

Computer Organization & Assembly Language Programming (CSE 2312)

Lecture 25: Dependable Memory, Overflow Detection in ARM, and Floating Point (IEEE 754)

Taylor Johnson

Announcements and Outline

- Programming assignment 3 assigned, due 11/25 by midnight
- Quiz 4 assigned, due by Friday 11/21 by midnight

- Review virtual memory
- Dependable memory (briefly)
- Detecting Overflow in ARM (useful for PA3)
- Floating Points

Memory Hierarchy

Cache Hit: find necessary data in cache

Virtual Memory

- Use main memory as a "cache" for secondary (disk) storage
 - Managed jointly by CPU hardware and the operating system (OS)
- Programs share main memory
 - Each gets a private virtual address space holding its frequently used code and data
 - Protected from other programs
- CPU and OS translate virtual addresses to physical addresses
 - VM "block" is called a page
 - VM translation "miss" is called a page fault
 - <u>Memory management unit (MMU)</u>

Address Translation

Physical address

Page Tables

• PTE: Page Table Entry

Stores placement information

- Array of page table entries, indexed by virtual page number
- Page table register in CPU points to page table in physical memory

• If page is present in memory

- PTE stores the physical page number
- Plus other status bits (referenced, dirty, ...)
- If page is not present
 - PTE can refer to location in swap space on disk

Mapping Pages to Storage

9

Fast Translation Using a TLB

- Address translation would appear to require extra memory references
 - One to access the PTE
 - Then the actual memory access
- But access to page tables has good locality
 - So use a fast cache of PTEs within the CPU
 - Called a Translation Look-aside Buffer (TLB)
 - Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–1% miss rate
 - Misses could be handled by hardware or software

Fast Translation Using a TLB

Memory Hierarchy Big Picture

- Common principles apply at all levels of the memory hierarchy
 - Based on notions of caching
- At each level in the hierarchy
 - Block placement
 - Finding a block
 - Replacement on a miss
 - Write policy

Block Placement

Determined by associativity

- Direct mapped (1-way associative)
 - One choice for placement
- n-way set associative
 - n choices within a set
- Fully associative
 - Any location
- Higher associativity reduces miss rate
 - Increases complexity, cost, and access time

Finding a Block

Associativity	Location method	Tag comparisons		
Direct mapped	Index	1		
n-way set associative	Set index, then search entries within the set	n		
Fully associative	Search all entries	#entries		
	Full lookup table	0		

- Hardware caches
 - Reduce comparisons to reduce cost
- Virtual memory
 - Full table lookup makes full associativity feasible
 - Benefit in reduced miss rate

Replacement

Choice of entry to replace on a miss

- Least recently used (LRU)
 - Complex and costly hardware for high associativity
- Random
 - Close to LRU, easier to implement
- Virtual memory
 - LRU approximation with hardware support

Write Policy

- Write-through
 - Update both upper and lower levels
 - Simplifies replacement, but may require write buffer
- Write-back
 - Update upper level only
 - Update lower level when block is replaced
 - Need to keep more state
- Virtual memory
 - Only write-back is feasible, given disk write latency

Sources of Misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to finite cache size
 - A replaced block is later accessed again
- Conflict misses (aka collision misses)
 - In a non-fully associative cache
 - Due to competition for entries in a set
 - Would not occur in a fully associative cache of the same total size

Dependable Memory

Dependability Measures, Error Correcting Codes, RAID, ...

Dependability

- Fault: failure of a component
 - May or may not lead to system failure

Dependability Measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
 - Reduce MTTR: improved tools and processes for diagnosis and repair

Error Detection – Error Correction

- Memory data can get corrupted, due to things like:
 - Voltage spikes.
 - Cosmic rays.
- The goal in <u>error detection</u> is to come up with ways to tell if some data has been corrupted or not.
- The goal in <u>error correction</u> is to not only detect errors, but also be able to correct them.
- Both error detection and error correction work by attaching additional bits to each memory word.
- Fewer extra bits are needed for error detection, more for error correction.

Encoding, Decoding, Codewords

- Error detection and error correction work as follows:
- Encoding stage:
 - Break up original data into m-bit words.
 - Each m-bit original word is converted to an n-bit codeword.
- Decoding stage:
 - Break up encoded data into n-bit codewords.
 - By examining each n-bit codeword:
 - Deduce if an error has occurred.
 - Correct the error if possible.
 - Produce the original m-bit word.

Parity Bit

- Suppose that we have an *m*-bit word.
- Suppose we want a way to tell if a single error has occurred (i.e., a single bit has been corrupted).
 - No error detection/correction can catch an unlimited number of errors.
- Solution: represent each *m*-bit word using an (*m*+1)bit codeword.
 - The extra bit is called parity bit.
- Every time the word changes, the parity bit is set so as to make sure that the number of 1 bits is even.
 - This is just a convention, enforcing an odd number of 1 bits would also work, and is also used.

Parity Bits - Examples

• Size of original word: m = 8.

Original Word (8 bits)	Number of 1s in Original Word	Codeword (9 bits): Original Word + Parity Bit
01101101		
00110000		
11100001		
01011110		

Parity Bits - Examples

• Size of original word: m = 8.

Original Word (8 bits)	Number of 1s in Original Word	Codeword (9 bits): Original Word + Parity Bit
01101101	5	011011011
00110000	2	001100000
11100001	4	111000010
01011110	5	010111101

Parity Bit: Detecting A 1-Bit Error

- Suppose now that indeed the memory work has been corrupted in a single bit.
- How can we use the parity bit to detect that?

Parity Bit: Detecting A 1-Bit Error

- Suppose now that indeed the memory work has been corrupted in a single bit.
- How can we use the parity bit to detect that?
- How can a single bit be corrupted?

Parity Bit: Detecting A 1-Bit Error

- Suppose now that indeed the memory work has been corrupted in a single bit.
- How can we use the parity bit to detect that?
- How can a single bit be corrupted?
 - Either it was a 1 that turned to a 0.
 - Or it was a 0 that turned to a 1.
- Either way, the number of 1-bits either increases by 1 or decreases by 1, and **becomes odd**.
- The error detection code just has to check if the number of 1-bits is even.

Error Detection Example

- Size of original word: m = 8.
- Suppose that the error detection algorithm gets as input one of the bit patterns on the left column.
 What will be the output?

Input: Codeword (9 bits): Original Word + Parity Bit	Number of 1s	Error?
011001011		
001100000		
100001010		
010111110		

Error Detection Example

- Size of original word: m = 8.
- Suppose that the error detection algorithm gets as input one of the bit patterns on the left colum.
 What will be the output?

Input: Original Word + Parity Bit (9 bits)	Number of 1s	Error?
011001011	5	yes
001100000	2	no
100001010	3	yes
010111110	6	no

Parity Bit and Multi-Bit Errors

- What if two bits get corrupted?
- The number of 1-bits can:
 - remain the same, or
 - increase by 2, or
 - decrease by 2.
- In all cases, the number of 1-bits remains even.
- The error detection algorithm will not catch this error.
- That is to be expected, a single parity bit is only good for detecting a single-bit error.

- Suppose we have two codewords A and B.
- Each codeword is an *n*-bit binary pattern.
- We define the distance between A and B to be the number of bit positions where A and B differ.
- This is called the **Hamming distance**.
- One way to compute the Hamming distance:
 - Let C = EXCLUSIVE OR(A, B).
 - Hamming Distance(A, B) = number of 1-bits in C.
- Given a code (i.e., the set of legal codewords), we can find the pair of codewords with the smallest distance.
- We call this minimum distance the **distance of the code**.

Hamming Distance: Example

- What is the Hamming distance between these two patterns?
- How can we measure this distance?

Hamming Distance: Example

- What is the Hamming distance between these two patterns?
- How can we measure this distance?
 - Find all positions where the two bit patterns differ.
 - Count all those positions.
- Answer: the Hamming distance in the example above is 3.

