
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 20: Memory Hierarchies (Registers, Caches, Main

Memory, Storage)

Taylor Johnson

Announcements and Outline

• Programming assignment 1 assigned, due 11/4

• Review
• Input/output
• Exceptions and Interrupts
• Example Debugging UART Interaction with gdb

• Memory Hierarchies
• Registers
• Caches
• Main Memory
• Storage
• …

October 30, 2014 CSE2312, Fall 2014 2

ARM 3-Stage Pipeline Processor Execution
Cycle

October 30, 2014 CSE2312, Fall 2014 3

FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

Von Neumann Architecture

• Both data and program
stored in memory

• Allows the computer to
be “re-programmed”

• Input/output (I/O) goes
through CPU

• I/O part is not
representative of
modern systems (direct
memory access [DMA])

• Memory layout is
representative of
modern systems

October 30, 2014 CSE2312, Fall 2014 4

Memory
(Data + Program [Instructions])

CPU I/O

DMA

Logical Structure of a Computer

Logical structure of a simple personal computer.
October 30, 2014 CSE2312, Fall 2014 5

The PCI Bus

Figure 2-31. A typical PC built around the PCI bus. The SCSI
controller is a PCI device.

October 30, 2014 CSE2312, Fall 2014 6

The PCIe Bus

Figure 2-32. Sample architecture of a PCIe system
with three PCIe ports.

October 30, 2014 CSE2312, Fall 2014 7

Memory-Mapped I/O

• Some of our original examples displayed output to
console by writing to a special memory address
.equ ADDR_UART0, 0x101f1000
ldr r0,=ADDR_UART0@ r0 := 0x 101f 1000
mov r2,#’a’ @ R2 := ‘a’
str r2,[r0] @ MEM[r0] := r2

• How does this work? Memory Mapped I/O
• Registers on peripheral devices (keyboards, monitors, network

controllers, etc.) are addressable in same address space as
main memory, and their values are mapped (i.e., readable /
writeable at certain addresses)

• How to read input values?
• Polling vs. interrupts

October 30, 2014 CSE2312, Fall 2014 8

October 30, 2014 CSE2312, Fall 2014 9

Address from Memory-Map in Manual

October 30, 2014 CSE2312, Fall 2014 10

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_
baseboard_for_arm926ej_s_ug.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf

UART Register Map

October 30, 2014 CSE2312, Fall 2014 11

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

UART Flag Register Bits

October 30, 2014 CSE2312, Fall 2014 12

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0183f/DDI0183.pdf

.equ IO_ADDRESS, 0x101f1000 @ uart memory-map address

.equ OFFSET_FR, 0x018 @ flag register offset from uart

.equ RXFE, 0x10 @ receive status bit

.equ TXFF, 0x20 @ transmit status bit

get_char:
push {r2, r3, r4, lr} @ preamble
ldr r4,=IO_ADDRESS @ r4 := 0x 101f 1000

get_char_wait:
ldr r2,[r4,#OFFSET_FR] @ load IO flag register to r2
and r3,r2,#RXFE @ mask non receive fifo empty bits
cmp r3, #0 @ check if r3 == 0
bne get_char_wait @ wait if not ready (if r3 != 0)

ldr r0, [r4] @ read character
str r0, [r4] @ echo character to screen

pop {r2, r3, r4, lr} @ wrap up
bx lr

Reading Input from UART (POLLING)

CSE2312, Fall 2014 13October 30, 2014

Viewing Memory-Mapped Registers with gdb

(gdb) x /16x 0x101f1000 <- View all registers
0x101f1000: 0x00000000 0x00000000 0x00000000

0x00000000

0x101f1010: 0x00000000 0x00000000 0x00000090
0x00000000

0x101f1020: 0x00000000 0x00000000 0x00000000
0x00000000

0x101f1030: 0x00000300 0x00000012 0x00000000
0x00000020

(gdb) x /1x 0x101f1000+0x018 <- View Flag Register
0x101f1018: 0x00000090

(gdb) x /1t 0x101f1000+0x018 <- View Flag Register
0x101f1018: 00000000000000000000000010010000
(gdb) x /1t 0x101f1000+0x018 <- Character entered
0x101f1018: 00000000000000000000000011000000

October 30, 2014 CSE2312, Fall 2014 14

.equ IO_ADDRESS, 0x101f1000 @ uart memory-map address

.equ OFFSET_FR, 0x018 @ flag register offset from uart

.equ RXFE, 0x10 @ receive status bit

Printing Strings

@ assumes r0 contains uart data register address

@ r1 should contain first character of string to display

print_string: push {r1,r2,lr}

str_out: ldrb r2,[r1]

cmp r2,#0x00 @ '\0' = 0x00: null character?

beq str_done @ if yes, quit

str r2,[r0] @ otherwise, write char of string

add r1,r1,#1 @ go to next character

b str_out @ repeat

str_done: pop {r1,r2,lr}

bx lr

October 30, 2014 CSE2312, Fall 2014 15

Exceptions and Interrupts

• “Unexpected” events requiring change
in flow of control

• Different ISAs use the terms differently
• Exception (also called a trap or fault)

• Arises within the CPU
• e.g., undefined opcode, overflow, syscall, divide by zero, …

• Interrupt
• From an external I/O controller

• Dealing with them without sacrificing performance
is hard

October 30, 2014 16CSE2312, Fall 2014

Interrupt Service Routines (ISR)

• Coroutine: Procedure that resumes execution at previous
point

• Special routines that may interrupt other routines
• Interrupt: stop execution of procedure A and start execution of

procedure B
• Useful for I/O: suppose we have data coming from the keyboard
• Priorities: if we have several ISRs, how do we decide which gets

executed now?

