
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 19: Input/Output (I/O), Exceptions and Interrupts

Taylor Johnson

Announcements and Outline

• Programming assignment 1 assigned, due 11/4

• Input/output
• Exceptions and Interrupts

October 28, 2014 CSE2312, Fall 2014 2

ARM 3-Stage Pipeline Processor Execution
Cycle

October 28, 2014 CSE2312, Fall 2014 3

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

Input / Output

October 28, 2014 CSE2312, Fall 2014 4

Networking

October 28, 2014 CSE2312, Fall 2014 5

Logical Structure of a Computer

Logical structure of a simple personal computer.
October 28, 2014 CSE2312, Fall 2014 6

Controllers

• The job of a controller is to:
• Control a specific I/O device (hence the name).
• Handle bus access for the I/O device.
• Communicate with the CPU so as to allow the CPU (and

thus software) to use the I/O device.

7October 28, 2014 CSE2312, Fall 2014

Example of CPU/Controller Interaction

• Example: if a program wants to read data from a disk:
• The CPU gives a read command to the controller, specifying

what data it wants to read. The program gets suspended.
• The controller issues seeks and other commands, as necessary,

to the drive.
• When the drive begins outputting data, the controller takes

that data, assembles them into words, and writes them on
memory.

• When the transfer is complete, the controller issues an
interrupt.

• The interrupt forces the CPU to stop what it is doing, and run a
special procedure, called an interrupt handler, to check for
errors, take any other action needed, and let the program
resume.

8October 28, 2014 CSE2312, Fall 2014

Why Use Controllers?
• The alternative to using controllers would be for the CPU to

directly communicate with the I/O devices.
• What is the benefit of using a controller?

9October 28, 2014 CSE2312, Fall 2014

Why Use Controllers?
• The alternative to using controllers would be for the CPU to

directly communicate with the I/O devices.
• What is the benefit of using a controller?
• It greatly simplifies the task of the CPU, and even the task of

the high-level computer programmer.
• The CPU, as well as higher-level programming languages, do not have to

worry about how exactly individual devices get implemented.

• It also allows device makers to make new designs.
• The controller can "hide" the new design, and provide the same old

interface to the CPU.

• Example: introducing RAID systems.
• The controller makes them look to the CPU like regular hard drives.
• Thus, RAID systems could be integrated seamlessly with existing

machines and existing software.

10October 28, 2014 CSE2312, Fall 2014

Sharing the Bus

• Some controllers can access memory directly
(through the bus) to read and write data.

• This is called Direct Memory Access (DMA).
• There are times when a CPU and/or some

controllers all want to use the bus at the same time.
• A chip, called bus arbiter, decides who goes next.

• Typically, I/O devices are given preference, because disks
and other moving devices cannot be stopped, and waiting
would result in losing data.

• Cycle stealing is the situation where some I/O device
takes control of the bus from the CPU, and thus slows
down program execution.

11October 28, 2014 CSE2312, Fall 2014

The ISA Bus

• Cycle stealing slows down machines.
• One solution: design a new and faster bus.
• Problem: new buses are typically incompatible with

old devices.
• Example: the IBM PS/2 family of computers (1987).

• The PS/2 was supposed to be the "successor" of the PC.
• It had a new, faster bus.
• Disk and I/O device makers kept producing devices for the

old bus. Why? Because there was so much demand from
current PC owners.

• IBM was the only PC maker that was not IBM-compatible.

12October 28, 2014 CSE2312, Fall 2014

The PCI and PCIe Buses

• The PS/2 example shows the risks and pitfalls of
introducing a new bus, especially without
consensus.

• The old PC bus, called ISA (Industry Standard
Architecture) survived a bit longer.

• Note: ISA stands for "Industry Standard Architecture" in
the context of buses, but it also stands for "Instruction Set
Architecture". In this course, unless specified otherwise,
we use the second meaning.

13October 28, 2014 CSE2312, Fall 2014

The PCI Bus

• The PS/2 example shows the risks and pitfalls of
introducing a new bus, especially without
consensus.

• The old PC bus, called ISA (Industry Standard
Architecture) survived a bit longer.

• Eventually, the ISA bus was replaced (as it was too
slow) by the PCI (Peripheral Component
Interconnect) bus.

• The PCI architecture allows the CPU-memory traffic
to bypass the bus.

14October 28, 2014 CSE2312, Fall 2014

The PCI Bus

Figure 2-31. A typical PC built around the PCI bus. The SCSI
controller is a PCI device.

October 28, 2014 CSE2312, Fall 2014 15

The PCIe Bus

• The PCI bus is now also considered slow, and it is
being replaced by the PCI Express (PCIe) bus.

• Many machines today have both buses.
• Older, slower devices plug in to the PCI bus.
• Newer devices plug in to the PCIe bus.

• The PCIe bus is a rather different design than PCI:
• PCI (and previous designs): A single bus line.

• Data is broadcasted and visible to all devices.
• The device that needs the data gets it, the other ones

ignore it.
• PCIe: a point-to-point network.

16October 28, 2014 CSE2312, Fall 2014

The PCIe Network
• In a network, data goes from point A to point B through

some intermediate stops.
• Switches are used to decide where to direct each packet of

data.
• Thus, data is not broadcast, it is only received by the target device.

• Why is this more efficient than a broadcast model?

17October 28, 2014 CSE2312, Fall 2014

The PCIe Network
• In a network, data goes from point A to point B through

some intermediate stops.
• Switches are used to decide where to direct each packet of

data.
• Thus, data is not broadcast, it is only received by the target device.

• Why is this more efficient than a broadcast model?
• In a bus following the broadcast model:

• if we send a data packet from A to B through the bus, no other data
can be go through the bus at the same time. Cycle stealing occurs is
frequent.

• In a bus following the network model:
• multiple data packets can go through the bus at the same time, as

long as they do not go through the same link at the same time. Cycle
stealing is much less likely than in the broadcast model.

18October 28, 2014 CSE2312, Fall 2014

An Example

• An example of a PCIe system is shown on Figure 2-
32 (next slide).

• In that example, it is possible to have the following
two data packets going through the bus
simultaneously:

• one data packet going from the CPU to a PCIe device
connected to the switch on Port 1.

• one data packet going from the PCIe device on Port 2 to
the memory.

19October 28, 2014 CSE2312, Fall 2014

The PCIe Bus

Figure 2-32. Sample architecture of a PCIe system
with three PCIe ports.

October 28, 2014 CSE2312, Fall 2014 20

PCIe: 1-Bit Lanes

• Traffic in the PCIe bus is separated into individual lanes, that
are 1-bit wide.

• An individual device can have up to 32 such lanes.

• This means that data goes through each lane bit-by-bit, not
in parallel.

• Reason: sending data in parallel (say using a 32-bit lane) can
be tricky, because we need to make sure all data arrive at
the same time.

• The clock rate is significantly slowed down, to ensure that.

• With a 1-bit lane, there is no need for synchronization
among bits, so the clock rate is much higher.

21October 28, 2014 CSE2312, Fall 2014

Benefits of 1-Bit Lanes

• Example:
• A PCI bus has:

• maximum clock rate 66MHz.
• a single 64-bit wide lane.

• Consequently, a PCI bus can support a data rate of at most
??? MB/sec.

• A PCIe bus has a clock rate of 8GHz.
• Thus, a PCIe bus can support a data rate of ??? on a single

lane.
• Multiple lanes mean even faster data rates.
• The graphics card can have 16 lanes, getting ???

/sec.

22October 28, 2014 CSE2312, Fall 2014

Benefits of 1-Bit Lanes

• Example:
• A PCI bus has:

• maximum clock rate 66MHz.
• a single 64-bit wide lane.

• Consequently, a PCI bus can support a data rate of at most
528 MB/sec (528=66*64/8).

• A PCIe bus has a clock rate of 8GHz.
• Thus, a PCIe bus can support a data rate of 1GB/sec on a

single lane.
• Multiple lanes mean even faster data rates.
• The graphics card can have 16 lanes, getting

16GB/sec.

23October 28, 2014 CSE2312, Fall 2014

Terminals

• Terminals used to be devices used to access a main
computer.

• A terminal would consist of a keyboard and a
monitor, often integrated into a single device.

• This terminal would connect to the main computer
by a serial line or over a telephone line.

• Terminals supported having multiple users use a
single, powerful computer.

• Terminals still used in airline reservations, banking,
and some other industries.

24October 28, 2014 CSE2312, Fall 2014

Keyboards

• When a key is depressed, the keyboard controller
generates an interrupt.

