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Announcements and Outline

•Programming assignment 3 assigned, due 11/25 by 
midnight

•Quiz 4 assigned, due by Friday 11/21 by midnight

•Review Dependable memory (briefly)

•Detecting Overflow in ARM (useful for PA3)

•Floating Point
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Dependable Memory
Dependability Measures, Error Correcting Codes, RAID, …
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Dependability

•Fault: failure of a 
component
• May or may not lead to 

system failure

Service accomplishment

Service delivered

as specified

Service interruption

Deviation from

specified service

FailureRestoration
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Dependability Measures

•Reliability: mean time to failure (MTTF)

•Service interruption: mean time to repair (MTTR)

•Mean time between failures
• MTBF = MTTF + MTTR

•Availability = MTTF / (MTTF + MTTR)

• Improving Availability
• Increase MTTF: fault avoidance, fault tolerance, fault 

forecasting
• Reduce MTTR: improved tools and processes for diagnosis 

and repair
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Error Detection – Error Correction

•Memory data can get corrupted, due to things like:
• Voltage spikes.
• Cosmic rays.

•The goal in error detection is to come up with ways 
to tell if some data has been corrupted or not.

•The goal in error correction is to not only detect 
errors, but also be able to correct them.

•Both error detection and error correction work by 
attaching additional bits to each memory word.

•Fewer extra bits are needed for error detection, 
more for error correction.
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Encoding, Decoding, Codewords

•Error detection and error correction work as 
follows:
•Encoding stage:

• Break up original data into m-bit words.
• Each m-bit original word is converted to an n-bit 

codeword.

•Decoding stage:
• Break up encoded data into n-bit codewords.
• By examining each n-bit codeword:

• Deduce if an error has occurred.
• Correct the error if possible.
• Produce the original m-bit word.
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Parity Bit
•Suppose that we have an m-bit word.

•Suppose we want a way to tell if a single error has 
occurred (i.e., a single bit has been corrupted).
• No error detection/correction can catch an unlimited 

number of errors.

•Solution: represent each m-bit word using an (m+1)-
bit codeword.
• The extra bit is called parity bit.

•Every time the word changes, the parity bit is set so as 
to make sure that the number of 1 bits is even.
• This is just a convention, enforcing an odd number of 1 bits 

would also work, and is also used.
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Parity Bits - Examples

•Size of original word: m = 8.

Original 
Word (8 bits)

Number of 
1s in Original 
Word

Codeword (9 
bits): Original 
Word + Parity Bit

01101101

00110000

11100001

01011110
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Parity Bits - Examples

•Size of original word: m = 8.

Original 
Word (8 bits)

Number of 
1s in Original 
Word

Codeword (9 
bits): Original 
Word + Parity Bit

01101101 5 011011011

00110000 2 001100000

11100001 4 111000010

01011110 5 010111101
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Parity Bit: Detecting A 1-Bit Error

•Suppose now that indeed the memory work has 
been corrupted in a single bit.

•How can we use the parity bit to detect that?
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Parity Bit: Detecting A 1-Bit Error

•Suppose now that indeed the memory work has 
been corrupted in a single bit.

•How can we use the parity bit to detect that?

•How can a single bit be corrupted?
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Parity Bit: Detecting A 1-Bit Error

•Suppose now that indeed the memory work has 
been corrupted in a single bit.

•How can we use the parity bit to detect that?

•How can a single bit be corrupted?
• Either it was a 1 that turned to a 0.
• Or it was a 0 that turned to a 1.

•Either way, the number of 1-bits either increases by 
1 or decreases by 1, and becomes odd.

•The error detection code just has to check if the 
number of 1-bits is even.
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Error Detection Example

•Size of original word: m = 8.

•Suppose that the error detection algorithm gets as 
input one of the bit patterns on the left column. 
What will be the output?

Input: Codeword (9 bits): 
Original Word + Parity Bit 

Number of 1s Error?

011001011

001100000

100001010

010111110
14



Error Detection Example

•Size of original word: m = 8.

•Suppose that the error detection algorithm gets as 
input one of the bit patterns on the left colum. 
What will be the output?

Input: Original Word + 
Parity Bit (9 bits)

Number of 1s Error?

011001011 5 yes

001100000 2 no

100001010 3 yes

010111110 6 no
15



Parity Bit and Multi-Bit Errors

•What if two bits get corrupted?

•The number of 1-bits can:
• remain the same, or
• increase by 2, or
• decrease by 2.

• In all cases, the number of 1-bits remains even.

•The error detection algorithm will not catch this 
error.

•That is to be expected, a single parity bit is only 
good for detecting a single-bit error.
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The Hamming Distance

•Suppose we have two codewords A and B.