• Interrupt handler (or ISR): PC gets loaded with address of
ISR

• ISR specified in an interrupt vector table

October 30, 2014 CSE2312, Fall 2014 17

ISR Timeline

October 30, 2014 CSE2312, Fall 2014 18

Traps / Exceptions / Faults

• Automatic procedure call initiated by some exception
condition caused by program

• Examples:
• Overflow (arithmetic, stack)
• Divide by zero
• Undefined opcodes

• Trap (or exception or fault) handler: procedure that
takes care of exception condition

• If exception detected, PC loaded with exception handler
address

October 30, 2014 CSE2312, Fall 2014 19

Memory Hierarchies

October 30, 2014 CSE2312, Fall 2014 20

Memory Speed and CPU Execution

• CPUs have always been faster than memories.
• This means that a load or store instruction,

accessing the main memory, is much slower in
practice than instructions accessing the ALU.

• How can we deal with this? Suppose we have a load
instruction:

• Let the load instruction go through the pipeline to fetch
the data from memory to a register.

• If any subsequent instruction tries to use that data before
it has arrived, just stall (don't let that instruction proceed
to the next pipeline step).

21October 30, 2014 CSE2312, Fall 2014

Memory Hierarchy

October 30, 2014 CSE2312, Fall 2014 22

Bigger
Slower

Levels of the Memory Hierarchy

• Registers: a few tens, accessible at full CPU speed.
• 1 nanosecond or less.

• Cache, up to a few megabytes.
• Accessible in a few CPU cycles.

• Main memory: 1GB-16GB for most personal PCs.
• Access: 10 nanoseconds.

• Solid state drives: 128-512GB.
• Access: about 100 nanoseconds.

• Magnetic disks (traditional hard drives): 1-4TB.
• Access: 3-6 milliseconds (millions of nanoseconds).

• Optical disks, tapes: access can take seconds or more.

23October 30, 2014 CSE2312, Fall 2014

Memory Hierarchies

• We can have superfast expensive memory.
• We can also have slow cheap memory.
• We want lots of superfast cheap memory.
• We can get close to that goal, using a memory

hierarchy.
• At the top, a little bit of superfast expensive memory: CPU

registers.
• Each next level is somewhat slower, and somewhat cheaper.

• Because of the locality principle, the vast majority of
memory accesses happen at the lower, faster levels.

24October 30, 2014 CSE2312, Fall 2014

Memory Packaging

• Till the early 1990s, memory was installed as single chips.
• Now, typically memory is sold as a group of chips, typically 8

or 16, mounted on the same board.
• This unit may be a SIMM (Single Inline Memory Module).

• SIMMs can transfer 32 bits per cycle. Rarely used now.
• This unit may also be a DIMM (Dual Inline Memory Module).

• DIMMS can transfer 64 bits per cycle. Commonly used.
• SO-DIMM (Small Outline DIMM) is used in laptops.
• DIMMs can have a parity bit or error correction.

• Usually omitted, error rate is one error per 10 years per module.

October 30, 2014 CSE2312, Fall 2014 25

Memory Packaging and Types

Top view of a DIMM holding 4 GB with eight
chips of 256 MB on each side. The other side looks the same.

October 30, 2014 CSE2312, Fall 2014 26

Memory Technology

• Static RAM (SRAM)
• 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)
• 50ns – 70ns, $20 – $75 per GB

• Magnetic disk
• 5ms – 20ms, $0.20 – $2 per GB

• Ideal memory
• Access time of SRAM
• Capacity and cost/GB of disk

October 30, 2014 27CSE2312, Fall 2014

DRAM Technology
• Data stored as a charge in a capacitor

• Single transistor used to access the charge
• Must periodically be refreshed

• Read contents and write back
• Performed on a DRAM “row”

October 30, 2014 28CSE2312, Fall 2014

Advanced DRAM Organization

• Bits in a DRAM are organized as a rectangular array
• DRAM accesses an entire row
• Burst mode: supply successive words from a row with

reduced latency
• Double data rate (DDR) DRAM

• Transfer on rising and falling clock edges
• Quad data rate (QDR) DRAM

• Separate DDR inputs and outputs

October 30, 2014 29CSE2312, Fall 2014

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

October 30, 2014 30CSE2312, Fall 2014

DRAM Performance Factors

• Row buffer
• Allows several words to be read and refreshed in parallel

• Synchronous DRAM
• Allows for consecutive accesses in bursts without needing

to send each address
• Improves bandwidth

• DRAM banking
• Allows simultaneous access to multiple DRAMs
• Improves bandwidth

October 30, 2014 31CSE2312, Fall 2014

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

October 30, 2014 32CSE2312, Fall 2014

Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 5 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• ?? CPU cycles to execute the 4 instructions not accessing

memory.
• ?? CPU cycles to execute the 1 instruction accessing

memory.
• In total, we need ?? CPU cycles per 5 instructions.

• ??% slower than it would be if memory ran at the same
speed as the CPU.

33October 30, 2014 CSE2312, Fall 2014

Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 5 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• 4 CPU cycles to execute the 4 instructions not accessing

memory.
• 5 CPU cycles to execute the 1 instruction accessing

memory.
• In total, we need 9 CPU cycles per 5 instructions.

• 80% slower than it would be if memory ran at the same
speed as the CPU.

34October 30, 2014 CSE2312, Fall 2014

Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 50 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• ?? CPU cycles to execute the 4 instructions not accessing

memory.
• ?? CPU cycles to execute the 1 instruction accessing

memory.
• In total, we need ?? CPU cycles per 5 instructions.

• About ?? times slower than it would be if memory ran at
the same speed as the CPU.

35October 30, 2014 CSE2312, Fall 2014

Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 50 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• 4 CPU cycles to execute the 4 instructions not accessing

memory.
• 50 CPU cycles to execute the 1 instruction accessing

memory.
• In total, we need 54 CPU cycles per 5 instructions.

• About 11 times slower than it would be if memory ran at
the same speed as the CPU.

36October 30, 2014 CSE2312, Fall 2014

load and Reordering

• This problem of slow memory access only occurs
when subsequent instructions try to use the
memory data that load is fetching.

• Unfortunately this is very common.
• Instruction reordering can be used to try to put as

many instructions between the load instruction and
the instruction that tries to use the data fetched by
load.

• However, oftentimes that is not very useful. Why?

37October 30, 2014 CSE2312, Fall 2014

load and Reordering

• This problem of slow memory access only occurs
when subsequent instructions try to use the
memory data that load is fetching.

• Unfortunately this is very common.
• Instruction reordering can be used to try to put as

many instructions between the load instruction and
the instruction that tries to use the data fetched by
load.

• However, oftentimes that is not very useful. Why?
• The most common reason why an instruction fetches data

from memory is that the next instructions need that data.

38October 30, 2014 CSE2312, Fall 2014

load vs. store

• Store instructions are not as big a problem as load
instructions, in terms of hurting performance. Why?

39October 30, 2014 CSE2312, Fall 2014

load vs. store

• Store instructions are not as big a problem as load
instructions, in terms of hurting performance. Why?

• We typically store data back to memory when we do not
want to use it anymore.

• So, subsequent instructions typically do not need to
refetch that data from memory.

• A store instruction may need to wait until its data is ready,
but that type of wait is much shorter than waiting for load
to bring data from memory.

40October 30, 2014 CSE2312, Fall 2014

Remedy for Slow Memory: The Cache

• Designers of memory systems have to struggle to
satisfy two conflicting goals:

• We want lots of cheap memory.
• We want memory to be as fast as the CPU.

• To improve performance, it is common to use a
hybrid approach:

• A large amount of slow and cheap memory.
• A small amount of fast and expensive memory.

• This small, fast memory, is called a cache.

October 30, 2014 CSE2312, Fall 2014 41

How the Cache Works
• If the CPU needs a memory word, it looks for it in the

cache.
• If the word is found in the cache, proceed as normal.
• If the word is not found in the cache, get it from main

memory, and store it in the cache.
• Obviously, every time we store a word in the cache, some

other word gets overwritten and is now only available in
main memory.

• When will this approach improve performance, when
will it hurt performance?

42October 30, 2014 CSE2312, Fall 2014

How the Cache Works
• If the CPU needs a memory word, it looks for it in the

cache.
• If the word is found in the cache, proceed as normal.
• If the word is not found in the cache, get it from main

memory, and store it in the cache.
• Obviously, every time we store a word in the cache, some

other word gets overwritten and is now only available in
main memory.

• When will this approach improve performance, when
will it hurt performance?

• It depends on the percentage of times that the word we
need is in the cache.

43October 30, 2014 CSE2312, Fall 2014

Cache Memory

October 30, 2014 CSE2312, Fall 2014 44

Cache Hit: find necessary data in cache

October 30, 2014 CSE2312, Fall 2014 45

Cache Hit

Cache Miss: have to get necessary data from
main memory

October 30, 2014 CSE2312, Fall 2014 46

Cache Miss

Memory Hierarchy Levels
• Block (aka line): unit of

copying
• May be multiple words

• If accessed data is present
in upper level

• Hit: access satisfied by upper
level

• Hit ratio: hits/accesses

• If accessed data is absent
• Miss: block copied from

lower level
• Time taken: miss penalty
• Miss ratio: misses/accesses

= 1 – hit ratio
• Then accessed data supplied

from upper level

CSE2312, Fall 2014

More Detailed Cache Organization

October 30, 2014 CSE2312, Fall 2014 48

Cache Terms

• Cache line: block of cells inside a cache
• Usually store several words in a line (e.g., store 32 bytes on 32-bit

word CPU)
• Cache hit: memory access finds value in cache

• Antonym: cache miss: have to get it from main memory
• Spatial locality: likely we need data from addresses around

one we’re requesting (example: array operations)
• Mean access time: C + (1 – H) * M

• C: cache access time
• M: main memory access time (usually M >> C, e.g., M > 100 * C)
• H: hit ratio: probability to find a value in the cache
• miss ratio: 1 – H

• Time cost of cache miss: c + m memory access time

October 30, 2014 CSE2312, Fall 2014 49

Cache Design Criteria

• Cache size
• Bigger cache is more effective, but slower to access and

more expensive
• Cache line size

• Example: 16KB cache divides into
• 1024 lines of 16 bytes
• 2048 lines of 8 bytes
• Etc.

• Cache organization
• How to keep track of which memory words are in cache?
• Keep both data and instructions in same cache?

October 30, 2014 CSE2312, Fall 2014 50

Best and Worst Case

• If almost all words the CPU needs are in the cache,
then the average time of accessing memory is close
to the time it takes to access the cache.

• If almost all words the CPU needs are NOT in the
cache, then the average time of accessing memory
is even worse than the time it takes to access main
memory

• Because, before we even access main memory, we need
to check the cache.

