UNIVERSITY OF TEXASAARLINGTON

Computer Organization &
Assembly Language
Programming (CSE 2312)

Lecture 14: Midterm Review

Taylor Johnson

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

* Quiz 4 after midterm
* Homework 4 due today

* Midterm 10/9

* Chapter 1, 2 (ARM), Appendices A1-A6, Appendices B1-B2
(ARM)

* 1 letter page cheat sheet, both sides
* No calculator

 Midterm Review

UNIVERSITY OF TEXASAARLINGTON

What is this Course About?

* This course is about one fundamental question in
computer science and engineering

* You probably do not yet know the answer

* How do computers compute?

* What does the computer actually do when you ask
it to do something (i.e., run a program you’ve
written)?

UNIVERSITY OF TEXAS%ARLINGTON

Multilevel Architectures

Level 4 Operating System Level / ...

Instruction Set Architecture (ISA) Asseml?'y/
Level Machine

Language

n/a/

Microcode

Level 3

Level 2 Microarchitecture Level

VHDL /
Verilog

n/a/

Level 1 Digital Logic Level

Level O J physical Device Level (Electronics)

Physics

October 7, 2014 CSE2312, Fall 2014 4

UNIVERSITY OF TEXASAARLINGTON

Compilation vs. Interpretation

* Compilation:

* your n-level program is translated into a program at a lower
level

 the program at the lower level is stored in memory, and
executed

* while running, the lower-level program controls the computer

* Interpretation:
* An interpreter, implemented at a lower level, executes your n-
level program line-by-line
* The interpreter translates each line into lower-level code, and
executes that code

* The interpreter is the program that is running, not your code

UNIVERSITY OF TEXASAARLINGTON

Review: Levels of Program Code

. High-level swap(int vl], int k)
* High-level language onage I o vkl
(in C) vik] = v[k+17;
* Level of abstraction closer , Vkrd] = temp;

to problem domain

* Provides for productivity o
and portability

Assembly swap:
language muli $2, $5,4
dd $2, $4.,%2
. Assembly Ianguage i o $is. oien)
Tw $16, 4(%2)
. sw o $16, 0(3%2)
* Textual representation of w462
Instructions
: Assembler
e Hardware representation =
* Blnary dlglts (bItS) Binary machine 00000000101000010000000000011000
. . language 00000000000110000001100000100001
10001100011000100000000000000000
° EnCOded InStrUCtlonS and E)l‘ro{)l'gl\:fla:?S) 10001100111100100000000000000100
10101100111100100000000000000000
data 10101100011000100000000000000100

00000011111000000000000000001000

October 7, 2014 CSE2312, Fall 2014 6

UNIVERSITY OF TEXAS%ARLINGTON

Von Neumann Architecture

* Both data and program
stored in memory

Memory

(Data + Program [Instructions]) * Allows the computer to
be “re-programmed

* Input/output (I/0) goes
through CPU

* 1/O partis not
representative of
modern systems (direct
memory access [DMA])

* Memory layout is
representative of
modern systems

October 7, 2014 CSE2312, Fall 2014 7

UNIVERSITY OF TEXAS%ARLINGTON

Review: Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from
memory)

EXECUTE
(Execute instruction

fetched from memory)

Handle
Interrupt Interrupt
(Input/Output ?
Event)

PC++
(Increment

the Program
Counter)

October 7, 2014 CSE2312, Fall 2014 8

UNIVERSITY OF TEXAS%ARLINGTON
ARM 3-Stage Pipeline Processor Execution

Cycle FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)
Decoded
instruction has DECODE(IR)
PC-4 (Decode fetched instruction,
find operands)
Executed
instruction has EXECUTE
PC-8 (Execute instruction
fetched from memory)

Handle

PC:=PC+4
Interrupt Y Interrupt (Increment
(Input/Output ?

Event)

the Program
Counter)

October 7, 2014 CSE2312, Fall 2014 9

UNIVERSITY OF TEXASAARLINGTON

Some Processor Components

CPU
Register File Arithmetic logic
* Program Counter (PC) unit (ALU)
* Instruction Register (IR) A B

Y v

* General Purpose
Registers FWD
* Word size
* Typically 16-32 of these

* PC sometimes one of these R
* Floating Point Registers

Floating Point Unit
FPU)

October 7, 2014 CSE2312, Fall 2014 10

UNIVERSITY OF TEXASAARLINGTON

Endianness Example

Register Register
Memory | 0OAOBOCOD OAOBOCOD Memory
a:|QA| <«—— —> a|0D
a+1:]0B| = > a+1:/0C
at2:|0C| = > a+2:/0B
a+3:|0D| = > a+3:|0A
: Big-endian Little-endian :

UNIVERSITY OF TEXASAARLINGTON

Memory: Words and Alignment

* Bytes are grouped into words

* Depending on the machine, a word can be:
32 bits (4 bytes), or
* 64 bits (8 bytes), or ... (16-bits, 128 bits, etc.)

* Oftentimes it is required that words are aligned

* This means that:

* 4-byte words can only begin at memory addresses that
are multiplesof 4: 0, 4, 8, 12, 16...

* 8-byte words can only begin at memory addresses that
are multiples of 8: 0, 8, 16, 24, 32, ...

UNIVERSITY OF TEXASAARLINGTON

Memory Cells and Addresses

* Memory cell: a piece of memory that contains a
specific number of bits
* How many bits depends on the architecture

* |In modern architectures, it is almost universal that a cell
contains 8 bits (1 byte), and that will be also our
convention in this course

* Memory address: a number specifying a location of
a memory cell containing data

* Essentially, a number specifying the location of a byte of
memory

UNIVERSITY OF TEXASAARLINGTON

Cells and Addresses

Address Address 1 Cell Address
oI TI T I 11T oI I TITITITIT] oI I IITITITTIITTIT1]
I T T I] { O ITITTITTTIT] {[IITTITTITITTITITTITT1]
LT TTITTITIT] 20T T T TTTTTITTT] 2T T ITTITTITITTITITTT]
AT I T I I T] 30T T T T TI T 11 30T T I TITTITTIITTIT1]
ACTTTTIITT] AT T I T T T IT] 40T T TITTITITTITITITT1]
SCITITITT] ST T T T T TTITTIT1] SOOI T T T TTITTITITTITITTT1]
GLITTTITT] 6T IITTITITTTT] ~ 16 bits -
7T TTIT] 70T IITTITTITTIT] (c)
s[IIITI11]1 ~ 12 bits ——
o[ITTITTIT111 (b)
10T ITIIT11]
MO IIIT1]
- 8 bits —

(a)

Three ways of organizing a 96-bit memory

UNIVERSITY OF TEXASAARLINGTON

Memory as an Array

* Think of memory and addressing like you think of arrays

MEM [] 0x05
MEM [] O0xAB
MEM [] OxF1
Suppose

MEM [] 0x05
MEM [] O0xAB
MEM [] OxF1
MEM []

How large is this memory?

Is this memory byte-addressable? How do you know how large
(length and total memory size) an array is?

October 7, 2014 CSE2312, Fall 2014 15

UNIVERSITY OF TEXASAARLINGTON

Hexadecimal
e Base 16

* Compact representation of bit strings
* 4 bits (also called a nibble or nybble) per hex digit

O (0000 |4 |0100 |8 |1000 |c 1100
1 (0001 (5 (0101 |9 |1001 |d |1101
2 |0010 |6 |0110 |a |1010 |e |1110
3 |0011 |7 (0111 (b |1011 (f |1111

= Example: OXECAS8 6420
= 1110 1100 1010 1000 0110 0100 0010 0000

UNIVERSITY OF TEXASAARLINGTON

Sign Extension

* Representing a number using more bits
* Preserve the numeric value

* Replicate the sign bit to the left
e c.f. unsigned values: extend with Os

e Examples: 8-bit to 16-bit
* +2: 0000 0010 => 0000 0000 0000 0010
e—2:11111110=>11111111 11111110

UNIVERSITY OF TEXASAARLINGTON
Binary-Decimal Conversions, Signed vs.

Unsigned, Arithmetic Operations

* You should know how to convert binary/hex
to/from decimal

* You should know how to represent signed numbers
* Two’s complement: changes sign of a number
* Like complement (or putting a minus sign in front of a
decimal number)
* You should know how to compute basic arithmetic
and logical operations
* AND, OR, NOT
* ADD, SUB

UNIVERSITY OF TEXASAARLINGTON

Unsigned Binary Integers
* Given an n-bit number

X=X 2" X 2"+ X, 2"+ X, 2°

= Range: 0to +2" -1

= Example

= 0000 0000 0000 0000 0000 0000 0000 1011,
=0+ ...+ 1%x23 + 0%x22 +1x21 +1x20
=0+...+8+0+2+1=11

= Using 32 bits
= 0to +4,294,967,295

CSE2312,Fali 2014

UNIVERSITY OF TEXASAARLINGTON

2s-Complement Signed Integers
* Given an n-bit number

. n-1 n—-2 1 0
X==X, 2 "+X ,2 “+-+X2°+X,2

= Range: -2"-lto+2"-1-1

= Example

« 1171 1117 1717 1217 1121 1111 1111 1100,
= —1x231 + 1x230 + + 1x22 +0x21 +0x20
= —2,147,483,648 + 2,147,483,644 = -4,

= Using 32 bits
= —2,147,483,648 to +2,147,483,647

CSE2312,Fali 2014

UNIVERSITY OF TEXASAARLINGTON

2s-Complement Signed Integers

*Bit 31 is sign bit
* 1 for negative numbers
* 0 for non-negative numbers

e—(—2n — 1) can’t be represented

* Non-negative numbers have the same unsigned and
2s-complement representation

* Some specific numbers
e O: 0000 0000 ... 0000
-1 11111111 ... 1111
* Most-negative: 1000 0000 ... 0000
* Most-positive: 01111111 ... 1111

CSE2312,Fali 2014

UNIVERSITY OF TEXASAARLINGTON

Two’s Complement Signed Negation
* Complement and add 1

* Complementmeans1—->0,0->1
* Representation called one’s complement

X+x=1111...111, =-1

X+1=-X

= Example: negate +2
=« +2 = 0000 0000 ... 0010,

2 =1111 1111 ... 1101, + 1
= 1111 1111 ... 1110,

CSE2312,Fali 2014

UNIVERSITY OF TEXASAARLINGTON

Units of Memory

* One bit (binary digit): the smallest amount of
information that we can store:

e EitheraloraO
* Sometimes refer to 1 as high/on/true, 0 as low/off/false

* One byte = 8 bits
e Can store a number from 0 to 255

* Kilobyte (KB): 103 = 1000 bytes
e Kibibyte (KiB): 219 = 1024 bytes
e Kilobit: (Kb): 103 = 1000 bits (125 bytes)
e Kibibit: (Kib): 210 = 1024 bits (128 bytes)

UNIVERSITY OF TEXASAARLINGTON

Relative Performance
* Define Performance = 1/Execution Time

e “X'is N time faster than Y”

Performance, /Performance,
= Execution time, /Execution time, =n

= Example: time taken to run a program
= 10sonA, 15son B

= Execution Timeg / Execution Time,
=15s/10s=1.5

= SOAIS 1.5 times faster than B

UNIVERSITY OF TEXASAARLINGTON

CPU Time
CPU Time = CPU Clock Cycles x Clock Cycle Time
~ CPUClock Cycles
Clock Rate

* Performance improved by
* Reducing number of clock cycles
* Increasing clock rate

* Hardware designer must often trade off clock rate against
cycle count

UNIVERSITY OF TEXASAARLINGTON

CPU Time Example
* Computer A: 2GHz clock, 10s CPU time

* Designhing Computer B
e Aim for 6s CPU time
e Can do faster clock, but causes 1.2 x clock cycles

* How fast must Computer B clock be?

_ Clock Cycles, 1.2xClock Cycles ,
CPU Time, 6S

Clock Cycles , = CPU Time , xClock Rate ,

Clock Rate,

=10s x 2GHz =20 x10°

1.2x20x10° 24 x10°
6S 6S

Clock Rate, = =4GHz

UNIVERSITY OF TEXASAARLINGTON

Instruction Count and CPI
Clock Cycles =Instruction Count x Cycles per Instruction

CPU Time =Instruction Count x CPIx Clock Cycle Time

B Instruction Count x CPI

Clock Rate

* Instruction Count for a program = number of
instructions in program
* Determined by program, ISA and compiler

* Average cycles per instruction (CPI) = number of cycles
to execute an instruction (on average)
* Determined by CPU hardware

* |f different instructions have different CPI
* Average CPI affected by instruction mix

UNIVERSITY OF TEXASAARLINGTON

CPl Example
* Computer A: Cycle Time = 250ps, CP1 = 2.0

* Computer B: Cycle Time = 500ps, CPI =1.2
*Same ISA
* Which is faster, and by how much?

CPU TlmeA =|nstruction Count><CP|A x Cycle TlmeA

=1x2.0x250ps =1x500ps «— | Ais faster...

CPUTime B~ Instruction Count x CPIB x Cycle Time B
=1x1.2x500ps =1x600ps

CPU TimeB ~ 1x600ps

CPUTime |x500ps

=1.2 «

...by this much

A

CSE2312,Fali 2014

UNIVERSITY OF TEXASAARLINGTON

CPl in More Detail
o |If different instruction classes take different numbers

of cycles

Clock Cycles = » (CP} xInstruction Count;)
=1

= Weighted average CPI

I 1 Instruction nt.
CP| - CIock_Cyces :Z CPI x st uct.o Count.
Instruction Count ‘= Instruction Count

V

Relative frequency

UNIVERSITY OF TEXASAARLINGTON

CPl Example

* Alternative compiled code sequences using
instructions in classes A, B, C

Class

CPI for class

IC in sequence 1

DIN|FL|D>
RN
RINIWIO

IC in sequence 2

= Sequence 1:1IC =5 = Sequence 2:1IC =06

= Clock Cycles = Clock Cycles
= 2x1 + 1x2 + 2x%3 =4x]1 + 1x2 + 1x3
=10 =9

= Avg. CPI=10/5=2.0 = Avg. CPI=9/6 = 1.5

UNIVERSITY OF TEXASAARLINGTON

Performance Summary

CPU Time — Instructions y Clock cycles Seconds

X
Program Instruction Clock cycle

* Performance depends on
* Algorithm: affects IC, possibly CPI
* Programming language: affects IC, CPI
* Compiler: affects IC, CPI
* Instruction set architecture: affects IC, CPI, T_

UNIVERSITY OF TEXASAARLINGTON

Chapter 1 Summary

* Cost/performance is improving
* Due to underlying technology development

* Hierarchical layers of abstraction
* In both hardware and software

* Instruction set architecture
* The hardware/software interface

* Execution time: the best performance measure

* Power is a limiting factor
* Use parallelism to improve performance

UNIVERSITY OF TEXASAARLINGTON

ARM Arithmetic Instructions in Machine Language

Cond F | [Opcode| S Rn Rd Operand?2
1110 00 0 0100 0 0101
4 bits 2 bits 1 bit 4 bits 1bit 4bits 4 bits 12 bits

e Example: add r5, rl1,

* Cequivalent: r5 = +

* Machine language encoding above

* Opcode: 0100 means add (dependent on digital logic, some encoding)
* Rd: register destination operand. It gets the result of the operation

* Rn: first register source operand

* Operand2: second source operand

* I: Immediate. If | is O, the second source operand is a register. If | is 1,
the second source operand is a 12-bit immediate

e S: Set Condition Code
e Cond: Condition. Related to conditional branch instructions
e F: Instruction Format

UNIVERSITY OF TEXASAARLINGTON

Review: Operands Types

» Register operand: operand comes from the binary
valued stored in a particular register in the CPU
* Example: add r0, rl, r2
eCcode:r0 = rl + r2;

* Immediate operand: operand value comes from
instruction itself
e Example: add r0, rl, #1
*Ccode:r0 = rl + 1;

* Memory operand: operand refers to memory
e Example: str r0, [rl]
e Ccode (roughly): MEM[r1] = rO0;
* Only for load / store instructions!
 Several addressing modes (more on this later)

UNIVERSITY OF TEXAS A @ ARLINGTON

Review: Memory Operand Example 1

e C code:

g =h + A[8];
*ginrl, hinr2, base address of Ainr3

* Compiled ARM code:

* Index 8 requires offset of 8 words
* 4 bytes per word

@ load word
1dr r0, [r3, #32] @ r0O = MEM[r3 + 32]
add rl, /r2, ro0

October 7, 2014 CSE2312, Fall 2014 35

UNIVERSITY OF TEXASAARLINGTON

Review: Memory Operand Example 2

e C code:

A[l12] = h + A[8];
*hinr2, base address of Ainr3

* Compiled ARM code:
 Index 8 requires offset of 32 (8 bytes, 4 bytes per word)

@ load word

1dr r0, [r3,#32] @ r0 = MEM[r3 + 32]
add r0, r2, r0

@ store word
str rO0, [r3, #48] @ MEM[r3 + 48] = r0

UNIVERSITY OF TEXASAARLINGTON

Immediate/Literal Addressing

1. Immediate: ADD r2, r0, #5

cond| f |opcode | rn | rd |Immediate

* Operand comes from the instruction

* Example: 32-bit instruction to move 4 into R1
* ResultisRl1:=4

. Useful)for specifying small integer constants (avoids extra memory
access

* Can only specify small constants (limited by size of immediate field)
* ARM: typically 8-12-bits

October 7, 2014 CSE2312, Fall 2014 37

UNIVERSITY OF TEXASAARLINGTON

Register/Register-Direct Addressing

* Operand(s) come(s) from register(s)
* Seen this many times already: ADD RO R1 R2 does RO :=
R1+ R2

* Also: MOV R1 R2: the destination operand is specified by
its register address (Result is R1 := R2)

2. Register: ADD r2, r0, r1

cond| f [opcode| m | rd |...|rm Register

Register

!

UNIVERSITY OF TEXASAARLINGTON

Register Indirect Addressing

* Operand comes from memory, with address
specified by the value in a register (i.e., by a
pointer) or by an immediate

e Example: ARM instruction to copy value from
MEMI[R4] into R1 (e.g., R1 := MEM[R4])

UNIVERSITY OF TEXASAARLINGTON

Indirect with Immediate Offset

5. Immediate offset: LDR r2, [r0, #8]

cond| f |opcode | rn | rd | address Memory

[Byte| Half Word

>l register

* Uses a register value and an immediate offset
e Example: LDR r2, [rO, #8]
e Updates r2 = MEM|[rO + #8]

October 7, 2014 CSE2312, Fall 2014 40

UNIVERSITY OF TEXASAARLINGTON

Indirect Register Offset

6. Register offset: LDR r2, [rO, r1]

cond| f |opcode| m | rd [...]| rm Memory
|
~| register ~ [[Byte] Half Word
> register

* Uses a register value and another register value as an
offset
 Example: LDR r2, [rO, rl1]
e Updatesr2 = MEMJrO + r1]

October 7, 2014 CSE2312, Fall 2014 41

UNIVERSITY OF TEXAS%ARLINGTON

Assembly Language Format

Label Opcode Operands Comments
iloop: add rl,rl,#1 @ rl :=rl + 1
b iloop @ pc := iloop

val: .byte 0x9F @ put 0x96 at
address val

S : .asciz “hello!” @ put “hello!”
at sequential
addresses

starting at
address s

October 7, 2014 CSE2312, Fall 2014 42

UNIVERSITY OF TEXASAARLINGTON

Assembly Instructions vs. Directives

* Instructions

* Machine language equivalents
* ADD, OR, NOT, LDR, STR, etc.

* Directives / Pseudoinstructions

* Special commands given to the assembler that are
converted to equivalent machine language during
assembly process

» Used for placing data in memory, etc.
e .word, .byte, .asciz, .macro, .equ, etc.

UNIVERSITY OF TEXASAARLINGTON

Conditional Execution

e Current Program Status Register (CPSR)
» Keeps track of arithmetic / logic (ALU) status

* Example: last result was negative, zero, positive, had a carry, etc.
* N (negative) / Z (zero) / C (carry) / V (overflow) bits

* Allows us to make conditional branches, etc. for
conditional control flow changes (ifs, finite loops,
etc.)

* Examples:
cmp r0, #0 @ compare r0 and #0
beqg label @ branch if rQ ==

adds r0, r0, #1
bgt label @ branch if r0 positive

UNIVERSITY OF TEXASAARLINGTON

ALU Status Bits

* N (negative) bit

* Set to 1 when the result of the operation is negative, cleared to
0 otherwise

*Z (zero) bit

* Set to 1 when the result of the operation is zero, cleared to 0
otherwise

* C (carry) bit
e if the result of an addition is greater than or equal to 232

* if the result of a subtraction is positive or zero

* as the result of an inline barrel shifter operation in a move or
logical instruction

*V (overflow) bit

* Overflow occurs if the result of an add, subtract, or compare is
greater than or equal to 231, or less than -231

Suffix
EQ

NE

CS or HS
CCorlLO
Ml

PL

VS

VC

HI

LS

GE

LT

GT

LE

AL

October 7, 2014

UNIVERSITY OF TEXASAARLINGTON

Condition Code Suffixes

Flags

Zset

Z clear

Cset

Cclear

N set

N clear

V set

V clear

Csetand Zclear
Cclearor Zset

N and V the same
N and V differ

Z clear, N and V the same

Z set, N and V differ

Any

CSE2312, Fall 2014

Meaning

Equal

Not equal

Higher or same (unsigned >=)
Lower (unsigned <)
Negative

Positive or zero

Overflow

No overflow

Higher (unsigned >)

Lower or same (unsigned <=)
Signed >=

Signed <

Signed >

Signed <=

Always. This suffix is normally
omitted.
46

UNIVERSITY OF TEXASAARLINGTON

Control Flow Translation Example

* Suppose our ISA does not have a multiply instruction

* How can we perform multiplication?
* Create equivalent sequence of computations yielding the same result
* Use addition, branch, comparisons, etc.

*AxB =YL A=A+A+-+A

B times

* Example:5 *9 =Y/ 5=5+5+--+5=45

9 times

* Generalizing: this is the basis of all our modern
computations

* CPU does not have “visit website, buy shoes” instruction

UNIVERSITY OF TEXASAARLINGTON

Procedures: Iterative Multiply

* How do we write a loop?

. Hol?/v?does flow of control change with function (procedure)
calls®

int multiply(int A, 1nt B) {
int product = 0;
while (B > 0) {
product += A;
B——;
}

return product;

UNIVERSITY OF TEXASAARLINGTON

ARM Assembly for Iterative Multiply

.globl start

start:

iloop:

imul:

imul loop:

imul_done:

October 7, 2014

mov
mov
bl

mov
cmp
beqg
add
sub

mov
bx

r0, #5
rl, #3

imul

iloop

r2, #0

r0, #0
imul done
r2,r2,rl
r0,r0, #1
imul loop
rO0, r2

1r

™

® ® @ @ @ ® @ ™

A =5
B =3
call iterative mult

infinite loop (for

initialize result t
rO0 == 0°?

if r0 == 0, set PC
r2 += rl
r0 -= 1

branch to imul loop
r0 = r2
set PC = LR

CSE2312, Fall 2014

iply procedure

“termination”)

o 0

= imul_done

49

UNIVERSITY OF TEXASAARLINGTON

Summary of Caller and Callee Steps

* Caller steps:

e Step 1: Put arguments in the registers rO, r1, r2, r3.
 Step 2: Branch to the function, using the bl instruction.

* Step 3: After the function has returned, recover the return
value (if any), and use it.

* Callee (called function) steps:

* Step 1 (preambIeL: Allocate memory on the stack, and save

register rl, and other registers that the function modifies, to
the stack.

* Step 2: Do the main body of the function.
* Step 3 (wrap-up):
» Store the return value (if any) on r0, second return value (if any) on r1.

* Restore, from the stack, the original values of all registers that the function
modified, as well as the value of register Ir.

* Deallocate memory on the stack (increment sp).
* Branch to the return address using instruction bx.

UNIVERSITY OF TEXASAARLINGTON

The Stack

e Last-in, first-out (LIFO) data structure
 Last data put in comes out first

« Common analogy: like a quarter / coin holder in your car, the last coin put in
comes out first

e Stack pointer (SP) register: points to current address of stack (i.e., the
last thing in)
* YOU must initialize it! Typically use address 0x100000
* mov sp, #0x100000

e Stack instructions

* PUSH {r0O} means:
* SUB sp, sp, #4
* STR r0, [sp]

* POP {r0O} means:
* LDR r0, [sp]
* ADD sp, sp, #4

e Can use lists of registers, e.g., PUSH {r0, rl} is:
SUB sp, sp, #8

STR r0, [sp]

STR rl, [sp,#4]

UNIVERSITY OF TEXASAARLINGTON

Basic Function Call Example

int ex(int g, int h, int 1, int j) {
int £;
f = (g+h) - (2 +3);
return I;

rO =g, r1 = h, r2 =1, r3 = 73, r4

I
Hh

October 7, 2014 CSE2312, Fall 2014 52

UNIVERSITY OF TEXASAARLINGTON

Basic Function Call Example Assembly

ex:

SUB
STR
STR
STR

ADD
ADD
SUB
MOV

LDR
LDR
LDR
ADD
MOV

sp, sp, #12

r6, [sp,#8]
r5, [sp,#4]
r4d, [sp,#0]
r5,r0,rl
ro,r2,r3
rd,r5,r6
r0, r4d

r4d, [sp,#0]
r5, [sp, #4]
r6, [sp,#8]
Sp, sp, #12
pc, 1lr

October 7, 2014

label for function name

adjust stack to make room for 3 items
save register r6 for use afterwards
save register r5 for use afterwards
save reglster r4 for use afterwards

register r5 contalins g + h

register r6 contains 1 + J

f gets r5 - r6, ie: (g + h) — (1 + 7J)
returns £ (r0 = r4)

restore register r4 for caller
restore register rb5 for caller
restore register r6 for caller
adjust stack to delete 3 items
jump back to calling routine

CSE2312, Fall 2014 53

UNIVERSITY OF TEXASAARLINGTON

Basic Function Call Example Stack

High address

Sp— Sp—

Contents of register r6

Contents of register rb

sp— | Contents of register r4

Low address
a. b. C.

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in
the stack in this drawing.

October 7, 2014 CSE2312, Fall 2014 54

UNIVERSITY OF TEXASAARLINGTON
Basic Function Call Example Assembly

(Push/Pop)

ex: ; label for function name

PUSH {r4,r5,r6} ; save r4, rb5, r6, decrement sp by 12

ADD r5,r0,rl ; register rb5 contains g + h

ADD r6,r2,r3 ; register r6 contains 1 +]

SUB r4,r5,ro6 ; £ gets r5 - r6, ie: (g + h) - (1 + 7J)
MOV r0O, r4 ; returns £ (r0O = r4)

POP {r4,r5,r6} ; restore r4, r5, r6, increment sp by 12

MOV pc, 1r ; Jump back to calling routine

October 7, 2014 CSE2312, Fall 2014 55

UNIVERSITY OF TEXAS%ARLINGTON

State Preservation Across Procedure Calls

Variable registers: r4-r11 Argument registers: r0-r3
Stack pointer register: sp

Intra-procedure-call scatch register: r12
Link register: 1r Stack below the stack pointer

Stack above the stack pointer

October 7, 2014 CSE2312, Fall 2014 56

. . UNIVERSITY OF TEXAS ARLINGTON
Recursive Function Example: actorial A

* How do we write function * How do we write function
factorial in C, as a recursive factorial in assembly?
function?

@ factorial main body
int factorial(int N) mov r4, r0
{ cmp r4, #0

if (N==0) return 1;

return N* factorial(N -1);
) beq factorial _exit

moveq r0, #1

sub rO, r4, #1
bl factorial
mov r5, rO
mul r0O, r5, r4

UNIVER SeITE OF TEXAISAARLINGTON

Recursive Function Examp actoria
@ factorial preamble @ factorial wrap-up
fact: push {r4,r5,1r} fact exit:

pop {r4,r5,1r}
@ factorial body bx 1r

mov r4, r0
cmp r4, #0
moveq r0, #1

beq fact exit

sub r0, r4, #1
bl fact
mov r5, r0

mul r0, r5, r4

October 7, 2014 CSE2312, Fall 2014 58

UNIVERSITY OF TEXASAARLINGTON

Assembly Process

* Insuffiency of one pass
* Suppose we have labels (symbols).
* How do we calculate the addresses of labels later in the

program?
* Example:
* ADDR: 0x1000 b done
. // Other instructions and data

* ADDR: 0x?7?27?°7 done: add rl, r2, ro0

* How to compute address of label done?

 Two-Pass Assemblers

* First Pass: iterate over instructions, build a symbol table,
opcode table, expand macros, etc.

* Second Pass: iterate over instructions, printing equivalent
mgcl:hine language, plugging in values for labels using symbol
table

UNIVERSITY OF TEXASAARLINGTON

Assembly Process

T T T
Source A bl Object
file [T QOCCSEREE— gl M
/_ /\‘
Source I8 bl | Object 5 _ ’ Executable
file > [EErsEEmDICE " file > Linker _>P file
/_ /_ =y
/—_ /\
Source N | Object Program
file » Assembler B file B
/_ /_

The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and
libraries into an executable file.

October 7, 2014 CSE2312, Fall 2014 60

UNIVERSITY OF TEXASAARLINGTON

Linking and Loading

* Linking: combining multiple program modules (pieces of
code) into executable program
e Examples: using our _tests files to load inputs to your
programs, calling library functions like printf, etc.
* Loading: getting executable running on machine
* Examples: calling QEMU with our binary

e Static linking

* Combine multiple object files into single binary
* Dynamic linking

* Load library shared code at runtime

* Not talking about this: operating system concept
* Examples: Windows DLLs

UNIVERSITY OF TEXASAARLINGTON

Review: Array Example

.globl start arrayPtr:
_start: mov rl,#0 @ rl := 0 -byte 2
1dr r0,=arrayPtr @ rO0 := arrayPtr -byte 3
.byte 5
ldr r3,=arrayEnd @ r3 := arrayEnd
.byte 7
1drb r4, [r3,#0] @ r4 := MEM[R3 + O] byte 11
loop: ldrb r2,[r0,#0] @ r3 := MEM[rO] .byte 13
cmp r2,r4 @ rO0 == OXFF ? .byte 17
beqg done @ branch if done -byte 19
add rl,rl,r2 @ rl :=rl + r2 -byte 23
.byte 29
add r0,r0, #1 @ rO0 := r0 + #1
.byte 31
b loop @ pc = loop (address) byte 37
done: strb «rl, [r2] @ MEM[r2] := rl byte 41
iloop: b iloop @ infinite loop .byte 43
.byte 47

arrayEnd:

.byte OxFF

October 7, 2014 CSE2312, Fall 2014 62

UNIVERSITY OF TEXASAARLINGTON

Review: Macros

* Another assembler directive
* Like .byte, .word, .asciz, that we’ve seen a little of before

* Way to refer to commonly used or repeated code

 Similar to an assembly procedure or function, but expanded (evaluated)
at assembly time, not run time

 Similar to #define in C, which is replaced by compiler at compile time
 Macro call: use of macro as an instruction

* Macro expansion: replacement of macro body by the corresponding
instructions

UNIVERSITY OF TEXASAARLINGTON

Review: Macro Example

.globl _start
_start: .macro addVals adA, adB

drb r2,\adA] @ r2 := MEM[adA] A: o .byte 3, 8, 7, 6

ldrb r3,[\adB] @ r3 := MEM[adB] A_end: -byte 0

sub r5,r2,r3 @r5:=r2-r3=A-B B: .byte 1, 1, 1, 1
B end: .byte 0

strb r5,[\adA] @ MEM[adA] =r5
ldrb r2,[\adA] @ r2 := MEM[adA]
add \adA\adA#l @rO:=r0+1
add \adB\adB,#1 @rl:=r1+1

.endm @ end macro definition
init: Idr r0,=A @ r0 := A (address)

|dr rl,=B @ rl := B (address)

|dr r4,=A_end @ r4 := A_end (address)

addVals ro,rl @ call macro

done: b done @ infinite loop

UNIVERSITY OF TEXASAARLINGTON

Review: Assembly Process

* Insuffiency of one pass
* Suppose we have labels (symbols).
* How do we calculate the addresses of labels later in the

program?
* Example:
* ADDR: 0x1000 b done
. // Other instructions and data

* ADDR: 0x?7?27?°7 done: add rl, r2, ro0

* How to compute address of label done?

 Two-Pass Assemblers

* First Pass: iterate over instructions, build a symbol table,
opcode table, expand macros, etc.

