
Computer Organization & 
Assembly Language 

Programming (CSE 2312)
Lecture 21: Caches

Taylor Johnson



Announcements and Outline

• Programming assignment 1 assigned, due 11/4 by 
midnight

• Review
• Example Debugging UART Interaction with gdb
• Memory Hierarchies

• Registers
• Caches
• Main Memory
• Storage
• …

• Caches

November 4, 2014 2



Memory Speed and CPU Execution

• CPUs have always been faster than memories.
• This means that a load or store instruction, 

accessing the main memory, is much slower in 
practice than instructions accessing the ALU.

• How can we deal with this? Suppose we have a load
instruction:

• Let the load instruction go through the pipeline to fetch 
the data from memory to a register.

• If any subsequent instruction tries to use that data before 
it has arrived, just stall (don't let that instruction proceed 
to the next pipeline step).

3November 4, 2014



Memory Hierarchy

November 4, 2014 4

Bigger
Slower



Levels of the Memory Hierarchy

• Registers: a few tens, accessible at full CPU speed.
• 1 nanosecond or less.

• Cache, up to a few megabytes.
• Accessible in a few CPU cycles.

• Main memory: 1GB-16GB for most personal PCs.
• Access: 10 nanoseconds.

• Solid state drives: 128-512GB.
• Access: about 100 nanoseconds.

• Magnetic disks (traditional hard drives): 1-4TB.
• Access: 3-6 milliseconds (millions of nanoseconds).

• Optical disks, tapes: access can take seconds or more.

5November 4, 2014



Memory Hierarchies

• We can have superfast expensive memory.
• We can also have slow cheap memory.
• We want lots of superfast cheap memory.
• We can get close to that goal, using a memory 

hierarchy.
• At the top, a little bit of superfast expensive memory: CPU 

registers.
• Each next level is somewhat slower, and somewhat cheaper.

• Because of the locality principle, the vast majority of 
memory accesses happen at the lower, faster levels.

6November 4, 2014



Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 5 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• ?? CPU cycles to execute the 4 instructions not accessing 

memory.
• ?? CPU cycles to execute the 1 instruction accessing 

memory.
• In total, we need ?? CPU cycles per 5 instructions.

• ??% slower than it would be if memory ran at the same 
speed as the CPU.

7November 4, 2014



Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 5 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• 4 CPU cycles to execute the 4 instructions not accessing 

memory.
• 5 CPU cycles to execute the 1 instruction accessing 

memory.
• In total, we need 9 CPU cycles per 5 instructions.

• 80% slower than it would be if memory ran at the same 
speed as the CPU.

8November 4, 2014



Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 50 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• ?? CPU cycles to execute the 4 instructions not accessing 

memory.
• ?? CPU cycles to execute the 1 instruction accessing 

memory.
• In total, we need ?? CPU cycles per 5 instructions.

• About ?? times slower than it would be if memory ran at 
the same speed as the CPU.

9November 4, 2014



Computing the Slowdown

• Suppose that:
• 1 out of 5 instructions accesses memory.
• Memory access is 50 CPU cycles.

• Then, on average, for each 5 instructions, we need:
• 4 CPU cycles to execute the 4 instructions not accessing 

memory.
• 50 CPU cycles to execute the 1 instruction accessing 

memory.
• In total, we need 54 CPU cycles per 5 instructions.

• About 11 times slower than it would be if memory ran at 
the same speed as the CPU.

10November 4, 2014



load and Reordering

• This problem of slow memory access only occurs 
when subsequent instructions try to use the 
memory data that load is fetching.

• Unfortunately this is very common.
• Instruction reordering can be used to try to put as 

many instructions between the load instruction and 
the instruction that tries to use the data fetched by 
load.

• However, oftentimes that is not very useful. Why?

11November 4, 2014



load and Reordering

• This problem of slow memory access only occurs 
when subsequent instructions try to use the 
memory data that load is fetching.

• Unfortunately this is very common.
• Instruction reordering can be used to try to put as 

many instructions between the load instruction and 
the instruction that tries to use the data fetched by 
load.

• However, oftentimes that is not very useful. Why?
• The most common reason why an instruction fetches data 

from memory is that the next instructions need that data.

12November 4, 2014



load vs. store

• Store instructions are not as big a problem as load
instructions, in terms of hurting performance. Why?

13November 4, 2014



load vs. store

• Store instructions are not as big a problem as load
instructions, in terms of hurting performance. Why?

• We typically store data back to memory when we do not 
want to use it anymore.

• So, subsequent instructions typically do not need to 
refetch that data from memory.

• A store instruction may need to wait until its data is ready, 
but that type of wait is much shorter than waiting for load
to bring data from memory.

14November 4, 2014



Remedy for Slow Memory: The Cache

• Designers of memory systems have to struggle to 
satisfy two conflicting goals:

• We want lots of cheap memory.
• We want memory to be as fast as the CPU.

• To improve performance, it is common to use a 
hybrid approach:

• A large amount of slow and cheap memory.
• A small amount of fast and expensive memory.

• This small, fast memory, is called a cache.

