
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 10: Stack and Recursion

Taylor Johnson

Announcements and Outline

• Quiz 3 on Blackboard (due 11:59PM Friday 9/26)
• Review binary arithmetic and Boolean operations

• Homework 3 assigned and due Thursday
• Finish reading chapter 2 (ARM version on Blackboard site)

• Review: Control flow
• Branches
• Conditional execution

• More control flow
• Basic function calls
• Intro to Recursion and the Stack

September 23, 2014 CSE2312, Fall 2014 2

Review: Branch and Branch with Link

• Branch Conditional and Unconditional
b{cond} label
beq label @ conditional
b label @ unconditional

• Updates:
• PC = address of label

• Branch with Link (function/procedure calls)
• Link register: keeps return address (for procedure calls)

bl{cond} label
• Updates:

• LR = PC (before call, so we can return)
• PC = address of label

September 23, 2014 CSE2312, Fall 2014 3

Review: Conditional Execution

• Current Program Status Register (CPSR)
• Keeps track of arithmetic / logic (ALU) status

• Example: last result was negative, zero, positive, had a carry, etc.
• N (negative) / Z (zero) / C (carry) / V (overflow) bits

• Allows us to make conditional branches, etc. for
conditional control flow changes (ifs, finite loops,
etc.)

• Examples:
cmp r0, #0 @ compare r0 and #0
beq label @ branch if r0 == 0
adds r0, r0, #1
bgt label @ branch if r0 positive

September 23, 2014 CSE2312, Fall 2014 4

Review: ALU Status Bits

• N (negative) bit
• Set to 1 when the result of the operation is negative, cleared to

0 otherwise
• Z (zero) bit

• Set to 1 when the result of the operation is zero, cleared to 0
otherwise

• C (carry) bit
• if the result of an addition is greater than or equal to 232

• if the result of a subtraction is positive or zero
• as the result of an inline barrel shifter operation in a move or

logical instruction
• V (overflow) bit

• Overflow occurs if the result of an add, subtract, or compare is
greater than or equal to 231, or less than -231

September 23, 2014 CSE2312, Fall 2014 5

Review: Condition Code Suffixes
Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is normally
omitted.

September 23, 2014 CSE2312, Fall 2014 6

Review: Control Flow Translation Example

• Suppose our ISA does not have a multiply instruction

• How can we perform multiplication?
• Create equivalent sequence of computations yielding the same result
• Use addition, branch, comparisons, etc.

• 𝐴𝐴 ∗ 𝐵𝐵 = ∑𝑖𝑖=1𝐵𝐵 𝐴𝐴 = 𝐴𝐴 + 𝐴𝐴 + ⋯+ 𝐴𝐴
𝐵𝐵 𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡

• Example: 5 ∗ 9 = ∑𝑖𝑖=19 5 = 5 + 5 + ⋯+ 5
9 𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡

= 45

• Generalizing: this is the basis of all our modern
computations

• CPU does not have “visit website, buy shoes“ instruction

September 23, 2014 CSE2312, Fall 2014 7

Review: Procedures: Iterative Multiply

• How do we write a loop?
• How does flow of control change with function (procedure)

calls?

int multiply(int A, int B) {
int product = 0;
while (B > 0) {

product += A;
B--;

}
return product;

}

September 23, 2014 CSE2312, Fall 2014 8

Review: ARM Assembly for Iterative Multiply

.globl _start
_start: mov r0, #5 @ A = 5

mov r1, #3 @ B = 3
bl imul @ call iterative multiply procedure

iloop: b iloop @ infinite loop (for “termination”)

imul: mov r2,#0 @ initialize result to 0
imul_loop: cmp r0,#0 @ r0 == 0?

beq imul_done @ if r0 == 0, set PC = imul_done
add r2,r2,r1 @ r2 += r1
sub r0,r0,#1 @ r0 -= 1
b imul_loop @ branch to imul_loop

imul_done: mov r0,r2 @ r0 = r2
bx lr @ set PC = LR

September 23, 2014 CSE2312, Fall 2014 9

Procedures

• How does a function get its input arguments and
return its result?

• What if one function calls another?

• How can we accomplish this allowing for recursion
(functions calling themselves)?

• The stack

September 23, 2014 CSE2312, Fall 2014 10

The Stack

• Last-in, first-out (LIFO) data structure
• Last data put in comes out first
• Common analogy: like a quarter / coin holder in your car, the last coin put in

comes out first
• Stack pointer (SP) register: points to current address of stack (i.e., the

last thing in)
• YOU must initialize it! Typically use address 0x100000
• mov sp, #0x100000

• Stack instructions
• PUSH {r0} means:

• SUB sp, sp, #4
• STR r0, [sp]

• POP {r0} means:
• LDR r0, [sp]
• ADD sp, sp, #4

• Can use lists of registers, e.g., PUSH {r0,r1} is:
SUB sp, sp, #8
STR r0, [sp]
STR r1, [sp,#4]

September 23, 2014 CSE2312, Fall 2014 11

Caller Steps
• Step 1: Put arguments in the right place.
• Specific machines use specific conventions.

• "R0-R3 hold parameters to the procedure being called".

• So:
• Argument 1 (if any) goes to r0.
• Argument 2 (if any) goes to r1.
• Argument 3 (if any) goes to r2.
• Argument 4 (if any) goes to r3.

• If there are more arguments, they have to be placed in memory.
We will worry about this case only if we encounter it.

12September 23, 2014 CSE2312, Fall 2014

Caller Steps
• Step 2: branch to the first instruction of the function.

• Here, we typically use the bl instruction, not the b instruction.
• The bl instruction, before branching, saves to register lr (the link register,

aka r14) the return address.
• The return address is the address of the instruction that should be

executed when the function is done.

• Step 3: after the function has returned, recover the return
value, and use it.

• We will follow the convention that the return value goes to r0.
• If there is a second return value, it goes to r1.

13September 23, 2014 CSE2312, Fall 2014

Called (callee) Function Steps

• Step 1: Do the preamble:
• Allocate memory on the stack (more details in a bit).
• Save to memory the return address. Why?
• Save to memory all registers (except possibly for r0) that the function

modifies. Why?
• Step 2: Do the main body of the function.

• Assume arguments are in r0, r1, r2, r3.
• This is where the actual work is done.

• Step 3: Do the wrap-up:
• Store the return value (if any) on r0, and second return value (if any)

on r1.
• Retrieve from memory the return address. Why?
• Retrieve from memory, and restore to registers, the original values of

all registers that the function modified (except possibly for r0). Why?
• Deallocate memory on the stack.
• Branch to the return address.

14September 23, 2014 CSE2312, Fall 2014

Summary of Caller and Callee Steps

• Caller steps:
• Step 1: Put arguments in the registers r0, r1, r2, r3.
• Step 2: Branch to the function, using the bl instruction.
• Step 3: After the function has returned, recover the return

value (if any), and use it.
• Callee (called function) steps:

• Step 1 (preamble): Allocate memory on the stack, and save
register rl, and other registers that the function modifies, to
the stack.

• Step 2: Do the main body of the function.
• Step 3 (wrap-up):

• Store the return value (if any) on r0, second return value (if any) on r1.
• Restore, from the stack, the original values of all registers that the function

modified, as well as the value of register lr.
• Deallocate memory on the stack (increment sp).
• Branch to the return address using instruction bx.

15September 23, 2014 CSE2312, Fall 2014

Basic Function Call Example

int ex(int g, int h, int i, int j) {
int f;
f = (g + h) – (i + j);
return f;

}

r0 = g, r1 = h, r2 = I, r3 = j, r4 = f

September 23, 2014 CSE2312, Fall 2014 16

Basic Function Call Example Assembly

ex: ; label for function name
SUB sp, sp, #12 ; adjust stack to make room for 3 items
STR r6, [sp,#8] ; save register r6 for use afterwards
STR r5, [sp,#4] ; save register r5 for use afterwards
STR r4, [sp,#0] ; save register r4 for use afterwards

ADD r5,r0,r1 ; register r5 contains g + h
ADD r6,r2,r3 ; register r6 contains i + j
SUB r4,r5,r6 ; f gets r5 – r6, ie: (g + h) – (i + j)
MOV r0,r4 ; returns f (r0 = r4)

LDR r4, [sp,#0] ; restore register r4 for caller
LDR r5, [sp,#4] ; restore register r5 for caller
LDR r6, [sp,#8] ; restore register r6 for caller
ADD sp,sp,#12 ; adjust stack to delete 3 items
MOV pc, lr ; jump back to calling routine

September 23, 2014 CSE2312, Fall 2014 17

Basic Function Call Example Stack

September 23, 2014 CSE2312, Fall 2014 18

Basic Function Call Example Assembly
(Push/Pop)

ex: ; label for function name

PUSH {r4,r5,r6} ; save r4, r5, r6, decrement sp by 12

ADD r5,r0,r1 ; register r5 contains g + h

ADD r6,r2,r3 ; register r6 contains i + j

SUB r4,r5,r6 ; f gets r5 – r6, ie: (g + h) – (i + j)

MOV r0,r4 ; returns f (r0 = r4)

POP {r4,r5,r6} ; restore r4, r5, r6, increment sp by 12

MOV pc, lr ; jump back to calling routine

September 23, 2014 CSE2312, Fall 2014 19

State Preservation Across Procedure Calls

September 23, 2014 CSE2312, Fall 2014 20

Procedures: Recursive Multiply

• How does flow of control change with recursive
procedure calls?

