
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 17: More Processor Pipeline, Other Parallelism,

and Debugging with GDB

Taylor Johnson

Announcements and Outline

• Programming assignment 1 assigned soon
• ERB Labs with QEMU software installed (boot to Red Hat

partition in dual boot)
ERB124: qemuuser qemuuser124
ERB125: qemuuser qemuuser125
ERB131: qemuuser qemuuser131
ERB132: qemuuser qemuuser132

• More Pipelining
• More Running ARM assembly programs with QEMU and

debugging with gdb
• Debugging a basic procedure and looking at the stack
• Debugging a recursive procedure and looking at the stack

October 16, 2014 CSE2312, Fall 2014 2

Review: Abstract Processor Execution Cycle

October 16, 2014 CSE2312, Fall 2014 3

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

ARM 3-Stage Pipeline Processor Execution
Cycle

October 16, 2014 CSE2312, Fall 2014 4

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

ARM 3 Stage Pipeline

•Stages: fetch, decode, execute

•PC value = instruction being fetched

•PC – 4: instruction being decoded

•PC – 8: instruction being executed

•Beefier ARM variants use deeper pipelines (5
stages, 13 stages)

October 16, 2014 CSE2312, Fall 2014 5

Review: Un-Pipelined Laundry

October 16, 2014 CSE2312, Fall 2014 6

Review: Pipelined Laundry

October 16, 2014 CSE2312, Fall 2014 7

Review: Pipelining: Instruction-Level
Parallelism

October 16, 2014 CSE2312, Fall 2014 8

October 16, 2014 CSE2312, Fall 2014 9

Hazards

•Hazard: next instruction cannot execute in next cycle
•Data hazards: instruction depends on result of prior

instruction
• Example:

store 0x1234 r0

load r0 0x1234

Problem: load cannot occur until store has completed
• Solution: stall, out-of-order execution, register forwarding

• Structural Hazards:
• Solution: stall

• Control Hazards: direction of control flow (e.g., branch)
depends on prior instructions
• Solution: stall, branch prediction

October 16, 2014 CSE2312, Fall 2014 10

October 16, 2014 CSE2312, Fall 2014 11

October 16, 2014 CSE2312, Fall 2014 12

ARM 3-Stage Pipeline Processor Execution
Cycle

October 16, 2014 CSE2312, Fall 2014 13

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

Flynn’s Taxonomy

• SISD: Single Instruction,
Single Data
• Classical Von Neumann

• SIMD: Single Instruction,
Multiple Data
• GPUs

• MISD: Multiple Instruction,
Single Data
• More exotic: fault-tolerant

computers using task
replication (Space Shuttle
flight control computers)

• MIMD: Multiple Instruction,
Multiple Data
• Multiprocessors,

multicomputers, server
farms, clusters, …

14CSE2312, Fall 2014October 16, 2014

Design Principles for Modern Computers

•All (or most) instructions directly executed by
hardware.

•Maximize rate at which instructions are issued. Issuing
instructions rapidly and processing them in parallel
leads to higher efficiency, and can compensate up to a
degree for longer completion times for each
instruction.

• Instructions should be easy to decode, especially to
figure out what resources they need (so as to issue
instructions for which resources are available).

15

Design Principles for Modern Computers

•Only loads and stores should reference memory.
• Memory is slow to access. Loads and stores can be overlapped

with other instructions that use the registers and the ALU.

•Provide plenty of registers.
• Again, memory is slow, so it is good to have enough registers, so

that data can be kept until it is no longer needed (instead of
swapping data repeatedly in and out of registers because of
limited register space).

16

Optimizing Fetch-Decode-Execute

1. Fetch next instruction from memory
2. Change program counter to point to next instruction
3. Determine type of instruction just fetched
4. If instruction uses a word in memory, locate it
5. Fetch word, if needed, into a CPU register.
6. Execute instruction.
7. The cycle is completed. Go to step 1 to begin executing

the next instruction.

• Long ago, people noticed that fetch takes a long
time. How can we make up for that delay?

17

A Simple Two-Step Pipeline
•While one instruction is executed, fetch the next

instruction.

•Thus, the execution of the next instruction starts before
the execution of the current instruction finishes.
• Tick 1: fetch instruction 1.
• Tick 2: decode/execute instruction 1, fetch instruction 2.
• Tick 3: decode/execute instruction 2, fetch instruction 3.
• Tick 4: decode/execute instruction 3, fetch instruction 4.
• …

•What do we gain by pipelining? Speed.
• No need to spend any time waiting for fetches.

18

Pipelining in General (1)

•The instruction execution cycle uses different
resources at different steps:
• Fetch: Memory to fetch the instruction.
• Decode: The decoder to decode the instruction.
• Execute: Move data to ALU input registers.
• Execute: Apply ALU operation to data.
• Execute: Move data from ALU output register.

19

Pipelining in General (2)

•The instruction execution cycle uses different
resources at different steps.

•This means that at each execution step, the
instruction uses only a small part of the CPU
hardware.

•The key idea in pipelining is that we can process steps
of multiple instructions simultaneously, as long as
these steps use different resources.

•This idea is also called instruction-level parallelism.

•Modern architectures may use pipelines of 12 or more
steps.

20

Illustration of Pipelining

Figure 2-4. (a) A five-stage pipeline. (b) The state of each
stage as a function of time. Nine clock cycles are illustrated

21

Benefits of Pipelining
•Suppose that a single instruction takes 10

nanoseconds to execute, and we have a pipeline of
length 5.
• Without pipelining, we can execute 100 million instructions

per second.
• Using pipelining, in the best case, we can execute ???

instructions per second.
• Using pipelining, in the worst case, we can execute ???

instructions per second.

22

Benefits of Pipelining
•Suppose that a single instruction takes 10

nanoseconds to execute, and we have a pipeline of
length 5.
• Without pipelining, we can execute 100 million instructions

per second.
• Using pipelining, in the best case, we can execute 500 million

instructions per second.
• Using pipelining, in the worst case, we can execute 100

instructions per second.

•Are these (best-case number, worst-case number)
meaningful measures?

23

Benefits of Pipelining
•Suppose that a single instruction takes 10

nanoseconds to execute, and we have a pipeline of
length 5.
• Without pipelining, we can execute 100 million instructions

per second.
• Using pipelining, in the best case, we can execute 500 million

instructions per second.
• Using pipelining, in the worst case, we can execute 100

instructions per second.

•Sometimes pipelines cannot be fully utilized.
• The average number of instructions per second is harder to

compute (and depends on the code that is used in the
simulations), but more useful as a measure.

24

Issues with Pipelining

•Can you think of a case where pipelines cannot be
fully utilized?

25

Issues with Pipelining: Data Dependencies

•Suppose we have a sequence of instructions, such
that each instruction uses the result of the previous
one.

•Then, can we evaluate those instructions in a pipeline
manner?

•Possibly, but we must wait until the result of the
previous instruction is available.
• Instructions at a certain point in the timeline may pause for

a few clock ticks before proceeding.

26

Example of Data Dependencies

• Let's look at an example of code in assembly.
• For now we use a made-up assembly language, but it is similar to

typical assembly languages we will see later.

•We define three instructions:
• add A B C:

• Adds contents of registers B and C, stores result in register A.

• load A address:
• Loads data from the specified memory address to register A.

• store A address:
• Stores data from register A to the specified memory address.

27

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 3: add R3 R1 R2

instruction 4: add R4 R2 R3

instruction 5: store R4 address1

28

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 8: add R7 R5 R6

instruction 9: add R8 R6 R7

instruction 10: store R8 address4

Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Instruction
fetch

1 2 3 4 4 4 5 5 5 6 6 6 7 8

Decode X 1 2 3 3 3 4 4 4 5 5 5 6 7

Operand fetch X X 1 2 X X 3 X X 4 X X 5 6

Execute
operation

X X X 1 2 X X 3 X X 4 X X 5

Write back
result

X X X X 1 2 X X 3 X X 4 X X

Step T5: Cannot do operand fetch on instruction 3. The operands of instruction 3
are R1 and R2, and they do not contain the right data until instructions 1 and 2
finish executing (step T6).

29

Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Instruction
fetch

1 2 3 4 4 4 5 5 5 6 6 6 7 8

Decode X 1 2 3 3 3 4 4 4 5 5 5 6 7

Operand fetch X X 1 2 X X 3 X X 4 X X 5 6

Execute
operation

X X X 1 2 X X 3 X X 4 X X 5

Write back
result

X X X X 1 2 X X 3 X X 4 X X

Step T8: Cannot do operand fetch on instruction 4. One operand of instruction 4
is R3, and it does not contain the right data until instruction3 finishes executing
(step T6).

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 3: add R3 R1 R2

instruction 4: add R4 R2 R3

instruction 5: store R4 address1

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 8: add R7 R5 R6

instruction 9: add R8 R6 R7

instruction 10: store R8 address4

30

Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Instruction
fetch

1 2 3 4 4 4 5 5 5 6 6 6 7 8

Decode X 1 2 3 3 3 4 4 4 5 5 5 6 7

Operand fetch X X 1 2 X X 3 X X 4 X X 5 6

Execute
operation

X X X 1 2 X X 3 X X 4 X X 5

Write back
result

X X X X 1 2 X X 3 X X 4 X X

Step T11: Cannot do operand fetch on instruction 5. One operand of instruction 5
is R5, which does not contain the right data until instruction 4 finishes executing
(step T12).

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 3: add R3 R1 R2

instruction 4: add R4 R2 R3

instruction 5: store R4 address1

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 8: add R7 R5 R6

instruction 9: add R8 R6 R7

instruction 10: store R8 address4

31

Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Instruction
fetch

1 2 3 4 5 6 7 8 9 10 X X X X

Decode X 1 2 3 4 5 6 7 8 9 10 X X X

Operand fetch X X 1 2 3 4 5 6 7 8 9 10 X X

Execute
operation

X X X 1 2 3 4 5 6 7 8 9 10 X

Write back
result

X X X X 1 2 3 4 5 6 7 8 9 10

Compare to what would happen if we could keep the pipeline always full (which
is simply impossible if we execute these instructions in the order in which they
are given.