November 4, 2014 15



How the Cache Works
• If the CPU needs a memory word, it looks for it in the 

cache.
• If the word is found in the cache, proceed as normal.
• If the word is not found in the cache, get it from main 

memory, and store it in the cache.
• Obviously, every time we store a word in the cache, some 

other word gets overwritten and is now only available in 
main memory.

• When will this approach improve performance, when 
will it hurt performance?

16November 4, 2014



How the Cache Works
• If the CPU needs a memory word, it looks for it in the 

cache.
• If the word is found in the cache, proceed as normal.
• If the word is not found in the cache, get it from main 

memory, and store it in the cache.
• Obviously, every time we store a word in the cache, some 

other word gets overwritten and is now only available in 
main memory.

• When will this approach improve performance, when 
will it hurt performance?

• It depends on the percentage of times that the word we 
need is in the cache.

17November 4, 2014



Cache Memory

November 4, 2014 18



Cache Hit: find necessary data in cache

November 4, 2014 19

Cache Hit



Cache Miss: have to get necessary data from 
main memory

November 4, 2014 20

Cache Miss



Memory Hierarchy Levels
• Block (aka line): unit of 

copying
• May be multiple words

• If accessed data is present 
in upper level

• Hit: access satisfied by upper 
level

• Hit ratio: hits/accesses

• If accessed data is absent
• Miss: block copied from 

lower level
• Time taken: miss penalty
• Miss ratio: misses/accesses

= 1 – hit ratio
• Then accessed data supplied 

from upper level



More Detailed Cache Organization

November 4, 2014 22



Cache Terms

• Cache line: block of cells inside a cache
• Usually store several words in a line (e.g., store 32 bytes on 32-bit 

word CPU)
• Cache hit: memory access finds value in cache

• Antonym: cache miss: have to get it from main memory
• Spatial locality: likely we need data from addresses around 

one we’re requesting (example: array operations)
• Mean access time: C + (1 – H) * M

• C: cache access time
• M: main memory access time (usually M >> C, e.g., M > 100 * C)
• H: hit ratio: probability to find a value in the cache
• miss ratio: 1 – H

• Time cost of cache miss: C + M memory access time

November 4, 2014 23



Cache Design Criteria

• Cache size
• Bigger cache is more effective, but slower to access and 

more expensive
• Cache line size

• Example: 16KB cache divides into
• 1024 lines of 16 bytes
• 2048 lines of 8 bytes
• Etc.

• Cache organization
• How to keep track of which memory words are in cache?
• Keep both data and instructions in same cache?

November 4, 2014 24



Best and Worst Case

• If almost all words the CPU needs are in the cache, 
then the average time of accessing memory is close 
to the time it takes to access the cache.

• If almost all words the CPU needs are NOT in the 
cache, then the average time of accessing memory 
is even worse than the time it takes to access main 
memory

• Because, before we even access main memory, we need 
to check the cache.

25November 4, 2014



Quantifying Memory Access Speed

• Let:
• mean_access_time be the average time it takes for the 

CPU to access a memory word.
• C be the average time it takes for the CPU to access a 

memory word if that word is currently in the cache.
• M be the average time it takes for the CPU to access a 

word in main memory (i.e., not in the cache).
• H be the hit ratio:the fraction of times that the memory 

word the CPU needs is in the cache.
• mean_access_time = C + (1 – H) M
• If H is close to 1: 
• If H is close to 0: 

26November 4, 2014



Quantifying Memory Access Speed

• Let:
• mean_access_time be the average time it takes for the 

CPU to access a memory word.
• C be the average time it takes for the CPU to access a 

memory word if that word is currently in the cache.
• M be the average time it takes for the CPU to access a 

word in main memory (i.e., not in the cache).
• H be the hit ratio:the fraction of times that the memory 

word the CPU needs is in the cache.
• mean_access_time = C + (1 – H) M
• If H is close to 1: mean_access_time ≌ C.
• If H is close to 0: mean_access_time ≌ C + M.

27November 4, 2014



Quantifying Memory Access Speed

• mean_access_time = C + (1 – H) M
• If H is close to 1: mean_access_time ≌ C.

• If the hit ratio is close to 1, then almost all memory 
accesses are handled by the cache, so the time it takes to 
access main memory does not affect the average much.

• If H is close to 0: mean_access_time ≌ C + M.
• If the hit ratio is close to 0, then almost all memory 

accesses are handled by the main memory. In that case, 
the CPU:

• First tries to access the word in the cache, which takes time C.
• The word is not found in the cache, so the CPU then accesses the word 

from memory, which takes time M.

28November 4, 2014



The Locality Principle

• In typical programs, memory accesses are not 
random.

• If we access memory address A, it is likely that the 
next memory address to be accessed will be close 
to A.

• More generally, the memory references made in 
any short time interval tend to use only a small 
fraction of the total memory.

• This observation is called the locality principle.

29November 4, 2014



Principle of Locality

• Programs access a small proportion of their address 
space at any time

• Temporal locality
• Items accessed recently are likely to be accessed again 

soon
• e.g., instructions in a loop, induction variables

• Spatial locality
• Items near those accessed recently are likely to be 

accessed soon
• E.g., sequential instruction access, array data

November 4, 2014 30



Taking Advantage of Locality

• Memory hierarchy
• Store everything on disk
• Copy recently accessed (and nearby) items from 

disk to smaller DRAM memory
• Main memory

• Copy more recently accessed (and nearby) items 
from DRAM to smaller SRAM memory

• Cache memory attached to CPU

November 4, 2014 31



Using the Locality Principle

• How do we use the locality principle?
• If we need a word and that word is not in the cache:

• Bring to the cache not only that word, but also several of 
its neighbors, since they are likely to be accessed next.

• How do we determine which neighbors to load?
• We divide memories and caches into fixed-sized blocks 

called cache lines.
• When a cache miss occurs, the entire cache line for that 

word is loaded into the cache.

32November 4, 2014



Cache Design Optimization

• In designing a cache, several parameters must be 
determined, oftentimes experimentally.

• Size of cache: bigger caches lead to better performance, 
but are more expensive.

• Size of cache line: 
• 1 word is too small.
• Setting the cache line to be equal to the cache size is probably too large.
• Not clear where the optimal value in between is, but simulations can help 

determine that.

33November 4, 2014



Cache Memory
• Cache memory

• The level of the memory hierarchy closest to the CPU
• Given accesses X1, …, Xn–1, Xn

 How do we know if 
the data is present?

 Where do we look?

November 4, 2014 34



Direct-Mapped Cache
• Location determined by address
• Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

 #Blocks is a 
power of 2

 Use low-order 
address bits

November 4, 2014 35



MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x1FFF 1
MEM[0x0002] 0xABCD 01 0x00 x0000 1
MEM[0x0003] 0x1234 10 0x00 xABCD 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

Direct-Mapped Caches

November 4, 2014 36



Direct-Mapped Caches

MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x1FFF 1
MEM[0x0002] 0xABCD 01 0x01 x0006 1
MEM[0x0003] 0x1234 10 0x01 x0007 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

November 4, 2014 37



Direct-Mapped Caches

MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x0000 0
MEM[0x0002] 0xABCD 01 0x01 x0006 1
MEM[0x0003] 0x1234 10 0x01 x0007 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

November 4, 2014 38



Tags and Valid Bits

• How do we know which particular block is stored in 
a cache location?

• Index = bottom bits of address
• Store block address as well as the data
• Actually, only need the high-order bits
• Called the tag
• Memory Address = concatenating tag and index

• What if there is no data in a location?
• Valid bit: 1 = present, 0 = not present
• Initially 0

November 4, 2014 39



Direct-Mapped Cache Example
• 8-blocks, 1 word/block, direct mapped
• Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

November 4, 2014 40



Direct-Mapped Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[ 10  110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

November 4, 2014 41



Direct-Mapped Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

November 4, 2014 42



Direct-Mapped Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

November 4, 2014 43



Direct-Mapped Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

November 4, 2014 44



Direct-Mapped Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

November 4, 2014 45



Address Subdivision

November 4, 2014 46



Example: Larger Block Size
• 64 blocks, 16 bytes/block

• To what block number does address 1200 map?
• Block address = 1200/16 = 75
• Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

November 4, 2014 47



Block Size Considerations

• Larger blocks should reduce miss rate
• Due to spatial locality

• But in a fixed-sized cache
• Larger blocks ⇒ fewer of them

• More competition ⇒ increased miss rate
• Larger blocks ⇒ pollution

• Larger miss penalty
• Can override benefit of reduced miss rate
• Early restart and critical-word-first can help

November 4, 2014 48



Cache Misses

• On cache hit, CPU proceeds normally
• On cache miss

• Stall the CPU pipeline
• Fetch block from next level of hierarchy
• Instruction cache miss

• Restart instruction fetch

• Data cache miss
• Complete data access

November 4, 2014 49



Write-Through

• On data-write hit, could just update the block in cache
• But then cache and memory would be inconsistent

• Write through: also update memory
• But makes writes take longer

• e.g., if base CPI = 1, 10% of instructions are stores, write to 
memory takes 100 cycles

• Effective CPI = 1 + 0.1×100 = 11

• Solution: write buffer
• Holds data waiting to be written to memory
• CPU continues immediately

• Only stalls on write if write buffer is already full

November 4, 2014 50



Write-Back

• Alternative: On data-write hit, just update the block 
in cache

• Keep track of whether each block is dirty
• When a dirty block is replaced

• Write it back to memory
• Can use a write buffer to allow replacing block to be read 

first

November 4, 2014 51



Write Allocation

• What should happen on a write miss?
• Alternatives for write-through

• Allocate on miss: fetch the block
• Write around: don’t fetch the block

• Since programs often write a whole block before reading it (e.g., 
initialization)

• For write-back
• Usually fetch the block

November 4, 2014 52



Example: Intrinsity FastMATH

• Embedded MIPS processor
• 12-stage pipeline
• Instruction and data access on each cycle

• Split cache: separate I-cache and D-cache
• Each 16KB: 256 blocks × 16 words/block
• D-cache: write-through or write-back

• SPEC2000 miss rates
• I-cache: 0.4%
• D-cache: 11.4%
• Weighted average: 3.2%

November 4, 2014 53



Example: Intrinsity FastMATH

November 4, 2014 54



Main Memory Supporting Caches

• Use DRAMs for main memory
• Fixed width (e.g., 1 word)
• Connected by fixed-width clocked bus

• Bus clock is typically slower than CPU clock

• Example cache block read
• 1 bus cycle for address transfer
• 15 bus cycles per DRAM access
• 1 bus cycle per data transfer

• For 4-word block, 1-word-wide DRAM
• Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
• Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

November 4, 2014 55



Measuring Cache Performance

• Components of CPU time
• Program execution cycles

• Includes cache hit time
• Memory stall cycles

• Mainly from cache misses

• With simplifying assumptions:

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

××=

××=

November 4, 2014 56



Cache Performance Example

• Given
• I-cache miss rate = 2%
• D-cache miss rate = 4%
• Miss penalty = 100 cycles
• Base CPI (ideal cache) = 2
• Load & stores are 36% of instructions

• Miss cycles per instruction
• I-cache: 0.02 × 100 = 2
• D-cache: 0.36 × 0.04 × 100 = 1.44

• Actual CPI = 2 + 2 + 1.44 = 5.44
• Ideal CPU is 5.44/2 =2.72 times faster

November 4, 2014 57



Average Access Time

• Hit time is also important for performance
• Average memory access time (AMAT)

• AMAT = Hit time + Miss rate × Miss penalty
• Example

• CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 
cycles, I-cache miss rate = 5%

• AMAT = 1 + 0.05 × 20 = 2ns
• 2 cycles per instruction

November 4, 2014 58



Performance Summary

• When CPU performance increased
• Miss penalty becomes more significant

• Decreasing base CPI
• Greater proportion of time spent on memory stalls

• Increasing clock rate
• Memory stalls account for more CPU cycles

• Can’t neglect cache behavior when evaluating 
system performance

November 4, 2014 59



Associative Caches

• Fully associative
• Allow a given block to go in any cache entry
• Requires all entries to be searched at once
• Comparator per entry (expensive)

• n-way set associative
• Each set contains n entries
• Block number determines which set

• (Block number) modulo (#Sets in cache)
• Search all entries in a given set at once
• n comparators (less expensive)

November 4, 2014 60



Associative Cache Example

November 4, 2014 61



Spectrum of Associativity
• For a cache with 8 entries

November 4, 2014 62



Associativity Example
• Compare 4-block caches

• Direct mapped, 2-way set associative,
fully associative

• Block access sequence: 0, 8, 0, 6, 8

• Direct mapped

Block 
address

Cache 
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

November 4, 2014 63



Associativity Example
• 2-way set associative

Block 
address

Cache 
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

November 4, 2014 64



How Much Associativity

• Increased associativity decreases miss rate
• But with diminishing returns

• Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

• 1-way: 10.3%
• 2-way: 8.6%
• 4-way: 8.3%
• 8-way: 8.1%

November 4, 2014 65



Set Associative Cache Organization

November 4, 2014 66



Replacement Policy

• Direct mapped: no choice
• Set associative

• Prefer non-valid entry, if there is one
• Otherwise, choose among entries in the set

• Least-recently used (LRU)
• Choose the one unused for the longest time

• Simple for 2-way, manageable for 4-way, too hard beyond that

• Random
• Gives approximately the same performance as LRU for 

high associativity

November 4, 2014 67



Multilevel Caches

• Primary cache attached to CPU
• Small, but fast

• Level-2 cache services misses from primary cache
• Larger, slower, but still faster than main memory

• Main memory services L-2 cache misses
• Some high-end systems include L-3 cache

November 4, 2014 68



Multilevel Cache Example

• Given
• CPU base CPI = 1, clock rate = 4GHz
• Miss rate/instruction = 2%
• Main memory access time = 100ns

• With just primary cache
• Miss penalty = 100ns/0.25ns = 400 cycles
• Effective CPI = 1 + 0.02 × 400 = 9

November 4, 2014 69



Example (cont.)

• Now add L-2 cache
• Access time = 5ns
• Global miss rate to main memory = 0.5%

• Primary miss with L-2 hit
• Penalty = 5ns/0.25ns = 20 cycles

• Primary miss with L-2 miss
• Extra penalty = 500 cycles

• CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
• Performance ratio = 9/3.4 = 2.6

November 4, 2014 70



Multilevel Cache Considerations

• Primary cache
• Focus on minimal hit time

• L-2 cache
• Focus on low miss rate to avoid main memory access
• Hit time has less overall impact

• Results
• L-1 cache usually smaller than a single cache
• L-1 block size smaller than L-2 block size

November 4, 2014 71



Interactions with Advanced CPUs

• Out-of-order CPUs can execute instructions during 
cache miss

• Pending store stays in load/store unit
• Dependent instructions wait in reservation stations

• Independent instructions continue

• Effect of miss depends on program data flow
• Much harder to analyse
• Use system simulation

November 4, 2014 72



Summary

• Memory hierarchy
• Cache
• Main memory
• Disk / storage

• Caches
• Direct-mapped vs. associative
• Tags
• Indices
• Valid bits
• Write-back vs. write-through

November 4, 2014 73



Interactions with Software
•Misses depend on 
memory access 
patterns
•Algorithm behavior
•Compiler optimization 
for memory access

November 4, 2014 74



Software Optimization via Blocking

• Goal:  maximize accesses to data before it is 
replaced

• Consider inner loops of DGEMM:

for (int j = 0; j < n; ++j)
{
double cij = C[i+j*n];
for( int k = 0; k < n; k++ )
cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;
}

November 4, 2014 75



DGEMM Access Pattern

• C, A, and B arrays
older accesses

new accesses

November 4, 2014 76



Cache Blocked DGEMM

1 #define BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double

3 *B, double *C)

4 {

5  for (int i = si; i < si+BLOCKSIZE; ++i)

6   for (int j = sj; j < sj+BLOCKSIZE; ++j)

7   {

8    double cij = C[i+j*n];/* cij = C[i][j] */

9    for( int k = sk; k < sk+BLOCKSIZE; k++ )

10    cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11   C[i+j*n] = cij;/* C[i][j] = cij */

12  }

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16  for ( int sj = 0; sj < n; sj += BLOCKSIZE )

17   for ( int si = 0; si < n; si += BLOCKSIZE )

18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )

19     do_block(n, si, sj, sk, A, B, C);

20 }

November 4, 2014 77



Blocked DGEMM Access Pattern

78November 4, 2014

Unoptimized Blocked



CDs

November 4, 2014 79



CDs

• Mode 1
• 16 bytes preamble, 2048 bytes data, 288 bytes error-correcting code
• Single Speed CD-ROM: 75 sectors/sec, so data rate: 75*2048=153,600 

bytes/sec
• 74 minutes audio CD: Capacity: 74*60*153,600=681,984,000 bytes 

~=650 MB
• Mode 2

• 2336 bytes data for a sector, 75*2336=175,200 bytes/sec

November 4, 2014 80



CD-R

November 4, 2014 81



DVDs

• Single-sided, single-layer (4.7 GB)
• Single-sided, dual-layer (8.5 GB)
• Double-sided, single-layer (9.4 GB)
• Double-sided, dual-layer (17 GB)

November 4, 2014 82



Storing Images

November 4, 2014 83



Optical Disks

• Disks in this family include:
• CDs, DVDs, Blu-ray disks.

• The basic technology is similar, but improvements have led to 
higher capacities and speeds.

• Optical disks are much slower than magnetic drives.
• These disks are a cheap option for write-once purposes.

• Great for mass distribution of data (software, music, movies).

• CD capacity: 650-700MB.
• Minimum data rate: 150KB/sec.

• DVD capacity: 4.7GB to 17GB.
• Minimum data rate: 1.4MB/sec.

• Blu-ray capacity: 25GB-50GB.
• Minimum data rate: 4.5MB/sec.

84November 4, 2014



Optical Disk Capacities

• CD capacity: 650-700MB.
• Minimum data rate: 150KB/sec.

• DVD capacity: 4.7GB to 17GB.
• Minimum data rate: 1.4MB/sec.
• Single-sided, single-layer: 4.7GB.
• Single-sided, dual-layer: 8.5GB.
• Double-sided, single-layer: 9.4GB.
• Double-sided, dual-layer: 17GB.

• Blu-ray capacity: 25GB-50GB.
• Minimum data rate: 4.5MB/sec.
• Single-sided: 25GB.
• Double-sided: 50GB.

November 4, 2014 85



Magnetic Disks

• Consists of one or more platters with magnetizable coating
• Disk head containing induction coil floats just over the 

surface
• When a positive or negative current passes through head, it 

magnetizes the surface just beneath the head, aligning the 
magnetic particles face right or left, depending on the 
polarity of the drive current

• When head passes over a magnetized area, a positive or 
negative current is induced in the head, making it possible to 
read back the previously stored bits

• Track
• Circular sequence of bits written as disk makes complete rotation
• Sector: Each track is divided into some sector with fixed length

November 4, 2014 86



Classical Hard Drives: Magnetic Disks

• A magnetic disk is a disk, that spins very fast.
• Typical rotation speed: 5400, 7200, 10800 RPMs.
• RPMs: rotations per minute.
• These translate to 90, 120, 180 rotations per second.

• The disk is divided into rings, that are called tracks. 
• Data is read by the disk head. 

• The head is placed at a specific radius from the disk 
center.

• That radius corresponds to a specific track.
• As the disk spins, the head reads data from that track.

87November 4, 2014



Solid-State Drives

• A solid-state drive (SSD) is NOT a spinning disk. It is 
just cheap memory.

• Compared to hard drives, SSDs have two to three 
times faster speeds, and ~100nsec access time.

• Because SSDs have no mechanical parts, they are well-
suited for mobile computers, where motion can 
interfere with the disk head accessing data.

• Disadvantage #1: price. 
• Magnetic disks: pennies/gigabyte.
• SSDs: one to three dollars/gigabyte.

• Disadvantage #2: failure rate. 
• A bit can be written about 100,000 times, then it fails.

88November 4, 2014



Flash Storage

• Nonvolatile semiconductor storage
• 100× – 1000× faster than disk
• Smaller, lower power, more robust
• But more $/GB (between disk and DRAM)

November 4, 2014 89



Flash Types

• NOR flash: bit cell like a NOR gate
• Random read/write access
• Used for instruction memory in embedded systems

• NAND flash: bit cell like a NAND gate
• Denser (bits/area), but block-at-a-time access
• Cheaper per GB
• Used for USB keys, media storage, …

• Flash bits wears out after 1000’s of accesses
• Not suitable for direct RAM or disk replacement
• Wear leveling: remap data to less used blocks

November 4, 2014 90



Disk Storage
• Nonvolatile, rotating magnetic storage

November 4, 2014 91



Disk Tracks and Sectors

• A track can be 0.2μm wide.
• We can have 50,000 tracks per cm of radius.
• About 125,000 tracks per inch of radius.

• Each track is divided into fixed-length sectors.
• Typical sector size: 512 bytes.

• Each sector is preceded by a preamble. This allows the 
head to be synchronized before reading or writing.

• In the sector, following the data, there is an error-
correcting code.

• Between two sectors there is a small intersector gap.

92November 4, 2014



Visualizing a Disk Track

A portion of a disk track. Two sectors are illustrated.

November 4, 2014 93



Disk Sectors and Access

• Each sector records
• Sector ID
• Data (512 bytes, 4096 bytes proposed)
• Error correcting code (ECC)

• Used to hide defects and recording errors
• Synchronization fields and gaps

• Access to a sector involves
• Queuing delay if other accesses are pending
• Seek: move the heads
• Rotational latency
• Data transfer
• Controller overhead

November 4, 2014 94



Disk Access Example

• Given
• 512B sector, 15,000rpm, 4ms average seek time, 100MB/s 

transfer rate, 0.2ms controller overhead, idle disk
• Average read time

• 4ms seek time
+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

• If actual average seek time is 1ms
• Average read time = 3.2ms

November 4, 2014 95



Disk Performance Issues

• Manufacturers quote average seek time
• Based on all possible seeks
• Locality and OS scheduling lead to smaller actual average 

seek times
• Smart disk controller allocate physical sectors on 

disk
• Present logical sector interface to host
• SCSI, ATA, SATA

• Disk drives include caches
• Prefetch sectors in anticipation of access
• Avoid seek and rotational delay

November 4, 2014 96



Magnetic Disk Sectors

November 4, 2014 97



Measuring Disk Capacity

• Disk capacity is often advertized in unformatted 
state.

• However, formatting takes away some of this 
capacity.

• Formatting creates preambles, error-correcting codes, 
and gaps.

• The formatted capacity is typically about 15% lower 
than unformatted capacity.

98November 4, 2014



Multiple Platters

• A typical hard drive unit contains multiple platters, 
i.e., multiple actual disks.

• These platters are stacked vertically (see figure).
• Each platter stores information on both surfaces.
• There is a separate arm and head for each surface.

99November 4, 2014



Magnetic Disk Platters

November 4, 2014 100



Cylinders

• The set of tracks corresponding to a specific radial 
position is called a cylinder.

• Each track in a cylinder is read by a different head.

101November 4, 2014



Data Access Times

• Suppose we want to get some data from the disk.
• First, the head must be placed on the right track (i.e., 

at the right radial distance).
• This is called seek. 
• Average seek times are in the 5-10 msec range.

• Then, the head waits for the disk to rotate, so that it 
gets to the right sector.

• Given that disks rotate at 5400-10800 RPMs, this incurs an 
average wait of 3-6 msec. This is called rotational latency.

• Then, the data is read. A typical rate for this stage is 
150MB/sec.

• So, a 512-byte sector can be read in ~3.5 μsec.

102November 4, 2014



Measures of Disk Speed

• Maximum Burst Rate: the rate (number of bytes 
per sec) at which the head reads a sector, once the 
had has started seeing the first data bit.

• This excludes seeks, rotational latencies, going through 
preambles, error-correcting codes, intersector gaps.

• Sustained Rate: the actual average rate of reading 
data over several seconds, that includes all the 
above factors (seeks, rotational latencies, etc.).

103November 4, 2014



Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be 
aware of if your software accesses the hard drive: 
the worst case speed.

• What scenario gives us the worst case?

104November 4, 2014



Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be 
aware of if your software accesses the hard drive: 
the worst case speed.

• What scenario gives us the worst case?
• Read random positions, one byte at a time.
• To read each byte, we must perform a seek, wait for the 

rotational latency, go through the sector preamble, etc.
• If this whole process takes about 10 msec (which 

may be a bit optimistic), we can only read ???/sec?

105November 4, 2014



Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be 
aware of if your software accesses the hard drive: 
the worst case speed.

• What scenario gives us the worst case?
• Read random positions, one byte at a time.
• To read each byte, we must perform a seek, wait for the 

rotational latency, go through the sector preamble, etc.
• If this whole process takes about 10 msec (which 

may be a bit optimistic), we can only read 100 
bytes/sec.

• More than a million times slower than the maximum 
burst rate.

106November 4, 2014



Worst Case Speed

• Reading a lot of non-contiguous small chunks of 
data kills magnetic disk performance.

• When your programs access disks a lot, it is 
important to understand how disk data are read, to 
avoid this type of pitfall.

107November 4, 2014



Disk Controller

• The disk controller is a chip that controls the drive.
• Some controllers contain a full CPU.

• Controller tasks:
• Execute commands coming from the software, such as:

• READ
• WRITE
• FORMAT (writing all the preambles)

• Control the arm motion.
• Detect and correct errors.
• Buffer multiple sectors.
• Cache sectors read for potential future use.
• Remap bad sectors.

108November 4, 2014



IDE and SCSI Drives

• IDE and SCSI drives are the two most common types 
of hard drives on the market.

• The book goes into a lot of details about each of 
these types.

• We will skip that in this class.
• We skip textbook sections 2.3.3 and 2.3.4.

• Just be aware that:
• IDE drives are cheaper and slower.

• Newer IDE drives are also called serial ATA or SATA.
• SCSI drives are more expensive and faster.

• Most inexpensive computers use IDE drives. 

109November 4, 2014



RAID

• RAID stands for Redundant Array of Inexpensive Disks.
• RAID arrays are simply sets of disks, that are visible as 

a single unit by the computer.
• Instead of a single drive accessible via a drive controller, the 

whole RAID is accessible via a RAID controller.
• Since a RAID can look as a single drive, software accessing 

disks does not need to be modified to access a RAID.
• Depending on their type (we will see several types), 

RAIDs accomplish one (or both) of the following:
• Speed up performance.
• Tolerate failures of entire drive units.

110November 4, 2014



RAID for Faster Speed

• Disk performance has not improved as dramatically 
as CPU performance.

• In the 1970s, average seek times on minicomputer 
disks were 50-100 msec.

• Now they have improved to 5-10 msec.
• The slow gains in performance have motivated 

people to look into ways to gain speed via parallel 
processing.

111November 4, 2014



RAID-0
• RAID level 0: Improves speed via striping.

• When a write request comes in, data is broken into strips.
• Each strip is written to a different drive, in round-robin fashion.
• Thus, multiple strips are written in parallel, effectively leading 

to faster speed, compared to using a single drive.
• Effect: most files are stored in a distributed manner: 

with different pieces of them stored on each drive of the 
RAID.

• When reading a file, the different pieces (strips) are read 
again in parallel, from all drives.

112November 4, 2014



RAID-0 Example

• Suppose we have a RAID-0 system with 8 disks. 
• What is the best case scenario, in which performance will be 

the best, compared to a single disk?

• Compared to a single disk, in the best case:
• The write performance of RAID-0 is: ???
• The read performance of RAID-0 is: ???

• What is the best case scenario, in which performance will be 
the best, compared to a single disk?

• Compared to a single disk, in the worst case:
• The write performance of RAID-0 is: ???
• The read performance of RAID-0 is: ???

113November 4, 2014



RAID-0 Example

• Suppose we have a RAID-0 system with 8 disks. 
• What is the best case scenario, in which performance will be 

the best, compared to a single disk?
• Reading/writing large chunks of data, so striping can be exploited.

• Compared to a single disk, in the best case:
• The write performance of RAID-0 is: 8 times faster than a single disk.
• The read performance of RAID-0 is: 8 times faster than a single disk.

• What is the best case scenario, in which performance will be 
the best, compared to a single disk?

• Reading/writing many small, unrelated chunks of data (e.g., a single byte 
at a time). Then, striping cannot be used.

• Compared to a single disk, in the worst case:
• The write performance of RAID-0 is: the same as that of a single disk.
• The read performance of RAID-0 is: the same as that of a single disk.

114November 4, 2014



RAID-0: Pros and Cons

• RAID-0 works the best for large read/write requests.
• RAID-0 speed deteriorates into that of a single drive 

if the software asks for data in chunks of one strip 
(or less) at a time.

• How about reliability? A RAID-0 is less reliable, and 
more prone to failure than that of a single drive.

• Suppose we have a RAID with four drives.
• Each drive has a mean time to failure of 20,000 hours.
• Then, the RAID has a mean time to failure that is ??? 

hours?

115November 4, 2014



RAID-0: Pros and Cons

• RAID-0 works the best for large read/write requests.
• RAID-0 speed deteriorates into that of a single drive 

if the software asks for data in chunks of one strip 
(or less) at a time.

• How about reliability? A RAID-0 is less reliable, and 
more prone to failure than that of a single drive.

• Suppose we have a RAID with four drives.
• Each drive has a mean time to failure of 20,000 hours.
• Then, the RAID has a mean time to failure that is only 

5000 hours.
• RAID-0 is not a "true" RAID, no drive is redundant.

116November 4, 2014



RAID-1

• In RAID-1, we need to have an even number of drives.
• For each drive, there is an identical copy.
• When we write data, we write it to both drives.
• When we read data, we read from either of the drives.
• NO STRIPING IS USED.
• Compared to a single disk:

• The write performance is:
• The read performance is:
• Reliability is:

117November 4, 2014



RAID-1

• In RAID-1, we need to have an even number of drives.
• For each drive, there is an identical copy.
• When we write data, we write it to both drives.
• When we read data, we read from either of the drives.
• NO STRIPING IS USED.
• Compared to a single disk:

• The write performance is: twice as slow.
• The read performance is: the same.
• Reliability is: far better, drive failure is not catastrophic.

118November 4, 2014



The Need for RAID-5.

• RAID-0: great for performance, bad for reliability.
• striping, but no redundant data.

• RAID-1: bad for performance, great for reliability.
• redundant data, no striping

• RAID-2, RAID-3, RAID-4: have problems of their 
own.

• You can read about them in the textbook if you are 
curious, but they are not very popular.

• RAID-5: great for performance, great for reliability.
• both redundant data and striping.

119November 4, 2014



RAID-5

• Data is striped for writing.
• If we have N disks, we can process N-1 data strips in 

parallel.
• For every N-1 data strips, we create an Nth strip, 

called parity strip.
• The k-th bit in the parity strip ensures that there is an 

even number of 1-bits in position k in all N strips.
• If any strip fails, its data can be recovered from the 

other N-1 strips.
• This way, the contents of an entire disk can be 

recovered.

120November 4, 2014



RAID-5 Example

• Suppose we have a RAID-5 system with 8 disks. 
• Compared to a single disk, in the best case:

• The write performance of RAID-5 is: ??? 

• The read performance of RAID-5 is: ???

• Compared to a single disk, in the worst case:
• The write performance of RAID-5 is: ???

• The read performance of RAID-5 is: ???

121November 4, 2014



RAID-5 Example

• Suppose we have a RAID-5 system with 8 disks. 
• Compared to a single disk, in the best case:

• The write performance of RAID-5 is: 7 times faster than a single 
disk. (writes non-parity data on 7 disks simultaneously).

• The read performance of RAID-5 is: 7 times faster than a single 
disk. (reads non-parity data on 7 disks simultaneously).

• Compared to a single disk, in the worst case:
• The write performance of RAID-5 is: the same as that of a single 

disk.
• The read performance of RAID-5 is: the same as that of a single 

disk.
• Why? Because striping is not useful when reading/writing one 

byte at a time.

122November 4, 2014



RAID-0, RAID-1, RAID-2

RAID levels 0 through 5. Backup and 
parity drives are shown shaded.

November 4, 2014 123



RAID-3, RAID-4, RAID-5

RAID levels 0 through 5. Backup and 
parity drives are shown shaded.

November 4, 2014 124


	Computer Organization & Assembly Language Programming (CSE 2312)
	Announcements and Outline
	Memory Speed and CPU Execution
	Memory Hierarchy
	�Levels of the Memory Hierarchy
	Memory Hierarchies
	Computing the Slowdown
	Computing the Slowdown
	Computing the Slowdown
	Computing the Slowdown
	load and Reordering
	load and Reordering
	load vs. store
	load vs. store
	Remedy for Slow Memory: The Cache
	How the Cache Works
	How the Cache Works
	Cache Memory
	Cache Hit: find necessary data in cache
	Cache Miss: have to get necessary data from main memory
	�Memory Hierarchy Levels
	More Detailed Cache Organization
	Cache Terms
	Cache Design Criteria
	Best and Worst Case
	Quantifying Memory Access Speed
	Quantifying Memory Access Speed
	Quantifying Memory Access Speed
	The Locality Principle
	Principle of Locality
	Taking Advantage of Locality
	Using the Locality Principle
	Cache Design Optimization
	Cache Memory
	Direct-Mapped Cache
	Direct-Mapped Caches
	Direct-Mapped Caches
	Direct-Mapped Caches
	Tags and Valid Bits
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Address Subdivision
	Example: Larger Block Size
	Block Size Considerations
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation
	Example: Intrinsity FastMATH
	Example: Intrinsity FastMATH
	Main Memory Supporting Caches
	Measuring Cache Performance
	Cache Performance Example
	Average Access Time
	Performance Summary
	Associative Caches
	Associative Cache Example
	Spectrum of Associativity
	Associativity Example
	Associativity Example
	How Much Associativity
	Set Associative Cache Organization
	Replacement Policy
	Multilevel Caches
	Multilevel Cache Example
	Example (cont.)
	Multilevel Cache Considerations
	Interactions with Advanced CPUs
	Summary
	Interactions with Software
	�Software Optimization via Blocking
	DGEMM Access Pattern
	Cache Blocked DGEMM
	Blocked DGEMM Access Pattern
	CDs
	CDs
	CD-R
	DVDs
	Storing Images
	Optical Disks
	Optical Disk Capacities
	Magnetic Disks
	�Classical Hard Drives: Magnetic Disks
	Solid-State Drives
	Flash Storage
	Flash Types
	Disk Storage
	Disk Tracks and Sectors
	Visualizing a Disk Track
	Disk Sectors and Access
	Disk Access Example
	Disk Performance Issues
	Magnetic Disk Sectors
	Measuring Disk Capacity
	Multiple Platters
	Magnetic Disk Platters
	Cylinders
	Data Access Times
	Measures of Disk Speed
	Worst Case Speed
	Worst Case Speed
	Worst Case Speed
	Worst Case Speed
	Disk Controller
	IDE and SCSI Drives
	RAID
	RAID for Faster Speed
	RAID-0
	RAID-0 Example
	RAID-0 Example
	RAID-0: Pros and Cons
	RAID-0: Pros and Cons
	RAID-1
	RAID-1
	The Need for RAID-5.
	RAID-5
	RAID-5 Example
	RAID-5 Example
	RAID-0, RAID-1, RAID-2�
	RAID-3, RAID-4, RAID-5�

