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Announcements and Outline

e Programming assignment 1 assigned, due 11/4

* Input/output
e Exceptions and Interrupts
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ARM 3-Stage Pipeline Processor Execution

Cycle FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)
Decoded
instruction has DECODE(IR)
PC-4 (Decode fetched instruction,
find operands)
Executed
instruction has EXECUTE
PC-8 (Execute instruction
fetched from memory)

Handle PC:=PC+4

(Increment

Interrupt Y Interrupt
(Input/Output ?
Event)

the Program
Counter)
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Input / Output
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Networking
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Logical Structure of a Computer

Monitor
 — Hard
Keyboard C%}ESM disk drive
:
s & BT R = 0ooog
CPU Memory Video Keyboard CD-ROM ISEI?
controller controller controller controller
Bus

Logical structure of a simple personal computer.
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Controllers

*The job of a controller is to:
e Control a specific I/O device (hence the name).
* Handle bus access for the 1/0 device.

e Communicate with the CPU so as to allow the CPU (and
thus software) to use the 1/0 device.
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Example of CPU/Controller Interaction

e Example: if a program wants to read data from a disk:

 The CPU gives a read command to the controller, specifying
what data it wants to read. The program gets suspended.

* The controller issues seeks and other commands, as necessary,
to the drive.

 When the drive begins outputting data, the controller takes
that data, assembles them into words, and writes them on
memory.

 When the transfer is complete, the controller issues an
interrupt.

* The interrupt forces the CPU to stop what it is doing, and run a
special procedure, called an interrupt handler, to check for
errors, take any other action needed, and let the program
resume.
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Why Use Controllers?

* The alternative to using controllers would be for the CPU to
directly communicate with the I/O devices.

* What is the benefit of using a controller?
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Why Use Controllers?

* The alternative to using controllers would be for the CPU to
directly communicate with the I/O devices.

* What is the benefit of using a controller?

e |t greatly simplifies the task of the CPU, and even the task of
the high-level computer programmer.
 The CPU, as well as higher-level programming languages, do not have to
worry about how exactly individual devices get implemented.
* |t also allows device makers to make new designs.
e The controller can "hide" the new design, and provide the same old
interface to the CPU.
e Example: introducing RAID systems.

e The controller makes them look to the CPU like regular hard drives.

e Thus, RAID systems could be integrated seamlessly with existing
machines and existing software.
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Sharing the Bus

e Some controllers can access memory directly
(through the bus) to read and write data.
* This is called Direct Memory Access (DMA).

* There are times when a CPU and/or some
controllers all want to use the bus at the same time.

A chip, called bus arbiter, decides who goes next.

 Typically, I/O devices are given preference, because disks
and other moving devices cannot be stopped, and waiting
would result in losing data.

e Cycle stealing is the situation where some 1/O device
takes control of the bus from the CPU, and thus slows
down program execution.
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The |ISA Bus

* Cycle stealing slows down machines.
* One solution: design a new and faster bus.

* Problem: new buses are typically incompatible with
old devices.

e Example: the IBM PS/2 family of computers (1987).
e The PS/2 was supposed to be the "successor" of the PC.
|t had a new, faster bus.

 Disk and /0 device makers kept producing devices for the
old bus. Why? Because there was so much demand from
current PC owners.

* IBM was the only PC maker that was not IBM-compatible.
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The PCl and PCle Buses

* The PS/2 example shows the risks and pitfalls of
introducing a new bus, especially without
consensus.

* The old PC bus, called ISA (Industry Standard
Architecture) survived a bit longer.

e Note: ISA stands for "Industry Standard Architecture" in
the context of buses, but it also stands for "Instruction Set
Architecture". In this course, unless specified otherwise,
we use the second meaning.
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The PCI Bus

* The PS/2 example shows the risks and pitfalls of
introducing a new bus, especially without
consensus.

* The old PC bus, called ISA (Industry Standard
Architecture) survived a bit longer.

e Eventually, the ISA bus was replaced (as it was too
slow) by the PCI (Peripheral Component
Interconnect) bus.

* The PCI architecture allows the CPU-memory traffic
to bypass the bus.
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The PCI Bus

Memory bus

CPU & Il PC' l /// Main

scsl | [Cache] bridge memory

bus

| | |
1 scsl |1 scsl L] scsi Video Network
| scanner | | disk | |controller controller| |controller

PCI bus

Figure 2-31. A typical PC built around the PCI bus. The SCSI
controller is a PCI device.
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The PCle Bus

e The PCI bus is now also considered slow, and it is
being replaced by the PCI Express (PCle) bus.

* Many machines today have both buses.
 Older, slower devices plug in to the PCl bus.
 Newer devices plug in to the PCle bus.

*The PCle bus is a rather different design than PCI:

* PCI (and previous designs): A single bus line.
e Data is broadcasted and visible to all devices.

* The device that needs the data gets it, the other ones
ignore it.

* PCle: a point-to-point network.
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The PCle Network

* In a network, data goes from point A to point B through
some intermediate stops.

e Switches are used to decide where to direct each packet of
data.

e Thus, data is not broadcast, it is only received by the target device.

e Why is this more efficient than a broadcast model?
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The PCle Network

* In a network, data goes from point A to point B through
some intermediate stops.

e Switches are used to decide where to direct each packet of
data.

e Thus, data is not broadcast, it is only received by the target device.
e Why is this more efficient than a broadcast model?

* In a bus following the broadcast model:

* if we send a data packet from A to B through the bus, no other data
can be go through the bus at the same time. Cycle stealing occurs is
frequent.

* In a bus following the network model:

 multiple data packets can go through the bus at the same time, as
long as they do not go through the same link at the same time. Cycle
stealing is much less likely than in the broadcast model.
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An Example

* An example of a PCle system is shown on Figure 2-
32 (next slide).

*In that example, it is possible to have the following
two data packets going through the bus
simultaneously:

e one data packet going from the CPU to a PCle device
connected to the switch on Port 1.

e one data packet going from the PCle device on Port 2 to
the memory.
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The PCle Bus

CPU Memory
| Cache |

Root complex

Port 1 Port 2 Port 3
PCle device PCl bridge
PCle device Switch
ﬁ PCl bus
PCle device PCle device PCle device PCle device

Figure 2-32. Sample architecture of a PCle system
with three PCle ports.
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PCle: 1-Bit Lanes

 Traffic in the PCle bus is separated into individual lanes, that

are 1-bit wide.
e An individual device can have up to 32 such lanes.

e This means that data goes through each lane bit-by-bit, not
in parallel.

e Reason: sending data in parallel (say using a 32-bit lane) can
be tricky, because we need to make sure all data arrive at
the same time.

e The clock rate is significantly slowed down, to ensure that.

e With a 1-bit lane, there is no need for synchronization
among bits, so the clock rate is much higher.
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Benefits of 1-Bit Lanes

e Example:
A PCI bus has:

e maximum clock rate 66 MHz.
* asingle 64-bit wide lane.

e Consequently, a PCl bus can support a data rate of at most
??? MB/sec.

* A PCle bus has a clock rate of 8GHz.

. il'hus, a PCle bus can support a data rate of ??? on a single
ane.

* Multiple lanes mean even faster data rates.

* The graphics card can have 16 lanes, getting ???
/sec.
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Benefits of 1-Bit Lanes

e Example:
A PCI bus has:

e maximum clock rate 66 MHz.
* asingle 64-bit wide lane.

e Consequently, a PCl bus can support a data rate of at most
528 MB/sec (528=66*64/8).
* A PCle bus has a clock rate of 8GHz.

* Thus, a PCle bus can support a data rate of 1GB/sec on a
single lane.