51October 30, 2014 CSE2312, Fall 2014

Quantifying Memory Access Speed

• Let:
• mean_access_time be the average time it takes for the

CPU to access a memory word.
• C be the average time it takes for the CPU to access a

memory word if that word is currently in the cache.
• M be the average time it takes for the CPU to access a

word in main memory (i.e., not in the cache).
• H be the hit ratio:the fraction of times that the memory

word the CPU needs is in the cache.
• mean_access_time = C + (1 – H) M
• If H is close to 1:
• If H is close to 0:

52October 30, 2014 CSE2312, Fall 2014

Quantifying Memory Access Speed

• Let:
• mean_access_time be the average time it takes for the

CPU to access a memory word.
• C be the average time it takes for the CPU to access a

memory word if that word is currently in the cache.
• M be the average time it takes for the CPU to access a

word in main memory (i.e., not in the cache).
• H be the hit ratio:the fraction of times that the memory

word the CPU needs is in the cache.
• mean_access_time = C + (1 – H) M
• If H is close to 1: mean_access_time ≌ C.
• If H is close to 0: mean_access_time ≌ C + M.

53October 30, 2014 CSE2312, Fall 2014

Quantifying Memory Access Speed

• mean_access_time = C + (1 – H) M
• If H is close to 1: mean_access_time ≌ C.

• If the hit ratio is close to 1, then almost all memory
accesses are handled by the cache, so the time it takes to
access main memory does not affect the average much.

• If H is close to 0: mean_access_time ≌ C + M.
• If the hit ratio is close to 0, then almost all memory

accesses are handled by the main memory. In that case,
the CPU:

• First tries to access the word in the cache, which takes time C.
• The word is not found in the cache, so the CPU then accesses the word

from memory, which takes time M.

54October 30, 2014 CSE2312, Fall 2014

The Locality Principle

• In typical programs, memory accesses are not
random.

• If we access memory address A, it is likely that the
next memory address to be accessed will be close
to A.

• More generally, the memory references made in
any short time interval tend to use only a small
fraction of the total memory.

• This observation is called the locality principle.

55October 30, 2014 CSE2312, Fall 2014

Principle of Locality

• Programs access a small proportion of their address
space at any time

• Temporal locality
• Items accessed recently are likely to be accessed again

soon
• e.g., instructions in a loop, induction variables

• Spatial locality
• Items near those accessed recently are likely to be

accessed soon
• E.g., sequential instruction access, array data

October 30, 2014 56CSE2312, Fall 2014

Taking Advantage of Locality

• Memory hierarchy
• Store everything on disk
• Copy recently accessed (and nearby) items from

disk to smaller DRAM memory
• Main memory

• Copy more recently accessed (and nearby) items
from DRAM to smaller SRAM memory

• Cache memory attached to CPU

October 30, 2014 57CSE2312, Fall 2014

Using the Locality Principle

• How do we use the locality principle?
• If we need a word and that word is not in the cache:

• Bring to the cache not only that word, but also several of
its neighbors, since they are likely to be accessed next.

• How do we determine which neighbors to load?
• We divide memories and caches into fixed-sized blocks

called cache lines.
• When a cache miss occurs, the entire cache line for that

word is loaded into the cache.

58October 30, 2014 CSE2312, Fall 2014

Cache Design Optimization

• In designing a cache, several parameters must be
determined, oftentimes experimentally.

• Size of cache: bigger caches lead to better performance,
but are more expensive.

• Size of cache line:
• 1 word is too small.
• Setting the cache line to be equal to the cache size is probably too large.
• Not clear where the optimal value in between is, but simulations can help

determine that.

59October 30, 2014 CSE2312, Fall 2014

Magnetic Disks

• Consists of one or more platters with magnetizable coating
• Disk head containing induction coil floats just over the

surface
• When a positive or negative current passes through head, it

magnetizes the surface just beneath the head, aligning the
magnetic particles face right or left, depending on the
polarity of the drive current

• When head passes over a magnetized area, a positive or
negative current is induced in the head, making it possible to
read back the previously stored bits

• Track
• Circular sequence of bits written as disk makes complete rotation
• Sector: Each track is divided into some sector with fixed length

October 30, 2014 CSE2312, Fall 2014 60

Classical Hard Drives: Magnetic Disks

• A magnetic disk is a disk, that spins very fast.
• Typical rotation speed: 5400, 7200, 10800 RPMs.
• RPMs: rotations per minute.
• These translate to 90, 120, 180 rotations per second.

• The disk is divided into rings, that are called tracks.
• Data is read by the disk head.

• The head is placed at a specific radius from the disk
center.

• That radius corresponds to a specific track.
• As the disk spins, the head reads data from that track.

61October 30, 2014 CSE2312, Fall 2014

CSE2312, Fall 2014

Disk Storage
• Nonvolatile, rotating magnetic storage

October 30, 2014 62

Disk Tracks and Sectors

• A track can be 0.2μm wide.
• We can have 50,000 tracks per cm of radius.
• About 125,000 tracks per inch of radius.

• Each track is divided into fixed-length sectors.
• Typical sector size: 512 bytes.

• Each sector is preceded by a preamble. This allows the
head to be synchronized before reading or writing.

• In the sector, following the data, there is an error-
correcting code.

• Between two sectors there is a small intersector gap.

63October 30, 2014 CSE2312, Fall 2014

Visualizing a Disk Track

A portion of a disk track. Two sectors are illustrated.

October 30, 2014 CSE2312, Fall 2014 64

CSE2312, Fall 2014

Disk Sectors and Access

• Each sector records
• Sector ID
• Data (512 bytes, 4096 bytes proposed)
• Error correcting code (ECC)

• Used to hide defects and recording errors
• Synchronization fields and gaps

• Access to a sector involves
• Queuing delay if other accesses are pending
• Seek: move the heads
• Rotational latency
• Data transfer
• Controller overhead

October 30, 2014 65

CSE2312, Fall 2014

Disk Access Example

• Given
• 512B sector, 15,000rpm, 4ms average seek time, 100MB/s

transfer rate, 0.2ms controller overhead, idle disk
• Average read time

• 4ms seek time
+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

• If actual average seek time is 1ms
• Average read time = 3.2ms

October 30, 2014 66

CSE2312, Fall 2014

Disk Performance Issues

• Manufacturers quote average seek time
• Based on all possible seeks
• Locality and OS scheduling lead to smaller actual average

seek times
• Smart disk controller allocate physical sectors on

disk
• Present logical sector interface to host
• SCSI, ATA, SATA

• Disk drives include caches
• Prefetch sectors in anticipation of access
• Avoid seek and rotational delay

October 30, 2014 67

Magnetic Disk Sectors

October 30, 2014 CSE2312, Fall 2014 68

Measuring Disk Capacity

• Disk capacity is often advertized in unformatted
state.

• However, formatting takes away some of this
capacity.

• Formatting creates preambles, error-correcting codes,
and gaps.

• The formatted capacity is typically about 15% lower
than unformatted capacity.

69October 30, 2014 CSE2312, Fall 2014

Multiple Platters

• A typical hard drive unit contains multiple platters,
i.e., multiple actual disks.

• These platters are stacked vertically (see figure).
• Each platter stores information on both surfaces.
• There is a separate arm and head for each surface.

70October 30, 2014 CSE2312, Fall 2014

Magnetic Disk Platters

October 30, 2014 CSE2312, Fall 2014 71

Cylinders

• The set of tracks corresponding to a specific radial
position is called a cylinder.

• Each track in a cylinder is read by a different head.

72October 30, 2014 CSE2312, Fall 2014

Data Access Times

• Suppose we want to get some data from the disk.
• First, the head must be placed on the right track (i.e.,

at the right radial distance).
• This is called seek.
• Average seek times are in the 5-10 msec range.

• Then, the head waits for the disk to rotate, so that it
gets to the right sector.

• Given that disks rotate at 5400-10800 RPMs, this incurs an
average wait of 3-6 msec. This is called rotational latency.

• Then, the data is read. A typical rate for this stage is
150MB/sec.

• So, a 512-byte sector can be read in ~3.5 μsec.

73October 30, 2014 CSE2312, Fall 2014

Measures of Disk Speed

• Maximum Burst Rate: the rate (number of bytes
per sec) at which the head reads a sector, once the
had has started seeing the first data bit.

• This excludes seeks, rotational latencies, going through
preambles, error-correcting codes, intersector gaps.

• Sustained Rate: the actual average rate of reading
data over several seconds, that includes all the
above factors (seeks, rotational latencies, etc.).

74October 30, 2014 CSE2312, Fall 2014

Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be
aware of if your software accesses the hard drive:
the worst case speed.

• What scenario gives us the worst case?

75October 30, 2014 CSE2312, Fall 2014

Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be
aware of if your software accesses the hard drive:
the worst case speed.

• What scenario gives us the worst case?
• Read random positions, one byte at a time.
• To read each byte, we must perform a seek, wait for the

rotational latency, go through the sector preamble, etc.
• If this whole process takes about 10 msec (which

may be a bit optimistic), we can only read ???/sec?

76October 30, 2014 CSE2312, Fall 2014

Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be
aware of if your software accesses the hard drive:
the worst case speed.

• What scenario gives us the worst case?
• Read random positions, one byte at a time.
• To read each byte, we must perform a seek, wait for the

rotational latency, go through the sector preamble, etc.
• If this whole process takes about 10 msec (which

may be a bit optimistic), we can only read 100
bytes/sec.

• More than a million times slower than the maximum
burst rate.

77October 30, 2014 CSE2312, Fall 2014

Worst Case Speed

• Reading a lot of non-contiguous small chunks of
data kills magnetic disk performance.

• When your programs access disks a lot, it is
important to understand how disk data are read, to
avoid this type of pitfall.

78October 30, 2014 CSE2312, Fall 2014

Disk Controller

• The disk controller is a chip that controls the drive.
• Some controllers contain a full CPU.

• Controller tasks:
• Execute commands coming from the software, such as:

• READ
• WRITE
• FORMAT (writing all the preambles)

• Control the arm motion.
• Detect and correct errors.
• Buffer multiple sectors.
• Cache sectors read for potential future use.
• Remap bad sectors.

79October 30, 2014 CSE2312, Fall 2014

IDE and SCSI Drives

• IDE and SCSI drives are the two most common types
of hard drives on the market.

• The book goes into a lot of details about each of
these types.

• We will skip that in this class.
• We skip textbook sections 2.3.3 and 2.3.4.

• Just be aware that:
• IDE drives are cheaper and slower.

• Newer IDE drives are also called serial ATA or SATA.
• SCSI drives are more expensive and faster.

• Most inexpensive computers use IDE drives.

80October 30, 2014 CSE2312, Fall 2014

RAID

• RAID stands for Redundant Array of Inexpensive Disks.
• RAID arrays are simply sets of disks, that are visible as

a single unit by the computer.
• Instead of a single drive accessible via a drive controller, the

whole RAID is accessible via a RAID controller.
• Since a RAID can look as a single drive, software accessing

disks does not need to be modified to access a RAID.
• Depending on their type (we will see several types),

RAIDs accomplish one (or both) of the following:
• Speed up performance.
• Tolerate failures of entire drive units.

81October 30, 2014 CSE2312, Fall 2014

Summary

• Memory hierarchy
• Cache
• Main memory
• Disk / storage

October 30, 2014 CSE2312, Fall 2014 82

RAID for Faster Speed

• Disk performance has not improved as dramatically
as CPU performance.

• In the 1970s, average seek times on minicomputer
disks were 50-100 msec.

• Now they have improved to 5-10 msec.
• The slow gains in performance have motivated

people to look into ways to gain speed via parallel
processing.

83October 30, 2014 CSE2312, Fall 2014

RAID-0
• RAID level 0: Improves speed via striping.

• When a write request comes in, data is broken into strips.
• Each strip is written to a different drive, in round-robin fashion.
• Thus, multiple strips are written in parallel, effectively leading

to faster speed, compared to using a single drive.
• Effect: most files are stored in a distributed manner:

with different pieces of them stored on each drive of the
RAID.

• When reading a file, the different pieces (strips) are read
again in parallel, from all drives.

84October 30, 2014 CSE2312, Fall 2014

RAID-0 Example

• Suppose we have a RAID-0 system with 8 disks.
• What is the best case scenario, in which performance will be

the best, compared to a single disk?

• Compared to a single disk, in the best case:
• The write performance of RAID-0 is: ???
• The read performance of RAID-0 is: ???

• What is the best case scenario, in which performance will be
the best, compared to a single disk?

• Compared to a single disk, in the worst case:
• The write performance of RAID-0 is: ???
• The read performance of RAID-0 is: ???

85October 30, 2014 CSE2312, Fall 2014

RAID-0 Example

• Suppose we have a RAID-0 system with 8 disks.
• What is the best case scenario, in which performance will be

the best, compared to a single disk?
• Reading/writing large chunks of data, so striping can be exploited.

• Compared to a single disk, in the best case:
• The write performance of RAID-0 is: 8 times faster than a single disk.
• The read performance of RAID-0 is: 8 times faster than a single disk.

• What is the best case scenario, in which performance will be
the best, compared to a single disk?

• Reading/writing many small, unrelated chunks of data (e.g., a single byte
at a time). Then, striping cannot be used.

• Compared to a single disk, in the worst case:
• The write performance of RAID-0 is: the same as that of a single disk.
• The read performance of RAID-0 is: the same as that of a single disk.

86October 30, 2014 CSE2312, Fall 2014

RAID-0: Pros and Cons

• RAID-0 works the best for large read/write requests.
• RAID-0 speed deteriorates into that of a single drive

if the software asks for data in chunks of one strip
(or less) at a time.

• How about reliability? A RAID-0 is less reliable, and
more prone to failure than that of a single drive.

• Suppose we have a RAID with four drives.
• Each drive has a mean time to failure of 20,000 hours.
• Then, the RAID has a mean time to failure that is ???

hours?

87October 30, 2014 CSE2312, Fall 2014

RAID-0: Pros and Cons

• RAID-0 works the best for large read/write requests.
• RAID-0 speed deteriorates into that of a single drive

if the software asks for data in chunks of one strip
(or less) at a time.

• How about reliability? A RAID-0 is less reliable, and
more prone to failure than that of a single drive.

• Suppose we have a RAID with four drives.
• Each drive has a mean time to failure of 20,000 hours.
• Then, the RAID has a mean time to failure that is only

5000 hours.
• RAID-0 is not a "true" RAID, no drive is redundant.

88October 30, 2014 CSE2312, Fall 2014

RAID-1

• In RAID-1, we need to have an even number of drives.
• For each drive, there is an identical copy.
• When we write data, we write it to both drives.
• When we read data, we read from either of the drives.
• NO STRIPING IS USED.
• Compared to a single disk:

• The write performance is:
• The read performance is:
• Reliability is:

89October 30, 2014 CSE2312, Fall 2014

RAID-1

• In RAID-1, we need to have an even number of drives.
• For each drive, there is an identical copy.
• When we write data, we write it to both drives.
• When we read data, we read from either of the drives.
• NO STRIPING IS USED.
• Compared to a single disk:

• The write performance is: twice as slow.
• The read performance is: the same.
• Reliability is: far better, drive failure is not catastrophic.

90October 30, 2014 CSE2312, Fall 2014

The Need for RAID-5.

• RAID-0: great for performance, bad for reliability.
• striping, but no redundant data.

• RAID-1: bad for performance, great for reliability.
• redundant data, no striping

• RAID-2, RAID-3, RAID-4: have problems of their
own.

• You can read about them in the textbook if you are
curious, but they are not very popular.

• RAID-5: great for performance, great for reliability.
• both redundant data and striping.

91October 30, 2014 CSE2312, Fall 2014

RAID-5

• Data is striped for writing.
• If we have N disks, we can process N-1 data strips in

parallel.
• For every N-1 data strips, we create an Nth strip,

called parity strip.
• The k-th bit in the parity strip ensures that there is an

even number of 1-bits in position k in all N strips.
• If any strip fails, its data can be recovered from the

other N-1 strips.
• This way, the contents of an entire disk can be

recovered.

92October 30, 2014 CSE2312, Fall 2014

RAID-5 Example

• Suppose we have a RAID-5 system with 8 disks.
• Compared to a single disk, in the best case:

• The write performance of RAID-5 is: ???

• The read performance of RAID-5 is: ???

• Compared to a single disk, in the worst case:
• The write performance of RAID-5 is: ???

• The read performance of RAID-5 is: ???

93October 30, 2014 CSE2312, Fall 2014

RAID-5 Example

• Suppose we have a RAID-5 system with 8 disks.
• Compared to a single disk, in the best case:

• The write performance of RAID-5 is: 7 times faster than a single
disk. (writes non-parity data on 7 disks simultaneously).

• The read performance of RAID-5 is: 7 times faster than a single
disk. (reads non-parity data on 7 disks simultaneously).

• Compared to a single disk, in the worst case:
• The write performance of RAID-5 is: the same as that of a single

disk.
• The read performance of RAID-5 is: the same as that of a single

disk.
• Why? Because striping is not useful when reading/writing one

byte at a time.

94October 30, 2014 CSE2312, Fall 2014

RAID-0, RAID-1, RAID-2

RAID levels 0 through 5. Backup and
parity drives are shown shaded.

October 30, 2014 CSE2312, Fall 2014 95

RAID-3, RAID-4, RAID-5

RAID levels 0 through 5. Backup and
parity drives are shown shaded.

October 30, 2014 CSE2312, Fall 2014 96

Solid-State Drives

• A solid-state drive (SSD) is NOT a spinning disk. It is
just cheap memory.

• Compared to hard drives, SSDs have two to three
times faster speeds, and ~100nsec access time.

• Because SSDs have no mechanical parts, they are well-
suited for mobile computers, where motion can
interfere with the disk head accessing data.

• Disadvantage #1: price.
• Magnetic disks: pennies/gigabyte.
• SSDs: one to three dollars/gigabyte.

• Disadvantage #2: failure rate.
• A bit can be written about 100,000 times, then it fails.

97October 30, 2014 CSE2312, Fall 2014

CDs

October 30, 2014 CSE2312, Fall 2014 98

CDs

• Mode 1
• 16 bytes preamble, 2048 bytes data, 288 bytes error-correcting code
• Single Speed CD-ROM: 75 sectors/sec, so data rate: 75*2048=153,600

bytes/sec
• 74 minutes audio CD: Capacity: 74*60*153,600=681,984,000 bytes

~=650 MB
• Mode 2

• 2336 bytes data for a sector, 75*2336=175,200 bytes/sec

October 30, 2014 CSE2312, Fall 2014 99

CD-R

October 30, 2014 CSE2312, Fall 2014 100

DVDs

• Single-sided, single-layer (4.7 GB)
• Single-sided, dual-layer (8.5 GB)
• Double-sided, single-layer (9.4 GB)
• Double-sided, dual-layer (17 GB)

October 30, 2014 CSE2312, Fall 2014 101

Storing Images

October 30, 2014 CSE2312, Fall 2014 102

Optical Disks

• Disks in this family include:
• CDs, DVDs, Blu-ray disks.

• The basic technology is similar, but improvements have led to
higher capacities and speeds.

• Optical disks are much slower than magnetic drives.
• These disks are a cheap option for write-once purposes.

• Great for mass distribution of data (software, music, movies).

• CD capacity: 650-700MB.
• Minimum data rate: 150KB/sec.

• DVD capacity: 4.7GB to 17GB.
• Minimum data rate: 1.4MB/sec.

• Blu-ray capacity: 25GB-50GB.
• Minimum data rate: 4.5MB/sec.

103October 30, 2014 CSE2312, Fall 2014

Optical Disk Capacities

• CD capacity: 650-700MB.
• Minimum data rate: 150KB/sec.

• DVD capacity: 4.7GB to 17GB.
• Minimum data rate: 1.4MB/sec.
• Single-sided, single-layer: 4.7GB.
• Single-sided, dual-layer: 8.5GB.
• Double-sided, single-layer: 9.4GB.
• Double-sided, dual-layer: 17GB.

• Blu-ray capacity: 25GB-50GB.
• Minimum data rate: 4.5MB/sec.
• Single-sided: 25GB.
• Double-sided: 50GB.

October 30, 2014 CSE2312, Fall 2014 104

CSE2312, Fall 2014

Flash Storage

• Nonvolatile semiconductor storage
• 100× – 1000× faster than disk
• Smaller, lower power, more robust
• But more $/GB (between disk and DRAM)

October 30, 2014 105

CSE2312, Fall 2014

Flash Types

• NOR flash: bit cell like a NOR gate
• Random read/write access
• Used for instruction memory in embedded systems

• NAND flash: bit cell like a NAND gate
• Denser (bits/area), but block-at-a-time access
• Cheaper per GB
• Used for USB keys, media storage, …

• Flash bits wears out after 1000’s of accesses
• Not suitable for direct RAM or disk replacement
• Wear leveling: remap data to less used blocks

October 30, 2014 106

Cache Memory
• Cache memory

• The level of the memory hierarchy closest to the CPU
• Given accesses X1, …, Xn–1, Xn

 How do we know if
the data is present?

 Where do we look?

October 30, 2014 107CSE2312, Fall 2014

CSE2312, Fall 2014

Direct Mapped Cache
• Location determined by address
• Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

October 30, 2014 108

CSE2312, Fall 2014

Tags and Valid Bits

• How do we know which particular block is stored in
a cache location?

• Store block address as well as the data
• Actually, only need the high-order bits
• Called the tag

• What if there is no data in a location?
• Valid bit: 1 = present, 0 = not present
• Initially 0

October 30, 2014 109

CSE2312, Fall 2014

Cache Example
• 8-blocks, 1 word/block, direct mapped
• Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

October 30, 2014 110

CSE2312, Fall 2014

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

October 30, 2014 111

CSE2312, Fall 2014

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

October 30, 2014 112

CSE2312, Fall 2014

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

October 30, 2014 113

CSE2312, Fall 2014

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

October 30, 2014 114

CSE2312, Fall 2014

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

October 30, 2014 115

Direct-Mapped Caches

MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x1FFF 1
MEM[0x0002] 0xABCD 01 0x00 x0000 1
MEM[0x0003] 0x1234 10 0x00 xABCD 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

October 30, 2014 CSE2312, Fall 2014 116

Direct-Mapped Caches

MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x1FFF 1
MEM[0x0002] 0xABCD 01 0x01 x0005 1
MEM[0x0003] 0x1234 10 0x01 x0006 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

October 30, 2014 CSE2312, Fall 2014 117

Direct-Mapped Caches

October 30, 2014 CSE2312, Fall 2014 118

CSE2312, Fall 2014

Address Subdivision

October 30, 2014 119

CSE2312, Fall 2014

Example: Larger Block Size
• 64 blocks, 16 bytes/block

• To what block number does address 1200 map?
• Block address = 1200/16 = 75
• Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

October 30, 2014 120

CSE2312, Fall 2014

Block Size Considerations

• Larger blocks should reduce miss rate
• Due to spatial locality

• But in a fixed-sized cache
• Larger blocks ⇒ fewer of them

• More competition ⇒ increased miss rate
• Larger blocks ⇒ pollution

• Larger miss penalty
• Can override benefit of reduced miss rate
• Early restart and critical-word-first can help

October 30, 2014 121

CSE2312, Fall 2014

Cache Misses

• On cache hit, CPU proceeds normally
• On cache miss

• Stall the CPU pipeline
• Fetch block from next level of hierarchy
• Instruction cache miss

• Restart instruction fetch

• Data cache miss
• Complete data access

October 30, 2014 122

CSE2312, Fall 2014

Write-Through

• On data-write hit, could just update the block in cache
• But then cache and memory would be inconsistent

• Write through: also update memory
• But makes writes take longer

• e.g., if base CPI = 1, 10% of instructions are stores, write to
memory takes 100 cycles

• Effective CPI = 1 + 0.1×100 = 11

• Solution: write buffer
• Holds data waiting to be written to memory
• CPU continues immediately

• Only stalls on write if write buffer is already full

October 30, 2014 123

CSE2312, Fall 2014

Write-Back

• Alternative: On data-write hit, just update the block
in cache

• Keep track of whether each block is dirty
• When a dirty block is replaced

• Write it back to memory
• Can use a write buffer to allow replacing block to be read

first

October 30, 2014 124

CSE2312, Fall 2014

Write Allocation

• What should happen on a write miss?
• Alternatives for write-through

• Allocate on miss: fetch the block
• Write around: don’t fetch the block

• Since programs often write a whole block before reading it (e.g.,
initialization)

• For write-back
• Usually fetch the block

October 30, 2014 125

	Computer Organization & Assembly Language Programming (CSE 2312)
	Announcements and Outline
	ARM 3-Stage Pipeline Processor Execution Cycle
	Von Neumann Architecture
	Logical Structure of a Computer
	The PCI Bus
	The PCIe Bus
	Memory-Mapped I/O
	Slide Number 9
	Address from Memory-Map in Manual
	UART Register Map
	UART Flag Register Bits
	Reading Input from UART (POLLING)
	Viewing Memory-Mapped Registers with gdb�
	Printing Strings
	Exceptions and Interrupts
	Interrupt Service Routines (ISR)
	ISR Timeline
	Traps / Exceptions / Faults
	Memory Hierarchies
	Memory Speed and CPU Execution
	Memory Hierarchy
	�Levels of the Memory Hierarchy
	Memory Hierarchies
	Memory Packaging
	Memory Packaging and Types
	Memory Technology
	DRAM Technology
	Advanced DRAM Organization
	DRAM Generations
	DRAM Performance Factors
	�Increasing Memory Bandwidth
	Computing the Slowdown
	Computing the Slowdown
	Computing the Slowdown
	Computing the Slowdown
	load and Reordering
	load and Reordering
	load vs. store
	load vs. store
	Remedy for Slow Memory: The Cache
	How the Cache Works
	How the Cache Works
	Cache Memory
	Cache Hit: find necessary data in cache
	Cache Miss: have to get necessary data from main memory
	�Memory Hierarchy Levels
	More Detailed Cache Organization
	Cache Terms
	Cache Design Criteria
	Best and Worst Case
	Quantifying Memory Access Speed
	Quantifying Memory Access Speed
	Quantifying Memory Access Speed
	The Locality Principle
	Principle of Locality
	Taking Advantage of Locality
	Using the Locality Principle
	Cache Design Optimization
	Magnetic Disks
	�Classical Hard Drives: Magnetic Disks
	Disk Storage
	Disk Tracks and Sectors
	Visualizing a Disk Track
	Disk Sectors and Access
	Disk Access Example
	Disk Performance Issues
	Magnetic Disk Sectors
	Measuring Disk Capacity
	Multiple Platters
	Magnetic Disk Platters
	Cylinders
	Data Access Times
	Measures of Disk Speed
	Worst Case Speed
	Worst Case Speed
	Worst Case Speed
	Worst Case Speed
	Disk Controller
	IDE and SCSI Drives
	RAID
	Summary
	RAID for Faster Speed
	RAID-0
	RAID-0 Example
	RAID-0 Example
	RAID-0: Pros and Cons
	RAID-0: Pros and Cons
	RAID-1
	RAID-1
	The Need for RAID-5.
	RAID-5
	RAID-5 Example
	RAID-5 Example
	RAID-0, RAID-1, RAID-2�
	RAID-3, RAID-4, RAID-5�
	Solid-State Drives
	CDs
	CDs
	CD-R
	DVDs
	Storing Images
	Optical Disks
	Optical Disk Capacities
	Flash Storage
	Flash Types
	Cache Memory
	Direct Mapped Cache
	Tags and Valid Bits
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Direct-Mapped Caches
	Direct-Mapped Caches
	Direct-Mapped Caches
	Address Subdivision
	Example: Larger Block Size
	Block Size Considerations
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation

