
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 22: More on Caches, Virtual Memory, Dependable

Memory

Taylor Johnson

Announcements and Outline

• Programming assignment 2 assigned, due 11/13 by
midnight

• Review
• Memory hierarchy
• Cache basics

• More Caches
• Dependable and Virtual Memory

2

Memory Hierarchy

Bigger
Slower

3

Cache Memory

4

Cache Hit: find necessary data in cache

Cache Hit

5

Cache Miss: have to get necessary data from
main memory

Cache Miss

6

Memory Hierarchy Levels
• Block (aka line): unit of

copying
• May be multiple words

• If accessed data is present
in upper level

• Hit: access satisfied by upper
level

• Hit ratio: hits/accesses

• If accessed data is absent
• Miss: block copied from

lower level
• Time taken: miss penalty
• Miss ratio: misses/accesses

= 1 – hit ratio
• Then accessed data supplied

from upper level

Cache Terms

• Cache line: block of cells inside a cache
• Usually store several words in a line (e.g., store 32 bytes on 32-bit

word CPU)
• Cache hit: memory access finds value in cache

• Antonym: cache miss: have to get it from main memory
• Spatial locality: likely we need data from addresses around

one we’re requesting (example: array operations)
• Mean access time: C + (1 – H) * M

• C: cache access time
• M: main memory access time (usually M >> C, e.g., M > 100 * C)
• H: hit ratio: probability to find a value in the cache
• miss ratio: 1 – H

• Time cost of cache miss: C + M memory access time

8

Quantifying Memory Access Speed

• Let:
• mean_access_time be the average time it takes for the

CPU to access a memory word.
• C be the average time it takes for the CPU to access a

memory word if that word is currently in the cache.
• M be the average time it takes for the CPU to access a

word in main memory (i.e., not in the cache).
• H be the hit ratio:the fraction of times that the memory

word the CPU needs is in the cache.
• mean_access_time = C + (1 – H) M
• If H is close to 1:
• If H is close to 0:

9

Quantifying Memory Access Speed

• Let:
• mean_access_time be the average time it takes for the

CPU to access a memory word.
• C be the average time it takes for the CPU to access a

memory word if that word is currently in the cache.
• M be the average time it takes for the CPU to access a

word in main memory (i.e., not in the cache).
• H be the hit ratio:the fraction of times that the memory

word the CPU needs is in the cache.
• mean_access_time = C + (1 – H) M
• If H is close to 1: mean_access_time ≌ C.
• If H is close to 0: mean_access_time ≌ C + M.

10

Quantifying Memory Access Speed

• mean_access_time = C + (1 – H) M
• If H is close to 1: mean_access_time ≌ C.

• If the hit ratio is close to 1, then almost all memory
accesses are handled by the cache, so the time it takes to
access main memory does not affect the average much.

• If H is close to 0: mean_access_time ≌ C + M.
• If the hit ratio is close to 0, then almost all memory

accesses are handled by the main memory. In that case,
the CPU:

• First tries to access the word in the cache, which takes time C.
• The word is not found in the cache, so the CPU then accesses the word

from memory, which takes time M.

11

Principle of Locality

• Programs access a small proportion of their address
space at any time

• Temporal locality
• Items accessed recently are likely to be accessed again

soon
• e.g., instructions in a loop, induction variables

• Spatial locality
• Items near those accessed recently are likely to be

accessed soon
• E.g., sequential instruction access, array data

12

Direct-Mapped Cache
• Location determined by address
• Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

13

MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x1FFF 1
MEM[0x0002] 0xABCD 01 0x00 x0000 1
MEM[0x0003] 0x1234 10 0x00 xABCD 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

Direct-Mapped Caches

14

Direct-Mapped Caches

MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x1FFF 1
MEM[0x0002] 0xABCD 01 0x01 x0006 1
MEM[0x0003] 0x1234 10 0x01 x0007 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

15

Direct-Mapped Caches

MEMORY CACHE (4-element)
MEM[0x0000] 0x1FFF Index Tag Data Valid

MEM[0x0001] 0x0000 00 0x00 x0000 0
MEM[0x0002] 0xABCD 01 0x01 x0006 1
MEM[0x0003] 0x1234 10 0x01 x0007 1
MEM[0x0004] 0x0005 11 0x00 x1234 1
MEM[0x0005] 0x0006
MEM[0x0006] 0x0007
...

16

Tags and Valid Bits

• How do we know which particular block is stored in
a cache location?

• Index = bottom bits of address
• Store block address as well as the data
• Actually, only need the high-order bits
• Called the tag
• Memory Address = concatenating tag and index

• What if there is no data in a location?
• Valid bit: 1 = present, 0 = not present
• Initially 0

17

Direct-Mapped Cache Example
• 8-blocks, 1 word/block, direct mapped
• Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

18

Direct-Mapped Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10 110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

19

Direct-Mapped Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

20

Direct-Mapped Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

21

Direct-Mapped Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

22

Direct-Mapped Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

23

Address Subdivision

24

Example: Larger Block Size
• 64 blocks, 16 bytes/block

• To what block number does address 1200 map?
• Block address = 1200/16 = 75
• Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

25

Block Size Considerations

• Larger blocks should reduce miss rate
• Due to spatial locality

• But in a fixed-sized cache
• Larger blocks ⇒ fewer of them

• More competition ⇒ increased miss rate
• Larger blocks ⇒ pollution

• Larger miss penalty
• Can override benefit of reduced miss rate
• Early restart and critical-word-first can help

26

Cache Misses

• On cache hit, CPU proceeds normally
• On cache miss

• Stall the CPU pipeline
• Fetch block from next level of hierarchy
• Instruction cache miss

• Restart instruction fetch

• Data cache miss
• Complete data access

27

Write-Through

• On data-write hit, could just update the block in cache
• But then cache and memory would be inconsistent

• Write through: also update memory
• But makes writes take longer

• e.g., if base CPI = 1, 10% of instructions are stores, write to
memory takes 100 cycles

• Effective CPI = 1 + 0.1×100 = 11

• Solution: write buffer
• Holds data waiting to be written to memory
• CPU continues immediately

• Only stalls on write if write buffer is already full

28

Write-Back

• Alternative: On data-write hit, just update the block
in cache

• Keep track of whether each block is dirty
• When a dirty block is replaced

• Write it back to memory
• Can use a write buffer to allow replacing block to be read

first

29

Write Allocation

• What should happen on a write miss?
• Alternatives for write-through

• Allocate on miss: fetch the block
• Write around: don’t fetch the block

• Since programs often write a whole block before reading it (e.g.,
initialization)

• For write-back
• Usually fetch the block

30

Example: Intrinsity FastMATH

• Embedded MIPS processor
• 12-stage pipeline
• Instruction and data access on each cycle

• Split cache: separate I-cache and D-cache
• Each 16KB: 256 blocks × 16 words/block
• D-cache: write-through or write-back

• SPEC2000 miss rates
• I-cache: 0.4%
• D-cache: 11.4%
• Weighted average: 3.2%

31

Example: Intrinsity FastMATH

32

Main Memory Supporting Caches

• Use DRAMs for main memory
• Fixed width (e.g., 1 word)
• Connected by fixed-width clocked bus

• Bus clock is typically slower than CPU clock

• Example cache block read
• 1 bus cycle for address transfer
• 15 bus cycles per DRAM access
• 1 bus cycle per data transfer

• For 4-word block, 1-word-wide DRAM
• Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
• Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

33

Measuring Cache Performance

• Components of CPU time
• Program execution cycles

• Includes cache hit time
• Memory stall cycles

• Mainly from cache misses

• With simplifying assumptions:

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

34

Cache Performance Example

• Given
• I-cache miss rate = 2%
• D-cache miss rate = 4%
• Miss penalty = 100 cycles
• Base CPI (ideal cache) = 2
• Load & stores are 36% of instructions

• Miss cycles per instruction
• I-cache: 0.02 × 100 = 2
• D-cache: 0.36 × 0.04 × 100 = 1.44

• Actual CPI = 2 + 2 + 1.44 = 5.44
• Ideal CPU is 5.44/2 =2.72 times faster

35

Average Access Time

• Hit time is also important for performance
• Average memory access time (AMAT)

• AMAT = Hit time + Miss rate × Miss penalty
• Example

• CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20
cycles, I-cache miss rate = 5%

• AMAT = 1 + 0.05 × 20 = 2ns
• 2 cycles per instruction

36

Performance Summary

• When CPU performance increased
• Miss penalty becomes more significant

• Decreasing base CPI
• Greater proportion of time spent on memory stalls

• Increasing clock rate
• Memory stalls account for more CPU cycles

• Can’t neglect cache behavior when evaluating
system performance

37

Associative Caches

• Fully associative
• Allow a given block to go in any cache entry
• Requires all entries to be searched at once
• Comparator per entry (expensive)

• n-way set associative
• Each set contains n entries
• Block number determines which set

• (Block number) modulo (#Sets in cache)
• Search all entries in a given set at once
• n comparators (less expensive)

38

Associative Cache Example

39

Spectrum of Associativity
• For a cache with 8 entries

40

Associativity Example
• Compare 4-block caches

• Direct mapped, 2-way set associative,
fully associative

• Block access sequence: 0, 8, 0, 6, 8

• Direct mapped

Block
address

Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

41

Associativity Example
• 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

42

How Much Associativity

• Increased associativity decreases miss rate
• But with diminishing returns

• Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

• 1-way: 10.3%
• 2-way: 8.6%
• 4-way: 8.3%
• 8-way: 8.1%

43

Set Associative Cache Organization

44

Replacement Policy

• Direct mapped: no choice
• Set associative

• Prefer non-valid entry, if there is one
• Otherwise, choose among entries in the set

• Least-recently used (LRU)
• Choose the one unused for the longest time

• Simple for 2-way, manageable for 4-way, too hard beyond that

• Random
• Gives approximately the same performance as LRU for

high associativity

45

Multilevel Caches

• Primary cache attached to CPU
• Small, but fast

• Level-2 cache services misses from primary cache
• Larger, slower, but still faster than main memory

• Main memory services L-2 cache misses
• Some high-end systems include L-3 cache

46

Multilevel Cache Example

• Given
• CPU base CPI = 1, clock rate = 4GHz
• Miss rate/instruction = 2%
• Main memory access time = 100ns

• With just primary cache
• Miss penalty = 100ns/0.25ns = 400 cycles
• Effective CPI = 1 + 0.02 × 400 = 9

47

Example (cont.)

• Now add L-2 cache
• Access time = 5ns
• Global miss rate to main memory = 0.5%

• Primary miss with L-2 hit
• Penalty = 5ns/0.25ns = 20 cycles

• Primary miss with L-2 miss
• Extra penalty = 500 cycles

• CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
• Performance ratio = 9/3.4 = 2.6

48

Multilevel Cache Considerations

• Primary cache
• Focus on minimal hit time

• L-2 cache
• Focus on low miss rate to avoid main memory access
• Hit time has less overall impact

• Results
• L-1 cache usually smaller than a single cache
• L-1 block size smaller than L-2 block size

49

Interactions with Advanced CPUs

• Out-of-order CPUs can execute instructions during
cache miss

• Pending store stays in load/store unit
• Dependent instructions wait in reservation stations

• Independent instructions continue

• Effect of miss depends on program data flow
• Much harder to analyse
• Use system simulation

50

Interactions with Software

• Misses depend on
memory access
patterns

• Algorithm behavior
• Compiler optimization

for memory access

51

Virtual Memory

52

Virtual Memory

• Use main memory as a “cache” for secondary (disk)
storage

• Managed jointly by CPU hardware and the operating
system (OS)

• Programs share main memory
• Each gets a private virtual address space holding its

frequently used code and data
• Protected from other programs

• CPU and OS translate virtual addresses to physical
addresses

• VM “block” is called a page
• VM translation “miss” is called a page fault

53

Address Translation

• Fixed-size pages (e.g., 4K)

54

Page Fault Penalty

• On page fault, the page must be fetched from disk
• Takes millions of clock cycles
• Handled by OS code

• Try to minimize page fault rate
• Fully associative placement
• Smart replacement algorithms

55

Page Tables

• PTE: Page Table Entry
• Stores placement information

• Array of page table entries, indexed by virtual page
number

• Page table register in CPU points to page table in physical
memory

• If page is present in memory
• PTE stores the physical page number
• Plus other status bits (referenced, dirty, …)

• If page is not present
• PTE can refer to location in swap space on disk

56

Translation Using a Page Table

57

Mapping Pages to Storage

58

Replacement and Writes

• To reduce page fault rate, prefer least-recently used
(LRU) replacement

• Reference bit (aka use bit) in PTE set to 1 on access to
page

• Periodically cleared to 0 by OS
• A page with reference bit = 0 has not been used recently

• Disk writes take millions of cycles
• Block at once, not individual locations
• Write through is impractical
• Use write-back
• Dirty bit in PTE set when page is written

59

Fast Translation Using a TLB

• Address translation would appear to require extra
memory references

• One to access the PTE
• Then the actual memory access

• But access to page tables has good locality
• So use a fast cache of PTEs within the CPU
• Called a Translation Look-aside Buffer (TLB)
• Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for

miss, 0.01%–1% miss rate
• Misses could be handled by hardware or software

60

Fast Translation Using a TLB

61

TLB Misses

• If page is in memory
• Load the PTE from memory and retry
• Could be handled in hardware

• Can get complex for more complicated page table structures

• Or in software
• Raise a special exception, with optimized handler

• If page is not in memory (page fault)
• OS handles fetching the page and updating the page table
• Then restart the faulting instruction

62

TLB Miss Handler

• TLB miss indicates
• Page present, but PTE not in TLB
• Page not preset

• Must recognize TLB miss before destination register
overwritten

• Raise exception
• Handler copies PTE from memory to TLB

• Then restarts instruction
• If page not present, page fault will occur

63

Page Fault Handler

• Use faulting virtual address to find PTE
• Locate page on disk
• Choose page to replace

• If dirty, write to disk first
• Read page into memory and update page table
• Make process runnable again

• Restart from faulting instruction

64

TLB and Cache Interaction

• If cache tag uses physical
address

• Need to translate before
cache lookup

• Alternative: use virtual
address tag

• Complications due to
aliasing

• Different virtual addresses
for shared physical address

Memory Protection

• Different tasks can share parts of their virtual
address spaces

• But need to protect against errant access
• Requires OS assistance

• Hardware support for OS protection
• Privileged supervisor mode (aka kernel mode)
• Privileged instructions
• Page tables and other state information only accessible in

supervisor mode
• System call exception (e.g., syscall in MIPS)

66

Commonalities Between Memory
Hierarchies

Cache = faster way to access larger main memory
Virtual memory = cache for storage (e.g., faster way to access larger secondary
memory / storage)

67

Memory Hierarchy Big Picture

• Common principles apply at all levels of the memory
hierarchy

• Based on notions of caching
• At each level in the hierarchy

• Block placement
• Finding a block
• Replacement on a miss
• Write policy

68

Block Placement

• Determined by associativity
• Direct mapped (1-way associative)

• One choice for placement
• n-way set associative

• n choices within a set
• Fully associative

• Any location

• Higher associativity reduces miss rate
• Increases complexity, cost, and access time

69

Finding a Block

• Hardware caches
• Reduce comparisons to reduce cost

• Virtual memory
• Full table lookup makes full associativity feasible
• Benefit in reduced miss rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set
associative

Set index, then search
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0

70

Replacement

• Choice of entry to replace on a miss
• Least recently used (LRU)

• Complex and costly hardware for high associativity
• Random

• Close to LRU, easier to implement

• Virtual memory
• LRU approximation with hardware support

71

Write Policy

• Write-through
• Update both upper and lower levels
• Simplifies replacement, but may require write buffer

• Write-back
• Update upper level only
• Update lower level when block is replaced
• Need to keep more state

• Virtual memory
• Only write-back is feasible, given disk write latency

72

Sources of Misses

• Compulsory misses (aka cold start misses)
• First access to a block

• Capacity misses
• Due to finite cache size
• A replaced block is later accessed again

• Conflict misses (aka collision misses)
• In a non-fully associative cache
• Due to competition for entries in a set
• Would not occur in a fully associative cache of the same

total size

73

Cache Design Trade-offs

Design change Effect on miss rate Negative
performance effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict
misses

May increase access
time

Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.

74

Dependable Memory
Dependability Measures, Error Correcting Codes, RAID, …

75

Dependability

• Fault: failure of a
component

• May or may not lead to
system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

76

Dependability Measures

• Reliability: mean time to failure (MTTF)
• Service interruption: mean time to repair (MTTR)
• Mean time between failures

• MTBF = MTTF + MTTR
• Availability = MTTF / (MTTF + MTTR)
• Improving Availability

• Increase MTTF: fault avoidance, fault tolerance, fault
forecasting

• Reduce MTTR: improved tools and processes for diagnosis
and repair

77

The Hamming SEC Code

• Hamming distance
• Number of bits that are different between two bit

patterns
• Minimum distance = 2 provides single bit error

detection
• E.g. parity code

• Minimum distance = 3 provides single error
correction, 2 bit error detection

78

Encoding SEC

• To calculate Hamming code:
• Number bits from 1 on the left
• All bit positions that are a power 2 are parity bits
• Each parity bit checks certain data bits:

79

Decoding SEC

• Value of parity bits indicates which bits are in error
• Use numbering from encoding procedure
• E.g.

• Parity bits = 0000 indicates no error
• Parity bits = 1010 indicates bit 10 was flipped

80

SEC/DEC Code

• Add an additional parity bit for the whole word (pn)
• Make Hamming distance = 4
• Decoding:

• Let H = SEC parity bits
• H even, pn even, no error
• H odd, pn odd, correctable single bit error
• H even, pn odd, error in pn bit
• H odd, pn even, double error occurred

• Note: ECC DRAM uses SEC/DEC with 8 bits
protecting each 64 bits

81

Error Detection – Error Correction

• Memory data can get corrupted, due to things like:
• Voltage spikes.
• Cosmic rays.

• The goal in error detection is to come up with ways
to tell if some data has been corrupted or not.

• The goal in error correction is to not only detect
errors, but also be able to correct them.

• Both error detection and error correction work by
attaching additional bits to each memory word.

• Fewer extra bits are needed for error detection,
more for error correction.

82

Encoding, Decoding, Codewords

• Error detection and error correction work as
follows:

• Encoding stage:
• Break up original data into m-bit words.
• Each m-bit original word is converted to an n-bit

codeword.
• Decoding stage:

• Break up encoded data into n-bit codewords.
• By examining each n-bit codeword:

• Deduce if an error has occurred.
• Correct the error if possible.
• Produce the original m-bit word.

83

Parity Bit
• Suppose that we have an m-bit word.
• Suppose we want a way to tell if a single error has

occurred (i.e., a single bit has been corrupted).
• No error detection/correction can catch an unlimited

number of errors.
• Solution: represent each m-bit word using an (m+1)-

bit codeword.
• The extra bit is called parity bit.

• Every time the word changes, the parity bit is set so as
to make sure that the number of 1 bits is even.

• This is just a convention, enforcing an odd number of 1 bits
would also work, and is also used.

84

Parity Bits - Examples

• Size of original word: m = 8.
Original
Word (8 bits)

Number of
1s in Original
Word

Codeword (9
bits): Original
Word + Parity Bit

01101101
00110000
11100001
01011110

85

Parity Bits - Examples

• Size of original word: m = 8.
Original
Word (8 bits)

Number of
1s in Original
Word

Codeword (9
bits): Original
Word + Parity Bit

01101101 5 011011011
00110000 2 001100000
11100001 4 111000010
01011110 5 010111101

86

Parity Bit: Detecting A 1-Bit Error

• Suppose now that indeed the memory work has
been corrupted in a single bit.

• How can we use the parity bit to detect that?

87

Parity Bit: Detecting A 1-Bit Error

• Suppose now that indeed the memory work has
been corrupted in a single bit.

• How can we use the parity bit to detect that?
• How can a single bit be corrupted?

88

Parity Bit: Detecting A 1-Bit Error

• Suppose now that indeed the memory work has
been corrupted in a single bit.

• How can we use the parity bit to detect that?
• How can a single bit be corrupted?

• Either it was a 1 that turned to a 0.
• Or it was a 0 that turned to a 1.

• Either way, the number of 1-bits either increases by
1 or decreases by 1, and becomes odd.

• The error detection code just has to check if the
number of 1-bits is even.

89

Error Detection Example

• Size of original word: m = 8.
• Suppose that the error detection algorithm gets as

input one of the bit patterns on the left column.
What will be the output?

Input: Codeword (9 bits):
Original Word + Parity Bit

Number of 1s Error?

011001011
001100000
100001010
010111110

90

Error Detection Example

• Size of original word: m = 8.
• Suppose that the error detection algorithm gets as

input one of the bit patterns on the left colum.
What will be the output?

Input: Original Word +
Parity Bit (9 bits)

Number of 1s Error?

011001011 5 yes
001100000 2 no
100001010 3 yes
010111110 6 no

91

Parity Bit and Multi-Bit Errors

• What if two bits get corrupted?
• The number of 1-bits can:

• remain the same, or
• increase by 2, or
• decrease by 2.

• In all cases, the number of 1-bits remains even.
• The error detection algorithm will not catch this

error.
• That is to be expected, a single parity bit is only

good for detecting a single-bit error.

92

More General Methods
• Up to the previous slide, we discussed a very simple error

detection method, namely using a single parity bit.
• We know move on to more general methods, that possibly

detect and/or correct multiple errors.
• For that, we need multiple extra bits.

• Key parameters:
• m: the number of bits in the original memory word.
• r: the number of extra (also called redundant) bits.
• n: the total number of bits per codeword: n = m + r.
• d: the number of errors we want to be able to detect or correct.

93

Legal and Illegal Codewords

• Each m-bit original word corresponds to only one
n-bit codeword.

• A codeword is called legal if an original m-bit word
corresponds to that codeword.

• A codeword is called illegal if no original m-bit word
corresponds to that codeword.

• How many possible original words are there?
• How many possible codewords are there?
• How many legal codewords are there? In other words,

how many codewords are possible to observe if there
are no errors?

94

Legal and Illegal Codewords

• Each m-bit original word corresponds to only one
n-bit codeword.

• A codeword is called legal if an original m-bit word
corresponds to that codeword.

• A codeword is called illegal if no original m-bit word
corresponds to that codeword.

• How many possible original words are there? 2m.
• How many possible codewords are there? 2n.
• How many legal codewords are there? In other words,

how many codewords are possible to observe if there
are no errors? 2m.

95

Legal and Illegal Codewords

• How many possible original words are there? 2m.
• How many possible codewords are there? 2n.
• How many legal codewords are there? In other

words, how many codewords are possible to
observe if there are no errors? 2m.

• Therefore, most (2n-2m) codewords are illegal, and
only show up in the case of errors.

• The set of legal codewords is called a code.

96

The Hamming Distance

• Suppose we have two codewords A and B.
• Each codeword is an n-bit binary pattern.
• We define the distance between A and B to be the

number of bit positions where A and B differ.
• This is called the Hamming distance.
• One way to compute the Hamming distance:

• Let C = EXCLUSIVE OR(A, B).
• Hamming Distance(A, B) = number of 1-bits in C.

• Given a code (i.e., the set of legal codewords), we can
find the pair of codewords with the smallest distance.

• We call this minimum distance the distance of the code.

97

Hamming Distance: Example

• What is the Hamming distance between these two
patterns?

1 0 1 1 0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 1 1 0 1 0

• How can we measure this distance?

98

Hamming Distance: Example

• What is the Hamming distance between these two
patterns?

1 0 1 1 0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 1 1 0 1 0

• How can we measure this distance?
• Find all positions where the two bit patterns differ.
• Count all those positions.

• Answer: the Hamming distance in the example above is
3.

99

Example: 2-Bit Error Detection
Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

• Size of original word: m = 3.
• Number of redundant bits: r = 3.
• Size of codeword: n = 6.
• Construction:

• 1 parity bit for bits 1, 2.
• 1 parity bit for bits 1, 3.
• 1 parity bit for bits 2, 3.

• You can manually verify that you cannot
find any two codewords with Hamming
distance 2 (just need to manually check
28 pairs).

• This is a code with distance 3.
• Any 2-bit error can be detected.

100

Example: 2-Bit Error Detection

• Suppose that the error detection algorithm takes as input bit
patterns as shown on the right table.

• What will be the output? How is it determined?

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input
Codeword

Error?

001100

101011

110011

011110

111110

101101

010011

011000

101

Example: 2-Bit Error Detection

• Suppose that the error detection algorithm takes as input bit patterns as shown on the right table.
• The output simply depends on whether the input codeword is a legal codeword, as listed on the left

table.

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input
Codeword

Error?

001100 Yes

101011 Yes

110011 No

011110 No

111110 Yes

101101 No

010011 Yes

011000 Yes

102

Example: 1-Bit Error Correction
Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

• Size of original word: m = 3.
• Number of redundant bits: r = 3.
• Size of codeword: n = 6.
• Construction:

• 1 parity bit for bits 1, 2.
• 1 parity bit for bits 1, 3.
• 1 parity bit for bits 2, 3.

• You can manually verify that you cannot
find any two codewords with Hamming
distance 2 (just need to manually check
28 pairs).

• This is a code with distance 3.
• Any 1-bit error can be corrected.

103

Example: 1-Bit Error Correction

• Suppose that the error detection algorithm takes as input bit
patterns as shown on the right table.

• What will be the output? How is it determined?

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input
Codeword

Error? Most Similar
Codeword

Output (original
word)

110101

101000

110011

011110

000010

101101

001111

000110

104

Example: 1-Bit Error Correction

• The error detection algorithm:
• Finds the legal codeword that is most similar to the input.
• If that legal codeword is not equal to the input, there was an error!
• Outputs the original word that corresponds to that legal codeword.

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input
Codeword

Error? Most Similar
Codeword

Output (original
word)

110101 Yes 010101 010

101000 Yes 111000 111

110011 No 110011 110

011110 No 011110 011

000010 Yes 000000 000

101101 No 101101 101

001111 Yes 001011 001

000110 Yes 100110 100

105

Example: 1-Bit Error Correction

• What happens in this case?

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input
Codeword

Error? Most Similar
Codewords

Output (original
word)

001100

106

Example: 1-Bit Error Correction

• No legal codeword is within distance 1 of the input codeword.
• 3 legal codewords are within distance 2 of the input codeword.
• More than 1 bit have been corrupted, the error has been detected, but cannot be corrected.

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input
Codeword

Error? Most Similar
Codewords

Output (original
word)

001100 Yes 000000
011110
101101

More than 1 bit
corrupted, cannot
correct!

107

Significance of Code Distances

• To detect up to d single-bit errors, we need a code
with Hamming distance at least d+1. Why?

• When does an error fail to get detected?

108

Significance of Code Distances

• To detect up to d single-bit errors, we need a code
with Hamming distance at least d+1. Why?

• When does an error fail to get detected?
• When, due to bad luck, the error changes a legal

codeword to another legal codeword.
• With a code of distance d+1, what is the smallest

number of single-bit errors that can change a legal
codeword to another legal codeword?

109

Significance of Code Distances

• To detect up to d single-bit errors, we need a code
with Hamming distance at least d+1. Why?

• When does an error fail to get detected?
• When, due to bad luck, the error changes a legal

codeword to another legal codeword.
• With a code of distance d+1, what is the smallest

number of single-bit errors that can change a legal
codeword to another legal codeword?

• d+1.
• Thus, d or fewer single-bit errors are guaranteed to

produce an illegal codeword, and thus will be
detected.

110

Correcting d Single-Bit Errors

• To correct d or fewer single-bit errors, we need a
code of distance at least 2d + 1. Why?

111

Correcting d Single-Bit Errors

• To correct d or fewer single-bit errors, we need a
code of distance at least 2d + 1. Why?

• What would be a good algorithm to use for error
correction, if we have a code of distance 2d + 1?

• Input: n-bit codeword (may be corrupted or not).
• Output: n-bit corrected codeword.

• If no error has occurred, output = input.
• Steps:

112

Correcting d Single-Bit Errors

• To correct d or fewer single-bit errors, we need a
code of distance at least 2d + 1. Why?

• What would be a good algorithm to use for error
correction, if we have a code of distance 2d + 1?

• Input: n-bit codeword (may be corrupted or not).
• Output: n-bit corrected codeword.

• Comment: If no error has occurred, output = input.
• Steps:

• Find, among the 2m legal codewords, the most similar to
the input.

• Return that most similar codeword as output.
113

Correcting d Single-Bit Errors

• Input: n-bit codeword (may be corrupted or not).
• Output: n-bit corrected codeword.
• Error correction algorithm:

• Find, among the 2m legal codewords, the most similar to the input.
• Return that most similar codeword as output.

• If the distance of the code is 2d+1, why would this algorithm
correct up to d single-bit errors?

114

Correcting d Single-Bit Errors

• Input: n-bit codeword (may be corrupted or not).
• Output: n-bit corrected codeword.
• Error correction algorithm:

• Find, among the 2m legal codewords, the most similar to the input.
• Return that most similar codeword as output.

• If the distance of the code is 2d+1, why would this algorithm
correct up to d single-bit errors?

• Suppose we have a legal codeword A, that gets d or fewer
single-bit errors, and becomes codeword B.

• What is the most similar legal codeword to B?

115

Correcting d Single-Bit Errors

• Input: n-bit codeword (may be corrupted or not).
• Output: n-bit corrected codeword.
• Error correction algorithm:

• Find, among the 2m legal codewords, the most similar to the input.
• Return that most similar codeword as output.

• If the distance of the code is 2d+1, why would this algorithm
correct up to d single-bit errors?

• Suppose we have a legal codeword A, that gets d or fewer
single-bit errors, and becomes codeword B.

• What is the most similar legal codeword to B?
• It has to be A.

• The distance from B to A is at most ???.
• The distance from B to any other legal codeword is at least ???.

116

Correcting d Single-Bit Errors

• Input: n-bit codeword (may be corrupted or not).
• Output: n-bit corrected codeword.
• Error correction algorithm:

• Find, among the 2m legal codewords, the most similar to the input.
• Return that most similar codeword as output.

• If the distance of the code is 2d+1, why would this algorithm
correct up to d single-bit errors?

• Suppose we have a legal codeword A, that gets d or fewer
single-bit errors, and becomes codeword B.

• What is the most similar legal codeword to B?
• It has to be A.

• The distance from B to A is at most d.
• The distance from B to any other legal codeword is at least d+1.

117

Correcting a Single-Bit Error

• The previous approaches are not constructive.
• We didn't say anywhere:

118

Correcting a Single-Bit Error

• The previous approaches are not constructive.
• We didn't say anywhere:

• How many extra bits we need to obtain a d+1 distance
code or a 2d+1 distance code.

• How to actually define the codewords for such a code.
• Now we will explicitly define a method for

correcting a single-bit error.

119

Correcting a Single-Bit Error
• Suppose that A is a legal n-bit codeword.
• Suppose that now A gets a single-bit-error, and becomes

B.
• Given A, how many possible values are there for B?

• n, one for every possible location of the bit that changed.
• Thus, to be able to correct single-bit errors, there must

be at least n+1 codewords (legal or illegal) that the error
correction algorithm will map to codeword A:

• A itself, and the n codewords that differ from A by a single bit.
• We have 2m legal codewords, and we need at least n+1

codewords for each legal codeword, thus we need at
least (n+1)2m codewords.

120

Correcting a Single-Bit Error
• Thus, we have two equations, that we can solve:

• (n+1) 2m <= 2n.
• n = m + r.

• From the above equations, given m (the number of bits
in the original memory word), we obtain:

• a lower bound for r (the number of extra bits we need to add
to each word).

• a lower bound for n (the number of bits in each codeword).

121

Table of Bits Needed

Number of check bits for a code
that can correct a single error.

122

Hamming's Algorithm
• Hamming's Algorithm can correct a single-bit error.
• Suppose we have a 16-bit word.

• Based on the previous equations (and table), we need 5 extra
bits, for a total of 21 bits.

• Let's number these 21 bits as bit 1, bit 2, …, bit 21.
• We break from our usual convention, where numbering starts

at 0.
• The five parity bits are placed at positions 1, 2, 4, 8, 16.

• Positions corresponding to powers of 2.
• Each parity bit will check some (but not all) of the 21

bits.

123

Hamming's Algorithm
• The five parity bits are placed at positions 1, 2, 4, 8, 16.
• Each parity bit will check some (but not all) of the 21 bits.
• Some bits may be checked by multiple parity bits.
• To determine which parity bits will check the bit at

position p, we:
• write p in binary. We need 5 digits. We get d5 d4 d3 d2 d1.
• For each di, if di = 1 then position p is checked by the parity bit at

position 2i-1.
• Example: position 18 is written in binary as 10010.
• Since d5 = 1, bit 18 is checked by parity bit 16 (16 = 24).
• Since d2 = 1, bit 18 is checked by parity bit 2 (2 = 21).

124

Assigning Bits to Parity Bits

• By following the previous process for every single
bit, we arrive at the following:

• Parity bit 1 checks bits 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21.
• Parity bit 2 checks bits 2, 3, 6, 7, 10, 11, 14, 15, 18, 19.
• Parity bit 4 checks bits 4, 5, 6, 7, 12, 13, 14, 15, 20, 21.
• Parity bit 8 checks bits 8, 9, 10, 11, 12, 13, 14, 15.
• Parity bit 16 checks bits 16, 17, 18, 19, 20, 21.

• Thus, each parity bit is set to 0 or 1, so as to ensure
that the total number of 1-bits (among the bits that
this parity bit checks) is even.

125

Correcting an Error

• Suppose now that a single-bit error has occurred.
• Will that be detected?
• Yes. One or more of the parity bits will be wrong.

• What does this mean that a parity bit is wrong? It means
that, among the bits that this parity bit checks, the total
number of 1-bits is odd.

• How do we figure out the position of the error?
• We just need to add the positions of the parity bits

that are wrong.

126

Proof That This Works?

• It is a bit complicated to get an elegant proof that
Hamming's algorithm works.

• We can prove it by case-by-case examination.
• Pick any subset of the parity bits to be wrong. You

can check manually that:
• An error in the bit computed by Hamming's algorithm will

lead to exactly that subset of parity bits to be wrong.
• An error in any other bit will lead to a different subset of

parity bits being wrong.

127

An Example Codeword

Construction of the Hamming code
for the memory word 1111000010101110 by
adding 5 check bits to the 16 data bits.

128

From Word to Codeword: Example 1

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in original word = ?? Bit 1 value = ??
• Bit 2: number of 1s in original word = ?? Bit 1 value = ??
• Bit 4: number of 1s in original word = ?? Bit 1 value = ??
• Bit 8: number of 1s in original word = ?? Bit 1 value = ??
• Bit 16: number of 1s in original word = ?? Bit 1 value = ??

129

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in original word = 7. Bit 1 value = 1.
• Bit 2: number of 1s in original word = 6. Bit 2 value = 0.
• Bit 4: number of 1s in original word = 6. Bit 4 value = 0.
• Bit 8: number of 1s in original word = 3. Bit 8 value = 1.
• Bit 16: number of 1s in original word = 3. Bit 16 value = 1.

From Word to Codeword: Example 1

130

From Word to Codeword: Example 2

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in original word = ?? Bit 1 value = ??
• Bit 2: number of 1s in original word = ?? Bit 1 value = ??
• Bit 4: number of 1s in original word = ?? Bit 1 value = ??
• Bit 8: number of 1s in original word = ?? Bit 1 value = ??
• Bit 16: number of 1s in original word = ?? Bit 1 value = ??

131

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in original word = 5. Bit 1 value = 1.
• Bit 2: number of 1s in original word = 3. Bit 2 value = 1.
• Bit 4: number of 1s in original word = 4. Bit 4 value = 0.
• Bit 8: number of 1s in original word = 3. Bit 8 value = 1.
• Bit 16: number of 1s in original word = 2. Bit 16 value = 0.

From Word to Codeword: Example 2

132

Error Correction: Example 1

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in codeword = ??
• Bit 2: number of 1s in codeword = ??
• Bit 4: number of 1s in codeword = ??
• Bit 8: number of 1s in codeword = ??
• Bit 16: number of 1s in codeword = ??

133

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in codeword = 6. OK
• Bit 2: number of 1s in codeword = 5. ERROR
• Bit 4: number of 1s in codeword = 4. OK
• Bit 8: number of 1s in codeword = 2. OK
• Bit 16: number of 1s in codeword = 5. ERROR

Error Correction: Example 1

Position of error:

134

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in codeword = 6. OK
• Bit 2: number of 1s in codeword = 5. ERROR
• Bit 4: number of 1s in codeword = 4. OK
• Bit 8: number of 1s in codeword = 2. OK
• Bit 16: number of 1s in codeword = 5. ERROR

Error Correction: Example 1

Position of error:

16+2 = 18

135

Error Correction: Example 2

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in codeword = ??
• Bit 2: number of 1s in codeword = ??
• Bit 4: number of 1s in codeword = ??
• Bit 8: number of 1s in codeword = ??
• Bit 16: number of 1s in codeword = ??

136

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in codeword = 6. OK
• Bit 2: number of 1s in codeword = 2. OK
• Bit 4: number of 1s in codeword = 7. ERROR
• Bit 8: number of 1s in codeword = 4. OK
• Bit 16: number of 1s in codeword = 2. OK

Error Correction: Example 2

Position of error:

137

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1
Bit 1 checks * * * * * * * * * * *
Bit 2 checks * * * * * * * * * *
Bit 4 checks * * * * * * * * * *
Bit 8 checks * * * * * * * *
Bit 16 checks * * * * * *

• Bit 1: number of 1s in codeword = 6. OK
• Bit 2: number of 1s in codeword = 2. OK
• Bit 4: number of 1s in codeword = 7. ERROR
• Bit 8: number of 1s in codeword = 4. OK
• Bit 16: number of 1s in codeword = 2. OK

Error Correction: Example 2

Position of error:

Bit 4

138

Summary

• Memory hierarchy
• Caches
• Main memory
• Disk / storage

• Virtual memory
• Dependable memory: error-correcting codes

139

Software Optimization via Blocking

• Goal: maximize accesses to data before it is
replaced

• Consider inner loops of DGEMM:

for (int j = 0; j < n; ++j)
{
double cij = C[i+j*n];
for(int k = 0; k < n; k++)
cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;
}

140

DGEMM Access Pattern

• C, A, and B arrays
older accesses

new accesses

141

Cache Blocked DGEMM

1 #define BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double

3 *B, double *C)

4 {

5 for (int i = si; i < si+BLOCKSIZE; ++i)

6 for (int j = sj; j < sj+BLOCKSIZE; ++j)

7 {

8 double cij = C[i+j*n];/* cij = C[i][j] */

9 for(int k = sk; k < sk+BLOCKSIZE; k++)

10 cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11 C[i+j*n] = cij;/* C[i][j] = cij */

12 }

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16 for (int sj = 0; sj < n; sj += BLOCKSIZE)

17 for (int si = 0; si < n; si += BLOCKSIZE)

18 for (int sk = 0; sk < n; sk += BLOCKSIZE)

19 do_block(n, si, sj, sk, A, B, C);

20 }

142

Blocked DGEMM Access Pattern

Unoptimized Blocked

143

CDs

144

CDs

• Mode 1
• 16 bytes preamble, 2048 bytes data, 288 bytes error-correcting code
• Single Speed CD-ROM: 75 sectors/sec, so data rate: 75*2048=153,600

bytes/sec
• 74 minutes audio CD: Capacity: 74*60*153,600=681,984,000 bytes

~=650 MB
• Mode 2

• 2336 bytes data for a sector, 75*2336=175,200 bytes/sec

145

CD-R

146

DVDs

• Single-sided, single-layer (4.7 GB)
• Single-sided, dual-layer (8.5 GB)
• Double-sided, single-layer (9.4 GB)
• Double-sided, dual-layer (17 GB)

147

Storing Images

148

Optical Disks

• Disks in this family include:
• CDs, DVDs, Blu-ray disks.

• The basic technology is similar, but improvements have led to
higher capacities and speeds.

• Optical disks are much slower than magnetic drives.
• These disks are a cheap option for write-once purposes.

• Great for mass distribution of data (software, music, movies).

• CD capacity: 650-700MB.
• Minimum data rate: 150KB/sec.

• DVD capacity: 4.7GB to 17GB.
• Minimum data rate: 1.4MB/sec.

• Blu-ray capacity: 25GB-50GB.
• Minimum data rate: 4.5MB/sec.

149

Optical Disk Capacities

• CD capacity: 650-700MB.
• Minimum data rate: 150KB/sec.

• DVD capacity: 4.7GB to 17GB.
• Minimum data rate: 1.4MB/sec.
• Single-sided, single-layer: 4.7GB.
• Single-sided, dual-layer: 8.5GB.
• Double-sided, single-layer: 9.4GB.
• Double-sided, dual-layer: 17GB.

• Blu-ray capacity: 25GB-50GB.
• Minimum data rate: 4.5MB/sec.
• Single-sided: 25GB.
• Double-sided: 50GB.

150

Magnetic Disks

• Consists of one or more platters with magnetizable coating
• Disk head containing induction coil floats just over the

surface
• When a positive or negative current passes through head, it

magnetizes the surface just beneath the head, aligning the
magnetic particles face right or left, depending on the
polarity of the drive current

• When head passes over a magnetized area, a positive or
negative current is induced in the head, making it possible to
read back the previously stored bits

• Track
• Circular sequence of bits written as disk makes complete rotation
• Sector: Each track is divided into some sector with fixed length

151

Classical Hard Drives: Magnetic Disks

• A magnetic disk is a disk, that spins very fast.
• Typical rotation speed: 5400, 7200, 10800 RPMs.
• RPMs: rotations per minute.
• These translate to 90, 120, 180 rotations per second.

• The disk is divided into rings, that are called tracks.
• Data is read by the disk head.

• The head is placed at a specific radius from the disk
center.

• That radius corresponds to a specific track.
• As the disk spins, the head reads data from that track.

152

Solid-State Drives

• A solid-state drive (SSD) is NOT a spinning disk. It is
just cheap memory.

• Compared to hard drives, SSDs have two to three
times faster speeds, and ~100nsec access time.

• Because SSDs have no mechanical parts, they are well-
suited for mobile computers, where motion can
interfere with the disk head accessing data.

• Disadvantage #1: price.
• Magnetic disks: pennies/gigabyte.
• SSDs: one to three dollars/gigabyte.

• Disadvantage #2: failure rate.
• A bit can be written about 100,000 times, then it fails.

153

Flash Storage

• Nonvolatile semiconductor storage
• 100× – 1000× faster than disk
• Smaller, lower power, more robust
• But more $/GB (between disk and DRAM)

154

Flash Types

• NOR flash: bit cell like a NOR gate
• Random read/write access
• Used for instruction memory in embedded systems

• NAND flash: bit cell like a NAND gate
• Denser (bits/area), but block-at-a-time access
• Cheaper per GB
• Used for USB keys, media storage, …

• Flash bits wears out after 1000’s of accesses
• Not suitable for direct RAM or disk replacement
• Wear leveling: remap data to less used blocks

155

Disk Storage
• Nonvolatile, rotating magnetic storage

156

Disk Tracks and Sectors

• A track can be 0.2μm wide.
• We can have 50,000 tracks per cm of radius.
• About 125,000 tracks per inch of radius.

• Each track is divided into fixed-length sectors.
• Typical sector size: 512 bytes.

• Each sector is preceded by a preamble. This allows the
head to be synchronized before reading or writing.

• In the sector, following the data, there is an error-
correcting code.

• Between two sectors there is a small intersector gap.

157

Visualizing a Disk Track

A portion of a disk track. Two sectors are illustrated.

158

Disk Sectors and Access

• Each sector records
• Sector ID
• Data (512 bytes, 4096 bytes proposed)
• Error correcting code (ECC)

• Used to hide defects and recording errors
• Synchronization fields and gaps

• Access to a sector involves
• Queuing delay if other accesses are pending
• Seek: move the heads
• Rotational latency
• Data transfer
• Controller overhead

159

Disk Access Example

• Given
• 512B sector, 15,000rpm, 4ms average seek time, 100MB/s

transfer rate, 0.2ms controller overhead, idle disk
• Average read time

• 4ms seek time
+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

• If actual average seek time is 1ms
• Average read time = 3.2ms

160

Disk Performance Issues

• Manufacturers quote average seek time
• Based on all possible seeks
• Locality and OS scheduling lead to smaller actual average

seek times
• Smart disk controller allocate physical sectors on

disk
• Present logical sector interface to host
• SCSI, ATA, SATA

• Disk drives include caches
• Prefetch sectors in anticipation of access
• Avoid seek and rotational delay

161

Magnetic Disk Sectors

162

Measuring Disk Capacity

• Disk capacity is often advertized in unformatted
state.

• However, formatting takes away some of this
capacity.

• Formatting creates preambles, error-correcting codes,
and gaps.

• The formatted capacity is typically about 15% lower
than unformatted capacity.

163

Multiple Platters

• A typical hard drive unit contains multiple platters,
i.e., multiple actual disks.

• These platters are stacked vertically (see figure).
• Each platter stores information on both surfaces.
• There is a separate arm and head for each surface.

164

Magnetic Disk Platters

165

Cylinders

• The set of tracks corresponding to a specific radial
position is called a cylinder.

• Each track in a cylinder is read by a different head.

166

Data Access Times

• Suppose we want to get some data from the disk.
• First, the head must be placed on the right track (i.e.,

at the right radial distance).
• This is called seek.
• Average seek times are in the 5-10 msec range.

• Then, the head waits for the disk to rotate, so that it
gets to the right sector.

• Given that disks rotate at 5400-10800 RPMs, this incurs an
average wait of 3-6 msec. This is called rotational latency.

• Then, the data is read. A typical rate for this stage is
150MB/sec.

• So, a 512-byte sector can be read in ~3.5 μsec.

167

Measures of Disk Speed

• Maximum Burst Rate: the rate (number of bytes
per sec) at which the head reads a sector, once the
had has started seeing the first data bit.

• This excludes seeks, rotational latencies, going through
preambles, error-correcting codes, intersector gaps.

• Sustained Rate: the actual average rate of reading
data over several seconds, that includes all the
above factors (seeks, rotational latencies, etc.).

168

Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be
aware of if your software accesses the hard drive:
the worst case speed.

• What scenario gives us the worst case?

169

Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be
aware of if your software accesses the hard drive:
the worst case speed.

• What scenario gives us the worst case?
• Read random positions, one byte at a time.
• To read each byte, we must perform a seek, wait for the

rotational latency, go through the sector preamble, etc.
• If this whole process takes about 10 msec (which

may be a bit optimistic), we can only read ???/sec?

170

Worst Case Speed

• Rarely advertised, but VERY IMPORTANT to be
aware of if your software accesses the hard drive:
the worst case speed.

• What scenario gives us the worst case?
• Read random positions, one byte at a time.
• To read each byte, we must perform a seek, wait for the

rotational latency, go through the sector preamble, etc.
• If this whole process takes about 10 msec (which

may be a bit optimistic), we can only read 100
bytes/sec.

• More than a million times slower than the maximum
burst rate.

171

Worst Case Speed

• Reading a lot of non-contiguous small chunks of
data kills magnetic disk performance.

• When your programs access disks a lot, it is
important to understand how disk data are read, to
avoid this type of pitfall.

172

Disk Controller

• The disk controller is a chip that controls the drive.
• Some controllers contain a full CPU.

• Controller tasks:
• Execute commands coming from the software, such as:

• READ
• WRITE
• FORMAT (writing all the preambles)

• Control the arm motion.
• Detect and correct errors.
• Buffer multiple sectors.
• Cache sectors read for potential future use.
• Remap bad sectors.

173

IDE and SCSI Drives

• IDE and SCSI drives are the two most common types
of hard drives on the market.

• Just be aware that:
• IDE drives are cheaper and slower.

• Newer IDE drives are also called serial ATA or SATA.
• SCSI drives are more expensive and faster.

• Most inexpensive computers use IDE drives.

174

RAID

• RAID stands for Redundant Array of Inexpensive Disks.
• RAID arrays are simply sets of disks, that are visible as

a single unit by the computer.
• Instead of a single drive accessible via a drive controller, the

whole RAID is accessible via a RAID controller.
• Since a RAID can look as a single drive, software accessing

disks does not need to be modified to access a RAID.
• Depending on their type (we will see several types),

RAIDs accomplish one (or both) of the following:
• Speed up performance.
• Tolerate failures of entire drive units.

175

RAID for Faster Speed

• Disk performance has not improved as dramatically
as CPU performance.

• In the 1970s, average seek times on minicomputer
disks were 50-100 msec.

• Now they have improved to 5-10 msec.
• The slow gains in performance have motivated

people to look into ways to gain speed via parallel
processing.

176

RAID-0
• RAID level 0: Improves speed via striping.

• When a write request comes in, data is broken into strips.
• Each strip is written to a different drive, in round-robin fashion.
• Thus, multiple strips are written in parallel, effectively leading

to faster speed, compared to using a single drive.
• Effect: most files are stored in a distributed manner:

with different pieces of them stored on each drive of the
RAID.

• When reading a file, the different pieces (strips) are read
again in parallel, from all drives.

177

RAID-0 Example

• Suppose we have a RAID-0 system with 8 disks.
• What is the best case scenario, in which performance will be

the best, compared to a single disk?

• Compared to a single disk, in the best case:
• The write performance of RAID-0 is: ???
• The read performance of RAID-0 is: ???

• What is the best case scenario, in which performance will be
the best, compared to a single disk?

• Compared to a single disk, in the worst case:
• The write performance of RAID-0 is: ???
• The read performance of RAID-0 is: ???

178

RAID-0 Example

• Suppose we have a RAID-0 system with 8 disks.
• What is the best case scenario, in which performance will be

the best, compared to a single disk?
• Reading/writing large chunks of data, so striping can be exploited.

• Compared to a single disk, in the best case:
• The write performance of RAID-0 is: 8 times faster than a single disk.
• The read performance of RAID-0 is: 8 times faster than a single disk.

• What is the best case scenario, in which performance will be
the best, compared to a single disk?

• Reading/writing many small, unrelated chunks of data (e.g., a single byte
at a time). Then, striping cannot be used.

• Compared to a single disk, in the worst case:
• The write performance of RAID-0 is: the same as that of a single disk.
• The read performance of RAID-0 is: the same as that of a single disk.

179

RAID-0: Pros and Cons

• RAID-0 works the best for large read/write requests.
• RAID-0 speed deteriorates into that of a single drive

if the software asks for data in chunks of one strip
(or less) at a time.

• How about reliability? A RAID-0 is less reliable, and
more prone to failure than that of a single drive.

• Suppose we have a RAID with four drives.
• Each drive has a mean time to failure of 20,000 hours.
• Then, the RAID has a mean time to failure that is ???

hours?

180

RAID-0: Pros and Cons

• RAID-0 works the best for large read/write requests.
• RAID-0 speed deteriorates into that of a single drive

if the software asks for data in chunks of one strip
(or less) at a time.

• How about reliability? A RAID-0 is less reliable, and
more prone to failure than that of a single drive.

• Suppose we have a RAID with four drives.
• Each drive has a mean time to failure of 20,000 hours.
• Then, the RAID has a mean time to failure that is only

5000 hours.
• RAID-0 is not a "true" RAID, no drive is redundant.

181

RAID-1

• In RAID-1, we need to have an even number of drives.
• For each drive, there is an identical copy.
• When we write data, we write it to both drives.
• When we read data, we read from either of the drives.
• NO STRIPING IS USED.
• Compared to a single disk:

• The write performance is:
• The read performance is:
• Reliability is:

182

RAID-1

• In RAID-1, we need to have an even number of drives.
• For each drive, there is an identical copy.
• When we write data, we write it to both drives.
• When we read data, we read from either of the drives.
• NO STRIPING IS USED.
• Compared to a single disk:

• The write performance is: twice as slow.
• The read performance is: the same.
• Reliability is: far better, drive failure is not catastrophic.

183

The Need for RAID-5.

• RAID-0: great for performance, bad for reliability.
• striping, but no redundant data.

• RAID-1: bad for performance, great for reliability.
• redundant data, no striping

• RAID-2, RAID-3, RAID-4: have problems of their
own.

• You can read about them in the textbook if you are
curious, but they are not very popular.

• RAID-5: great for performance, great for reliability.
• both redundant data and striping.

184

RAID-5

• Data is striped for writing.
• If we have N disks, we can process N-1 data strips in

parallel.
• For every N-1 data strips, we create an Nth strip,

called parity strip.
• The k-th bit in the parity strip ensures that there is an

even number of 1-bits in position k in all N strips.
• If any strip fails, its data can be recovered from the

other N-1 strips.
• This way, the contents of an entire disk can be

recovered.

185

RAID-5 Example

• Suppose we have a RAID-5 system with 8 disks.
• Compared to a single disk, in the best case:

• The write performance of RAID-5 is: ???

• The read performance of RAID-5 is: ???

• Compared to a single disk, in the worst case:
• The write performance of RAID-5 is: ???

• The read performance of RAID-5 is: ???

186

RAID-5 Example

• Suppose we have a RAID-5 system with 8 disks.
• Compared to a single disk, in the best case:

• The write performance of RAID-5 is: 7 times faster than a single
disk. (writes non-parity data on 7 disks simultaneously).

• The read performance of RAID-5 is: 7 times faster than a single
disk. (reads non-parity data on 7 disks simultaneously).

• Compared to a single disk, in the worst case:
• The write performance of RAID-5 is: the same as that of a single

disk.
• The read performance of RAID-5 is: the same as that of a single

disk.
• Why? Because striping is not useful when reading/writing one

byte at a time.

187

RAID-0, RAID-1, RAID-2

RAID levels 0 through 5. Backup and
parity drives are shown shaded.

188

RAID-3, RAID-4, RAID-5

RAID levels 0 through 5. Backup and
parity drives are shown shaded.

189

	Computer Organization & Assembly Language Programming (CSE 2312)
	Announcements and Outline
	Memory Hierarchy
	Cache Memory
	Cache Hit: find necessary data in cache
	Cache Miss: have to get necessary data from main memory
	�Memory Hierarchy Levels
	Cache Terms
	Quantifying Memory Access Speed
	Quantifying Memory Access Speed
	Quantifying Memory Access Speed
	Principle of Locality
	Direct-Mapped Cache
	Direct-Mapped Caches
	Direct-Mapped Caches
	Direct-Mapped Caches
	Tags and Valid Bits
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Direct-Mapped Cache Example
	Address Subdivision
	Example: Larger Block Size
	Block Size Considerations
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation
	Example: Intrinsity FastMATH
	Example: Intrinsity FastMATH
	Main Memory Supporting Caches
	Measuring Cache Performance
	Cache Performance Example
	Average Access Time
	Performance Summary
	Associative Caches
	Associative Cache Example
	Spectrum of Associativity
	Associativity Example
	Associativity Example
	How Much Associativity
	Set Associative Cache Organization
	Replacement Policy
	Multilevel Caches
	Multilevel Cache Example
	Example (cont.)
	Multilevel Cache Considerations
	Interactions with Advanced CPUs
	Interactions with Software
	Virtual Memory
	Virtual Memory
	Address Translation
	Page Fault Penalty
	Page Tables
	Translation Using a Page Table
	Mapping Pages to Storage
	Replacement and Writes
	Fast Translation Using a TLB
	Fast Translation Using a TLB
	TLB Misses
	TLB Miss Handler
	Page Fault Handler
	�TLB and Cache Interaction
	Memory Protection
	Commonalities Between Memory Hierarchies
	Memory Hierarchy Big Picture
	Block Placement
	Finding a Block
	Replacement
	Write Policy
	Sources of Misses
	�Cache Design Trade-offs
	Dependable Memory
	Dependability
	Dependability Measures
	The Hamming SEC Code
	Encoding SEC
	Decoding SEC
	SEC/DEC Code
	Error Detection – Error Correction
	Encoding, Decoding, Codewords
	Parity Bit
	Parity Bits - Examples
	Parity Bits - Examples
	Parity Bit: Detecting A 1-Bit Error
	Parity Bit: Detecting A 1-Bit Error
	Parity Bit: Detecting A 1-Bit Error
	Error Detection Example
	Error Detection Example
	Parity Bit and Multi-Bit Errors
	More General Methods
	Legal and Illegal Codewords
	Legal and Illegal Codewords
	Legal and Illegal Codewords
	�The Hamming Distance
	Hamming Distance: Example
	Hamming Distance: Example
	Example: 2-Bit Error Detection
	Example: 2-Bit Error Detection
	Example: 2-Bit Error Detection
	Example: 1-Bit Error Correction
	Example: 1-Bit Error Correction
	Example: 1-Bit Error Correction
	Example: 1-Bit Error Correction
	Example: 1-Bit Error Correction
	Significance of Code Distances
	Significance of Code Distances
	Significance of Code Distances
	Correcting d Single-Bit Errors
	Correcting d Single-Bit Errors
	Correcting d Single-Bit Errors
	�Correcting d Single-Bit Errors
	�Correcting d Single-Bit Errors
	�Correcting d Single-Bit Errors
	�Correcting d Single-Bit Errors
	Correcting a Single-Bit Error
	Correcting a Single-Bit Error
	�Correcting a Single-Bit Error
	�Correcting a Single-Bit Error
	Table of Bits Needed
	Hamming's Algorithm
	Hamming's Algorithm
	Assigning Bits to Parity Bits
	Correcting an Error
	Proof That This Works?
	An Example Codeword
	From Word to Codeword: Example 1
	From Word to Codeword: Example 1
	From Word to Codeword: Example 2
	From Word to Codeword: Example 2
	Error Correction: Example 1
	Error Correction: Example 1
	Error Correction: Example 1
	Error Correction: Example 2
	Error Correction: Example 2
	Error Correction: Example 2
	Summary
	�Software Optimization via Blocking
	DGEMM Access Pattern
	Cache Blocked DGEMM
	Blocked DGEMM Access Pattern
	CDs
	CDs
	CD-R
	DVDs
	Storing Images
	Optical Disks
	Optical Disk Capacities
	Magnetic Disks
	�Classical Hard Drives: Magnetic Disks
	Solid-State Drives
	Flash Storage
	Flash Types
	Disk Storage
	Disk Tracks and Sectors
	Visualizing a Disk Track
	Disk Sectors and Access
	Disk Access Example
	Disk Performance Issues
	Magnetic Disk Sectors
	Measuring Disk Capacity
	Multiple Platters
	Magnetic Disk Platters
	Cylinders
	Data Access Times
	Measures of Disk Speed
	Worst Case Speed
	Worst Case Speed
	Worst Case Speed
	Worst Case Speed
	Disk Controller
	IDE and SCSI Drives
	RAID
	RAID for Faster Speed
	RAID-0
	RAID-0 Example
	RAID-0 Example
	RAID-0: Pros and Cons
	RAID-0: Pros and Cons
	RAID-1
	RAID-1
	The Need for RAID-5.
	RAID-5
	RAID-5 Example
	RAID-5 Example
	RAID-0, RAID-1, RAID-2�
	RAID-3, RAID-4, RAID-5�

