
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 14: Midterm Review

Taylor Johnson

Announcements and Outline

• Quiz 4 after midterm

• Homework 4 due today

• Midterm 10/9
• Chapter 1, 2 (ARM), Appendices A1-A6, Appendices B1-B2

(ARM)
• 1 letter page cheat sheet, both sides
• No calculator

• Midterm Review

October 7, 2014 CSE2312, Fall 2014 2

What is this Course About?

• This course is about one fundamental question in
computer science and engineering

• You probably do not yet know the answer

• How do computers compute?

• What does the computer actually do when you ask
it to do something (i.e., run a program you’ve
written)?

October 7, 2014 CSE2312, Fall 2014 3

Multilevel Architectures

October 7, 2014 CSE2312, Fall 2014 4

Physical Device Level (Electronics)

Digital Logic Level

Microarchitecture Level

Instruction Set Architecture (ISA)
Level

Operating System Level

Level 0

Level 1

Level 2

Level 3

Level 4

n/a /
Physics

VHDL /
Verilog

n/a /
Microcode

Assembly /
Machine
Language

C / …

Compilation vs. Interpretation

• Compilation:
• your n-level program is translated into a program at a lower

level
• the program at the lower level is stored in memory, and

executed
• while running, the lower-level program controls the computer

• Interpretation:
• An interpreter, implemented at a lower level, executes your n-

level program line-by-line

• The interpreter translates each line into lower-level code, and
executes that code

• The interpreter is the program that is running, not your code

5October 7, 2014 CSE2312, Fall 2014

Review: Levels of Program Code

• High-level language
• Level of abstraction closer

to problem domain

• Provides for productivity
and portability

• Assembly language
• Textual representation of

instructions

• Hardware representation
• Binary digits (bits)

• Encoded instructions and
data

October 7, 2014 CSE2312, Fall 2014 6

Von Neumann Architecture

• Both data and program
stored in memory

• Allows the computer to
be “re-programmed”

• Input/output (I/O) goes
through CPU

• I/O part is not
representative of
modern systems (direct
memory access [DMA])

• Memory layout is
representative of
modern systems

October 7, 2014 CSE2312, Fall 2014 7

Memory
(Data + Program [Instructions])

CPU I/O

DMA

Review: Abstract Processor Execution Cycle

October 7, 2014 CSE2312, Fall 2014 8

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

ARM 3-Stage Pipeline Processor Execution
Cycle

October 7, 2014 CSE2312, Fall 2014 9

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

Some Processor Components

October 7, 2014 CSE2312, Fall 2014 10

CPU

Register File
• Program Counter (PC)
• Instruction Register (IR)
• General Purpose

Registers
• Word size
• Typically 16-32 of these
• PC sometimes one of these

• Floating Point Registers

Arithmetic logic
unit (ALU)

Floating Point Unit
(FPU)

Endianness Example

October 7, 2014 CSE2312, Fall 2014 11

Memory: Words and Alignment

• Bytes are grouped into words

• Depending on the machine, a word can be:
• 32 bits (4 bytes) , or
• 64 bits (8 bytes), or … (16-bits, 128 bits, etc.)

• Oftentimes it is required that words are aligned

• This means that:
• 4-byte words can only begin at memory addresses that

are multiples of 4: 0, 4, 8, 12, 16…
• 8-byte words can only begin at memory addresses that

are multiples of 8: 0, 8, 16, 24, 32, …

12October 7, 2014 CSE2312, Fall 2014

Memory Cells and Addresses

• Memory cell: a piece of memory that contains a
specific number of bits

• How many bits depends on the architecture
• In modern architectures, it is almost universal that a cell

contains 8 bits (1 byte), and that will be also our
convention in this course

• Memory address: a number specifying a location of
a memory cell containing data

• Essentially, a number specifying the location of a byte of
memory

13October 7, 2014 CSE2312, Fall 2014

Cells and Addresses

Three ways of organizing a 96-bit memory
October 7, 2014 CSE2312, Fall 2014 14

Memory as an Array

• Think of memory and addressing like you think of arrays

MEM[ADDR-1] 0x05

MEM[ADDR] 0xAB

MEM[ADDR+1] 0xF1

Suppose ADDR = 0x1000

MEM[0x0FFF] 0x05

MEM[0x1000] 0xAB

MEM[0x1001] 0xF1

MEM[...] ...

How large is this memory?
Is this memory byte-addressable? How do you know how large
(length and total memory size) an array is?

October 7, 2014 CSE2312, Fall 2014 15

Hexadecimal
• Base 16

• Compact representation of bit strings
• 4 bits (also called a nibble or nybble) per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: 0xECA8 6420

 1110 1100 1010 1000 0110 0100 0010 0000

October 7, 2014 16CSE2312, Fall 2014

Sign Extension

• Representing a number using more bits
• Preserve the numeric value

• Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

• Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110

October 7, 2014 17CSE2312, Fall 2014

Binary-Decimal Conversions, Signed vs.
Unsigned, Arithmetic Operations

• You should know how to convert binary/hex
to/from decimal

• You should know how to represent signed numbers
• Two’s complement: changes sign of a number
• Like complement (or putting a minus sign in front of a

decimal number)

• You should know how to compute basic arithmetic
and logical operations

• AND, OR, NOT
• ADD, SUB

October 7, 2014 CSE2312, Fall 2014 18

CSE2312, Fall 2014

Unsigned Binary Integers
• Given an n-bit number

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits

 0 to +4,294,967,295

October 7, 2014 19

2s-Complement Signed Integers

• Given an n-bit number

CSE2312, Fall 2014

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





 

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits

 –2,147,483,648 to +2,147,483,647

October 7, 2014 20

2s-Complement Signed Integers

• Bit 31 is sign bit
• 1 for negative numbers
• 0 for non-negative numbers

• –(–2n – 1) can’t be represented
• Non-negative numbers have the same unsigned and

2s-complement representation
• Some specific numbers

• 0: 0000 0000 … 0000
• –1: 1111 1111 … 1111
• Most-negative: 1000 0000 … 0000
• Most-positive: 0111 1111 … 1111

CSE2312, Fall 2014October 7, 2014 21

CSE2312, Fall 2014

Two’s Complement Signed Negation
• Complement and add 1

• Complement means 1 → 0, 0 → 1
• Representation called one’s complement

x1x

11111...111xx 2





 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102

October 7, 2014 22

Units of Memory

• One bit (binary digit): the smallest amount of
information that we can store:

• Either a 1 or a 0
• Sometimes refer to 1 as high/on/true, 0 as low/off/false

• One byte = 8 bits
• Can store a number from 0 to 255

• Kilobyte (KB): 103 = 1000 bytes
• Kibibyte (KiB): 210 = 1024 bytes
• Kilobit: (Kb): 103 = 1000 bits (125 bytes)
• Kibibit: (Kib): 210 = 1024 bits (128 bytes)

23October 7, 2014 CSE2312, Fall 2014

Relative Performance
• Define Performance = 1/Execution Time

• “X is n time faster than Y”

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program

 10s on A, 15s on B

 Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

 So A is 1.5 times faster than B

24October 7, 2014 CSE2312, Fall 2014

CPU Time

• Performance improved by
• Reducing number of clock cycles
• Increasing clock rate
• Hardware designer must often trade off clock rate against

cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU





October 7, 2014 25CSE2312, Fall 2014

CPU Time Example
• Computer A: 2GHz clock, 10s CPU time

• Designing Computer B
• Aim for 6s CPU time

• Can do faster clock, but causes 1.2 × clock cycles

• How fast must Computer B clock be?

4GHz
6s

1024

6s

10201.2
Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s

Cycles Clock1.2

Time CPU

Cycles Clock
Rate Clock

99

B

9

AAA

A

B

B
B
















October 7, 2014 26CSE2312, Fall 2014

Instruction Count and CPI

• Instruction Count for a program = number of
instructions in program

• Determined by program, ISA and compiler

• Average cycles per instruction (CPI) = number of cycles
to execute an instruction (on average)

• Determined by CPU hardware
• If different instructions have different CPI

• Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock








October 7, 2014 27CSE2312, Fall 2014

CSE2312, Fall 2014

CPI Example
• Computer A: Cycle Time = 250ps, CPI = 2.0

• Computer B: Cycle Time = 500ps, CPI = 1.2

• Same ISA

• Which is faster, and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU















A is faster…

…by this much

28October 7, 2014

CPI in More Detail
• If different instruction classes take different numbers

of cycles





n

1i

ii)Count nInstructio(CPICycles Clock

 Weighted average CPI














n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

October 7, 2014 29CSE2312, Fall 2014

CPI Example
• Alternative compiled code sequences using

instructions in classes A, B, C

Class A B C

CPI for class 1 2 3

IC in sequence 1 2 1 2

IC in sequence 2 4 1 1

 Sequence 1: IC = 5

 Clock Cycles

= 2×1 + 1×2 + 2×3

= 10

 Avg. CPI = 10/5 = 2.0

 Sequence 2: IC = 6

 Clock Cycles

= 4×1 + 1×2 + 1×3

= 9

 Avg. CPI = 9/6 = 1.5

October 7, 2014 30CSE2312, Fall 2014

Performance Summary

• Performance depends on
• Algorithm: affects IC, possibly CPI
• Programming language: affects IC, CPI
• Compiler: affects IC, CPI
• Instruction set architecture: affects IC, CPI, Tc

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 

October 7, 2014 31CSE2312, Fall 2014

Chapter 1 Summary

• Cost/performance is improving
• Due to underlying technology development

• Hierarchical layers of abstraction
• In both hardware and software

• Instruction set architecture
• The hardware/software interface

• Execution time: the best performance measure

• Power is a limiting factor
• Use parallelism to improve performance

October 7, 2014 CSE2312, Fall 2014 32

ARM Arithmetic Instructions in Machine Language

• Example: add r5, r1, r2

• C equivalent: r5 = r1 + r2

• Machine language encoding above
• Opcode: 0100 means add (dependent on digital logic, some encoding)
• Rd: register destination operand. It gets the result of the operation
• Rn: first register source operand
• Operand2: second source operand
• I: Immediate. If I is 0, the second source operand is a register. If I is 1,

the second source operand is a 12-bit immediate
• S: Set Condition Code
• Cond: Condition. Related to conditional branch instructions
• F: Instruction Format
October 7, 2014 CSE2312, Fall 2014 33

1110 00 0 0100 0 0001

4 bits 4 bits2 bits 1 bit 4 bits 1 bit

0101 0000 0000 0010

4 bits 12 bits

Cond F I Opcode S Rn Rd Operand2

Review: Operands Types

• Register operand: operand comes from the binary
valued stored in a particular register in the CPU

• Example: add r0, r1, r2
• C code: r0 = r1 + r2;

• Immediate operand: operand value comes from
instruction itself

• Example: add r0, r1, #1
• C code: r0 = r1 + 1;

• Memory operand: operand refers to memory
• Example: str r0, [r1]

• C code (roughly): MEM[r1] = r0;
• Only for load / store instructions!
• Several addressing modes (more on this later)

October 7, 2014 34CSE2312, Fall 2014

Review: Memory Operand Example 1

• C code:

g = h + A[8];

• g in r1, h in r2, base address of A in r3

• Compiled ARM code:
• Index 8 requires offset of 8 words

• 4 bytes per word

@ load word

ldr r0, [r3, #32] @ r0 = MEM[r3 + 32]

add r1, r2, r0

offsetbase register
October 7, 2014 35CSE2312, Fall 2014

Review: Memory Operand Example 2

• C code:
A[12] = h + A[8];

• h in r2, base address of A in r3

• Compiled ARM code:
• Index 8 requires offset of 32 (8 bytes, 4 bytes per word)

