
1

Exploring the Design of the

Cortex-A15 Processor
ARM’s next generation mobile applications processor

Travis Lanier

Senior Product Manager

2

Cortex-A15: Next Generation Leadership

Target Markets

 High-end wireless and

smartphone platforms

 tablet, large-screen mobile

and beyond

 Consumer electronics and

auto-infotainment

 Hand-held and console

gaming

 Networking, server,

enterprise applications

Cortex-A class multi-processor

 1 TB physical addressing

 Full hardware virtualization

 AMBA 4 system coherency

 ECC and parity protection for all SRAMs

Advanced power management

 Fine-grain pipeline shutdown

 Aggressive L2 power reduction capability

 Extremely fast state save and restore

Large performance advancement

 Improved single-thread and MP performance

Targets 1.5 GHz in 32/28 nm LP process

Targets 2.5 GHz in 32/28 nm HP process

3

Agenda

 Architectural Updates and Key New Features

 Large physical addressing

 Virtualization

 ISA extensions

 Multiprocessing and AMBA 4

 ECC

 Comparisons

 Microarchitecture

 Frequency optimization

 Pipeline IPC optimization

4

Large Physical Addressing – LPA

Cortex-A15 introduces 40-bit physical addressing

 1 TB of memory

 32-bit limited ARM to 4GB

What does this mean for ARM systems?

 More memory per core in an MP system

 More applications at the same time

 Applications can be wired into OS to take advantage directly

 Virtualization/multiple operating system instantiations

5

Seamlessly migrate OS instances between servers

 Run multiple OS instances simultaneously on same CPU

 Speeds recovery and migration

 Allows isolation of multiple work environments and data

 Power management under low loads

Builds on ARM TrustZone extensions

 Hypervisor privilege level

 Two level address translation

 Supports execution of existing binaries

 Includes support for I/O

Virtualization

Hypervisor Partners

6

Virtualization Extension Basics

 New Non-secure level of privilege to hold Hypervisor

 Hyp mode

 New mechanisms avoid the need Hypervisor Intervention for:

 Guest OS Interrupt masking bits

 Guest OS page table management

 Guest OS Device Drivers due to Hypervisor memory relocation

 Guest OS communication with the GIC

 New traps into Hyp mode for:

 ID register accesses; WFI/WFE

 Miscellaneous “Difficult” System Control Register cases

 New mechanisms to improve:

 GuestOS Load/Store emulation by the Hypervisor

 Emulation of Trapped instructions

7

Virtualization: A Third Layer of Privilege

Guest OS same privilege structure as before

 Can run the same instructions

New Hyp mode has higher privilege

VMM controls wide range of OS accesses to hardware

User Mode

(Non-privileged)

Supervisor Mode
(Privileged)

Hyp Mode
(More Privileged)

Guest Operating System1

App2App1

Guest Operating System2

App2App1

Virtual Machine Monitor (VMM) or

Hypervisor

1

2

3

TrustZone Secure Monitor

Secure

Apps

Secure

Operating System

Non-secure State Secure State

E
x
c
e
p
ti
o
n
s

E
x
c
e
p
ti
o
n
 R

e
tu

rn
s

8

Virtual Memory in Two Stages
Stage 1 translation owned by

each Guest OS

Virtual address map of

each App on each Guest OS

“Intermediate Physical” address
map of each Guest OS

Real System Physical
address map

Stage 2 translation owned by
the VMM

Hardware has 2-stage
memory translation

Tables from Guest OS
translate VA to IPA

Second set of tables from
VMM translate IPA to PA

Allows aborts to be routed to
appropriate software layer

9

ISA Extensions

Instructions added to Cortex-A15
(and all subsequent Cortex-A cores)

 Integer Divide

 Similar to Cortex-R, M class (driven by automotive)

 Use getting more common

 Fused MAC

 Normalizing and rounding once after MUL and ADD

 Greater accuracy

 Requirement for IEEE compliance

 New instructions to complement current chained multiply + add

Hypervisor Debug

 Monitor-mode, watchpoints, breakpoints

10

Quad Cortex-A15 MPCore

Cortex-A15 Multiprocessing

 ARM introduced up to quad MP in 2004 with ARM11 MPCore

 Multiple MP solutions: Cortex-A9, Cortex-A5, Cortex-A15

 Cortex-A15 includes

 Integrated L2 cache with SCU functionality

 128-bit AMBA 4 interface with coherency extensions

Cortex-A15 Cortex-A15 Cortex-A15 Cortex-A15

Processor Coherency (SCU)

Up to 4MB L2 cache

128-bit AMBA 4 interface

ACP

11

Scaling Beyond Four Cores

Introducing AMBA 4 coherency extensions

 Coherency, Barriers and Virtualization signalling

Software implications

 Hardware managed coherency simplifies software

 Processor spends less time managing caches

Coherency types

 Within a MPCore cluster: existing SCU SMP coherency

 Between clusters: AMBA 4 ensures coherency with

snoops

 I/O coherent devices can read processor caches

12

Cortex-A15 System Scalability
Introducing CCI-400 Cache Coherent Interconnect

 Processor to Processor Coherency and I/O cohency

 Memory and synchronization barriers

 Virtualization support with distributed virtual memory signalling

128-bit AMBA 4

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

CoreLink CCI-400 Cache Coherent Interconnect

128-bit AMBA 4 IO
 c

o
h
e
re

n
t

d
e
v
ic

e
s

MMU-400

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

System MMU

13

Memory Error Detection/Correction

Error Correction Control on L1 and L2 memories

 Single error correct, 2 error detect

 Multi-bit errors rare

 Protects 32 bits for L1, 64 bits for L2

 Error logging at each level of memory

 Optimize for common case – so correction not in critical path

Primarily motivated by enterprise markets

 Soft errors predominantly caused by electrical disturbances

 Memory errors proportional to RAM and duration of operation

 Servers: MBs of cache, GBs of RAM, 24/7 operation

 Highly probability of error eventually happening

 If not corrected, eventually causes computer to crash and affect network

14

Cortex-A15

Microarchitecture

15

Where We Started: Early Goals

Large performance boost over A9 in general purpose code

 From combination frequency + IPC

 Performance is more than just integer

 Memory system performance critical in larger applications

 Floating point/NEON for multimedia

 MP for high performance scalability

Straightforward design flow

 Supports fully synthesized design flow with compiled RAM instances

 Further optimization possible through advanced implementation

 Power/area savings

Minimize power/area cost for achieving performance target

16

Where to Find Performance: Frequency
Give RAMs as much time as possible

 Majority of cycle dedicated to RAM for access

 Make positive edge based to ease implementation

Balance timing of critical “loops” that dictate maximum frequency

 Microarchitecture loop:

 Key function designed to complete in a cycle (or a set of cycles)

 cannot be further pipelined (with high performance)

 Some example loops:

 Register Rename allocation and table update

 Result data and tag forwarding (ALU->ALU, Load->ALU)

 Instruction Issue decision

 Branch prediction determination

Feasibility work showed critical loops balancing at about 15-16 gates/clk

17

Where to Find Performance: IPC

 Improved branch prediction

 Wider pipelines for higher instruction throughput

 Larger instruction window for out-of-order execution

 More instruction types can execute out-of-order

 Tightly integrated/low latency NEON and Floating Point Units

 Improved floating point performance

 Improved memory system performance

18

0

1

2

3

4

5

6

7

8

General
Purpose
Integer

Floating Point Media Memory
Streaming

Gaming
Workloads

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e Cortex-A8 (45nm)

Cortex-A8 (32/28nm)

Cortex-A15 (32/28nm)

High-end Single Thread Performance

 Both processors using 32K L1 and 1MB L2 Caches, common memory system

 Cortex-A8 andCortex-A15 using 128-bit AXI bus master

Note: Benchmarks are averaged across multiple sets of benchmarks with a common real memory system attached

Cortex-A8 and Cortex-A15 estimated on 32/28nm.

Single-core

19

Performance and Energy Comparison

Lower power on
sustained workload

* Dual-core operation only required for high-end timing critical tasks. Single-core for sustained operation

Energy consumed

(lower is better)

Execution Time for critical task

(lower is better)

Time

In
s
ta

n
ta

n
e
o

u
s
 P

o
w

e
r

A15 dual-core power at peak Much faster execution time for performance critical task

(Compute over and above sustained workload)

Performance at tighter
thermal constraints

20

Cortex-A15 Pipeline Overview

Fetch

Decode

Rename

Dispatch

NEON/FPU

Multiply

Load/Store
5 stages 7 stages

15 stage

Integer pipeline

15-Stage Integer Pipeline

 4 extra cycles for multiply, load/store

 2-10 extra cycles for complex media instructions

Is
s
u

e

W
BInt

Branch
Is

s
u

e
Is

s
u

e

W
B

W
B

21

Improving Branch Prediction
Similar predictor style to Cortex-A8 and Cortex-A9:

 Large target buffer for fast turn around on address

 Global history buffer for taken/not taken decision

Global history buffer enhancements

 3 arrays: Taken array, Not taken array, and Selector

Indirect predictor

 256 entry BTB indexed by XOR of history and address

 Multiple Target addresses allowed per address

Out-of-order branch resolution:

 Reduces the mispredict penalty

 Requires special handling in return stack

22

Fetch Bandwidth: More Details

Increased fetch from 64-bit to 128-bit

 Full support for unaligned fetch address

 Enables more efficient use of memory bandwidth

 Only critical words of cache line allocated

Addition of microBTB

 Reduces bubble on taken branches

 64 entry target buffer for fast turn around prediction

 Fully associative structure

 Caches taken branches only

 Overruled by main predictor when they disagree

23

Out-of-Order Execution Basics

Out-of-Order instruction execution is done to increase

available instruction parallelism

The programmer’s view of in-order execution must be

maintained

 Mechanisms for proper handling of data and control hazards

 WAR and WAW hazards removed by register renaming

 Commit queue used to ensure state is retired non-speculatively

 Early and late stages of pipeline are still executed in-order

 Execution clusters operate out-of-order

 Instructions issue when all required source operands are available

24

Register Renaming

Two main components to register renaming

 Register rename tables

 Provides current mapping from architected registers to result queue entries

 Two tables: one each for ARM and Extended (NEON) registers

 Result queue

 Queue of renamed register results pending update to the register file

 Shared for both ARM and Extended register results

The rename loop

 Destination registers are always renamed to top entry of result queue

 Rename table updated for next cycle access

 Source register rename mappings are read from rename table

 Bypass muxes present to handle same cycle forwarding

 Result queue entries reused when flushed or retired to architectural state

25

Increasing Out-of-Order Execution

Out-of-order execution improves performance by

executing past hazards

 Effectiveness limited by how far you look ahead

 Window size of 40+ operations required for Cortex-A15 performance targets

 Issue queue size often frequency limited to 8 entries

Solution: multiple smaller issue queues

 Execution broken down to multiple clusters defined by instruction type

 Instructions dispatched 3 per cycle to the appropriate issue queue

 Issue queues each scanned in parallel

26

Cortex-A15 Execution Clusters

2

1

2

1

2

Instruction

Issue capability

 Each cluster can have multiple pipelines

 Clusters have separate/independent issuing capability

Simple 0 & 1

Branch

NEON/FPU

Multiply

Load/Store

3-12 stage

out-of-order pipeline

Is
s
u

e

W
ri

te
b

a
c
k

1

1

2-10

4

4

Pipeline stages

(Total: 8)

27

Execution Clusters

 Simple cluster
 Single cycle integer operations

 2 ALUs, 2 shifters (in parallel, includes v6-SIMD)

 Complex cluster
 All NEON and Floating Point data processing operations

 Pipelines are of varying length and asymmetric functions

 Capable of quad-FMAC operation

 Branch cluster
 All operations that have the PC as a destination

 Multiply and Divide cluster
 All ARM multiply and Integer divide operations

 Load/Store cluster
 All Load/Store, data transfers and cache maintenance operations

 Partially out-of-order, 1 Load and 1 Store executed per cycle

 Load cannot bypass a Store, Store cannot bypass a Store

28

Floating Point and NEON Performance

Dual issue queues of 8 entries each

 Can execute two operations per cycle

 Includes support for quad FMAC per cycle

Fully integrated into main Cortex-A15 pipeline

 Decoding done upfront with other instruction types

 Shared pipeline mechanisms

 Reduces area consumed and improves interworking

Specific challenges for Out-of-order VFP/Neon

 Variable length execution pipelines

 Late accumulator source operand for MAC operations

29

Load/Store Cluster

16 entry issue queue for loads and stores

 Common queue for ARM and NEON/memory operations

 Loads issue out-of-order but cannot bypass stores

 Stores issue in order, but only require address sources to issue

4 stage load pipeline

 1st: Combined AGU/TLB structure lookup

 2nd: Address setup to Tag and data arrays

 3rd: Data/Tag access cycle

 4th: Data selection, formatting, and forwarding

Store operations are AGU/TLB look up only on first pass

 Update store buffer after PA is obtained

 Arbitrate for Tag RAM access

 Update merge buffer when non-speculative

 Arbitrate for Data RAM access from merge buffer

Load/Store Cluster (1-LD plus 1-ST only)

Dual

Issue

16-entry

Issue

Queue

Tag

Data

RAM
FMT

ARB

MUX

LD

AGU

TLB

ST

AGU

TLB

ARB

MUX

ST

BUF

30

The Level 2 Memory System
Cache characteristics
 16 way cache with sequential TAG and Data RAM access

 Supports sizes of 512kB to 4MB

 Programmable RAM latencies

MP support
 4 independent Tag banks handle multiple requests in parallel

 Integrated Snoop Control Unit into L2 pipeline

 Direct data transfer line migration supported from cpu to cpu

External bus interfaces
 Full AMBA4 system coherency support on 128-bit master interface

 64/128 bit AXI3 slave interface for ACP

Other key features
 Full ECC capability

 Automatic data prefetching into L2 cache for load streaming

31

Other Key Cortex-A15 Design Features
Supporting fast state save for power down

 Fast cache maintenance operations

 Fast SPR writes: all register state local

Dedicated TLB and table walk machine per cpu

 4-way 512 entry per cpu

 Includes full table walk machine

 Includes walking cache structures

Active power management

 32 entry loop buffer

 Loop can contain up to 2 fwd branches and 1 backwards branch

 Completely disables Fetch and most of the Decode stages of pipeline

ECC support in software writeable RAMs, Parity in read only RAMs

 Supports logging of error location and frequency

32

Overall Summary

 The Cortex-A15 extends the application processor family with

 Dramatic increase in single-thread and overall performance

 Compelling new features, functionality enable exciting OEM products

 Scalability for large-scale computing and system-on-chip integration

 Cortex-A15 has strong momentum in mobile market

 ARM Cortex-A family provides broadest range of processors

 Ultra-low cost smartphones through to tablets and beyond

 Full upward software and feature-set compatibility

 Address cloud computing challenges from end to end

33

Thank You

Please visit www.arm.com for ARM related technical details

For any queries contact <Salesinfo-IN@arm.com>