* Second Pass: iterate over instructions, printing equivalent
mgcl:hine language, plugging in values for labels using symbol
table

UNIVERSITY OF TEXASAARLINGTON

Review: Assembly Process

/\ /\

Source A bl Object |
file [T QOCCSEREE— gl M
/_ /_
Source q bl | Object 5 _ ’ Executable
file > [EErsEEmDICE " file > Linker _>D file
/_ /_ o~
T P T /i\
Source q bl | Object Program
file > - fle [library
/__ /_

The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and
libraries into an executable file.

October 7, 2014 CSE2312, Fall 2014 66

UNIVERSITY OF TEXASAARLINGTON

Review: Memory-Mapped I/O Example

* Some of our original examples displayed output to
console by writing to a special memory address

.equ ADDR UARTO, 0x101£1000

ldr r0,=ADDR UARTO @ rO0 := Ox 101f 1000

mov r2, #0x0D @ R2 := 0x0OD (return \r)
str r2, [r0O] @ MEM[rQO] := r2

e How does this work?

* Registers on peripheral devices (keyboards, monitors,
network controllers, etc.) are addressable in same
address space as main memory

October 7, 2014

OXFFFFFFFF

Ox80000000

Ox78000000

Ox70000000

Ox410600000

Ox40000000

0x20000000
0x14000000

Ox101F5000
0x10000000

0x08000000

Ox00000000

SSP

Static expansion socket UART 2
(CS3 0x3C000000) UART 1
UART O
2MB SRAM SCI o
Logic Tile expansion (CS2 Bx38000000)
(AHB M1) NOR flash Reserved
(CS1 9x34000000) RTC
Disk On Chip flash GPI0 3
13 n Ip 1ias
(CSO 0x30000000) gg:gf
EYS::;%;“:D’"EEQ{ Static expansion socket GPIO 0
X |
7
(MPMC CS3) St(ct:'s E’“ZC?W@T t Timers 2 & 3
atic expansion socke -
Dynamic memory (CS6 0x28000000) Timers 0 & 1
exiﬁ;?:ﬂog é%czl?:‘ll Static expansion socket S ::Gcr;dn?f;oller
(CS5 Bx24000000) ¥s :
- - AHB Monitor
PCI bus Static expansion socket R 3
(CS4 0x20000000) eserve
MBX VIC
DMAC
CLCD
satcmonoy |/ | egemnme | [WPG cooution
(SSMC CSx) on a Versatile Logic Tile SMC configuration
that is to be accessed at Reserved
0@x0 during boot remapping UsB
AHB M2 EXP Ethernet
Reserved Reserved
Registers Mel 1
g SCI 1
- ‘ UART 3
ynamic expansion Character LCD
socket During boot remapping, KMI 1
(MPMC C51) memory between
0x00000000 and KMI 0
Ox04000000 is mapped to MCI 0O
either:
SDRAM NOR flash SSMC CS1, AAC
(MPMC CS0) DOC flash SSMC CSO0, AIC
Expansion SSMC CS3, Serial Bus
or AHB M2 memory PCI control

CSE2312, Fall 2014

System registers

A\RLINGTON

68

Dx20000000
Bx14000000

Bx101F5000
Px10000000

Bx08000000

Bx00000000

October 7, 2014

B S e = T o T e —~ — - -

—~

/, .

/ CLCD
: This region is typically MPMC configuration
Static memory used for AHB M2 memory SMC conf ?Jrati-:]n
(SSMC CSx) on a Versatile Logic Tile 3
that is to be accessed at Reserved
@x@ during boot remapping USB
AHB M2 EXP Ethernet
Reserved Reserved
Registers e
g SCI 1
5 . 1 UART 3
ynamic expansion Character LCD
socket During boot remapping, ar;M:al;
(MPMC CS1) memory between
Bx00000000 and KMI 0
Ox04000000 is mapped to MCI O
either:
SDRAM NOR flash SSMC CS51, AAC
(MPMC CS0) DOC flash SSMC CSO0, AIC
Expansion SSMC CS3, Serial Bus
or AHB M2 memory PCI control

CSE2312, Fall 2014

System registers

69

OXFFFFFFFF

Ox80000000

Bx78000000

Ox70000000

0x41000000

Bx40000000

October 7, 2014

Logic Tile expansion
(AHB M1)

Dynamic memory
expansion socket
(MPMC CS3)

Dynamic memaory
expansion socket
(MPMC CS2)

PCI bus

MBX

SSP

Static expansion socket
(CS3 Ox3CO00000)

UART 2

UART 1

2MB SRAM
(CS2 O9x38000000)

UART O

SCI 0

NOR flash
(CS1 9x34000000)

Reserved

RTC

Disk On Chip flash
(CS0 9x30000000)

GPIO 3

GPIO 2

Static expansion socket
(CS7 0x2C000000)

GPIO 1

GPIO 0

Static expansion socket
(CS6 0x28000000)

Timers 2 & 3

Timers 0 & 1

Static expansion socket
(CSH Ox24000000)

Watchdog

System controller

Static expansion socket
(CS4 Ox20000000)

AHB Monitor

Reserved

/.

VIC

DMAC

CSE2312, Fall 2014

CLCD

70

UNIVERSITY OF TEXASAARLINGTON

Address from Memory-Map in Manual

Programmer’s Reference

Table 4-1 Memory map (continued)

a .
Peripheral Location Interrupts PIC Address R.EQIOH
and SIC size
UART O Interface Dev. chip PIC 12 0x101F1000- 4KB
0x101F1FFF
UART 1 Interface Dev. chip PIC 13 0x101F2000- 4KB
0x101F2FFF
UART 2 Interface Dev. chip PIC 14 0x101F3000- 4KB
Ox101F3FFF

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224| realview platform
baseboard for arm926ej s ug.pdf

October 7, 2014 CSE2312, Fall 2014 71

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf

UNIVERSITY OF TEXASAARLINGTON

Review: ELF Header Example

$ arm-none-eabi-objdump -f example.elf

example.elf: file format elf32-littlearm
architecture: arm, flags 0x00000112:

EXEC P, HAS SYMS, D PAGED

start address 0x00010000

October 7, 2014 CSE2312, Fall 2014 72

UNIVERSITY OF TEXASAARLINGTON

Review: ELF Symbol Table Example

$ arm-none-eabi-objdump -t example.elf

example.elf: file format elf32-
littlearm

SYMBOL TABLE:
00010000 1 d .text 00000000 .text

00010028 1 ocal - Lext 00000000 rfib
00010024 1 .text 00000000 1loop
0001004c 1 .text 00000000 rfib exit
0001005¢c g global .text 00000000 tests
00010000 g .text 00000000 start

Program
starts at this
address

UNIVERSITY OF TEXASAARLINGTON

Loading

* Get the binary loaded into memory and running

* More an operating systems concept
* E.g., load an executable into memory and start it
* Handled by QEMU for our purposes

e Loads our binary starting at a particular memory address (0x10000)
* Code at low, initial address (~0x00000) branches to that address

0x00000000: e3a00000 mov r0, #0 ; 0x0

0x00000004: e59f1004 ldr r1, [pc, #4] ; 0x10
0x00000008: e59f2004 ldr r2, [pc, #4] ; 0x14
0x0000000c: eb59ff004 ; 0x18

0x00000010: 00000183
0x00000014: 0x000100
0x00000018: 0x010000 ; offset!

UNIVERSITY OF TEXASAARLINGTON

ARM 3 Stage Pipeline

* Stages: fetch, decode, execute

* PC value = instruction being fetched
* PC—4: instruction being decoded

* PC — 8: instruction being executed

* Beefier ARM variants use deeper pipelines (5
stages, 13 stages)

UNIVERSITY OF TEXAS%ARLINGTON
Recall: Abstract Processor Execution Cycle

(Simplified)

FETCH[PC]
(Get instruction from
memory)

EXECUTE
(Execute instruction

fetched from memory)

Handle
Interrupt Interrupt
(Input/Output ?
Event)

PC++
(Increment

the Program
Counter)

October 7, 2014 CSE2312, Fall 2014 76

UNIVERSITY OF TEXAS%ARLINGTON
ARM 3-Stage Pipeline Processor Execution

Cycle FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)
Decoded
instruction has DECODE(IR)
PC-4 (Decode fetched instruction,
find operands)
Executed
instruction has EXECUTE
PC-8 (Execute instruction
fetched from memory)

Handle

PC:=PC+4
Interrupt Y Interrupt (Increment
(Input/Output ?

Event)

the Program
Counter)

October 7, 2014 CSE2312, Fall 2014 77

UNIVERSITY OF TEXAS%ARLINGTON

String Output

string abc:

* So far we hav n
>0 fa € .a € see .asciz "abcdefghijklmnopgrstuvwxyz\n\r"
character input/output “word 0x00

* That is, one char at a time

ADDR Byte Byte Byte Byte

* What about strings 3 1
(character arrays, i.e.,

multiple characters)? U=LO00 Sl ‘¢’ ‘b a’
0x1004 ‘R \g! Nl o
0x1008 V17 V! \jl B

* Strings are stored in
memory at consecutive 0x100c ‘p’ ‘o ‘n’ m
addresses 0x1010 ‘i’ vy Vo g
u
%

* Like arrays that we saw 0x1014
last time

\XI \WI \VI \
OX1018 \\OI \\OI \ZI \

October 7, 2014 CSE2312, Fall 2014 78

UNIVERSITY OF TEXASAARLINGTON

Assembler Output

0001012e <string abc>:

1012e: 63 strbtvs ro, [r3], #-0609; 0Ox206l

10132: 686706665 stmdavs r7', {r0, r2, r5, ro, r9, sl, sp,
1r}”

10136: 6cobboab9 stclvs 10, cr6, [fp], #-420; Oxfffffebc

1013a: 706foeocd rsbvc r6, pc, sSp, ror #28

1013e: 74737271 1ldrbtvc r7, [r3], #-625; 0x271

10142: 78777675 ldmdavc r/7!, {0, r2, r4, r5, ro6, r9, sl,
ip, sp, 1lr}i”

10146: 0d0a7a79 vstreq sl4, [sl, #-484] ; Oxfffffelc

1014a: andeq r0, r0, r0

October 7, 2014 CSE2312, Fall 2014 79

UNIVERSITY OF TEXAS%ARLINGTON

ASCI

Binary Octal Decimal Hex Glyph

October 7, 2014 CSE2312, Fall 2014 80

Printing Strings

UNIVERSITY OF TEXASAARLINGTON

@ assumes r0 contains uart data register address

@ rl should contain address of first character of string

@ to display;

cmp
beqg
str
add

bx

October 7, 2014

stop if 0x00 (*\0’) seen

push {rl,r2,1r}

ldrb r2,[rl]
r2,#0x00 @
@

r2, [r0] @
rl,rl,#1 @
@

pop {rl,r2,

1lr

'"\O0' = 0x00: null character?

1f yes, quit

otherwise, write char of string
go to next character

repeat

1lr}

CSE2312, Fall 2014 81

UNIVERSITY OF TEXASAARLINGTON

Ssummary

* Chapter 1

* Chapter 2 (ARM)
* Relevant appendices for extra details

UNIVERSITY OF TEXASAARLINGTON

Questions?