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 3: add R3 R1 R2

instruction 4: add R4 R2 R3

instruction 5: store R4 address1

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 8: add R7 R5 R6

instruction 9: add R8 R6 R7

instruction 10: store R8 address4

32

Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Instruction
fetch

1 X X X X 2 X X X X 3 X X X

Decode X 1 X X X X 2 X X X X 3 X X

Operand fetch X X 1 X X X X 2 X X X X 3 X

Execute
operation

X X X 1 X X X X 2 X X X X 3

Write back
result

X X X X 1 X X X X 2 X X X X

Compare to what would happen if we did not use any pipelining whatsoever.

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 3: add R3 R1 R2

instruction 4: add R4 R2 R3

instruction 5: store R4 address1

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 8: add R7 R5 R6

instruction 9: add R8 R6 R7

instruction 10: store R8 address4

33

There is one trick, widely used, to make pipelining more efficient:
out-of-order execution of instructions.
The program below is a reordered version of the program above.

instruction 8: add R7 R5 R6

instruction 4: add R4 R2 R3

instruction 9: add R8 R6 R7

instruction 5: store R4 address1

instruction 10: store R8 address4

Instructions are reordered so that more of them can be executed at
the same time. Of course, we must be very careful: Out-of-order
execution should never change the result.

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 3: add R3 R1 R2

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 3: add R3 R1 R2

instruction 4: add R4 R2 R3

instruction 5: store R4 address1

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 8: add R7 R5 R6

instruction 9: add R8 R6 R7

instruction 10: store R8 address4

instruction 1: load R1 address1

instruction 2: load R2 address2

instruction 6: load R5 address3

instruction 7: load R6 address4

instruction 3: add R3 R1 R2

34

instruction 8: add R7 R5 R6

instruction 4: add R4 R2 R3

instruction 9: add R8 R6 R7

instruction 5: store R4 address1

instruction 10: store R8 address4

Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Instruction
fetch

1 2 6 7 3 8 4 4 9 5 5 10 10 X

Decode X 1 2 6 7 3 8 8 4 9 9 5 5 10

Operand fetch X X 1 2 6 7 3 X 8 4 X 9 X 5

Execute
operation

X X X 1 2 6 7 3 X 8 4 X 9 X

Write back
result

X X X X 1 2 6 7 3 X 8 4 X 9

Execution of reordered instructions: the pipeline gets more fully utilized.

Out-of-Order Execution

•Not covered in the textbook.

•For more information, read:
http://en.wikipedia.org/wiki/Out-of-order_execution

•Key idea:
• Fetched instructions do not go directly to the pipeline. Instead,

they join an instruction queue.
• An instruction is held in that queue until its operands are

available. Then, it is allowed to enter the pipeline.

•Out-of-order execution requires more complicated CPUs.

•Now standard in desktop/laptop processors.

35

http://en.wikipedia.org/wiki/Out-of-order_execution

Issues with Pipelining: Branching
•Suppose we have a branching statement (if, else).

•Until that statement is executed, the next statement is
not known. Thus, the CPU does not know what to put
in the pipeline after the branching statement.

•Common solution: guess (formal term: branch
prediction).

• If the guess is wrong, undo the work that was based
on guessing, and resume.

•Not covered in the textbook. For more information,
read:

http://en.wikipedia.org/wiki/Branch_predictor

36

http://en.wikipedia.org/wiki/Branch_predictor

Superscalar Architectures (1)

Figure 2-5. Dual five-stage pipelines
with a common instruction fetch unit.

•Dual five-stage pipelines with common instruction fetch
unit
• Fetches pairs of instructions together and puts each into its own

pipeline
• Two instructions must not conflict over resource usage
• Neither must depend on the results of others

37

Superscalar Architectures (2)
• If one pipeline is good, two pipelines are even better.

• Is that correct?

38

Superscalar Architectures (2)
• If one pipeline is good, two pipelines are even better.

• Is that correct? Yes, it is fairly easy to prove that moving from
one to two pipelines will never hurt performance, and on
average it will improve performance.

•Same issues involved when using a single pipeline arise
here:
• Cannot execute instructions until their operands are available.
• Cannot execute instructions in parallel if they use the same

resource (i.e., write result on the same register at the same
time).

• Branch predictions are used (and may go wrong).
• Out-of-order execution is widely used, improves efficiency.

39

Superscalar Architectures (3)

Figure 2-6. A superscalar processor with five functional units.

Intuition: S3 stage issues instructions considerably faster than the
S4 stage can execute them

40

Superscalar Architectures (4)

•The previous figure assumes that S3 (operand fetch)
works match faster than S4 (execution).
• That is indeed the typical case.

•This type of architecture requires the CPU to have
multiple units for the same function.
• For example, multiple ALUs.

•This type of architecture is nowadays common, due
to improved hardware capabilities.

41

Processor-Level Parallelism
•The idea behind Processor-Level Parallelism:

• multiple processors are better than a single processor.

•However, there are several intermediate designs
between a single processor and multiple processors:
• Data parallel computers.

• Single Instruction-stream Multiple Data-stream (SIMD) processors.

• Vector Processors.

• Multiprocessors.
• Multiple computers.

42

Data Parallelism

•Many problems, especially in the physical sciences,
engineering, and graphics, involve performing the
same exact calculations on different data.

•Example: making an image brighter.
• An image is a 2-dimensional array of pixels.
• Each pixel contains three numbers: R, G, B, describing the

color of that pixel (how much red, green, and blue it
contains).

• We perform the same numerical operation (adding a
constant) on thousands (or millions) of different pixels.

•Graphics cards and video game platforms perform
such operations on a regular basis.

43

Data Parallel Computers

October 16, 2014 CSE2312, Fall 2014 44

SIMD Processors

•SIMD stands for Single Instruction-stream Multiple
Data-stream.

•There are multiple processors.

•There is a single control unit, executing a single
sequence of instructions.

•Each instruction in the sequence is broadcast to all
processors.

•Each processor applies the instruction on its own
local data, from its own memory.

•Why is this any better than just using multiple
processors?

45

SIMD Processors

•The multiple processors in a SIMD architecture are
greatly simplified, because they do not need a
control unit.

•For example, it is a lot cheaper to design and mass-
produce a SIMD machine with 1000 processors,
than a regular machine with 1000 processors, since
the SIMD processors do not need control units.

46

Vector Processors
•Applicable in exactly the same case as SIMD

processors:
• when the same sequence of instructions is applied to many

sets of different data.

•This problem allows for very large pipelines.
• applying the same set of instructions on different data

means there are no dependencies/conflicts among
instructions.

• To support these very large pipelines, the CPU needs a large
number of registers, to hold the data of all instructions in the
pipeline.

47

Multiprocessors (1)

•Figure 2-8. (a) A single-bus multiprocessor.

48

Multiprocessors (2)
•The design in the previous slide uses a single bus,

connecting multiple CPUs with the same memory.

•Advantage: compared to SIMD machines and vector
processors, multiprocessor machines can execute
different instructions at the same time.

•Advantage: having a single memory makes programming
easy (compared to multiple memories).

•Disadvantage: if multiple CPUs try to access the main
memory at the same time, the bus cannot support all of
them simultaneously.
• Some CPUs have to wait, so they do not get used at 100%

efficiency.

49

•Figure 2-8(b) A multicomputer with local
memories.

50

Multicomputers (1)

Multicomputers (2)
•At some point (close to 256 processors these days),

multiprocessors reach their limit.
• Hard to connect that many processors to a single memory.
• Hard to avoid conflicts (multiple CPUs reading/writing the

same memory location).

•Multicomputers are the logical next step:
• Multiple processors.
• Each processor has its own bus and memory.

•Easy to scale, for example to 250,000 computers.

51

Multicomputers (3)

•Major disadvantage of microcomputers: they are
difficult to program:
• a single C or Java program is not sufficient.
• hard to divide instructions and data appropriately.
• hard to combine multiple results together.

52

Flynn’s Taxonomy

• SISD: Single Instruction,
Single Data
• Classical Von Neumann

• SIMD: Single Instruction,
Multiple Data
• GPUs

• MISD: Multiple Instruction,
Single Data
• More exotic: fault-tolerant

computers using task
replication (Space Shuttle
flight control computers)

• MIMD: Multiple Instruction,
Multiple Data
• Multiprocessors,

multicomputers, server
farms, clusters, …

53CSE2312, Fall 2014October 16, 2014

Summary

•Pipelines
• Instruction-level parallelism

• Running pieces of several instructions simultaneously to make the most
use of available fixed resources (think laundry)

• Other forms of parallelism: Flynn’s taxonomy

•Know what make does
•Know how to start QEMU
•Know how to start GDB
•Start learning how to interact and debug with GDB

• Saw example of debugging the stack, etc.

October 16, 2014 CSE2312, Fall 2014 54

Questions?

October 16, 2014 CSE2312, Fall 2014 55

More on Pipelining

56

CSE 2312

Computer Organization and Assembly Language Programming

Vassilis Athitsos

University of Texas at Arlington

Fetch-Decode-Execute Cycle in Detail

1. Fetch next instruction from memory
2. Change program counter to point to next instruction
3. Determine type of instruction just fetched
4. If instruction uses a word in memory, locate it
5. Fetch word, if needed, into a CPU register.
6. Execute instruction.
7. The clock cycle is completed. Go to step 1 to begin

executing the next instruction.

57

Toy ISA Instructions
• add A B C:

• Adds contents of registers B and C, stores result in register A.

• addi A C N:
• Adds integer N to contents of register C, stores result in register A.

• load A address:
• Loads data from the specified memory address to register A.

• store A address:
• Stores data from register A to the specified memory address.

• goto line:
• Set the instruction counter to the specified line. That line should be executed

next.

• if A line:
• If the contents of register A are NOT 0, set the instruction counter to the

specified line. That line should be be executed next.

58

Defining Pipeline Behavior

• In the following slides, we will explicitly define how
each instruction goes through the pipeline.

•This is a toy ISA that we have just made up, so the
following conventions are designed to be simple,
and easy to apply.

•You may find that, in some cases, we could have
followed other conventions that would make
execution even more efficient.

59

Pipeline Steps for: add A B C

•Fetch Step:

•Decode Step:

•Operand Fetch Step:

•Execution Step:

•Output Save Step:

•NOTES:

60

Pipeline Steps for: add A B C
• Fetch Step: Fetch instruction from memory location specified by

PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement uses the ALU, takes
input from registers B and C, and modifies register A.

• Operand Fetch Step: Copy contents of registers B and C to ALU
input registers.

• Execution Step: The ALU unit performs addition.

• Output Save Step: The result of the addition is copied to register
A.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
registers B and C.

61

Pipeline Steps for: addi A C N

•Fetch Step:

•Decode Step:

•Operand Fetch Step:

•Execution Step:

•Output Save Step:

•NOTES:

62

Pipeline Steps for: addi A C N
• Fetch Step: Fetch instruction from memory location specified

by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement uses the ALU,
takes input from register C, and modifies register A.

• Operand Fetch Step: Copy content of register C into one ALU
input register, copy integer N into the other ALU input register.

• Execution Step: The ALU unit performs addition.

• Output Save Step: The result of the addition is copied to
register A.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
register C.

63

Pipeline Steps for: load A address

•Fetch Step:

•Decode Step:

•Operand Fetch Step:

•Execution Step:

•Output Save Step:

•NOTES:

64

Pipeline Steps for: load A address
• Fetch Step: Fetch instruction from memory location specified

by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement accesses memory,
takes input from address, and modifies register A.

• Operand Fetch Step: Not applicable for this instruction.

• Execution Step: The bus brings to the CPU the contents of
address.

• Output Save Step: The data brought by the bus is copied to
register A.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
address.

65

Pipeline Steps for: store A address

•Fetch Step:

•Decode Step:

•Operand Fetch Step:

•Execution Step:

•Output Save Step:

•NOTES:

66

Pipeline Steps for: store A address
• Fetch Step: Fetch instruction from memory location specified

by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement accesses memory,
takes input from register A, and modifies address.

• Operand Fetch Step: Not applicable for this instruction.

• Execution Step: The bus receives the contents of register A
from the CPU.

• Output Save Step: The bus saves the data at address.

• NOTES: This instruction must wait at the decode step until all
previous instructions have finished modifying the contents of
register A.

67

Pipeline Steps for: goto line

•Fetch Step:

•Decode Step:

•Operand Fetch Step:

•Execution Step:

•Output Save Step:

•NOTES:

68

Pipeline Steps for: goto line
• Fetch Step: Fetch instruction from memory location specified

by PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement is a goto. Flush
(erase) what is stored at the fetch step in the pipeline.

• Operand Fetch Step: Not applicable for this instruction.

• Execution Step: Not applicable for this instruction.

• Output Save Step: The program counter (PC) is set to the
specified line.

• NOTES: See next slide.

69

Pipeline Steps for: goto line

• NOTES: When a goto instruction completes the decode step:
• The pipeline stops receiving any new instructions. However,

instructions that entered the pipeline before the goto instruction
continue normal execution.

• The pipeline ignores and does not process any further the instruction
that was fetched while the goto instruction was decoded.

• Fetching statements resumes as soon as the goto instruction
has finished executing, i.e., when the goto instruction has
completed the output save step.

70

Pipeline Steps for: if A line

•Fetch Step:

•Decode Step:

•Operand Fetch Step:

•Execution Step:

•Output Save Step:

•NOTES:

71

Pipeline Steps for: if A line
• Fetch Step: Fetch instruction from memory location specified by

PC. Increment PC to point to the next instruction.

• Decode Step: Determine that this statement is an if and that it
accesses register A. Flush (erase) what is stored at the fetch step
in the pipeline.

• Operand Fetch Step: Copy contents of register A to first ALU
input register.

• Execution Step: The ALU compares the first input register with 0,
and outputs 0 if the input register equals 0, outputs 1 otherwise.

• Output Save Step: If the ALU output is 1, the program counter
(PC) is set to the specified line. Nothing done otherwise.

• NOTES: See next slide.

72

Pipeline Steps for: if A line

• NOTE 1: an if instruction must wait at the decode step until
all previous instructions have finished modifying register A.

• When an if instruction completes the decode step:
• The pipeline stops receiving any new instructions. However,

instructions that entered the pipeline before the if instruction
continue normal execution.

• The pipeline erases and does not process any further the instruction
that was fetched while the if instruction was decoded.

• Fetching statements resumes as soon as the if instruction
has finished executing, i.e., when the if instruction has
completed the output save step.

73

Pipeline Execution: An Example
line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

74

• Consider the program on the right.

• The previous specifications define
how this program is executed step-
by-step through the pipeline.

• To trace the execution, we need to
specify the inputs to the program.

• Program inputs:

• Program outputs:

Pipeline Execution: An Example
line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

75

• Consider the program on the right.

• The previous specifications define
how this program is executed step-
by-step through the pipeline.

• To trace the execution, we need to
specify the inputs to the program.

• Program inputs:
– address1, let's assume it contains 0.

– address2, let's assume it contains 10.

• Program outputs:
– address10

– address11

– address12

76

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

77

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

78

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

79

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

80

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

81

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 2 to finish.

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

82

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 2 to finish.

6 4 3 X X 2 4

7

8

9

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

83

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 2 to finish.

6 4 3 X X 2 4

7 X X 3 X X 4
line 3 moves on. if detected. Stop fetching, flush
line 4 from fetch step.

8

9

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

84

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 2 to finish.

6 4 3 X X 2 4

7 X X 3 X X 4
line 3 moves on. if detected. Stop fetching, flush
line 4 from fetch step.

8 X X X 3 X 4

9

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

85

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 2 to finish.

6 4 3 X X 2 4

7 X X 3 X X 4
line 3 moves on. if detected. Stop fetching, flush
line 4 from fetch step.

8 X X X 3 X 4

9 X X X X 3 4

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

86

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

9 X X X X 3 4

10 4 X X X X 4 if has finished, PC does NOT change.

11 5 4 X X X 5

12 6 5 4 X X 6

13 X X 5 4 X X
goto detected. Stop fetching, flush line 6 from
fetch step.

14 X X X 5 4 X

15 X X X X 5 X

16 7 X X X X 7 goto has finished, PC set to 7.

17 8 7 X X X 8

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

87

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

17 8 7 X X X 8

18 9 8 7 X X 9

19 9 8 X 7 X 9 line 8 waits for line 7 to finish.

20 9 8 X X 7 9

21 10 9 8 X X 10 line 8 moves on.

22 11 10 9 8 X 11

23 11 10 X 9 8 11 line 10 waits for line 9 to finish.

24 11 10 X X 9 11

25 12 11 10 X X 12 line 10 moves on.

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

88

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

25 12 11 10 X X 12 line 10 moves on.

26 X 12 11 10 X X no more instructions to fetch.

27 X 12 X 11 X X line 12 waits for line 11 to finish.

28 X 12 X X 11 X

29 X X 12 X X X line 12 moves on.

30 X X X 12 X X

31 X X X X 12 X

32 program execution has finished!

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

Reordering Instructions

89

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• Reordering of instructions can be
done by a compiler, as long as the
compiler knows how instructions are
executed.

• The goal of reordering is to obtain
more efficient execution through the
pipeline, by reducing dependencies.

• Obviously, reordering is not allowed
to change the meaning of the
program.

• What is the meaning of a program?

Meaning of a Program

90

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• What is the meaning of a program?

• A program can be modeled
mathematically as a function, that
takes specific input and produces
specific output.

• In this program, what is the input?
Where is information stored that the
program accesses?

• What is the output? What is
information left behind by the
program?

Meaning of a Program

91

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• What is the meaning of a program?

• A program can be modeled
mathematically as a function, that
takes specific input and produces
specific output.

• In this program, what is the input?
Where is information stored that the
program accesses?
– address1 and address2.

• What is the output? What is
information left behind by the
program?
– address10, address11, address12.

Reordering Instructions

92

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• Reordering is not allowed to change
the meaning of a program.

• Therefore, when given the same
input as the original program, the re-
ordered program must produce
same output as the original
program.

• Therefore, the re-ordered program
must ALWAYS leave the same results
as the original program on
address10, address11, address12, as
long as it starts with the same
contents as the original program on
address1 and address2.

Reordering Instructions

93

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• Reordering of instructions can be
done by a compiler, as long as the
compiler knows how instructions are
executed.

• How can we rearrange the order of
instructions?

• Heuristic approach: when we find an
instruction A that needs to wait on
instruction B:
– See if instruction B can be moved

earlier.

– See if some later instructions can be
moved ahead of instruction A.

Reordering Instructions

94

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• What is the first instruction that has
to wait?

• What can we do for that case?

Reordering Instructions

95

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• What is the first instruction that has
to wait?
– line 3 needs to wait on line 2.

• What can we do for that case?
– Swap line 2 and line 1, so that line 2

happens earlier.

Reordering Instructions

96

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• What is another instruction that has
to wait?

• What can we do for that case?

Reordering Instructions

97

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

• What is another instruction that has
to wait?
– line 8 needs to wait on line 7.

• What can we do for that case?
– We can move line 9 and line 11 ahead of

line 8.

Result of Reordering

98

line 1: load R2 address2

line 2: load R1 address1

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: store R4 address10

line 9: addi R5 R2 30

line 10: store R5 address11

line 11: add R8 R2 R3

line 12: store R8 address12

line 1 (old 2): load R1 address1

line 2 (old 1): load R2 address2

line 3 (old 3): if R1 6

line 4 (old 4): addi R3 R1 20

line 5 (old 5): goto 7

line 6 (old 6): addi R3 R1 10

line 7 (old 7): addi R4 R2 5

line 8 (old 9): addi R5 R2 30

line 9 (old 11): add R8 R2 R3

line 10 (old 8): store R4 address10

line 11 (old 10): store R5 address11

line 12 (old 12): store R8 address12

99

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

1 1 X X X X 1

2 2 1 X X X 2

3 3 2 1 X X 3

4 4 3 2 1 X 4

5 4 3 X 2 1 4 line 3 waits for line 1 to finish.

6 X X 3 X 2 4
line 3 moves on. if detected. Stop fetching, flush
line 4 from fetch step.

7 X X X 3 X 4

8 X X X X 3 4

9 4 X X X X 4 if has finished, PC does NOT change.

line 1: load R1 address1

line 2: load R2 address2

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: addi R5 R2 30

line 9: add R8 R2 R3

line 10: store R4 address10

line 11: store R5 address11

line 12: store R8 address12

100

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

9 4 X X X X 4 if has finished, PC does NOT change.

10 5 4 X X X 5

11 6 5 4 X X 6

12 X X 5 4 X X
goto detected. Stop fetching, flush line 6 from
fetch step.

13 X X X 5 X X

14 X X X X 5 X

15 7 X X X X 7 goto has finished, PC set to 7.

16 8 7 X X X 8

17 9 8 7 X X 9

line 1: load R1 address1

line 2: load R2 address2

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: addi R5 R2 30

line 9: add R8 R2 R3

line 10: store R4 address10

line 11: store R5 address11

line 12: store R8 address12

101

Time Fetch Decode Operand
Fetch

ALU
exec.

Output
Save

PC Notes

17 9 8 7 X X 9

18 10 9 8 7 X 10

19 11 10 9 8 7 11

20 12 11 10 9 8 12

21 X 12 11 10 9 X

22 X X 12 11 10 X

23 X X X 12 11 X

24 X X X X 12 X

25 program execution has finished!

line 1: load R1 address1

line 2: load R2 address2

line 3: if R1 6

line 4: addi R3 R1 20

line 5: goto 7

line 6: addi R3 R1 10

line 7: addi R4 R2 5

line 8: addi R5 R2 30

line 9: add R8 R2 R3

line 10: store R4 address10

line 11: store R5 address11

line 12: store R8 address12

Execution took 24 clock ticks.
Compare to 31 ticks for the original program.

Review: Example .gdbinit

set architecture arm

target remote :1234

symbol-file example.elf

b _start

• Sets architecture to arm (default is x86)

• Connects to QEMU process via port 1234

• Loads symbols (labels, etc.) from the ELF file called
example.elf

• Puts breakpoint at label _start

October 16, 2014 CSE2312, Fall 2014 102

Review: GDB Commands

• b label
Sets a breakpoint at a specific label in your source code file. In practice, for some weird reason, the code
actually breaks not at the label that you specify, but after executing the next line.

• b line_number
Sets a breakpoint at a specific line in your source code file. In practice, for some weird reason, the code actually
breaks not at the line that you specify, but at the line right after that.

• c
Continues program execution until it hits the next breakpoint.

• i r
Shows the contents of all registers, in both hexadecimal and decimal representations; short for info
registers

• list
Shows a list of instructions around the line of code that is being executed.

• quit
This command quits the debugger, and exits GDB.

• stepi
This command executes the next instruction.

• set $register=val
set $pc=0
This command updates a register to be equal to val, for example, to restart your program, set the PC to 0

• monitor quit
Send the remote monitor (e.g., QEMU in our case) a command, in this case, tell QEMU to terminate; Call this
before quiting gdb so that the QEMU process gets killed!

October 16, 2014 CSE2312, Fall 2014 103

Basic Function Call Example

int ex(int g, int h, int i, int j) {

int f;

f = (g + h) – (i + j);

return f;

}

r0 = g, r1 = h, r2 = I, r3 = j, r4 = f

October 16, 2014 CSE2312, Fall 2014 104

Basic Function Call Example Assembly

ex: ; label for function name

SUB sp, sp, #12 ; adjust stack to make room for 3 items

STR r6, [sp,#8] ; save register r6 for use afterwards

STR r5, [sp,#4] ; save register r5 for use afterwards

STR r4, [sp,#0] ; save register r4 for use afterwards

ADD r5,r0,r1 ; register r5 contains g + h

ADD r6,r2,r3 ; register r6 contains i + j

SUB r4,r5,r6 ; f gets r5 – r6, ie: (g + h) – (i + j)

MOV r0,r4 ; returns f (r0 = r4)

LDR r4, [sp,#0] ; restore register r4 for caller

LDR r5, [sp,#4] ; restore register r5 for caller

LDR r6, [sp,#8] ; restore register r6 for caller

ADD sp,sp,#12 ; adjust stack to delete 3 items

MOV pc, lr ; jump back to calling routine

October 16, 2014 CSE2312, Fall 2014 105

Basic Function Output

r0 0xfffffffc -4

r1 0x4 4

r2 0x6 6

r3 0x7 7

r4 0x0 0

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0x10000 0x10000 <_start>

lr 0x1001c 65564

pc 0x1001c 0x1001c <iloop>

cpsr 0x400001d3 1073742291

@ (g + h) – (i + j)

@ r0 = g

@ r1 = h

@ r2 = i

@ r3 = j

@ r4 = f

mov r0,#5

mov r1,#4

mov r2,#6

mov r3,#7

mov r4,#0

October 16, 2014 CSE2312, Fall 2014 106

Basic Function Call Example Stack

October 16, 2014 CSE2312, Fall 2014 107

Recursive Function Example: Factorial

• How do we write function
factorial in C, as a recursive
function?

int factorial(int N)
{
if (N== 0) return 1;
return N* factorial(N -1);

}

108

• How do we write function
factorial in assembly?

@ factorial main body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq factorial_exit

sub r0, r4, #1

bl factorial

mov r5, r0

mul r0, r5, r4October 16, 2014 CSE2312, Fall 2014

Recursive Function Example: Factorial

@ factorial preamble

fact: push {r4,r5,lr}

@ factorial body

mov r4, r0

cmp r4, #0

moveq r0, #1

beq fact_exit

sub r0, r4, #1

bl fact

mov r5, r0

mul r0, r5, r4

109

@ factorial wrap-up

fact_exit:

pop {r4,r5,lr}

bx lr

October 16, 2014 CSE2312, Fall 2014

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x5 5

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x0 0

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xfff4 0xfff4

lr 0x1000c 65548

pc 0x10014 0x10014 <fact+4>

cpsr 0x600001d3 1610613203

October 16, 2014 CSE2312, Fall 2014 110

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x4 4

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x5 5

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffe8 0xffe8

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 111

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x3 3

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x4 4

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffdc 0xffdc

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 112

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x2 2

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x3 3

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffd0 0xffd0

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 113

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x1 1

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x2 2

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffc4 0xffc4

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 114

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x0 0

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x1 1

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0xffb8 0xffb8

lr 0x1002c 65580

pc 0x10014 0x10014 <fact+4>

cpsr 0x200001d3 536871379

October 16, 2014 CSE2312, Fall 2014 115

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Breakpoint 2, fact () at

example2.s:12, mov r4, r0

(gdb) i r

r0 0x78 120

r1 0x183 387

r2 0x100 256

r3 0x0 0

r4 0x0 0

r5 0x0 0

r6 0x0 0

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0x0 0

r11 0x0 0

r12 0x0 0

sp 0x10000 0x10000 <_start>

lr 0x1000c 65548

pc 0x1000c 0x1000c <iloop>

cpsr 0x600001d3 1610613203

October 16, 2014 CSE2312, Fall 2014 116

Recursive Factorial Example for n = 5:
Compute 5! Using fact(5)

Stack after final return:

0xff90: 0 0 0 0

0xffa0: 0 0 0 0

0xffb0: 0 0 1 0

0xffc0: 65580 2 0 65580

0xffd0: 3 0 65580 4

0xffe0: 0 65580 5 0

0xfff0: 65580 0 0 65548

0x10000

October 16, 2014 CSE2312, Fall 2014 117

String Output

• So far we have seen
character input/output

• That is, one char at a time

• What about strings
(character arrays, i.e.,
multiple characters)?

• Strings are stored in
memory at consecutive
addresses

• Like arrays that we saw
last time

ADDR Byte

3

Byte

2

Byte

1

Byte

0

0x1000 ‘d’ ‘c’ ‘b’ ‘a’

0x1004 ‘h’ ‘g’ ‘f’ ‘e’

0x1008 ‘l’ ‘k’ ‘j’ ‘i’

0x100c ‘p’ ‘o’ ‘n’ ‘m’

0x1010 ‘t’ ‘s’ ‘r’ ‘q’

0x1014 ‘x’ ‘w’ ‘v’ ‘u’

0x1018 ‘\r’ ‘\n’ ‘z’ ‘y’

October 16, 2014 CSE2312, Fall 2014 118

string_abc:

.asciz "abcdefghijklmnopqrstuvwxyz\n\r"

.word 0x00

Assembler Output

0001012e <string_abc>:

1012e: 64636261 strbtvs r6, [r3], #-609; 0x261

10132: 68676665 stmdavs r7!, {r0, r2, r5, r6, r9, sl, sp,

lr}^

10136: 6c6b6a69 stclvs 10, cr6, [fp], #-420; 0xfffffe5c

1013a: 706f6e6d rsbvc r6, pc, sp, ror #28

1013e: 74737271 ldrbtvc r7, [r3], #-625; 0x271

10142: 78777675 ldmdavc r7!, {r0, r2, r4, r5, r6, r9, sl,

ip, sp, lr}^

10146: 0d0a7a79 vstreq s14, [sl, #-484] ; 0xfffffe1c

1014a: 00000000 andeq r0, r0, r0

October 16, 2014 CSE2312, Fall 2014 119

Printing Strings

@ assumes r0 contains uart data register address

@ r1 should contain address of first character of string

@ to display; stop if 0x00 (‘\0’) seen

print_string: push {r1,r2,lr}

str_out: ldrb r2,[r1]

cmp r2,#0x00 @ '\0' = 0x00: null character?

beq str_done @ if yes, quit

str r2,[r0] @ otherwise, write char of string

add r1,r1,#1 @ go to next character

b str_out @ repeat

str_done: pop {r1,r2,lr}

bx lr

October 16, 2014 CSE2312, Fall 2014 120