The Hamming SEC Code

- Hamming distance
 - Number of bits that are different between two bit patterns
- Minimum distance = 2 provides single bit error detection
 - E.g. parity code
- Minimum distance = 3 provides single error correction, 2 bit error detection

• To calculate Hamming code:

Encoding SEC

- Number bits from 1 on the left
- All bit positions that are a power 2 are parity bits
- Each parity bit checks certain data bits:

Bit positi	on	1	2	3	4	5	6	7	8	9	10	11	12
Encoded date	bits	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8
Parity p2 bit coverate p4	p1	Х		Х		Х		Х		Х		Х	
	p2		Х	Х			Х	Х			Х	Х	
	p4				Х	Х	Х	Х					Х
	p8								Х	Х	Х	Х	Х

Decoding SEC

- Value of parity bits indicates which bits are in error
 - Use numbering from encoding procedure
 - E.g.
 - Parity bits = 0000 indicates no error
 - Parity bits = 1010 indicates bit 10 was flipped

SEC/DEC Code

- Add an additional parity bit for the whole word (p_n)
- Make Hamming distance = 4
- Decoding:
 - Let H = SEC parity bits
 - H even, p_n even, no error
 - H odd, p_n odd, correctable single bit error
 - H even, p_n odd, error in p_n bit
 - H odd, p_n even, double error occurred
- Note: ECC DRAM uses SEC/DEC with 8 bits protecting each 64 bits

- Size of original word: *m* = 3.
- Number of redundant bits: *r* = 3.
- Size of codeword: *n* = 6.
- Construction:
 - 1 parity bit for bits 1, 2.
 - 1 parity bit for bits 1, 3.
 - 1 parity bit for bits 2, 3.
- You can manually verify that you cannot find any two codewords with Hamming distance 2 (just need to manually check 28 pairs).
- This is a code with distance 3.
- Any 1-bit error can be corrected.

Original Word	Codeword
000	000000
001	001011
010	010101
011	011110
100	100110
101	101101
110	110011
111	111000

Original Word	Codeword	Input Codeword	Error?	Most Similar Codeword	Output (original word)
000	000000	110101			
001	001011	101000			
010	010101	110011			
011	011110	110011			
100	100110	011110			
101	101101	000010			
101	101101	101101			
110	110011	001111			
111	111000	000110			

- Suppose that the error detection algorithm takes as input bit patterns as shown on the right table.
- What will be the output? How is it determined?

Original Word	Codeword	Input Codeword	Error?	Most Similar Codeword	Output (original word)
000	000000	110101	Yes	010101	010
001	001011	101000	Yes	111000	111
010	010101	110011	No	110011	110
011	011110	011110	No	011110	011
100	100110	000010	Yes	000000	000
101	101101	101101	No	101101	101
110	110011	001111	Yes	001011	001
111	111000	000110	Yes	100110	100

- The error detection algorithm:
 - Finds the legal codeword that is most similar to the input.
 - If that legal codeword is not equal to the input, there was an error!
 - Outputs the original word that corresponds to that legal codeword.

Original Word	Codeword
000	000000
001	001011
010	010101
011	011110
100	100110
101	101101
110	110011
111	111000

Input Codeword	Error?	Most Similar Codewords	Output (original word)
001100			

• What happens in this case?

Original Word	Codeword
000	000000
001	001011
010	010101
011	011110
100	100110
101	101101
110	110011
111	111000

Input Codeword	Error?	Most Similar Codewords	Output (original word)
001100	Yes	000000 011110 101101	More than 1 bit corrupted, cannot correct!
		101101	

- No legal codeword is within distance 1 of the input codeword.
- 3 legal codewords are within distance 2 of the input codeword.
- More than 1 bit have been corrupted, the error has been detected, but cannot be corrected.

Table of Bits Needed

Word size	Check bits	Total size	Percent overhead
8	4	12	50
16	5	21	31
32	6	38	19
64	7	71	11
128	8	136	6
256	9	265	4
512	10	522	2

Number of check bits for a code that can correct a single error.

