
1

Exploring the Design of the

Cortex-A15 Processor
ARM’s next generation mobile applications processor

Travis Lanier

Senior Product Manager

2

Cortex-A15: Next Generation Leadership

Target Markets

 High-end wireless and

smartphone platforms

 tablet, large-screen mobile

and beyond

 Consumer electronics and

auto-infotainment

 Hand-held and console

gaming

 Networking, server,

enterprise applications

Cortex-A class multi-processor

 1 TB physical addressing

 Full hardware virtualization

 AMBA 4 system coherency

 ECC and parity protection for all SRAMs

Advanced power management

 Fine-grain pipeline shutdown

 Aggressive L2 power reduction capability

 Extremely fast state save and restore

Large performance advancement

 Improved single-thread and MP performance

Targets 1.5 GHz in 32/28 nm LP process

Targets 2.5 GHz in 32/28 nm HP process

3

Agenda

 Architectural Updates and Key New Features

 Large physical addressing

 Virtualization

 ISA extensions

 Multiprocessing and AMBA 4

 ECC

 Comparisons

 Microarchitecture

 Frequency optimization

 Pipeline IPC optimization

4

Large Physical Addressing – LPA

Cortex-A15 introduces 40-bit physical addressing

 1 TB of memory

 32-bit limited ARM to 4GB

What does this mean for ARM systems?

 More memory per core in an MP system

 More applications at the same time

 Applications can be wired into OS to take advantage directly

 Virtualization/multiple operating system instantiations

5

Seamlessly migrate OS instances between servers

 Run multiple OS instances simultaneously on same CPU

 Speeds recovery and migration

 Allows isolation of multiple work environments and data

 Power management under low loads

Builds on ARM TrustZone extensions

 Hypervisor privilege level

 Two level address translation

 Supports execution of existing binaries

 Includes support for I/O

Virtualization

Hypervisor Partners

6

Virtualization Extension Basics

 New Non-secure level of privilege to hold Hypervisor

 Hyp mode

 New mechanisms avoid the need Hypervisor Intervention for:

 Guest OS Interrupt masking bits

 Guest OS page table management

 Guest OS Device Drivers due to Hypervisor memory relocation

 Guest OS communication with the GIC

 New traps into Hyp mode for:

 ID register accesses; WFI/WFE

 Miscellaneous “Difficult” System Control Register cases

 New mechanisms to improve:

 GuestOS Load/Store emulation by the Hypervisor

 Emulation of Trapped instructions

7

Virtualization: A Third Layer of Privilege

Guest OS same privilege structure as before

 Can run the same instructions

New Hyp mode has higher privilege

VMM controls wide range of OS accesses to hardware

User Mode

(Non-privileged)

Supervisor Mode
(Privileged)

Hyp Mode
(More Privileged)

Guest Operating System1

App2App1

Guest Operating System2

App2App1

Virtual Machine Monitor (VMM) or

Hypervisor

1

2

3

TrustZone Secure Monitor

Secure

Apps

Secure

Operating System

Non-secure State Secure State

E
x
c
e
p
ti
o
n
s

E
x
c
e
p
ti
o
n
 R

e
tu

rn
s

8

Virtual Memory in Two Stages
Stage 1 translation owned by

each Guest OS

Virtual address map of

each App on each Guest OS

“Intermediate Physical” address
map of each Guest OS

Real System Physical
address map

Stage 2 translation owned by
the VMM

Hardware has 2-stage
memory translation

Tables from Guest OS
translate VA to IPA

Second set of tables from
VMM translate IPA to PA

Allows aborts to be routed to
appropriate software layer

9

ISA Extensions

Instructions added to Cortex-A15
(and all subsequent Cortex-A cores)

 Integer Divide

 Similar to Cortex-R, M class (driven by automotive)

 Use getting more common

 Fused MAC

 Normalizing and rounding once after MUL and ADD

 Greater accuracy

 Requirement for IEEE compliance

 New instructions to complement current chained multiply + add

Hypervisor Debug

 Monitor-mode, watchpoints, breakpoints

10

Quad Cortex-A15 MPCore

Cortex-A15 Multiprocessing

 ARM introduced up to quad MP in 2004 with ARM11 MPCore

 Multiple MP solutions: Cortex-A9, Cortex-A5, Cortex-A15

 Cortex-A15 includes

 Integrated L2 cache with SCU functionality

 128-bit AMBA 4 interface with coherency extensions

Cortex-A15 Cortex-A15 Cortex-A15 Cortex-A15

Processor Coherency (SCU)

Up to 4MB L2 cache

128-bit AMBA 4 interface

ACP

11

Scaling Beyond Four Cores

Introducing AMBA 4 coherency extensions

 Coherency, Barriers and Virtualization signalling

Software implications

 Hardware managed coherency simplifies software

 Processor spends less time managing caches

Coherency types

 Within a MPCore cluster: existing SCU SMP coherency

 Between clusters: AMBA 4 ensures coherency with

snoops

 I/O coherent devices can read processor caches

12

Cortex-A15 System Scalability
Introducing CCI-400 Cache Coherent Interconnect

 Processor to Processor Coherency and I/O cohency

 Memory and synchronization barriers

 Virtualization support with distributed virtual memory signalling

128-bit AMBA 4

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

CoreLink CCI-400 Cache Coherent Interconnect

128-bit AMBA 4 IO
 c

o
h
e
re

n
t

d
e
v
ic

e
s

MMU-400

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

System MMU

13

Memory Error Detection/Correction

Error Correction Control on L1 and L2 memories

 Single error correct, 2 error detect

 Multi-bit errors rare

 Protects 32 bits for L1, 64 bits for L2

 Error logging at each level of memory

 Optimize for common case – so correction not in critical path

Primarily motivated by enterprise markets

 Soft errors predominantly caused by electrical disturbances

 Memory errors proportional to RAM and duration of operation

 Servers: MBs of cache, GBs of RAM, 24/7 operation

 Highly probability of error eventually happening

 If not corrected, eventually causes computer to crash and affect network

14

Cortex-A15

Microarchitecture

15

Where We Started: Early Goals

Large performance boost over A9 in general purpose code

 From combination frequency + IPC

 Performance is more than just integer

 Memory system performance critical in larger applications

 Floating point/NEON for multimedia

 MP for high performance scalability

Straightforward design flow

 Supports fully synthesized design flow with compiled RAM instances

 Further optimization possible through advanced implementation

 Power/area savings

Minimize power/area cost for achieving performance target

16

Where to Find Performance: Frequency
Give RAMs as much time as possible

 Majority of cycle dedicated to RAM for access

 Make positive edge based to ease implementation

Balance timing of critical “loops” that dictate maximum frequency

 Microarchitecture loop:

 Key function designed to complete in a cycle (or a set of cycles)

 cannot be further pipelined (with high performance)

 Some example loops:

 Register Rename allocation and table update

 Result data and tag forwarding (ALU->ALU, Load->ALU)

 Instruction Issue decision

 Branch prediction determination

Feasibility work showed critical loops balancing at about 15-16 gates/clk

17

Where to Find Performance: IPC

 Improved branch prediction

 Wider pipelines for higher instruction throughput

 Larger instruction window for out-of-order execution

 More instruction types can execute out-of-order

 Tightly integrated/low latency NEON and Floating Point Units

 Improved floating point performance

 Improved memory system performance

18

0

1

2

3

4

5

6

7

8

General
Purpose
Integer

Floating Point Media Memory
Streaming

Gaming
Workloads

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e Cortex-A8 (45nm)

Cortex-A8 (32/28nm)

Cortex-A15 (32/28nm)

High-end Single Thread Performance

 Both processors using 32K L1 and 1MB L2 Caches, common memory system

 Cortex-A8 andCortex-A15 using 128-bit AXI bus master

Note: Benchmarks are averaged across multiple sets of benchmarks with a common real memory system attached

Cortex-A8 and Cortex-A15 estimated on 32/28nm.

Single-core

19

Performance and Energy Comparison

Lower power on
sustained workload

* Dual-core operation only required for high-end timing critical tasks. Single-core for sustained operation

Energy consumed

(lower is better)

Execution Time for critical task

(lower is better)

Time

In
s
ta

n
ta

n
e
o

u
s
 P

o
w

e
r

A15 dual-core power at peak Much faster execution time for performance critical task

(Compute over and above sustained workload)

Performance at tighter
thermal constraints

20

Cortex-A15 Pipeline Overview

Fetch

Decode

Rename

Dispatch

NEON/FPU

Multiply

Load/Store
5 stages 7 stages

15 stage

Integer pipeline

15-Stage Integer Pipeline

 4 extra cycles for multiply, load/store

 2-10 extra cycles for complex media instructions

Is
s
u

e

W
BInt

Branch
Is

s
u

e
Is

s
u

e

W
B

W
B

21

Improving Branch Prediction
Similar predictor style to Cortex-A8 and Cortex-A9:

 Large target buffer for fast turn around on address

 Global history buffer for taken/not taken decision

Global history buffer enhancements

 3 arrays: Taken array, Not taken array, and Selector

Indirect predictor

 256 entry BTB indexed by XOR of history and address

 Multiple Target addresses allowed per address

Out-of-order branch resolution:

 Reduces the mispredict penalty

 Requires special handling in return stack

22

Fetch Bandwidth: More Details

Increased fetch from 64-bit to 128-bit

 Full support for unaligned fetch address

 Enables more efficient use of memory bandwidth

 Only critical words of cache line allocated

Addition of microBTB

 Reduces bubble on taken branches

 64 entry target buffer for fast turn around prediction

 Fully associative structure

 Caches taken branches only

 Overruled by main predictor when they disagree

23

Out-of-Order Execution Basics

Out-of-Order instruction execution is done to increase

available instruction parallelism

The programmer’s view of in-order execution must be

maintained

 Mechanisms for proper handling of data and control hazards

 WAR and WAW hazards removed by register renaming

 Commit queue used to ensure state is retired non-speculatively

 Early and late stages of pipeline are still executed in-order

 Execution clusters operate out-of-order

 Instructions issue when all required source operands are available

24

Register Renaming

Two main components to register renaming

 Register rename tables

 Provides current mapping from architected registers to result queue entries

 Two tables: one each for ARM and Extended (NEON) registers

 Result queue

 Queue of renamed register results pending update to the register file

 Shared for both ARM and Extended register results

The rename loop

 Destination registers are always renamed to top entry of result queue

 Rename table updated for next cycle access

 Source register rename mappings are read from rename table

 Bypass muxes present to handle same cycle forwarding

 Result queue entries reused when flushed or retired to architectural state

25

Increasing Out-of-Order Execution

Out-of-order execution improves performance by

executing past hazards

 Effectiveness limited by how far you look ahead

 Window size of 40+ operations required for Cortex-A15 performance targets

 Issue queue size often frequency limited to 8 entries

Solution: multiple smaller issue queues

 Execution broken down to multiple clusters defined by instruction type

 Instructions dispatched 3 per cycle to the appropriate issue queue

 Issue queues each scanned in parallel

26

Cortex-A15 Execution Clusters

2

1

2

1

2

Instruction

Issue capability

 Each cluster can have multiple pipelines

 Clusters have separate/independent issuing capability

Simple 0 & 1

Branch

NEON/FPU

Multiply

Load/Store

3-12 stage

out-of-order pipeline

Is
s
u

e

W
ri

te
b

a
c
k

1

1

2-10

4

4

Pipeline stages

(Total: 8)

27

Execution Clusters

 Simple cluster
 Single cycle integer operations

 2 ALUs, 2 shifters (in parallel, includes v6-SIMD)

 Complex cluster
 All NEON and Floating Point data processing operations

 Pipelines are of varying length and asymmetric functions

 Capable of quad-FMAC operation

 Branch cluster
 All operations that have the PC as a destination

 Multiply and Divide cluster
 All ARM multiply and Integer divide operations

 Load/Store cluster
 All Load/Store, data transfers and cache maintenance operations

 Partially out-of-order, 1 Load and 1 Store executed per cycle

 Load cannot bypass a Store, Store cannot bypass a Store

28

Floating Point and NEON Performance

Dual issue queues of 8 entries each

 Can execute two operations per cycle

 Includes support for quad FMAC per cycle

Fully integrated into main Cortex-A15 pipeline

 Decoding done upfront with other instruction types

 Shared pipeline mechanisms

 Reduces area consumed and improves interworking

Specific challenges for Out-of-order VFP/Neon

 Variable length execution pipelines

 Late accumulator source operand for MAC operations

29

Load/Store Cluster

16 entry issue queue for loads and stores

 Common queue for ARM and NEON/memory operations

 Loads issue out-of-order but cannot bypass stores

 Stores issue in order, but only require address sources to issue

4 stage load pipeline

 1st: Combined AGU/TLB structure lookup

 2nd: Address setup to Tag and data arrays

 3rd: Data/Tag access cycle

 4th: Data selection, formatting, and forwarding

Store operations are AGU/TLB look up only on first pass

 Update store buffer after PA is obtained

 Arbitrate for Tag RAM access

 Update merge buffer when non-speculative

 Arbitrate for Data RAM access from merge buffer

Load/Store Cluster (1-LD plus 1-ST only)

Dual

Issue

16-entry

Issue

Queue

Tag

Data

RAM
FMT

ARB

MUX

LD

AGU

TLB

ST

AGU

TLB

ARB

MUX

ST

BUF

30

The Level 2 Memory System
Cache characteristics
 16 way cache with sequential TAG and Data RAM access

 Supports sizes of 512kB to 4MB

 Programmable RAM latencies

MP support
 4 independent Tag banks handle multiple requests in parallel

 Integrated Snoop Control Unit into L2 pipeline

 Direct data transfer line migration supported from cpu to cpu

External bus interfaces
 Full AMBA4 system coherency support on 128-bit master interface

 64/128 bit AXI3 slave interface for ACP

Other key features
 Full ECC capability

 Automatic data prefetching into L2 cache for load streaming

31

Other Key Cortex-A15 Design Features
Supporting fast state save for power down

 Fast cache maintenance operations

 Fast SPR writes: all register state local

Dedicated TLB and table walk machine per cpu

 4-way 512 entry per cpu

 Includes full table walk machine

 Includes walking cache structures

Active power management

 32 entry loop buffer

 Loop can contain up to 2 fwd branches and 1 backwards branch

 Completely disables Fetch and most of the Decode stages of pipeline

ECC support in software writeable RAMs, Parity in read only RAMs

 Supports logging of error location and frequency

32

Overall Summary

 The Cortex-A15 extends the application processor family with

 Dramatic increase in single-thread and overall performance

 Compelling new features, functionality enable exciting OEM products

 Scalability for large-scale computing and system-on-chip integration

 Cortex-A15 has strong momentum in mobile market

 ARM Cortex-A family provides broadest range of processors

 Ultra-low cost smartphones through to tablets and beyond

 Full upward software and feature-set compatibility

 Address cloud computing challenges from end to end

33

Thank You

Please visit www.arm.com for ARM related technical details

For any queries contact <Salesinfo-IN@arm.com>