• Given what we know about the cycle loop (all
computations use registers, etc.), how might this
work?

• Hardware support for function calls (and recursion)
• Stack pointer (SP) register: pointer to stack in memory for

passing function arguments and return addresses
• Link register (LR): saves return address

September 23, 2014 CSE2312, Fall 2014 21

ARM Assembly for Recursive Multiply

.globl _start

_start: mov sp, #0x11000 @ set up stack

mov r0, #5 @ A = 5

mov r1, #3 @ B = 3

mov r7, #0 @ set up result before call

bl rmul @ first recursive call

mov r0,r7 @ put result in r0

iloop: b iloop @ infinite loop (“termination”)

rmul: push {lr} @ save link register on stack

add r7,r7,r0 @ r7 += r0

sub r1, r1, #1 @ r1 -= 1

cmp r1, #0 @ r1 == 0?

beq rmul_exit @ if r1 == 0, quit

bl rmul @ else, recursive call

rmul_exit: pop {lr} @ restore link register

b lr @ branch to calling location

September 23, 2014 CSE2312, Fall 2014 22

Recursive Factorial

int factorial(int n) {
if (n == 0) {

return 1;
}
else {

return n * factorial(n - 1);
}

}

September 23, 2014 CSE2312, Fall 2014 23

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

24

• How do we write function
factorial in assembly?

September 23, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)
{
if (N== 0) return 1;
return N* factorial(N -1);

}

25

• How do we write function
factorial in assembly?

September 23, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)
{
if (N== 0) return 1;
return N* factorial(N -1);

}

26

• How do we write function
factorial in assembly?

@ factorial main body
mov r4, r0
cmp r4, #0
moveq r0, #1
beq factorial_exit

sub r0, r4, #1
bl factorial
mov r5, r0
mul r0, r5, r4September 23, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

@ factorial preamble
???

@ factorial main body
mov r4, r0
cmp r4, #0
moveq r0, #1
beq factorial_exit

sub r0, r4, #1
bl factorial
mov r5, r0
mul r0, r5, r4

27

@ factorial wrap-up
???

September 23, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

@ factorial preamble
sub sp, sp, #12
str lr, [sp, #0]
str r4, [sp, #4]
str r5, [sp, #8]

@ factorial main body
mov r4, r0
cmp r4, #0
moveq r0, #1
beq factorial_exit

sub r0, r4, #1
bl factorial
mov r5, r0
mul r0, r5, r4

28

@ factorial wrap-up
ldr lr, [sp, #0]
ldr r4, [sp, #4]
ldr r5, [sp, #8]
add sp, sp, #12
bx lr

September 23, 2014 CSE2312, Fall 2014

Exercise: Convert Iterative Factorial to
Assembly

int factorial(int n) {
int f = 1;
while (n > 0) {

f *= n;
n--;

}
return f;

}

September 23, 2014 CSE2312, Fall 2014 29

Summary

• More Control flow
• The stack
• Procedures
• Basic recursion

September 23, 2014 CSE2312, Fall 2014 30

Questions?

September 23, 2014 CSE2312, Fall 2014 31

Macros

• Way to refer to commonly used or repeated code

• Similar to a procedure or function, but expanded at
assembly time, not run time

• Macro call: use of macro as an opcode

• Macro expansion: replacement of macro body by
the corresponding instructions

September 23, 2014 CSE2312, Fall 2014 32

Macros vs. Procedures

September 23, 2014 CSE2312, Fall 2014 33

	Computer Organization & Assembly Language Programming (CSE 2312)
	Announcements and Outline
	Review: Branch and Branch with Link
	Review: Conditional Execution
	Review: ALU Status Bits
	Review: Condition Code Suffixes
	Review: Control Flow Translation Example
	Review: Procedures: Iterative Multiply
	Review: ARM Assembly for Iterative Multiply
	Procedures
	The Stack
	Caller Steps
	Caller Steps
	Called (callee) Function Steps
	Summary of Caller and Callee Steps
	Basic Function Call Example
	Basic Function Call Example Assembly
	Basic Function Call Example Stack
	Basic Function Call Example Assembly (Push/Pop)
	State Preservation Across Procedure Calls
	Procedures: Recursive Multiply
	ARM Assembly for Recursive Multiply
	Recursive Factorial
	Recursive Function Example: Factorial
	Recursive Function Example: Factorial
	Recursive Function Example: Factorial
	Recursive Function Example: Factorial
	Recursive Function Example: Factorial
	Exercise: Convert Iterative Factorial to Assembly
	Summary
	Questions?
	Macros
	Macros vs. Procedures