* Multiple lanes mean even faster data rates.

* The graphics card can have 16 lanes, getting
16GB/sec.
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Terminals

e Terminals used to be devices used to access a main
computer.

e A terminal would consist of a keyboard and a
monitor, often integrated into a single device.

* This terminal would connect to the main computer
by a serial line or over a telephone line.

* Terminals supported having multiple users use a
single, powerful computer.

e Terminals still used in airline reservations, banking,
and some other industries.



UNIVERSITY OF TEXASAARLINGTON

Keyboards

* When a key is depressed, the keyboard controller
generates an interrupt.

* The keyboard interrupt handler reads a hardware
register inside the keyboard controller, that contains
the code of the key that was pressed.

* A number between 1 and 102.

* When a key is released, a second interrupt is

caused.
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Handling Multikey Combinations

e How do we get a capital M?
* We press SHIFT.
e With SHIFT down, we press the 'm' key.
* Then we release both keys (the order does not matter).

 What does the ke‘yboard controller send to the
operating system-
e SHIFT pressed
*'m' pressed
*'m' released
e SHIFT released.

* The mapping of these four events into a capital M is
done by the software.

* This software can be the operating system, or another
program that runs on top of the operating system.
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Handling Multikey Combinations

e How do we get a capital M?
* We press SHIFT.
e With SHIFT down, we press the 'm' key.
* Then we release both keys (the order does not matter).

 What does the ke‘yboard controller send to the
operating system-
e SHIFT pressed
*'m' pressed
*'m' released
e SHIFT released.

* The mapping of these four events into a capital M is
done by the software.

* What are the pros and cons of doing the mapping in
software vs. doing it in hardware?
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Handling Multikey Combinations

e How do we get a capital M?
* We press SHIFT.
e With SHIFT down, we press the 'm' key.
* Then we release both keys (the order does not matter).

 What does the keyboard controller send to the operating system?
e SHIFT pressed
* 'm' pressed
* 'm' released
e SHIFT released.

 The mapping of these four events into a capital M is done by the
software .

e Advantages of doing the mapping in software:
e Simplifies the hardware. Also, ensures that all keyboards behave
similarly.
e Allows support of multiple alphabets/languages by the same keyboard.
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Displays and Memory

* Most monitors are refreshed 60-100 times per second.

* What does refreshing mean? It means redrawing the
image on the monitor.

* The image is determined pixel-by-pixel.

e A typical 1920x1080 monitor has about 2 million pixels
(1920 * 1080 = 2,073,600).

* To describe each pixel, we need three bytes, i.e., three
numbers from O to 255, to describe the color.
e Every color can be decomposed into red, green, blue parts.
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Data Rate for Displays

* In total, we need ???MB of memory to store what
we see in the monitor at one moment.

* This data is usually stored in a special memory,
called the Video RAM.

* For regular movie-quality video, the image must be
refreshed at least 30 times per second.

* This translates into sending to the monitor
???MB/sec.

* PCle buses can easily handle such a load.
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Data Rate for Displays

*In total, we need 6MB of memory to store what we
see in the monitor at one moment.

* This data is usually stored in a special memory,
called the Video RAM.

* For regular movie-quality video, the image must be
refreshed at least 30 times per second.

* This translates into sending to the monitor
180MB/sec.

* PCle buses can easily handle such a load.
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Mice

* When a mouse moves more than a certain minimum
distance (e.g., 0.01 inches), the mouse sends 3 bytes to

the computer:
* The number of units the mouse moved in the x direction.
 The number of units the mouse moved in the y direction.
e The current state of the mouse buttons.

e Information is also sent when buttons are pressed and
released.

* This information generates interrupts.