• The keyboard interrupt handler reads a hardware
register inside the keyboard controller, that contains
the code of the key that was pressed.

• A number between 1 and 102.
• When a key is released, a second interrupt is

caused.

25October 28, 2014 CSE2312, Fall 2014

Handling Multikey Combinations

• How do we get a capital M?
• We press SHIFT.
• With SHIFT down, we press the 'm' key.
• Then we release both keys (the order does not matter).

• What does the keyboard controller send to the
operating system?

• SHIFT pressed
• 'm' pressed
• 'm' released
• SHIFT released.

• The mapping of these four events into a capital M is
done by the software .

• This software can be the operating system, or another
program that runs on top of the operating system.

26October 28, 2014 CSE2312, Fall 2014

Handling Multikey Combinations

• How do we get a capital M?
• We press SHIFT.
• With SHIFT down, we press the 'm' key.
• Then we release both keys (the order does not matter).

• What does the keyboard controller send to the
operating system?

• SHIFT pressed
• 'm' pressed
• 'm' released
• SHIFT released.

• The mapping of these four events into a capital M is
done by the software .

• What are the pros and cons of doing the mapping in
software vs. doing it in hardware?

27October 28, 2014 CSE2312, Fall 2014

Handling Multikey Combinations

• How do we get a capital M?
• We press SHIFT.
• With SHIFT down, we press the 'm' key.
• Then we release both keys (the order does not matter).

• What does the keyboard controller send to the operating system?
• SHIFT pressed
• 'm' pressed
• 'm' released
• SHIFT released.

• The mapping of these four events into a capital M is done by the
software .

• Advantages of doing the mapping in software:
• Simplifies the hardware. Also, ensures that all keyboards behave

similarly.
• Allows support of multiple alphabets/languages by the same keyboard.

28October 28, 2014 CSE2312, Fall 2014

Displays and Memory
• Most monitors are refreshed 60-100 times per second.
• What does refreshing mean? It means redrawing the

image on the monitor.
• The image is determined pixel-by-pixel.
• A typical 1920x1080 monitor has about 2 million pixels

(1920 * 1080 = 2,073,600).
• To describe each pixel, we need three bytes, i.e., three

numbers from 0 to 255, to describe the color.
• Every color can be decomposed into red, green, blue parts.

29October 28, 2014 CSE2312, Fall 2014

Data Rate for Displays

• In total, we need ???MB of memory to store what
we see in the monitor at one moment.

• This data is usually stored in a special memory,
called the Video RAM.

• For regular movie-quality video, the image must be
refreshed at least 30 times per second.

• This translates into sending to the monitor
???MB/sec.

• PCIe buses can easily handle such a load.

30October 28, 2014 CSE2312, Fall 2014

Data Rate for Displays

• In total, we need 6MB of memory to store what we
see in the monitor at one moment.

• This data is usually stored in a special memory,
called the Video RAM.

• For regular movie-quality video, the image must be
refreshed at least 30 times per second.

• This translates into sending to the monitor
180MB/sec.

• PCIe buses can easily handle such a load.

31October 28, 2014 CSE2312, Fall 2014

Mice

• When a mouse moves more than a certain minimum
distance (e.g., 0.01 inches), the mouse sends 3 bytes to
the computer:

• The number of units the mouse moved in the x direction.
• The number of units the mouse moved in the y direction.
• The current state of the mouse buttons.

• Information is also sent when buttons are pressed and
released.

• This information generates interrupts.
• Interpreting this information (e.g., as clicks, double

clicks, drags, drops) is done by the operating system.

32October 28, 2014 CSE2312, Fall 2014

Memory-Mapped I/O

• Some of our original examples displayed output to
console by writing to a special memory address
.equ ADDR_UART0, 0x101f1000
ldr r0,=ADDR_UART0@ r0 := 0x 101f 1000
mov r2,#’a’ @ R2 := ‘a’
str r2,[r0] @ MEM[r0] := r2

• How does this work? Memory Mapped I/O
• Registers on peripheral devices (keyboards, monitors, network

controllers, etc.) are addressable in same address space as
main memory, and their values are mapped (i.e., readable /
writeable at certain addresses)