@ load word

ldr r0, [r3,#32] @ r0 = MEM[r3 + 32]
add r0, r2, r0

@ store word
str r0, [r3, #48] @ MEM[r3 + 48] = r0

October 7, 2014 36CSE2312, Fall 2014

Immediate/Literal Addressing

• Operand comes from the instruction
• Example: 32-bit instruction to move 4 into R1

• Result is R1 := 4
MOV R1 #4

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 #4
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑

• Useful for specifying small integer constants (avoids extra memory
access)

• Can only specify small constants (limited by size of immediate field)
• ARM: typically 8-12-bits

October 7, 2014 CSE2312, Fall 2014 37

Register/Register-Direct Addressing

• Operand(s) come(s) from register(s)
• Seen this many times already: ADD R0 R1 R2 does R0 :=

R1 + R2
• Also: MOV R1 R2: the destination operand is specified by

its register address (Result is R1 := R2)

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 𝑅2
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑

October 7, 2014 CSE2312, Fall 2014 38

Register Indirect Addressing

• Operand comes from memory, with address
specified by the value in a register (i.e., by a
pointer) or by an immediate

• Example: ARM instruction to copy value from
MEM[R4] into R1 (e.g., R1 := MEM[R4])

LDR R1 [R4]

October 7, 2014 CSE2312, Fall 2014 39

Indirect with Immediate Offset

October 7, 2014 CSE2312, Fall 2014 40

• Uses a register value and an immediate offset
• Example: LDR r2, [r0, #8]

• Updates r2 = MEM[r0 + #8]

Indirect Register Offset

October 7, 2014 CSE2312, Fall 2014 41

• Uses a register value and another register value as an
offset

• Example: LDR r2, [r0, r1]
• Updates r2 = MEM[r0 + r1]

Assembly Language Format

October 7, 2014 CSE2312, Fall 2014 42

Label Opcode Operands Comments

iloop: add r1,r1,#1 @ r1 := r1 + 1

b iloop @ pc := iloop

val: .byte 0x9F @ put 0x96 at

address val

s: .asciz “hello!” @ put “hello!”

at sequential

addresses

starting at

address s

Assembly Instructions vs. Directives

• Instructions
• Machine language equivalents
• ADD, OR, NOT, LDR, STR, etc.

• Directives / Pseudoinstructions
• Special commands given to the assembler that are

converted to equivalent machine language during
assembly process

• Used for placing data in memory, etc.
• .word, .byte, .asciz, .macro, .equ, etc.

October 7, 2014 CSE2312, Fall 2014 43

Conditional Execution

• Current Program Status Register (CPSR)
• Keeps track of arithmetic / logic (ALU) status

• Example: last result was negative, zero, positive, had a carry, etc.
• N (negative) / Z (zero) / C (carry) / V (overflow) bits

• Allows us to make conditional branches, etc. for
conditional control flow changes (ifs, finite loops,
etc.)

• Examples:
cmp r0, #0 @ compare r0 and #0

beq label @ branch if r0 == 0

adds r0, r0, #1

bgt label @ branch if r0 positive

October 7, 2014 CSE2312, Fall 2014 44

ALU Status Bits

• N (negative) bit
• Set to 1 when the result of the operation is negative, cleared to

0 otherwise

• Z (zero) bit
• Set to 1 when the result of the operation is zero, cleared to 0

otherwise

• C (carry) bit
• if the result of an addition is greater than or equal to 232

• if the result of a subtraction is positive or zero
• as the result of an inline barrel shifter operation in a move or

logical instruction

• V (overflow) bit
• Overflow occurs if the result of an add, subtract, or compare is

greater than or equal to 231, or less than -231

October 7, 2014 CSE2312, Fall 2014 45

Condition Code Suffixes
Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any
Always. This suffix is normally
omitted.

October 7, 2014 CSE2312, Fall 2014 46

Control Flow Translation Example

• Suppose our ISA does not have a multiply instruction

• How can we perform multiplication?
• Create equivalent sequence of computations yielding the same result
• Use addition, branch, comparisons, etc.