* Interpreting this information (e.g., as clicks, double
clicks, drags, drops) is done by the operating system.
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Memory-Mapped /O

* Some of our original examples displayed output to
console by writing to a special memory address

.equ  ADDR_UARTO, 0x101f1000

Idr rO,=ADDR_UARTO@ rO :-= Ox 101f 1000
mov r2,#’a’ @ R2 := “a’
str r2,[roj @ MEM[rO] := r2

* How does this work? Memory Mapped I/O

* Registers on peripheral devices (keyboards, monitors, network
controllers, etc.) are addressable in same address space as

main memory, and their values are mapped (i.e., readable /
writeable at certain addresses)

 How to read input values?
e Polling vs. interrupts



October 28, 2014

OXFFFFFFFF

0x80000000

0x78000000

0x70000000

0x41000000

0x40000000

0x20000000
0x14000000

0x101F5000
0x10000000

0x08000000

0x00000000

SSP

Stat , ot UART 2
atic expansion socke
(CS3 0x3C000000) UART 1
UART O
2MB SRAM 3CI0
Logic Tile expansion (CS2 0x38000000)
(AHB M1) OR flash Reserved
(CS1 0x34000000) RTC
Disk On Chip flash GPIO 3
1S n Ip TIas
(CSO 0x30000000) gg:gf
EYS::;!‘;:‘:DVZEQ Static expansion socket GFI00
X 1
7
(MPMC CS3) St((i's MCQQ%GE’: t Timers 2 & 3
atic expansion socke -
Dynamic memory (CS6 0x28000000) Timers 0 & 1
exphalln;s;\:qog é%%km Static expansion socket Watchdog
( ) (CS5 0x24000000) SV:‘:;‘ h‘:‘;:"trg'r'er
PCI bus Static expansion socket Reserved
(CS54 0x20000000)
MBX VIC
DMAC
CLCD
Stcmenory |/ | merooeniosmeal | (VPG confguton
(SSMC CSx) on a Versatile Logic Tile SMC configuration
that is to be accessed at Reserved
©@x@ during boot remapping USB
AHB M2 EXP Ethernet
Reserved // Reserved
- MCI 1
Registers WK
N ‘ UART 3
ynamlc expanslon Ch ot LCD
socket During boot remapping, ar:MTZ
(MPMC CS1) memory between
Ox00000000 and KMI 0
Ox04000000 is mapped to MCI 0
either: AACI
SDRAM NOR flash SSMC CS1,
(MPMC CS0) DOC flash SSMC CS0, AIC
Expansion SSMC CS3, Serial Bus
or AHB M2 memory PCI control
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Dx20000000
Bx14000000

Bx101F5000
0x10000000

Bx08000000

Bx00000000

October 28, 2014

ISR |

e,

/ "~ CLCD
: This region is typically MPMC configuration
Static memory used for AHB M2 memory SMC confi ?Jratinn
(SSMC Csx) on a Versatile Logic Tile J
that is to be accessed at Reserved
@x@ during boot remapping USB
AHB M2 EXP Ethernet
Reserved / Reserved
MCI 1
Registers SEII ]
- | UART 3
ynamic expansion Character LCD
socket During boot remapping, E
(MPMC CS1) memory between
@x00000000 and KMI 0
0x04000000 is mapped to MCI 0
either: AACH
SDRAM NOR flash SSMC CS1,
(MPMC CS0) DOC flash SSMC CSO0, AIC
Expansion SSMC CS3, Serial Bus
or AHB M2 memory PC| control
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OXFFFFFFFF

Ox80000000

Bx78000000

Bx70000000

Ox41000000

Ox40000000

October 28, 2014

Logic Tile expansion
(AHB M1)

Dynamic memory
expansion socket
(MPMC CS3)

Dynamic memory
expansion socket
(MPMC CS2)

PCI bus

MBX

SSP

Static expansion socket
(CS3 Ox3C000000)

UART 2

UART 1

2MB SRAM
(CS2 9x38000000)

UART 0

SCI 0

NOR flash
(CS1 Ox34000000)

Reserved

RTC

Disk On Chip flash
(CSO 9x30000000)

GPIO 3

GPIO 2

Static expansion socket
(CS7 9x2C000000)

GPIO 1

GPIO 0

Static expansion socket
(CS6 Bx28000000)

Timers 2 & 3

Timers 0 & 1

Static expansion socket
(CS5 Bx24000000)

Watchdog

System controller

Static expansion socket
(CS4 Ox20000000)

AHB Monitor

Reserved

/.

VIC

DMAC

CSE2312, Fall 2014
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Address from Memory-Map in Manual

Programmer’s Reference

Table 4-1 Memory map (continued)

a .
Peripheral Location Interrupt= PIC Address R.e gion
and SIC size
UART O Interface Dev. chip PIC 12 0x101F1000- 4KB
0x101F1FFF
UART 1 Interface Dev. chip PIC 13 0x101F2000- 4KB
0x101F2FFF
UART 2 Interface Dev. chip PIC 14 0x101F3000- 4KB
0x101F3FFF

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224| realview platform
baseboard for arm926ej s ug.pdf
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UART Register Map

Table 3-1 Register summary

Reset
Offset Type Width Name Description

value
0x000 RW 12/8 0x--- UARTDR Data register, UARTDR on page 3-5
0x004 RW 4/0 0x@ UARTRSR/ Receive status register/error clear register,

UARTECR UARTRSR/UARTECR on page 3-6

0x008-0x014 - - - - Reserved
0x018 RO 9 0b-10010--- UARTFR Flag register, UARTFR on page 3-8 1
Ox@1C - - - - Reserved

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

October 28, 2014
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UART Flag Register Bits

3.33  Flag register, MARTFR
The UARTFR repber is the Mag registen, Adler nesel TXEER, REFE and BUSY anc (L
and TAEFE and BXFE are 1. Table 3-4 sbosws the biv assignment of 1 UAKTFR
repisie,
Tabéa 3-4 UARTFR raglstar
Bits MName Function
13:4 - Kooy, o reod ibeal 4y, rend B8 7m0
L] 1 King indicoanr. This bit i the complement of the AR ring indiczeor iml LB TR sodemn stanzs (g,
“Irar s, e hir s 1 when dae e serns inpur i 141,
1 I'XFE  Trensmit PIFD empoy T he meoming of thes bitdepends on the szane of the FEN hicin e LARTLCE_H
TEFiSIer.
16 the: FIFD 1 disabled. this bl is el whien the irszsmil Bokling regsier & czmply.
17 the: FIFCY s cmmaldial, the THFE B s sl wehon e ransonil BIFD i cpls,
“ITis hir choes et indienie of there @5 doto inthe ransmin shaft repierer.
I HXFH Keceive FIFU Fall. The mﬂl!.:'lé_'.'lf this ke depends on e snare of the FEM hicn the LAKTLAE_H
regisier.
I the FIFD 5 disabled, this bal is =el when the recerve hulding regisier is full
17 the: FIFCh a gmaalrlea, the RXFF B s sl when the meacivee FIFCE iz Tull,
5 TXFF  Treemit FIFO foll The messong of this b daends oo the siate of the FEM BL in the UARTLCRE_H
regislicn
IF the FIFCE & disahled, this b is serwhen the weesmir bolding register & fall,
If the FIAD 15 2rabled, the TXTT bit is szt when the ramsmic FIFC is full.
4 KXFE  RKeceive FIFO emgey. The mezaning of this bit depends oo che state af the FER bat in the UARTLCE_H
Tepisier.
I the FIFD 2 disabled, this bal is sl whaen the reeemae holding regisier is cmpiy,
IF the FIF Y & smbled, the REFE bl is s aten fwe raceme FIFLD s emipry.
k] BII=Y LIAKT hisy IV thiz bt ia e ta0 1, the LDART is By transsniltong caca, This Bl eandines 567 anlil the

crumplene byne, including all the stnp his, hes heen sent froem the shift regisen,
Thic hit i it EIEE . " - b [1ABT

http://infocénter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf
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-.equ RXFE,
.equ TXFF,

get _char:
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Reading Input from UART (POLLING)

.equ 10_ADDRESS, 0x101f1000
.equ OFFSET_FR, 0x018

0x10
0x20

push {r2, r3, r4, Ir}

Idr

r4,=10_ADDRESS

get char_wait:

Idr
and
cmp
bne

Idr
str

pop

r2,[r4,#0FFSET_FR]
r3,r2,#RXFE

r3, #0

get char wait

ro, [r4]
ro, [r4]

{r2, r3, r4, Ir}

bx Ir

@

@
@
@

(SISO NS]

e O

uart memory-map address

flag register offset from uart
receive status bit

transmit status bit

preamble
r4 = Ox 101f 1000

load 10 flag register to r2

mask non receive Tifo empty bits
check 1f r3 == 0

wait 1f not ready (if r3 = 0)
read character

echo character to screen

wrap up
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Viewing Memory-Mapped Registers with gdb

(gdb) x /16x 0x101f1000 <- View all registers

0x101f1000: 0x00000000 0x00000000 0x00000000
0x00000000

0x101f1010: 0x00000000 0x00000000 0x00000090
0x00000000

0x101F1020: 0x00000000 0x00000000 0x00000000
0x00000000

0x101F1030: 0x00000300 0x00000012 0x00000000
0x00000020

(gdb) x /1x 0x101f1000+0x018 <- View Flag Register

0x101f1018: 0x00000090

(gdb) x /1t 0x101f1000+0x018 <- View Flag Register

0x101f1018: 00000000000000000000000010010000

(gdb) x /1t 0x101f1000+0x018 <- Character entered
0x101f1018: 00000000000000000000000011000000
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String Output

string_abc:
.asciz "abcdefghijkImnopgrstuvwxyz\n\r"
-word 0x00

e So far we have seen character
input/output

e That is, one char at a time

e What about strings (character | 2 Byte Byte Byte Byte

arrays, i.e., multiple 3 2
characters)? 0x1000 <d- cc”  “p’ g’
0x1004 “h~’ ‘g’ “f” ‘e’

e Recall that strings are stored 0x1008 <|° “<|? <

in memory at consecutive
addresses 0x100c “p~ o7

J
n
Ox1010 “t~’ ‘s”? ‘r’
Vv
Z

N
<K Cc o 3
N

0Ox1014 <x” “w? “
0x1018 “\0O’ “\0* *“

October 28, 2014 CSE2312, Fall 2014 42
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Assembler Output

0001012e

1012e:
10132:

Iri»

10136:
1013a:
1013e:
10142:

<string_abc>:

63
68676665

6Cc6b6a69
706f6e6d
74737271
78777675

ip, sp, ir}“

10146:
1014a:

0dOa7a79

strbtvs
stmdavs

stclvs
rsbvc
Idrbtvc
Idmdavc

vstreq
andeq

ré, [r3], #-609; 0x261
r7', {rO, r2, r5, r6, r9, sl, sp,

10, cr6, [fp], #-420; OxfFffffesc
ré, pc, sp, ror #28

r7, [r3], #-625; 0x271

r7', {rO, r2, r4, r5, r6, r9, sli,

sl4, [sl, #-484] ; OxfFfFfffelc
ro, rO, roO
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ASCI

Binary Octal Decimal Hex Glyph
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Printing Strings
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@ assumes rO contains uart data register address
@ rl should contain first character of string to display

cmp
beq
str
add

bx

> push

{r1,r2,1r}

Idrb r2,[r1]

r2,#0x00

r2,[rO0]
ri,rl,#1

Ir

@ "\O0" = Ox00: null character?

@ 1f yes, quit

@ otherwise, write char of string
@ go to next character

@ repeat

> pop {rl,r2,Ir}
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Character Codes

e Computers and devices oftentimes use text as part
of the messages they exchange.

* To understand each other, different devices must
represent text the same way.

e A few standard conventions have been established.

e ASCII
e Unicode
e UTF-8
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How Many Letters Do We Need?

* To accommodate text written in the English
language, can you make a very rough estimation of
how many characters we need?
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How Many Letters Do We Need?

* To accommodate text written in the English
language, can you make a very rough estimation of
how many characters we need?

e 26 letters * 2 (upper and lower case) = 52.

* 10 numbers.

e 30 punctuation symbols and other commonly used
symbols, such as S, #, @, %.

* We get a rough estimate of about 90 letters.
* How many bits do we need per letter then?
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How Many Letters Do We Need?

* To accommodate text written in the English
language, can you make a very rough estimation of
how many characters we need?

e 26 letters * 2 (upper and lower case) = 52.

* 10 numbers.

e 30 punctuation symbols and other commonly used
symbols, such as S, #, @, %.

* We get a rough estimate of about 90 letters.

* How many bits do we need per letter then?
e ceil(log,(90)) = 7.
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The ASCI| Code

* This is the most well-known and widely used
convention for text representation.

7 bits per character, stored in a byte.

e Plenty of room for 26 upper case letters, 26 lower
case letters, numbers, punctuation, and some
special symbols.

e Codes 0-31 are special codes, such as:
e 0: NULL character (for terminating strings)
e 9: Horizontal tab...

e Some of these special codes are rarely used. E.g.:
e 1: SOH (start of heading), 2: STX (start of text).
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ASCII Limitations

o7 (or 8) bits cannot support:

* Alphabets with thousands of characters, such as Chinese
and Japanese.

* Multiple small alphabets used at the same time: for
example, English (Latin), Russian (Cyrillic), Greek, Arabic,
Hebrew...

* The ASCII convention is English-centric.
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Unicode

* A character is assigned a 16-bit value.
e Codes 0-255 match ASCII codes.

e Diacritical marks (accents, umlauts) get their own code.

e It is up to the software to combine a diacritical mark and a letter
into a single character on the screen.

e Supported by Windows, Java, and many applications
* Covers "all" alphabets simultaneously.

* This gives room for 65,536 unique characters.

* The world's alphabets collectively use about 200,000 symbols, so
even this is not quite enough.

* Many Chinese/Japanese characters still left out.
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e UTF-8 characters are variable length, from 7 to 31 bits.

 Max number of bytes for a character is 6 (= 48 bits), due to additional
"header bits".

e Codes 0-127 are the ASCII characters.

* |f the most significant bit of the first byte is 0, then the byte is
treated as an ASCII code.

e Overall, the first byte of every character has "header" bits
that specify how many bytes that character has.

e Continuation bytes of a UTF-8 character always start with
"header" bits 10, whereas the initial byte never does.
* Makes it easy to re-synchronize after a communication error.

e Currently, UTF-8 supports 1,114,112 characters.

* However, it has room for a lot more characters.

e Everyone is happy with UTF-8, so far...
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UTF-8 Header Bits

Length of .

0 1 This byte contains an ASCII code
110 3 This is the first byte of a 2-byte character.
1110 4 This is the first byte of a 3-byte character.
11110 5 This is the first byte of a 4-byte character.
111110 6 This is the first byte of a 5-byte character.
1111110 7 This is the first byte of a 6-byte character.
10 2 This is a continuation byte (not a first byte).
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The UTF-8 Format

Bits Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
7 Oddddddd
11 110ddddd| 10dddddd
16 1110dddd| 10dddddd| 10dddddd
21 11110ddd| 10dddddd| 10dddddd| 10dddddd
26 111110dd| 10dddddd| 10dddddd| 10dddddd| 10dddddd
31 1111110x| 10dddddd| 10dddddd| 10dddddd| 10dddddd| 10dddddd

Figure 2-45. The UTF-8 encoding scheme.
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ARM 3-Stage Pipeline Processor Execution

Cycle FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)
Decoded
instruction has DECODE(IR)
PC-4 (Decode fetched instruction,
find operands)
Executed
instruction has EXECUTE
PC-8 (Execute instruction
fetched from memory)

Handle PC:=PC+4

(Increment

Interrupt Y Interrupt
(Input/Output ?
Event)

the Program
Counter)
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Flow of Control

e Left: no branches; Right: branches / jumps

d

Jumps

/ ﬂ"'a__
.

\.

Program counter
Program counter

Time Time



A B
Calling Called
procedure procedure
A called -
from main
program
A returns — (/
to main
program
October 28, 2014
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Interrupt Service Routines (ISR)

* Coroutine: Procedure that resumes execution at previous
point

e Special routines that may interrupt other routines

* Interrupt: stop execution of procedure A and start execution of
procedure B

e Useful for I/O: suppose we have data coming from the keyboard

* Priorities: if we have several ISRs, how do we decide which gets
executed now?

. :gtRerrupt handler (or ISR): PC gets loaded with address of

* ISR specified in an interrupt vector table
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ISR Timeline

Disk interrupt
priority 4 held pending

RS232 ISR finishes
disk interrupt occurs

R5232 inI:erlrupt
priority 5 Disk ISR finishes
Printer interrupt Printer ISR finishes
priority 2 }
l Y b Y Y
0 10 15 20 25 35 40
I | | I | I I
. . 1" v 1 P 1 > e :
User iPrinteri RS232 i Disk iF’rinteri User 1me
program 1 ISR ] ISR ! ISR ! ISR | program
| | |
User User User User Stack
Printer Printer l
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ISRs and Coroutines

A

A called =

from main i
program |

RESUME B
'_—‘HF:ESL'I——___“_"LE_.E_
RESUME B

HESUME A

RESUME B

|
ARy R

A returns -
to main
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WE || VIC
handshake
complete
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HnFIQ||F)
&8
(nIRQN)

FALSE

TRUE FALSE

|
TRUE | Start handshake with VIC |
F

b
| SPSR_irg=CPSR |

nFICF) FALSE

v
| LR_irg = RA+4 |
TRUE v
¥ [ CPSR[4:0] = IRQ made |
| SPSR_fig=CPSR | ¥
; | CPSR[5] = TE |
| LR_fig = RA+4 | I
v | CPSR[7] = 1 |
| CPSR[4:0] = FIQ mode |
v
| CPSR[5] = TE |
Y

[ CPSR[7]= 1. CPSR[B] = 1 |

FALSE

5 VIC ready to
pravide handler

TRUE FALSE address?

TRUE FALSE TRUE
v N v ¥
PC[31-0] = PC[31:0] = PC[30] = PC[31:0] = PeL O] = Handler address
OxFFFFO0IC || 0x0000001C || OxFFFFOO018 0x00000018 p y

Acknowledge address to VIC 62
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Exceptions and Interrupts

* “Unexpected” events requiring change
in flow of control
e Different ISAs use the terms differently

* Exception (trap)
e Arises within the CPU
e e.g., undefined opcode, overflow, syscall, divide by zero, ...
* |nterrupt
* From an external I/O controller

* Dealing with them without sacrificing performance
is hard
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Traps / Exception

e Automatic procedure call initiated by some exception
condition caused by program

e Examples:
e Overflow (arithmetic, stack)
* Divide by zero
* Undefined opcodes

* Trap handler: procedure that takes care of exception
condition

* |f exception detected, PC loaded with exception handler
address
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Summary

* Input/Output
e Memory-mapped I/O: 1/O devices have registers, and
they’re mapped to the CPU accessible memory
* UART input
 UART output

* Interrupts and Exceptions
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