
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 16: Processor Pipeline Introduction and Debugging

with GDB

Taylor Johnson

Announcements and Outline

•Homework 5 due today
• Know how to assemble/link programs, start them in

QEMU, and start debugging them with gdb
• Start to learn how to use gdb

•Running ARM assembly programs with QEMU and
debugging with gdb
• Debugging a basic procedure and looking at the statck
• Debugging a recursive procedure and looking at the stack

October 16, 2014 CSE2312, Fall 2014 2

Review: Assembling ARM Programs

•How is this done?
• 2-pass assembler process described before

•How is this done in practice?
• Use an assembler like gcc’s as

• Like with C programs, call ‘make’

•What does this do?
• Calls a command script specified in the file ‘Makefile’

October 16, 2014 CSE2312, Fall 2014 3

Review: Makefile Example

CROSS_COMPILE ?= arm-none-eabi

AOPS = --warn --fatal-warnings -g

example.bin : example.s example_tests.s example_memmap

$(CROSS_COMPILE)-as $(AOPS) example.s -o example.o

$(CROSS_COMPILE)-as $(AOPS) example_tests.s –o example_tests.o

$(CROSS_COMPILE)-ld example.o example_tests.o -T

example_memmap -o example.elf

$(CROSS_COMPILE)-objdump -D example.elf > example.list

$(CROSS_COMPILE)-objcopy example.elf -O binary example.bin

October 16, 2014 CSE2312, Fall 2014 4

Review: Assembly Process

October 16, 2014 CSE2312, Fall 2014 5

The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and
libraries into an executable file.

Review: Linker Process

October 16, 2014 CSE2312, Fall 2014 6

Review: Loading

• Get the binary loaded into memory and running
• More an operating systems concept

• E.g., load an executable into memory and start it
• Handled by QEMU for our purposes

• Loads our binary starting at a particular memory address (0x10000)
• Code at low, initial address (~0x00000) branches to that address

0x00000000: e3a00000 mov r0, #0 ; 0x0

0x00000004: e59f1004 ldr r1, [pc, #4] ; 0x10

0x00000008: e59f2004 ldr r2, [pc, #4] ; 0x14

0x0000000c: e59ff004 ldr pc, [pc, #4] ; 0x18

0x00000010: 00000183

0x00000014: 0x000100

0x00000018: 0x010000 ; offset!

October 16, 2014 CSE2312, Fall 2014 7

Review: Abstract Processor Execution Cycle

October 16, 2014 CSE2312, Fall 2014 8

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

ARM 3-Stage Pipeline Processor Execution
Cycle

October 16, 2014 CSE2312, Fall 2014 9

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

ARM 3 Stage Pipeline

•Stages: fetch, decode, execute

•PC value = instruction being fetched

•PC – 4: instruction being decoded

•PC – 8: instruction being executed

•Beefier ARM variants use deeper pipelines (5
stages, 13 stages)

October 16, 2014 CSE2312, Fall 2014 10

Data Path

• Instructions
• Register-Memory:

memory words being
fetched into registers

• Register-Register

• Data Path Cycle
• The process of running

two operands through the
ALU and storing results

• Defines what the machine
can do

• The faster the data path
cycles, the faster the
computer

October 16, 2014 CSE2312, Fall 2014 11

Instruction Execution

• Fetch next instruction from memory

• Change program counter to point to next
instruction

• Determine type of instruction just fetched

• If instruction uses memory, locate it

• Fetch memory, if needed, into a CPU register

• Execute instruction

• Go to step 1 to begin executing following
instruction

October 16, 2014 CSE2312, Fall 2014 12

Un-Pipelined Laundry

October 16, 2014 CSE2312, Fall 2014 13

Pipelined Laundry

October 16, 2014 CSE2312, Fall 2014 14

Why Pipelining?

• Consider a five-stage pipeline
• Suppose 2ns for the cycle period
• It takes 10ns for an instruction to progress all the way through

pipeline
• So, the machine runs at 100 MIPS?
• Actual rate: 500 MIPS

• Pipelining
• Tradeoff between latency and processor bandwidth
• Latency: how long it takes to execute an instruction
• Processor bandwidth: MIPS of the CPU

• Example
• Suppose a complex instruction should take 10 ns, under perfect

conditions, how many stage pipeline should we design to guarantee
500 MIPS?

• Each pipeline stage should take: 1/500 MIPS = 2 ns
• 10 ns/ 2ns =5 stages

October 16, 2014 CSE2312, Fall 2014 15

Pipelining: Instruction-Level Parallelism

October 16, 2014 CSE2312, Fall 2014 16

October 16, 2014 CSE2312, Fall 2014 17

Hazards

•Hazard: next instruction cannot execute in next cycle
•Data hazards: instruction depends on result of prior

instruction
• Example:

store 0x1234 r0

load r0 0x1234

Problem: load cannot occur until store has completed
• Solution: stall, out-of-order execution, register forwarding

• Structural Hazards:
• Solution: stall

• Control Hazards: direction of control flow (e.g., branch)
depends on prior instructions
• Solution: stall, branch prediction

October 16, 2014 CSE2312, Fall 2014 18

October 16, 2014 CSE2312, Fall 2014 19

October 16, 2014 CSE2312, Fall 2014 20

ARM 3-Stage Pipeline Processor Execution
Cycle

October 16, 2014 CSE2312, Fall 2014 21

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

Superscalar Architectures

•Dual five-stage pipelines with common instruction
fetch unit
• Fetches pairs of instructions together and puts each into

its own pipeline
• Two instructions must not conflict over resource usage
• Neither must depend on the results of others

October 16, 2014 CSE2312, Fall 2014 22

Superscalar Architectures

• Intuition: S3 stage issues instructions considerably
faster than the S4 stage can execute them

October 16, 2014 CSE2312, Fall 2014 23

Data Parallel Computers

October 16, 2014 CSE2312, Fall 2014 24

Multiprocessors

October 16, 2014 CSE2312, Fall 2014 25

Multicomputers

October 16, 2014 CSE2312, Fall 2014 26

Flynn’s Taxonomy

• SISD: Single Instruction,
Single Data
• Classical Von Neumann

• SIMD: Single Instruction,
Multiple Data
• GPUs

• MISD: Multiple Instruction,
Single Data
• More exotic: fault-tolerant

computers using task
replication (Space Shuttle
flight control computers)

• MIMD: Multiple Instruction,
Multiple Data
• Multiprocessors,

multicomputers, server
farms, clusters, …

27CSE2312, Fall 2014October 16, 2014

Review: Example .gdbinit

set architecture arm

target remote :1234

symbol-file example.elf

b _start

• Sets architecture to arm (default is x86)

• Connects to QEMU process via port 1234

• Loads symbols (labels, etc.) from the ELF file called
example.elf

• Puts breakpoint at label _start

October 16, 2014 CSE2312, Fall 2014 28

Review: GDB Commands

• b label
Sets a breakpoint at a specific label in your source code file. In practice, for some weird reason,
the code actually breaks not at the label that you specify, but after executing the next line.

• b line_number
Sets a breakpoint at a specific line in your source code file. In practice, for some weird reason,
the code actually breaks not at the line that you specify, but at the line right after that.

• c
Continues program execution until it hits the next breakpoint.

• i r
Shows the contents of all registers, in both hexadecimal and decimal representations; short for
info registers

• list
Shows a list of instructions around the line of code that is being executed.

• quit
This command quits the debugger, and exits GDB.

• stepi
This command executes the next instruction.

• set $register=val
set $pc=0
This command updates a register to be equal to val, for example, to restart your program, set the
PC to 0

October 16, 2014 CSE2312, Fall 2014 29

Basic Function Call Example

int ex(int g, int h, int i, int j) {

int f;

f = (g + h) – (i + j);

return f;

}

r0 = g, r1 = h, r2 = I, r3 = j, r4 = f

October 16, 2014 CSE2312, Fall 2014 30

Basic Function Call Example Assembly

ex: ; label for function name

SUB sp, sp, #12 ; adjust stack to make room for 3 items

STR r6, [sp,#8] ; save register r6 for use afterwards

STR r5, [sp,#4] ; save register r5 for use afterwards

STR r4, [sp,#0] ; save register r4 for use afterwards

ADD r5,r0,r1 ; register r5 contains g + h

ADD r6,r2,r3 ; register r6 contains i + j

SUB r4,r5,r6 ; f gets r5 – r6, ie: (g + h) – (i + j)

MOV r0,r4 ; returns f (r0 = r4)

LDR r4, [sp,#0] ; restore register r4 for caller

LDR r5, [sp,#4] ; restore register r5 for caller

LDR r6, [sp,#8] ; restore register r6 for caller

ADD sp,sp,#12 ; adjust stack to delete 3 items

MOV pc, lr ; jump back to calling routine

October 16, 2014 CSE2312, Fall 2014 31

Basic Function Output

r0 0xfffffffc -4

r1 0x4 4

r2 0x6 6

r3 0x7 7

r4 0x0 0

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0x10000 0x10000 <_start>

lr 0x1001c 65564

pc 0x1001c 0x1001c <iloop>

cpsr 0x400001d3 1073742291

@ (g + h) – (i + j)

@ r0 = g

@ r1 = h

@ r2 = i

@ r3 = j

@ r4 = f

mov r0,#5

mov r1,#4

mov r2,#6

mov r3,#7

mov r4,#0

October 16, 2014 CSE2312, Fall 2014 32

Basic Function Call Example Stack

October 16, 2014 CSE2312, Fall 2014 33

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)
{
if (N== 0) return 1;
return N* factorial(N -1);

}

34

• How do we write function
factorial in assembly?

@ factorial main body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq factorial_exit

sub r0, r4, #1

bl factorial

mov r5, r0

mul r0, r5, r4October 16, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

@ factorial preamble

fact: push {r4,r5,lr}

@ factorial body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq fact_exit

sub r0, r4, #1

bl fact

mov r5, r0

mul r0, r5, r4

35

@ factorial wrap-up

fact_exit:

pop {r4,r5,lr}

bx lr

October 16, 2014 CSE2312, Fall 2014

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x5 5

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x0 0

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xfff4 0xfff4

lr 0x1000c 65548

pc 0x10014 0x10014 <fact+4>

cpsr 0x600001d3 1610613203

October 16, 2014 CSE2312, Fall 2014 36

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x4 4

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x5 5

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffe8 0xffe8

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 37

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x3 3

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x4 4

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffdc 0xffdc

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 38

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x2 2

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x3 3

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffd0 0xffd0

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 39

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x1 1

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x2 2

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffc4 0xffc4

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 40

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x0 0

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x1 1

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffb8 0xffb8

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 41

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x78 120

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x0 0

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0x10000 0x10000 <_start>

lr 0x1000c 65548

pc 0x1000c 0x1000c <iloop>

cpsr 0x600001d3 1610613203

October 16, 2014 CSE2312, Fall 2014 42

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Stack after final return:

0xff90: 0 0 0 0

0xffa0: 0 0 0 0

0xffb0: 0 0 1 0

0xffc0: 65580 2 0 65580

0xffd0: 3 0 65580 4

0xffe0: 0 65580 5 0

0xfff0: 65580 0 0 65548

0x10000

October 16, 2014 CSE2312, Fall 2014 43

Summary

•Know what make does

•Know how to start QEMU

•Know how to start GDB

•Start learning how to interact and debug with GDB

October 16, 2014 CSE2312, Fall 2014 44

String Output

• So far we have seen
character input/output

• That is, one char at a time

• What about strings
(character arrays, i.e.,
multiple characters)?

• Strings are stored in
memory at consecutive
addresses

• Like arrays that we saw
last time

ADDR Byte

3

Byte

2

Byte

1

Byte

0

0x1000 ‘d’ ‘c’ ‘b’ ‘a’

0x1004 ‘h’ ‘g’ ‘f’ ‘e’

0x1008 ‘l’ ‘k’ ‘j’ ‘i’

0x100c ‘p’ ‘o’ ‘n’ ‘m’

0x1010 ‘t’ ‘s’ ‘r’ ‘q’

0x1014 ‘x’ ‘w’ ‘v’ ‘u’

0x1018 ‘\r’ ‘\n’ ‘z’ ‘y’

October 16, 2014 CSE2312, Fall 2014 45

string_abc:

.asciz "abcdefghijklmnopqrstuvwxyz\n\r"

.word 0x00

Assembler Output

0001012e <string_abc>:

1012e: 64636261 strbtvs r6, [r3], #-609; 0x261

10132: 68676665 stmdavs r7!, {r0, r2, r5, r6, r9, sl, sp,

lr}^

10136: 6c6b6a69 stclvs 10, cr6, [fp], #-420; 0xfffffe5c

1013a: 706f6e6d rsbvc r6, pc, sp, ror #28

1013e: 74737271 ldrbtvc r7, [r3], #-625; 0x271

10142: 78777675 ldmdavc r7!, {r0, r2, r4, r5, r6, r9, sl,

ip, sp, lr}^

10146: 0d0a7a79 vstreq s14, [sl, #-484] ; 0xfffffe1c

1014a: 00000000 andeq r0, r0, r0

October 16, 2014 CSE2312, Fall 2014 46

Printing Strings

@ assumes r0 contains uart data register address

@ r1 should contain address of first character of string

@ to display; stop if 0x00 (‘\0’) seen

print_string: push {r1,r2,lr}

str_out: ldrb r2,[r1]

cmp r2,#0x00 @ '\0' = 0x00: null character?

beq str_done @ if yes, quit

str r2,[r0] @ otherwise, write char of string

add r1,r1,#1 @ go to next character

b str_out @ repeat

str_done: pop {r1,r2,lr}

bx lr

October 16, 2014 CSE2312, Fall 2014 47

Gdb: printing code to be executed

(gdb) x /16i $pc

=> 0x10008 <loop>: add r1, r1, #1

0x1000c <loop+4>: and r1, r1, #7

0x10010 <loop+8>: add r1, r1, #48 ; 0x30

0x10014 <loop+12>: str r1, [r0]

0x10018 <loop+16>: mov r2, #13

0x1001c <loop+20>: str r2, [r0]

0x10020 <loop+24>: mov r2, #10

0x10024 <loop+28>: str r2, [r0]

0x10028 <loop+32>: b 0x10008 <loop>

0x1002c <infloop>: b 0x1002c <infloop>

0x10030 <val>: andeq r0, r0, r1, lsl r0

0x10034 <val+4>: andeq r0, r0, r2, lsr #32

0x10038 <val+8>: andeq r0, r0, r3, lsr r0

0x1003c <val+12>: andeq r0, r0, r4, asr #32

0x10040 <val+16>: andeq r0, r0, r5, asr r0

0x10044 <val+20>: andeq r0, r0, r6, rrx

(gdb)

October 16, 2014 CSE2312, Fall 2014 48

Summary

•Pipelines
• Instruction-level parallelism

• Running pieces of several instructions simultaneously to make the most
use of available fixed resources (think laundry)

• Other forms of parallelism: Flynn’s taxonomy

•Know what make does
•Know how to start QEMU
•Know how to start GDB
•Start learning how to interact and debug with GDB

• Saw example of debugging the stack, etc.

October 16, 2014 CSE2312, Fall 2014 49

Questions?

October 16, 2014 CSE2312, Fall 2014 50