• How to read input values?
• Polling vs. interrupts

October 28, 2014 CSE2312, Fall 2014 33

October 28, 2014 CSE2312, Fall 2014 34

October 28, 2014 CSE2312, Fall 2014 35

October 28, 2014 CSE2312, Fall 2014 36

Address from Memory-Map in Manual

October 28, 2014 CSE2312, Fall 2014 37

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_
baseboard_for_arm926ej_s_ug.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf

UART Register Map

October 28, 2014 CSE2312, Fall 2014 38

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

UART Flag Register Bits

October 28, 2014 CSE2312, Fall 2014 39

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

.equ IO_ADDRESS, 0x101f1000 @ uart memory-map address

.equ OFFSET_FR, 0x018 @ flag register offset from uart

.equ RXFE, 0x10 @ receive status bit

.equ TXFF, 0x20 @ transmit status bit

get_char:
push {r2, r3, r4, lr} @ preamble
ldr r4,=IO_ADDRESS @ r4 := 0x 101f 1000

get_char_wait:
ldr r2,[r4,#OFFSET_FR] @ load IO flag register to r2
and r3,r2,#RXFE @ mask non receive fifo empty bits
cmp r3, #0 @ check if r3 == 0
bne get_char_wait @ wait if not ready (if r3 != 0)

ldr r0, [r4] @ read character
str r0, [r4] @ echo character to screen

pop {r2, r3, r4, lr} @ wrap up
bx lr

Reading Input from UART (POLLING)

CSE2312, Fall 2014 40

Viewing Memory-Mapped Registers with gdb

(gdb) x /16x 0x101f1000 <- View all registers
0x101f1000: 0x00000000 0x00000000 0x00000000

0x00000000

0x101f1010: 0x00000000 0x00000000 0x00000090
0x00000000

0x101f1020: 0x00000000 0x00000000 0x00000000
0x00000000

0x101f1030: 0x00000300 0x00000012 0x00000000
0x00000020

(gdb) x /1x 0x101f1000+0x018 <- View Flag Register
0x101f1018: 0x00000090

(gdb) x /1t 0x101f1000+0x018 <- View Flag Register
0x101f1018: 00000000000000000000000010010000
(gdb) x /1t 0x101f1000+0x018 <- Character entered
0x101f1018: 00000000000000000000000011000000

October 28, 2014 CSE2312, Fall 2014 41

.equ IO_ADDRESS, 0x101f1000 @ uart memory-map address

.equ OFFSET_FR, 0x018 @ flag register offset from uart

.equ RXFE, 0x10 @ receive status bit

String Output

• So far we have seen character
input/output

• That is, one char at a time

• What about strings (character
arrays, i.e., multiple
characters)?

• Recall that strings are stored
in memory at consecutive
addresses

ADDR Byte
3

Byte
2

Byte
1

Byte
0

0x1000 ‘d’ ‘c’ ‘b’ ‘a’

0x1004 ‘h’ ‘g’ ‘f’ ‘e’

0x1008 ‘l’ ‘k’ ‘j’ ‘i’

0x100c ‘p’ ‘o’ ‘n’ ‘m’

0x1010 ‘t’ ‘s’ ‘r’ ‘q’

0x1014 ‘x’ ‘w’ ‘v’ ‘u’

0x1018 ‘\0’ ‘\0’ ‘z’ ‘y’
October 28, 2014 CSE2312, Fall 2014 42

string_abc:
.asciz "abcdefghijklmnopqrstuvwxyz\n\r"
.word 0x00

Assembler Output

0001012e <string_abc>:

1012e: 64636261 strbtvs r6, [r3], #-609; 0x261

10132: 68676665 stmdavs r7!, {r0, r2, r5, r6, r9, sl, sp,
lr}^

10136: 6c6b6a69 stclvs 10, cr6, [fp], #-420; 0xfffffe5c

1013a: 706f6e6d rsbvc r6, pc, sp, ror #28

1013e: 74737271 ldrbtvc r7, [r3], #-625; 0x271

10142: 78777675 ldmdavc r7!, {r0, r2, r4, r5, r6, r9, sl,
ip, sp, lr}^

10146: 0d0a7a79 vstreq s14, [sl, #-484] ; 0xfffffe1c

1014a: 00000000 andeq r0, r0, r0

October 28, 2014 CSE2312, Fall 2014 43

ASCII

October 28, 2014 CSE2312, Fall 2014 44

Binary Octal Decimal Hex Glyph
110 0000 140 96 60 `
110 0001 141 97 61 a
110 0010 142 98 62 b
110 0011 143 99 63 c
110 0100 144 100 64 d
110 0101 145 101 65 e
110 0110 146 102 66 f
… …
111 1000 170 120 78 x
111 1001 171 121 79 y
111 1010 172 122 7A z

Printing Strings

@ assumes r0 contains uart data register address

@ r1 should contain first character of string to display

print_string: push {r1,r2,lr}

str_out: ldrb r2,[r1]

cmp r2,#0x00 @ '\0' = 0x00: null character?

beq str_done @ if yes, quit

str r2,[r0] @ otherwise, write char of string

add r1,r1,#1 @ go to next character

b str_out @ repeat

str_done: pop {r1,r2,lr}

bx lr

October 28, 2014 CSE2312, Fall 2014 45

Character Codes

• Computers and devices oftentimes use text as part
of the messages they exchange.

• To understand each other, different devices must
represent text the same way.

• A few standard conventions have been established.
• ASCII
• Unicode
• UTF-8

46October 28, 2014 CSE2312, Fall 2014

How Many Letters Do We Need?

• To accommodate text written in the English
language, can you make a very rough estimation of
how many characters we need?

47October 28, 2014 CSE2312, Fall 2014

How Many Letters Do We Need?

• To accommodate text written in the English
language, can you make a very rough estimation of
how many characters we need?

• 26 letters * 2 (upper and lower case) = 52.
• 10 numbers.
• 30 punctuation symbols and other commonly used

symbols, such as $, #, @, %.
• We get a rough estimate of about 90 letters.
• How many bits do we need per letter then?

48October 28, 2014 CSE2312, Fall 2014

How Many Letters Do We Need?

• To accommodate text written in the English
language, can you make a very rough estimation of
how many characters we need?

• 26 letters * 2 (upper and lower case) = 52.
• 10 numbers.
• 30 punctuation symbols and other commonly used

symbols, such as $, #, @, %.
• We get a rough estimate of about 90 letters.
• How many bits do we need per letter then?

• ceil(log2(90)) = 7.

49October 28, 2014 CSE2312, Fall 2014

The ASCII Code

• This is the most well-known and widely used
convention for text representation.

• 7 bits per character, stored in a byte.
• Plenty of room for 26 upper case letters, 26 lower

case letters, numbers, punctuation, and some
special symbols.

• Codes 0-31 are special codes, such as:
• 0: NULL character (for terminating strings)
• 9: Horizontal tab…

• Some of these special codes are rarely used. E.g.:
• 1: SOH (start of heading), 2: STX (start of text).

50October 28, 2014 CSE2312, Fall 2014

ASCII Limitations

• 7 (or 8) bits cannot support:
• Alphabets with thousands of characters, such as Chinese

and Japanese.
• Multiple small alphabets used at the same time: for

example, English (Latin), Russian (Cyrillic), Greek, Arabic,
Hebrew…

• The ASCII convention is English-centric.

51October 28, 2014 CSE2312, Fall 2014

Unicode
• A character is assigned a 16-bit value.
• Codes 0-255 match ASCII codes.
• Diacritical marks (accents, umlauts) get their own code.

• It is up to the software to combine a diacritical mark and a letter
into a single character on the screen.

• Supported by Windows, Java, and many applications
• Covers "all" alphabets simultaneously.
• This gives room for 65,536 unique characters.

• The world's alphabets collectively use about 200,000 symbols, so
even this is not quite enough.

• Many Chinese/Japanese characters still left out.

52October 28, 2014 CSE2312, Fall 2014

UTF-8

• UTF-8 characters are variable length, from 7 to 31 bits.
• Max number of bytes for a character is 6 (= 48 bits), due to additional

"header bits".
• Codes 0-127 are the ASCII characters.

• If the most significant bit of the first byte is 0, then the byte is
treated as an ASCII code.

• Overall, the first byte of every character has "header" bits
that specify how many bytes that character has.

• Continuation bytes of a UTF-8 character always start with
"header" bits 10, whereas the initial byte never does.

• Makes it easy to re-synchronize after a communication error.
• Currently, UTF-8 supports 1,114,112 characters.

• However, it has room for a lot more characters.
• Everyone is happy with UTF-8, so far…

53October 28, 2014 CSE2312, Fall 2014

UTF-8 Header Bits

54

Header Length of
Header Meaning

0 1 This byte contains an ASCII code
110 3 This is the first byte of a 2-byte character.

1110 4 This is the first byte of a 3-byte character.
11110 5 This is the first byte of a 4-byte character.

111110 6 This is the first byte of a 5-byte character.
1111110 7 This is the first byte of a 6-byte character.

10 2 This is a continuation byte (not a first byte).

October 28, 2014 CSE2312, Fall 2014

The UTF-8 Format

Figure 2-45. The UTF-8 encoding scheme.

October 28, 2014 CSE2312, Fall 2014 55

ARM 3-Stage Pipeline Processor Execution
Cycle

October 28, 2014 CSE2312, Fall 2014 56

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

Flow of Control

• Left: no branches; Right: branches / jumps

October 28, 2014 CSE2312, Fall 2014 57

October 28, 2014 CSE2312, Fall 2014 58

Interrupt Service Routines (ISR)

• Coroutine: Procedure that resumes execution at previous
point

• Special routines that may interrupt other routines
• Interrupt: stop execution of procedure A and start execution of

procedure B
• Useful for I/O: suppose we have data coming from the keyboard
• Priorities: if we have several ISRs, how do we decide which gets

executed now?

• Interrupt handler (or ISR): PC gets loaded with address of
ISR

• ISR specified in an interrupt vector table

October 28, 2014 CSE2312, Fall 2014 59

ISR Timeline

October 28, 2014 CSE2312, Fall 2014 60

ISRs and Coroutines

CSE2312, Fall 2014 61October 28, 2014

October 28, 2014 CSE2312, Fall 2014 62

Exceptions and Interrupts

• “Unexpected” events requiring change
in flow of control

• Different ISAs use the terms differently
• Exception (trap)

• Arises within the CPU
• e.g., undefined opcode, overflow, syscall, divide by zero, …

• Interrupt
• From an external I/O controller

• Dealing with them without sacrificing performance
is hard

October 28, 2014 63

Traps / Exception

• Automatic procedure call initiated by some exception
condition caused by program

• Examples:
• Overflow (arithmetic, stack)
• Divide by zero
• Undefined opcodes

• Trap handler: procedure that takes care of exception
condition

• If exception detected, PC loaded with exception handler
address

October 28, 2014 CSE2312, Fall 2014 64

Summary

• Input/Output
• Memory-mapped I/O: I/O devices have registers, and

they’re mapped to the CPU accessible memory
• UART input
• UART output

• Interrupts and Exceptions

October 28, 2014 CSE2312, Fall 2014 65

	Computer Organization & Assembly Language Programming (CSE 2312)
	Announcements and Outline
	ARM 3-Stage Pipeline Processor Execution Cycle
	Input / Output
	Networking
	Logical Structure of a Computer
	Controllers
	Example of CPU/Controller Interaction
	Why Use Controllers?
	Why Use Controllers?
	Sharing the Bus
	The ISA Bus
	The PCI and PCIe Buses
	The PCI Bus
	The PCI Bus
	The PCIe Bus
	The PCIe Network
	The PCIe Network
	An Example
	The PCIe Bus
	PCIe: 1-Bit Lanes
	Benefits of 1-Bit Lanes
	Benefits of 1-Bit Lanes
	Terminals
	Keyboards
	Handling Multikey Combinations
	Handling Multikey Combinations
	Handling Multikey Combinations
	Displays and Memory
	Data Rate for Displays
	Data Rate for Displays
	Mice
	Memory-Mapped I/O
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Address from Memory-Map in Manual
	UART Register Map
	UART Flag Register Bits
	Reading Input from UART (POLLING)
	Viewing Memory-Mapped Registers with gdb�
	String Output
	Assembler Output
	ASCII
	Printing Strings
	Character Codes
	How Many Letters Do We Need?
	How Many Letters Do We Need?
	How Many Letters Do We Need?
	The ASCII Code
	ASCII Limitations
	Unicode
	UTF-8
	UTF-8 Header Bits
	The UTF-8 Format
	ARM 3-Stage Pipeline Processor Execution Cycle
	Flow of Control
	Slide Number 58
	Interrupt Service Routines (ISR)
	ISR Timeline
	ISRs and Coroutines
	Slide Number 62
	Exceptions and Interrupts
	Traps / Exception
	Summary

