outline

•Quiz 3 on Blackboard site soon (due 11:59PM next
Wednesday 9/24)
• Review binary arithmetic and Boolean operations

•Homework 3 assigned
• Finish reading chapter 2 (ARM version on Blackboard site)

• Review
• Addressing modes

• Control flow
• Branches
• Conditional execution
• Basic function calls
• Intro to Recursion and the Stack

September 18, 2014 CSE2312, Fall 2014 2

Review: Addressing Modes

• Many instructions have operands (inputs), so where do they
come from?
• Addressing mode specifies this

• Addressing modes
• Immediate addressing
• Direct addressing
• Register addressing
• Register indirect addressing
• Indexed addressing
• Based-index addressing
• Stack addressing
• …

• Only some of these are available in typical modern ISAs
• ARM has many addressing modes
• Don’t have to use them all, but good to be aware of them

September 18, 2014 CSE2312, Fall 2014 3

Review: Immediate/Literal Addressing

• Operand comes from the instruction
• Example: 32-bit instruction to move 4 into R1

• Result is R1 := 4
MOV R1 #4

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 #4
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑

• Useful for specifying small integer constants (avoids extra memory
access)

• Can only specify small constants (limited by size of immediate field)
• ARM: typically 8-12-bits

September 18, 2014 CSE2312, Fall 2014 4

Review: Register/Register-Direct Addressing

•Operand(s) come(s) from register(s)
• Seen this many times already: ADD R0 R1 R2 does R0 :=

R1 + R2
• Also: MOV R1 R2: the destination operand is specified by

its register address (Result is R1 := R2)

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 𝑅2
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑

September 18, 2014 CSE2312, Fall 2014 5

Review: Indirect with Immediate Offset

September 18, 2014 CSE2312, Fall 2014 6

• Uses a register value and an immediate offset
• Example: LDR r2, [r0, #8]

• Updates r2 = MEM[r0 + #8]

Review: Addressing Modes

•Specify where to get operands (inputs) for
instructions

•Why have all these different modes?

•What are some tradeoffs?

•What could machine language instruction formats
look like for each of the addressing modes?

September 18, 2014 CSE2312, Fall 2014 7

Review: Assembly Language

•Assembly: source language is symbolic representation
for numerical machine language
• Assembler (not compiler) used in this case to perform

translation

• Pure assembly: one-to-one correspondence between
assembly language and machine language

• Practical assembly: extra commands that the assembler
takes care of
• Examples: computing addresses from labels, filling consecutive

addreses with zeros, placing strings in memory, etc.

September 18, 2014 CSE2312, Fall 2014 8

Review: Assembly Language Format

September 18, 2014 CSE2312, Fall 2014 9

Label Opcode Operands Comments

iloop: add r1,r1,#1 @ r1 := r1 + 1

b iloop @ pc := iloop

val: .byte 0x9F @ put 0x96 at

address val

s: .asciz “hello!” @ put “hello!”

at sequential

addresses

starting at

address s

Review: Assembly Instructions vs. Directives

• Instructions
• Machine language equivalents

•Directives / Pseudoinstructions
• Special commands given to the assembler that are

converted to equivalent machine language during
assembly process

• Used for placing data in memory, etc.

September 18, 2014 CSE2312, Fall 2014 10

Assembly Process

• Insuffiency of one pass
• Suppose we have labels (symbols to addresses)
• How do we calculate the addresses of labels later in the

program?
• Example:

• ADDR: 0x1000 init:b done

• … Other instructions and data

• ADDR: 0x???? done:b init

• Two-Pass Assemblers
• First Pass: iterate over instructions, build a symbol table,

opcode table, expand macros, etc.
• Second Pass: iterate over instructions, printing equivalent

machine language, plugging in values for labels using symbol
table

September 18, 2014 CSE2312, Fall 2014 11

Flow of Control

• Left: no branches; Right: branches / jumps

September 18, 2014 CSE2312, Fall 2014 12

Loop Control with Branches / Gotos

Left: Test-at-the-end loop
Right: Test-at-the-beginning loop

September 18, 2014 CSE2312, Fall 2014 13

Branch and Branch with Link

• Branch Conditional and Unconditional
b{cond} label

beq label @ conditional

b label @ unconditional

• Updates:
• PC = address of label

• Branch with Link (function/procedure calls)
• Link register: keeps return address (for procedure calls)

bl{cond} label

• Updates:
• LR = PC (before call, so we can return)
• PC = address of label

September 18, 2014 CSE2312, Fall 2014 14

Conditional Execution

•Current Program Status Register (CPSR)
• Keeps track of arithmetic / logic (ALU) status

• Example: last result was negative, zero, positive, had a carry, etc.
• N (negative) / Z (zero) / C (carry) / V (overflow) bits

•Allows us to make conditional branches, etc. for
conditional control flow changes (ifs, finite loops,
etc.)
•Examples:
cmp r0, #0 @ compare r0 and #0

beq label @ branch if r0 == 0

adds r0, #1

bgt label @ branch if r0 positive

September 18, 2014 CSE2312, Fall 2014 15

ALU Status Bits

•N (negative) bit
• Set to 1 when the result of the operation is negative, cleared to

0 otherwise

• Z (zero) bit
• Set to 1 when the result of the operation is zero, cleared to 0

otherwise

• C (carry) bit
• if the result of an addition is greater than or equal to 232

• if the result of a subtraction is positive or zero
• as the result of an inline barrel shifter operation in a move or

logical instruction

• V (overflow) bit
• Overflow occurs if the result of an add, subtract, or compare is

greater than or equal to 231, or less than -231

September 18, 2014 CSE2312, Fall 2014 16

Condition Code Suffixes
Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any
Always. This suffix is normally
omitted.

September 18, 2014 CSE2312, Fall 2014 17

Control Flow Translation Example

• Suppose our ISA does not have a multiply instruction

• How can we perform multiplication?
• Create equivalent sequence of computations yielding the same result
• Use addition, branch, comparisons, etc.

• 𝐴 ∗ 𝐵 = 𝑖=1
𝐵 𝐴 = 𝐴 + 𝐴 +⋯+ 𝐴

𝐵 𝑡𝑖𝑚𝑒𝑠

• Example: 5 ∗ 9 = 𝑖=1
9 5 = 5 + 5 +⋯+ 5

9 𝑡𝑖𝑚𝑒𝑠

= 45

• Generalizing: this is the basis of all our modern computations
• CPU does not have “visit website, buy shoes“ instruction

September 18, 2014 CSE2312, Fall 2014 18

Procedures: Iterative Multiply

• How do we write a loop?
• How does flow of control change with function (procedure)

calls?

int multiply(int A, int B) {

int product = 0;

while (B > 0) {

product += A;

B--;

}

return product;

}

September 18, 2014 CSE2312, Fall 2014 19

ARM Assembly for Iterative Multiply

.globl _start

_start: mov r0, #5 @ A = 5

mov r1, #3 @ B = 3

bl imul @ call iterative multiply procedure

iloop: b iloop @ infinite loop (for “termination”)

imul: mov r2,#0 @ initialize result to 0

imul_loop: cmp r0,#0 @ r0 == 0?

beq imul_done @ if r0 == 0, set PC = imul_done

add r2,r2,r1 @ r2 += r1

sub r0,r0,#1 @ r0 -= 1

b imul_loop @ branch to imul_loop

imul_done: mov r0,r2 @ r0 = r2

bx lr @ set PC = LR

September 18, 2014 CSE2312, Fall 2014 20

Procedures

•How does a function get its input arguments and
return its result?

•What if one function calls another?

•How can we accomplish this allowing for recursion
(functions calling themselves)?
• The stack

September 18, 2014 CSE2312, Fall 2014 21

Control Flow with Procedure Calls

September 18, 2014 CSE2312, Fall 2014 22

Procedures

•ARM Convention
• R0: stores the return value
• R0-R4: may be modified by subroutine

•Callee-save: function A that calls function B must
save registers to the stack

•Caller-save: called function must restore state to
previous values before it was called

September 18, 2014 CSE2312, Fall 2014 23

Making a Function

•Why are functions useful in assembly?

•For the same reasons they are useful in any
programming language:
• Modularity, making code easy to design, write, read,

debug
• Reusability

24September 18, 2014 CSE2312, Fall 2014

Making a Function

•Functions are easy to define and call in languages
like C and Java

• In assembly, calling a function requires several steps

•This reflects that the CPU can do only a limited
amount of work in a single step

•Note that, to correctly do a function call, both the
caller (program/function making the function call)
and the called function must do the right steps

25September 18, 2014 CSE2312, Fall 2014

Caller Steps
• Step 1: Put arguments in the right place.

• Specific machines use specific conventions.
• "R0-R3 hold parameters to the procedure being called".

• So:
• Argument 1 (if any) goes to r0.

• Argument 2 (if any) goes to r1.

• Argument 3 (if any) goes to r2.

• Argument 4 (if any) goes to r3.

• If there are more arguments, they have to be placed in memory.
We will worry about this case only if we encounter it.

26September 18, 2014 CSE2312, Fall 2014

Caller Steps
• Step 2: branch to the first instruction of the function.

• Here, we typically use the bl instruction, not the b instruction.

• The bl instruction, before branching, saves to register lr (the link register,
aka r14) the return address.

• The return address is the address of the instruction that should be
executed when the function is done.

• Step 3: after the function has returned, recover the return
value, and use it.
• We will follow the convention that the return value goes to r0.

• If there is a second return value, it goes to r1.

27September 18, 2014 CSE2312, Fall 2014

Called (callee) Function Steps

• Step 1: Do the preamble:
• Allocate memory on the stack (more details in a bit).
• Save to memory the return address. Why?
• Save to memory all registers (except possibly for r0) that the function

modifies. Why?

• Step 2: Do the main body of the function.
• Assume arguments are in r0, r1, r2, r3.
• This is where the actual work is done.

• Step 3: Do the wrap-up:
• Store the return value (if any) on r0, and second return value (if any)

on r1.
• Retrieve from memory the return address. Why?
• Retrieve from memory, and restore to registers, the original values of

all registers that the function modified (except possibly for r0). Why?
• Deallocate memory on the stack.
• Branch to the return address.

28September 18, 2014 CSE2312, Fall 2014

Summary of Caller and Callee Steps

• Caller steps:
• Step 1: Put arguments in the registers r0, r1, r2, r3.
• Step 2: Branch to the function, using the bl instruction.
• Step 3: After the function has returned, recover the return

value (if any), and use it.

• Callee (called function) steps:
• Step 1 (preamble): Allocate memory on the stack, and save

register rl, and other registers that the function modifies, to
the stack.

• Step 2: Do the main body of the function.
• Step 3 (wrap-up):

• Store the return value (if any) on r0, second return value (if any) on r1.
• Restore, from the stack, the original values of all registers that the function

modified, as well as the value of register lr.
• Deallocate memory on the stack (increment sp).
• Branch to the return address using instruction bx.

29September 18, 2014 CSE2312, Fall 2014

Procedures: Recursive Multiply

•How does flow of control change with recursive
procedure calls?

•Given what we know about the cycle loop (all
computations use registers, etc.), how might this
work?
• Hardware support for function calls (and recursion)
• Stack pointer (SP) register: pointer to stack in memory for

passing function arguments and return addresses
• Link register (LR): saves return address

September 18, 2014 CSE2312, Fall 2014 30

ARM Assembly for Recursive Multiply

.globl _start

_start: mov sp, #0x11000 @ set up stack

mov r0, #5 @ A = 5

mov r1, #3 @ B = 3

mov r7, #0 @ set up result before call

bl rmul @ first recursive call

mov r0,r7 @ put result in r0

iloop: b iloop @ infinite loop (“termination”)

rmul: push {lr} @ save link register on stack

add r7,r7,r0 @ r7 += r0

sub r1, r1, #1 @ r1 -= 1

cmp r1, #0 @ r1 == 0?

beq rmul_exit @ if r1 == 0, quit

bl rmul @ else, recursive call

rmul_exit: pop {lr} @ restore link register

b lr @ branch to calling location

September 18, 2014 CSE2312, Fall 2014 31

Recursive Factorial

int factorial(int n) {

if (n == 0) {

return 1;

}

else {

return n * factorial(n - 1);

}

}

September 18, 2014 CSE2312, Fall 2014 32

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

33

• How do we write function
factorial in assembly?

September 18, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)
{
if (N== 0) return 1;
return N* factorial(N -1);

}

34

• How do we write function
factorial in assembly?

September 18, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)
{
if (N== 0) return 1;
return N* factorial(N -1);

}

35

• How do we write function
factorial in assembly?

@ factorial main body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq factorial_exit

sub r0, r4, #1

bl factorial

mov r5, r0

mul r0, r5, r4September 18, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

@ factorial preamble

???

@ factorial main body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq factorial_exit

sub r0, r4, #1

bl factorial

mov r5, r0

mul r0, r5, r4

36

@ factorial wrap-up

???

September 18, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

@ factorial preamble

sub sp, sp, #12

str lr, [sp, #0]

str r4, [sp, #4]

str r5, [sp, #8]

@ factorial main body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq factorial_exit

sub r0, r4, #1

bl factorial

mov r5, r0

mul r0, r5, r4
37

@ factorial wrap-up

ldr lr, [sp, #0]

ldr r4, [sp, #4]

ldr r5, [sp, #8]

add sp, sp, #12

bx lr

September 18, 2014 CSE2312, Fall 2014

Exercise: Convert Iterative Factorial to
Assembly

int factorial(int n) {

int f = 1;

while (n > 0) {

f *= n;

n--;

}

return f;

}

September 18, 2014 CSE2312, Fall 2014 38

Summary

•Control flow
• Branches
• Conditional execution
• Procedures
• Basic recursion and the stack

September 18, 2014 CSE2312, Fall 2014 39

Questions?

September 18, 2014 CSE2312, Fall 2014 40

Macros

•Way to refer to commonly used or repeated code

•Similar to a procedure or function, but expanded at
assembly time, not run time

•Macro call: use of macro as an opcode

•Macro expansion: replacement of macro body by
the corresponding instructions

September 18, 2014 CSE2312, Fall 2014 41

Macros vs. Procedures

September 18, 2014 CSE2312, Fall 2014 42