• 𝐴 ∗ 𝐵 = 𝑖=1
𝐵 𝐴 = 𝐴 + 𝐴 +⋯+ 𝐴

𝐵 𝑡𝑖𝑚𝑒𝑠

• Example: 5 ∗ 9 = 𝑖=1
9 5 = 5 + 5 +⋯+ 5

9 𝑡𝑖𝑚𝑒𝑠

= 45

• Generalizing: this is the basis of all our modern
computations

• CPU does not have “visit website, buy shoes“ instruction

October 7, 2014 CSE2312, Fall 2014 47

Procedures: Iterative Multiply

• How do we write a loop?
• How does flow of control change with function (procedure)

calls?

int multiply(int A, int B) {

int product = 0;

while (B > 0) {

product += A;

B--;

}

return product;

}

October 7, 2014 CSE2312, Fall 2014 48

ARM Assembly for Iterative Multiply

.globl _start

_start: mov r0, #5 @ A = 5

mov r1, #3 @ B = 3

bl imul @ call iterative multiply procedure

iloop: b iloop @ infinite loop (for “termination”)

imul: mov r2,#0 @ initialize result to 0

imul_loop: cmp r0,#0 @ r0 == 0?

beq imul_done @ if r0 == 0, set PC = imul_done

add r2,r2,r1 @ r2 += r1

sub r0,r0,#1 @ r0 -= 1

b imul_loop @ branch to imul_loop

imul_done: mov r0,r2 @ r0 = r2

bx lr @ set PC = LR

October 7, 2014 CSE2312, Fall 2014 49

Summary of Caller and Callee Steps

• Caller steps:
• Step 1: Put arguments in the registers r0, r1, r2, r3.
• Step 2: Branch to the function, using the bl instruction.
• Step 3: After the function has returned, recover the return

value (if any), and use it.

• Callee (called function) steps:
• Step 1 (preamble): Allocate memory on the stack, and save

register rl, and other registers that the function modifies, to
the stack.

• Step 2: Do the main body of the function.
• Step 3 (wrap-up):

• Store the return value (if any) on r0, second return value (if any) on r1.
• Restore, from the stack, the original values of all registers that the function

modified, as well as the value of register lr.
• Deallocate memory on the stack (increment sp).
• Branch to the return address using instruction bx.

50October 7, 2014 CSE2312, Fall 2014

The Stack

• Last-in, first-out (LIFO) data structure
• Last data put in comes out first
• Common analogy: like a quarter / coin holder in your car, the last coin put in

comes out first

• Stack pointer (SP) register: points to current address of stack (i.e., the
last thing in)

• YOU must initialize it! Typically use address 0x100000
• mov sp, #0x100000

• Stack instructions
• PUSH {r0} means:

• SUB sp, sp, #4

• STR r0, [sp]

• POP {r0} means:
• LDR r0, [sp]

• ADD sp, sp, #4

• Can use lists of registers, e.g., PUSH {r0,r1} is:
SUB sp, sp, #8

STR r0, [sp]

STR r1, [sp,#4]

October 7, 2014 CSE2312, Fall 2014 51

Basic Function Call Example

int ex(int g, int h, int i, int j) {

int f;

f = (g + h) – (i + j);

return f;

}

r0 = g, r1 = h, r2 = I, r3 = j, r4 = f

October 7, 2014 CSE2312, Fall 2014 52

Basic Function Call Example Assembly

ex: ; label for function name

SUB sp, sp, #12 ; adjust stack to make room for 3 items

STR r6, [sp,#8] ; save register r6 for use afterwards

STR r5, [sp,#4] ; save register r5 for use afterwards

STR r4, [sp,#0] ; save register r4 for use afterwards

ADD r5,r0,r1 ; register r5 contains g + h

ADD r6,r2,r3 ; register r6 contains i + j

SUB r4,r5,r6 ; f gets r5 – r6, ie: (g + h) – (i + j)

MOV r0,r4 ; returns f (r0 = r4)

LDR r4, [sp,#0] ; restore register r4 for caller

LDR r5, [sp,#4] ; restore register r5 for caller

LDR r6, [sp,#8] ; restore register r6 for caller

ADD sp,sp,#12 ; adjust stack to delete 3 items

MOV pc, lr ; jump back to calling routine

October 7, 2014 CSE2312, Fall 2014 53

Basic Function Call Example Stack

October 7, 2014 CSE2312, Fall 2014 54

Basic Function Call Example Assembly
(Push/Pop)

ex: ; label for function name

PUSH {r4,r5,r6} ; save r4, r5, r6, decrement sp by 12

ADD r5,r0,r1 ; register r5 contains g + h

ADD r6,r2,r3 ; register r6 contains i + j

SUB r4,r5,r6 ; f gets r5 – r6, ie: (g + h) – (i + j)

MOV r0,r4 ; returns f (r0 = r4)

POP {r4,r5,r6} ; restore r4, r5, r6, increment sp by 12

MOV pc, lr ; jump back to calling routine

October 7, 2014 CSE2312, Fall 2014 55

State Preservation Across Procedure Calls

October 7, 2014 CSE2312, Fall 2014 56

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)
{
if (N== 0) return 1;
return N* factorial(N -1);

}

57

• How do we write function
factorial in assembly?

@ factorial main body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq factorial_exit

sub r0, r4, #1

bl factorial

mov r5, r0

mul r0, r5, r4October 7, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

@ factorial preamble

fact: push {r4,r5,lr}

@ factorial body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq fact_exit

sub r0, r4, #1

bl fact

mov r5, r0

mul r0, r5, r4

58

@ factorial wrap-up

fact_exit:

pop {r4,r5,lr}

bx lr

October 7, 2014 CSE2312, Fall 2014

Assembly Process

• Insuffiency of one pass
• Suppose we have labels (symbols).
• How do we calculate the addresses of labels later in the

program?
• Example:

• ADDR: 0x1000 b done

• … // Other instructions and data

• ADDR: 0x???? done: add r1, r2, r0

• …
• How to compute address of label done?

• Two-Pass Assemblers
• First Pass: iterate over instructions, build a symbol table,

opcode table, expand macros, etc.
• Second Pass: iterate over instructions, printing equivalent

machine language, plugging in values for labels using symbol
table

October 7, 2014 CSE2312, Fall 2014 59

Assembly Process

October 7, 2014 CSE2312, Fall 2014 60

The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and
libraries into an executable file.

Linking and Loading

• Linking: combining multiple program modules (pieces of
code) into executable program

• Examples: using our _tests files to load inputs to your
programs, calling library functions like printf, etc.

• Loading: getting executable running on machine
• Examples: calling QEMU with our binary

• Static linking
• Combine multiple object files into single binary

• Dynamic linking
• Load library shared code at runtime
• Not talking about this: operating system concept
• Examples: Windows DLLs

October 7, 2014 CSE2312, Fall 2014 61

Review: Array Example

.globl _start

_start: mov r1,#0 @ r1 := 0

ldr r0,=arrayPtr @ r0 := arrayPtr

ldr r3,=arrayEnd @ r3 := arrayEnd

ldrb r4,[r3,#0] @ r4 := MEM[R3 + 0]

loop: ldrb r2,[r0,#0] @ r3 := MEM[r0]

cmp r2,r4 @ r0 == 0xFF ?

beq done @ branch if done

add r1,r1,r2 @ r1 := r1 + r2

add r0,r0,#1 @ r0 := r0 + #1

b loop @ pc = loop (address)

done: strb r1,[r2] @ MEM[r2] := r1

iloop: b iloop @ infinite loop

arrayPtr:

.byte 2

.byte 3

.byte 5

.byte 7

.byte 11

.byte 13

.byte 17

.byte 19

.byte 23

.byte 29

.byte 31

.byte 37

.byte 41

.byte 43

.byte 47

arrayEnd:

.byte 0xFF
October 7, 2014 CSE2312, Fall 2014 62

Review: Macros

• Another assembler directive
• Like .byte, .word, .asciz, that we’ve seen a little of before

• Way to refer to commonly used or repeated code

• Similar to an assembly procedure or function, but expanded (evaluated)
at assembly time, not run time

• Similar to #define in C, which is replaced by compiler at compile time

• Macro call: use of macro as an instruction

• Macro expansion: replacement of macro body by the corresponding
instructions

October 7, 2014 CSE2312, Fall 2014 63

Review: Macro Example
.globl _start

_start: .macro addVals adA, adB

ldrb r2,[\adA] @ r2 := MEM[adA]

ldrb r3,[\adB] @ r3 := MEM[adB]

sub r5,r2,r3 @ r5 := r2 - r3 = A - B

strb r5,[\adA] @ MEM[adA] = r5

ldrb r2,[\adA] @ r2 := MEM[adA]

add \adA,\adA,#1 @ r0 := r0 + 1

add \adB,\adB,#1 @ r1 := r1 + 1

.endm @ end macro definition

init: ldr r0,=A @ r0 := A (address)

ldr r1,=B @ r1 := B (address)

ldr r4,=A_end @ r4 := A_end (address)

addVals r0,r1 @ call macro

done: b done @ infinite loop

A: .byte 9, 8, 7, 6

A_end: .byte 0

B: .byte 1, 1, 1, 1

B_end: .byte 0

October 7, 2014 CSE2312, Fall 2014 64

Review: Assembly Process

• Insuffiency of one pass
• Suppose we have labels (symbols).
• How do we calculate the addresses of labels later in the

program?
• Example:

• ADDR: 0x1000 b done

• … // Other instructions and data

• ADDR: 0x???? done: add r1, r2, r0

• …
• How to compute address of label done?

• Two-Pass Assemblers
• First Pass: iterate over instructions, build a symbol table,

opcode table, expand macros, etc.
• Second Pass: iterate over instructions, printing equivalent

machine language, plugging in values for labels using symbol
table

October 7, 2014 CSE2312, Fall 2014 65

Review: Assembly Process

October 7, 2014 CSE2312, Fall 2014 66

The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and
libraries into an executable file.

Review: Memory-Mapped I/O Example

• Some of our original examples displayed output to
console by writing to a special memory address

.equ ADDR_UART0, 0x101f1000

ldr r0,=ADDR_UART0 @ r0 := 0x 101f 1000

mov r2,#0x0D @ R2 := 0x0D (return \r)

str r2,[r0] @ MEM[r0] := r2

• How does this work?
• Registers on peripheral devices (keyboards, monitors,

network controllers, etc.) are addressable in same
address space as main memory

October 7, 2014 CSE2312, Fall 2014 67

October 7, 2014 CSE2312, Fall 2014 68

October 7, 2014 CSE2312, Fall 2014 69

October 7, 2014 CSE2312, Fall 2014 70

Address from Memory-Map in Manual

October 7, 2014 CSE2312, Fall 2014 71

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_
baseboard_for_arm926ej_s_ug.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf

Review: ELF Header Example

$ arm-none-eabi-objdump -f example.elf

example.elf: file format elf32-littlearm

architecture: arm, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x00010000

October 7, 2014 CSE2312, Fall 2014 72

Review: ELF Symbol Table Example

$ arm-none-eabi-objdump -t example.elf

example.elf: file format elf32-
littlearm

SYMBOL TABLE:

00010000 l d .text 00000000 .text

00010028 l .text 00000000 rfib

00010024 l .text 00000000 iloop

0001004c l .text 00000000 rfib_exit

0001005c g .text 00000000 _tests

00010000 g .text 00000000 _start

October 7, 2014 CSE2312, Fall 2014 73

global

local

Program
starts at this

address

Loading

• Get the binary loaded into memory and running
• More an operating systems concept

• E.g., load an executable into memory and start it
• Handled by QEMU for our purposes

• Loads our binary starting at a particular memory address (0x10000)
• Code at low, initial address (~0x00000) branches to that address

0x00000000: e3a00000 mov r0, #0 ; 0x0

0x00000004: e59f1004 ldr r1, [pc, #4] ; 0x10

0x00000008: e59f2004 ldr r2, [pc, #4] ; 0x14

0x0000000c: e59ff004 ldr pc, [pc, #4] ; 0x18

0x00000010: 00000183

0x00000014: 0x000100

0x00000018: 0x010000 ; offset!

October 7, 2014 CSE2312, Fall 2014 74

ARM 3 Stage Pipeline

• Stages: fetch, decode, execute

• PC value = instruction being fetched

• PC – 4: instruction being decoded

• PC – 8: instruction being executed

• Beefier ARM variants use deeper pipelines (5
stages, 13 stages)

October 7, 2014 CSE2312, Fall 2014 75

Recall: Abstract Processor Execution Cycle
(Simplified)

October 7, 2014 CSE2312, Fall 2014 76

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

ARM 3-Stage Pipeline Processor Execution
Cycle

October 7, 2014 CSE2312, Fall 2014 77

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

String Output

• So far we have seen
character input/output

• That is, one char at a time

• What about strings
(character arrays, i.e.,
multiple characters)?

• Strings are stored in
memory at consecutive
addresses

• Like arrays that we saw
last time

ADDR Byte

3

Byte

2

Byte

1

Byte

0

0x1000 ‘d’ ‘c’ ‘b’ ‘a’

0x1004 ‘h’ ‘g’ ‘f’ ‘e’

0x1008 ‘l’ ‘k’ ‘j’ ‘i’

0x100c ‘p’ ‘o’ ‘n’ ‘m’

0x1010 ‘t’ ‘s’ ‘r’ ‘q’

0x1014 ‘x’ ‘w’ ‘v’ ‘u’

0x1018 ‘\0’ ‘\0’ ‘z’ ‘y’

October 7, 2014 CSE2312, Fall 2014 78

string_abc:

.asciz "abcdefghijklmnopqrstuvwxyz\n\r"

.word 0x00

Assembler Output

0001012e <string_abc>:

1012e: 64636261 strbtvs r6, [r3], #-609; 0x261

10132: 68676665 stmdavs r7!, {r0, r2, r5, r6, r9, sl, sp,

lr}^

10136: 6c6b6a69 stclvs 10, cr6, [fp], #-420; 0xfffffe5c

1013a: 706f6e6d rsbvc r6, pc, sp, ror #28

1013e: 74737271 ldrbtvc r7, [r3], #-625; 0x271

10142: 78777675 ldmdavc r7!, {r0, r2, r4, r5, r6, r9, sl,

ip, sp, lr}^

10146: 0d0a7a79 vstreq s14, [sl, #-484] ; 0xfffffe1c

1014a: 00000000 andeq r0, r0, r0

October 7, 2014 CSE2312, Fall 2014 79

ASCII

October 7, 2014 CSE2312, Fall 2014 80

Binary Octal Decimal Hex Glyph

110 0000 140 96 60 `

110 0001 141 97 61 a

110 0010 142 98 62 b

110 0011 143 99 63 c

110 0100 144 100 64 d

110 0101 145 101 65 e

110 0110 146 102 66 f

… …

111 1000 170 120 78 x

111 1001 171 121 79 y

111 1010 172 122 7A z

Printing Strings

@ assumes r0 contains uart data register address

@ r1 should contain address of first character of string

@ to display; stop if 0x00 (‘\0’) seen

print_string: push {r1,r2,lr}

str_out: ldrb r2,[r1]

cmp r2,#0x00 @ '\0' = 0x00: null character?

beq str_done @ if yes, quit

str r2,[r0] @ otherwise, write char of string

add r1,r1,#1 @ go to next character

b str_out @ repeat

str_done: pop {r1,r2,lr}

bx lr

October 7, 2014 CSE2312, Fall 2014 81

Summary

• Chapter 1

• Chapter 2 (ARM)

• Relevant appendices for extra details

October 7, 2014 CSE2312, Fall 2014 82

Questions?

October 7, 2014 CSE2312, Fall 2014 83