An Example Codeword

Construction of the Hamming code for the memory word 1111000010101110 by adding 5 check bits to the 16 data bits. UNIVERSITY OF TEXAS ARLINGTON

- RAID stands for Redundant Array of Inexpensive Disks.
- RAID arrays are simply sets of disks, that are visible as a single unit by the computer.
 - Instead of a single drive accessible via a drive controller, the whole RAID is accessible via a RAID controller.
 - Since a RAID can look as a single drive, software accessing disks does not need to be modified to access a RAID.
- Depending on their type (we will see several types), RAIDs accomplish one (or both) of the following:
 - Speed up performance.

RAID)

• Tolerate failures of entire drive units.

RAID-0, RAID-1, RAID-2

RAID levels 0 through 5. Backup and parity drives are shown shaded.

RAID-3, RAID-4, RAID-5

RAID levels 0 through 5. Backup and parity drives are shown shaded.

Summary

- Memory hierarchy
 - Caches
 - Main memory
 - Disk / storage
 - Virtual memory
 - Dependable memory: error-correcting codes

Overflow

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer AdditionExample: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Binary Arithmetic

Addition: suppose r1 = 0x00000005 adds r0, r1, #5 r0 = r1 + #5 r0 = 0x00000005 + #5 (sign extension) r0 = 0x00000005 + 0x0000005 r0 = 0x0000000A

What does the trailing **s** after **add** do? Update register we use for condition codes

ALU Status Flags

- Application program status register (APSR)
- APSR contains the following ALU status flags
 - N: Set to 1 when the result of the operation is negative, cleared to 0 otherwise
 - Z: Set to 1 when the result of the operation is zero, cleared to 0 otherwise
 - C: Set to 1 when the operation results in a carry, or when a subtraction results in no borrow, cleared to 0 otherwise
 - V: Set to 1 when the operation causes overflow, cleared to 0 otherwise

ARM Condition Codes

Suffix	Flags	Meaning
EQ	Z set	Equal
NE	Z clear	Not equal
<u>CS or HS</u>	<u>C set</u>	<u> Carry set / Higher or same (unsigned >=)</u>
<u>CC or LO</u>	<u>C clear</u>	<u>Carry clear / Lower (unsigned <)</u>
MI	N set	Negative
PL	N clear	Positive or zero
<u>VS</u>	<u>V set</u>	Overflow (overflow set)
<u>VC</u>	<u>V clear</u>	No overflow (overflow clear)

Note: Most instructions update status flags <u>only if the S suffix is</u> <u>specified</u>. CMP, CMN, TEQ, TST <u>always</u> update condition code flags

ARM Condition Codes (cont)

Suffix	Flags	Meaning
HI	C set and Z clear	Higher (unsigned >)
LS	C clear or Z set	Lower or same (unsigned <=)
GE	N and V the same	Signed >=
LT	N and V differ	Signed <
GT	Z clear, N and V the same	Signed >
LE	Z set, N and V differ	Signed <=
HI	C set and Z clear	Higher (unsigned >)

ALU Status Flags

• C is set in one of the following ways:

- For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a carry (that is, an <u>unsigned</u> <u>overflow</u>), and to 0 otherwise
- For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction produced a borrow (that is, an <u>unsigned underflow</u>), and to 1 otherwise
- For non-addition/subtractions that incorporate a shift operation, C is set to the last bit shifted out of the value by the shifter
- For other non-addition/subtractions, C is normally left unchanged, but see the individual instruction descriptions for any special cases
- Overflow occurs if the result of a <u>signed</u> add, subtract, or compare is greater than or equal to 2^{31} , or less than -2^{31}

Conditional Execution

• We've already used several types

- •beq label
- •blt label
- Etc
- Conditional execution: instruction is executed if condition code is true
 - Example
 - cmp r0, #0
 - moveq r0, #1
- Same idea as we've seen with branch: branch only executed if condition code is true

• Here, mov only executed if r0 = #0

• Programming assignment: look at bvs, bvc, bcs, etc.

Back to Arithmetic

```
Addition: suppose r1 = 0xFFFFFFF
adds r0, r1, #1
r0 = r1 + #1
r0 = 0 \times 00000000
Recall: OxFFFFFFFF
= b_{1}^{1} 111 1111 1111
                  1111 1111 1111 1111
                                      1111
Question: does V (overflow of PSR) get set?
No: -1 + 1 = 0, although carry C does get set, and Z is also set (since result is 0)
```


Back to Arithmetic

Addition: suppose r1 = 0x7FFFFFF, r2 = 0x7FFFFFFF
adds r0, r1, r2
r0 = r1 + r2
r0 = 0x7FFFFFFF + 0x7FFFFFFF
r0 = 0xFFFFFFFF

Question: does V (overflow of PSR) get set?

Yes: 2*2,147,483,647 > 2^31

Result is: positive + positive = negative number

Floating Point

Representing Fractional Numbers

- Seen several ways to encode information using binary numbers
 - Unsigned integers as binary representation
 - Signed integers using two's complement
 - Letters using ASCII
 - Etc.
- How can we represent fractional (non-whole) numbers?
 - Fixed-point
 - Floating-point

Fixed-Point

- Suppose we have 16-bits to represent a fractional number
 - Use upper 8 bits to represent whole (integer) portion
 - Use lower 8 bits to represent fractional (non-whole) portion

Whole Part	Decimal Point	(.)	Fractional Part
8 bits	•		8 bits
0010 0000	•		0000 0001
20	•		1/256
20	•		0.00390625

- Number of bits reserved for fractional part determines significance of each fractional part
- Here, we have 8 bits, so each fractional part is 1/256, since 2^8 = 256

Why Not Fixed-Point?

- Hard to represent very larger or very small numbers
- Smallest number representable using 64 bits, supposing we keep 32 bits for whole part and 32 bits for fractional part, is:
 - 1/(2^32) =
- 0.000000023283064365386962890625...
- Largest number is still 2^32
- What if we need to represent larger or small numbers?
 - Utilize idea of significant digits
 - If a number is very large, a small deviation results in a small error
 - If a number if very small, a small deviation may result in a large error
 - Utilize relative (percentage) error as opposed to absolute error

Floating Point

 System for representing number where the range of expressible numbers if *independent* of the number of significant digits

• Represent number n in scientific notation:

 $n = f * 10^{e}$

- n: number being represented
- f: fraction (mantissa)
- e: positive or negative integer
- Examples
 - 3.14 = 0.314 * 10¹ = 3.14 * 10⁰
 - 0.000001 = 0.1 * 10⁻⁵ = 1.0 * 10⁻⁶
 - 1941 = 0.1941 * 10⁴ = 1.941 * 10³

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers

- In binary
 - $\pm 1.xxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Real Number Line Regions

- Divided real number line into seven regions:
 - Large negative numbers less than –0. 999 \times 10^{99}
 - Negative between –0.999 \times 10 99 and –0.100 $\times 10^{-99}$
 - Small negative, magnitudes less than 0.100×10⁻⁹⁹
 - Zero
 - Small positive, magnitudes less than 0.100×10⁻⁹⁹
 - Positive between 0.100×10⁻⁹⁹ and 0.999×10⁹⁹
 - Large positive numbers greater than 0.999×10⁹⁹

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE 754 Floating-Point Format

	single: 8 bits double: 11 bit	single: 23 bits double: 52 bits
S Exponent		Fraction

$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalize significand: $1.0 \le |$ significand | < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Expressible Numbers

• Approximate lower and upper bounds of expressible (unnormalized) floating-point decimal numbers

Digits in fraction	Digits in exponent	Lower bound	Upper bound
3	1	10 ⁻¹²	10 ⁹
3	2	10 ⁻¹⁰²	10 ⁹⁹
3	3	10 ⁻¹⁰⁰²	10 ⁹⁹⁹
3	4	10 ⁻¹⁰⁰⁰²	10 ⁹⁹⁹⁹
4	1	10 ⁻¹³	10 ⁹
4	2	10 ⁻¹⁰³	10 ⁹⁹
4	3	10 ⁻¹⁰⁰³	10 ⁹⁹⁹
4	4	10 ⁻¹⁰⁰⁰³	10 ⁹⁹⁹⁹
5	1	10 ⁻¹⁴	10 ⁹
5	2	10 ⁻¹⁰⁴	10 ⁹⁹
5	3	10 ⁻¹⁰⁰⁴	10 ⁹⁹⁹
5	4	10 ⁻¹⁰⁰⁰⁴	10 ⁹⁹⁹⁹
10	3	10 ⁻¹⁰⁰⁹	10 ⁹⁹⁹
20	3	10 ⁻¹⁰¹⁹	10 ⁹⁹⁹

Normalization

- Problem: many equivalent representation of same number using the exponent/fraction notation
- Example:
 - 0.5: exponent = -1, fraction = 5: $10^{-1} * 5 = 0.5$
 - 0.5: exponent = -2, fraction = 50: $10^{-2} * 50 = 0.5$
- Binary normalization
 - If leftmost bit is zero, shift all fractional bits left by one and decrease exponent by 1 (assuming no underflow)
 - Fraction with leftmost nonzero bit is normalized
- Benefit: only one normalized representation
 - Simplifies equality comparisons, etc.

Normalization in Binary

Sign Excess 64 + exponent is 73 - 64 = 9

74

Normalization in Hex

IEEE Floating-Point Types

Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess 127	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2 ⁻¹²⁶	2 ⁻¹⁰²²
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴
Decimal range	approx. 10 ⁻³⁸ to 10 ³⁸	approx. 10 ⁻³⁰⁸ to 10 ³⁰⁸
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴

IEEE Numerical Types

IEEE 754 Example

•
$$n = sign * 2^e * f$$

- •9 = b1.001 * 2^3 = 1.125 * 2^3 = 1.125 * 8 = 9
- Multiply by 2^3 is shift right by 3

Sign	Expon	lent	Fraction
0	1000	0010	001000000000000000000000000000000000000

- e = exponent 127 (biasing)
- f = 1.fraction

IEEE 754 Example

•
$$n = sign * 2^e * f$$

• 5/4 = 1.25 = (-1)^0 * 2^0 * 1.25 = b1.01 = 1 + 1^-2

Sign	Exponent	Fraction
1	0111 1111	010000000000000000000000000000000000000
-1	127-127=0	1.25

- e = exponent 127 (biasing)
- f = 1.fraction

IEEE 754 Example

•
$$n = sign * 2^e * f$$

- -0.15625 = -5/32 = -1*b1.01 * 2^-3 = b0.00101
- Multiply by 2^-3 is shift left by 3

Sign	Exponent	Fraction
1	0111 1100	010000000000000000000000000000000000000
-1	124-127=-3	1.25

- e = exponent 127 (biasing)
- f = 1.fraction
- $-5/32 = -0.15625 = -1.25 / 2^3 = -1.25 / 8 = -5/(4*8)$

ARM Floating Point

- Instructions prefixed with v, suffixed with, e.g., .f32
- Registers are s0 through s31 and d0 through d15
- foperandA: .float 3.14
- foperandB: .float 2.5
- vldr.f32 s1, foperandA @ s0 =
 mem[foperandA]
- vldr.f32 s2, foperandB @ s1 =
 mem[foperandB]
- vadd.f32 s0, s1, s2

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 ⇒ actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110 ⇒ actual exponent = 2046 - 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = 1000...00₂
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 01111110₂
 - Double: -1 + 1023 = 1022 = 0111111110₂
- Single: 1011111101000...00
- Double: 101111111101000...00

Floating-Point Example

- What number is represented by the single-precision float
 - ${\color{red}1100000101000...00}$
 - S = 1
 - Fraction = 01000...00₂
 - Fxponent = $1000001_2 = 129$

•
$$x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 × 10^1 + 0.016 × 10^1
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^{2}
- 4. Round and renormalize if necessary
 - 1.002×10^{2}

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$ (i.e., 0.5 + -0.4375)
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ☺
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Floating-Point Summary

- Floating-point
 - Decimal point moves due to exponents (bit shifting)
 - Positive / negative zeros
- Fixed-point
 - Decimal point remains at fixed point (e.g., after bit 8)
- Spacing between these numbers and real numbers