•Each codeword is an n-bit binary pattern.

•We define the distance between A and B to be the 
number of bit positions where A and B differ.

•This is called the Hamming distance.

•One way to compute the Hamming distance:
• Let C = EXCLUSIVE OR(A, B).

• Hamming Distance(A, B) = number of 1-bits in C.

•Given a code (i.e., the set of legal codewords), we can 
find the pair of codewords with the smallest distance.

•We call this minimum distance the distance of the code.
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Hamming Distance: Example

•What is the Hamming distance between these two 
patterns?

1 0 1 1 0 1 0 0 1 0 0 0 

0 0 1 1 0 1 0 1 1 0 1 0

•How can we measure this distance?
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Hamming Distance: Example

•What is the Hamming distance between these two 
patterns?

1 0 1 1 0 1 0 0 1 0 0 0 

0 0 1 1 0 1 0 1 1 0 1 0

•How can we measure this distance?
• Find all positions where the two bit patterns differ.
• Count all those positions.

•Answer: the Hamming distance in the example above is 
3.
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The Hamming SEC Code

•Hamming distance
• Number of bits that are different between two bit 

patterns

•Minimum distance = 2 provides single bit error 
detection
• E.g. parity code

•Minimum distance = 3 provides single error 
correction, 2 bit error detection
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Encoding SEC

•To calculate Hamming code:
• Number bits from 1 on the left
• All bit positions that are a power 2 are parity bits
• Each parity bit checks certain data bits:
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Decoding SEC

•Value of parity bits indicates which bits are in error
• Use numbering from encoding procedure
• E.g.

• Parity bits = 0000 indicates no error

• Parity bits = 1010 indicates bit 10 was flipped
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SEC/DEC Code

•Add an additional parity bit for the whole word (pn)

•Make Hamming distance = 4

•Decoding:
• Let H = SEC parity bits

• H even, pn even, no error

• H odd, pn odd, correctable single bit error

• H even, pn odd, error in pn bit

• H odd, pn even, double error occurred

•Note:  ECC DRAM uses SEC/DEC with 8 bits 
protecting each 64 bits
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Example: 1-Bit Error Correction
Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

• Size of original word: m = 3.

• Number of redundant bits: r = 3.

• Size of codeword: n = 6.

• Construction: 
• 1 parity bit for bits 1, 2.

• 1 parity bit for bits 1, 3.

• 1 parity bit for bits 2, 3.

• You can manually verify that you cannot 
find any two codewords with Hamming 
distance 2 (just need to manually check 
28 pairs).

• This is a code with distance 3.

• Any 1-bit error can be corrected.
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Example: 1-Bit Error Correction

• Suppose that the error detection algorithm takes as input bit 
patterns as shown on the right table. 

• What will be the output? How is it determined?

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input 
Codeword

Error? Most Similar 
Codeword

Output (original 
word)

110101

101000

110011

011110

000010

101101

001111

000110
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Example: 1-Bit Error Correction

• The error detection algorithm:
• Finds the legal codeword that is most similar to the input.

• If that legal codeword is not equal to the input, there was an error!

• Outputs the original word that corresponds to that legal codeword.

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input 
Codeword

Error? Most Similar 
Codeword

Output (original 
word)

110101 Yes 010101 010

101000 Yes 111000 111

110011 No 110011 110

011110 No 011110 011

000010 Yes 000000 000

101101 No 101101 101

001111 Yes 001011 001

000110 Yes 100110 100
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Example: 1-Bit Error Correction

• What happens in this case?

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input 
Codeword

Error? Most Similar 
Codewords

Output (original 
word)

001100
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Example: 1-Bit Error Correction

• No legal codeword is within distance 1 of the input codeword.

• 3 legal codewords are within distance 2 of the input codeword.

• More than 1 bit have been corrupted, the error has been detected, but cannot be corrected.

Original Word Codeword

000 000000

001 001011

010 010101

011 011110

100 100110

101 101101

110 110011

111 111000

Input 
Codeword

Error? Most Similar 
Codewords

Output (original 
word)

001100 Yes 000000
011110
101101

More than 1 bit 
corrupted, cannot 
correct!
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Table of Bits Needed

Number of check bits for a code 
that can correct a single error.
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An Example Codeword

Construction of the Hamming code 
for the memory word 1111000010101110 by 
adding 5 check bits to the 16 data bits.
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Overflow
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Arithmetic for Computers

•Operations on integers
• Addition and subtraction
• Multiplication and division
• Dealing with overflow

•Floating-point real numbers
• Representation and operations 
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Integer Addition
•Example: 7 + 6

 Overflow if result out of range

 Adding +ve and –ve operands, no overflow

 Adding two +ve operands

 Overflow if result sign is 1

 Adding two –ve operands

 Overflow if result sign is 0
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Integer Subtraction

•Add negation of second operand

•Example: 7 – 6 = 7 + (–6)
+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

•Overflow if result out of range
• Subtracting two +ve or two –ve operands, no overflow

• Subtracting +ve from –ve operand
• Overflow if result sign is 0

• Subtracting –ve from +ve operand
• Overflow if result sign is 1
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Binary Arithmetic

Addition: suppose r1 = 0x00000005
adds r0, r1, #5

r0 = r1 + #5

r0 = 0x00000005 + #5 (sign 
extension)

r0 = 0x00000005 + 0x00000005

r0 = 0x0000000A

What does the trailing s after add do?
Update register we use for condition codes
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ALU Status Flags

•Application program status register (APSR)

•APSR contains the following ALU status flags
• N: Set to 1 when the result of the operation is negative, 

cleared to 0 otherwise
• Z: Set to 1 when the result of the operation is zero, 

cleared to 0 otherwise

• C: Set to 1 when the operation results in a carry, or when 
a subtraction results in no borrow, cleared to 0 otherwise

• V: Set to 1 when the operation causes overflow, cleared to 
0 otherwise
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ARM Condition Codes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS or HS C set Carry set / Higher or same (unsigned >= )

CC or LO C clear Carry clear / Lower (unsigned < )

MI N set Negative

PL N clear Positive or zero

VS V set Overflow (overflow set)

VC V clear No overflow (overflow clear)

37

Note: Most instructions update status flags only if the S suffix is 
specified. CMP, CMN, TEQ, TST always update condition code flags



ARM Condition Codes (cont)
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Suffix Flags Meaning

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

HI C set and Z clear Higher (unsigned >)



ALU Status Flags

• C is set in one of the following ways:
• For an addition, including the comparison instruction CMN, C is 

set to 1 if the addition produced a carry (that is, an unsigned 
overflow), and to 0 otherwise

• For a subtraction, including the comparison instruction CMP, C 
is set to 0 if the subtraction produced a borrow (that is, an 
unsigned underflow), and to 1 otherwise

• For non-addition/subtractions that incorporate a shift 
operation, C is set to the last bit shifted out of the value by the 
shifter

• For other non-addition/subtractions, C is normally left 
unchanged, but see the individual instruction descriptions for 
any special cases

•Overflow occurs if the result of a signed add, subtract, 
or compare is greater than or equal to 231, or less than 
− 231
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Conditional Execution

•We’ve already used several types
• beq label

• blt label

• Etc

• Conditional execution: instruction is executed if 
condition code is true
• Example
• cmp r0, #0

• moveq r0, #1

• Same idea as we’ve seen with branch: branch only 
executed if condition code is true
• Here, mov only executed if r0 = #0

• Programming assignment: look at bvs, bvc, bcs, etc.
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Back to Arithmetic

Addition: suppose r1 = 0xFFFFFFFF
adds r0, r1, #1

r0 = r1 + #1

r0 = 0xFFFFFFFF + #1 (sign extension)

r0 = 0xFFFFFFFF + 0x00000001

r0 = 0x00000000

Recall: 0xFFFFFFFF
= b1111 1111 1111 1111 1111 1111 1111 1111

Question: does V (overflow of PSR) get set?
No: -1 + 1 = 0, although carry C does get set, and Z is 

also set (since result is 0)
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Back to Arithmetic

Addition: suppose r1 = 0x7FFFFFFF, r2 = 0x7FFFFFFF

adds r0, r1, r2

r0 = r1 + r2

r0 = 0x7FFFFFFF + 0x7FFFFFFF

r0 = 0xFFFFFFFE

Question: does V (overflow of PSR) get set?

Yes: 2*2,147,483,647 > 2^31

Result is: positive + positive = negative number
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Floating Point
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Representing Fractional Numbers

•Seen several ways to encode information using 
binary numbers
• Unsigned integers as binary representation
• Signed integers using two’s complement
• Letters using ASCII
• Etc.

•How can we represent fractional (non-whole) 
numbers?
• Fixed-point
• Floating-point
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Fixed-Point

• Suppose we have 16-bits to represent a fractional number
• Use upper 8 bits to represent whole (integer) portion
• Use lower 8 bits to represent fractional (non-whole) portion

• Number of bits reserved for fractional part determines 
significance of each fractional part

• Here, we have 8 bits, so each fractional part is 1/256, since 
2^8 = 256

45

Whole Part Decimal Point (.) Fractional 

Part

8 bits . 8 bits

0010 0000 . 0000 0001

20 . 1/256

20 . 0.00390625



Why Not Fixed-Point?

•Hard to represent very larger or very small numbers
• Smallest number representable using 64 bits, supposing 

we keep 32 bits for whole part and 32 bits for fractional 
part, is:

1/(2^32) = 
0.00000000023283064365386962890625…
• Largest number is still 2^32
•What if we need to represent larger or small numbers?

• Utilize idea of significant digits
• If a number is very large, a small deviation results in a small 

error
• If a number if very small, a small deviation may result in a large 

error
• Utilize relative (percentage) error as opposed to absolute error
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Floating Point

• System for representing number where the range of 
expressible numbers if independent of the number of 
significant digits

• Represent number n in scientific notation:

𝑛 = 𝑓 ∗ 10𝑒

• n: number being represented
• f: fraction (mantissa)
• e: positive or negative integer

• Examples
• 3.14 = 0.314 * 10^1 = 3.14 * 10^0
• 0.000001 = 0.1 * 10^-5 = 1.0 * 10^-6
• 1941 = 0.1941 * 10^4 = 1.941 * 10^3
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Floating Point

•Representation for non-integral numbers
• Including very small and very large numbers

• Like scientific notation
• –2.34 × 1056

• +0.002 × 10–4

• +987.02 × 109

• In binary
• ±1.xxxxxxx2 × 2yyyy

•Types float and double in C

normalized

not normalized
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Real Number Line Regions
•Divided real number line into seven regions:

• Large negative numbers less than −0. 999 × 1099

• Negative between −0.999 × 1099 and −0.100×10−99

• Small negative, magnitudes less than 0.100×10−99

• Zero
• Small positive, magnitudes less than 0.100×10−99

• Positive between 0.100×10−99 and 0.999×1099

• Large positive numbers greater than 0.999×1099
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Floating Point Standard

•Defined by IEEE Std 754-1985

•Developed in response to divergence of 
representations
• Portability issues for scientific code

•Now almost universally adopted

•Two representations
• Single precision (32-bit)
• Double precision (64-bit) 
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IEEE 754 Floating-Point Format

• S: sign bit (0  non-negative, 1  negative)

• Normalize significand: 1.0 ≤ |significand| < 2.0
• Always has a leading pre-binary-point 1 bit, so no need to represent it 

explicitly (hidden bit)
• Significand is Fraction with the “1.” restored

• Exponent: excess representation: actual exponent + Bias
• Ensures exponent is unsigned
• Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x 

51



Expressible Numbers

•Approximate lower and upper bounds of expressible 
(unnormalized) floating-point decimal numbers
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Normalization

•Problem: many equivalent representation of same 
number using the exponent/fraction notation
•Example:

• 0.5: exponent = -1, fraction = 5: 10−1 ∗ 5 = 0.5
• 0.5: exponent = -2, fraction = 50: 10−2 ∗ 50 = 0.5

•Binary normalization
• If leftmost bit is zero, shift all fractional bits left by one 

and decrease exponent by 1 (assuming no underflow)
• Fraction with leftmost nonzero bit is normalized

•Benefit: only one normalized representation
• Simplifies equality comparisons, etc.
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Normalization in Binary
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Normalization in Hex
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IEEE Floating-Point Types
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IEEE Numerical Types

58



IEEE 754 Example

•𝑛 = 𝑠𝑖𝑔𝑛 ∗ 2𝑒 ∗ 𝑓

•9 = b1.001 * 2^3 = 1.125 * 2^3 = 1.125 * 8 = 9

•Multiply by 2^3  is shift right by 3

•e = exponent – 127 (biasing)

• f = 1.fraction
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Sign Exponent Fraction

0 1000 0010 00100000000000000000000



IEEE 754 Example

•𝑛 = 𝑠𝑖𝑔𝑛 ∗ 2𝑒 ∗ 𝑓

•5/4 = 1.25 = (-1)^0 * 2^0 * 1.25 = b1.01 = 1 + 1^-2

•e = exponent – 127 (biasing)

• f = 1.fraction

60

Sign Exponent Fraction

1 0111 1111 01000000000000000000000

-1 127-127=0 1.25



IEEE 754 Example

•𝑛 = 𝑠𝑖𝑔𝑛 ∗ 2𝑒 ∗ 𝑓

• -0.15625 = -5/32 = -1*b1.01 * 2^-3 = b0.00101
•Multiply by 2^-3  is shift left by 3

•e = exponent – 127 (biasing)
• f = 1.fraction
• -5/32 = -0.15625 = -1.25 / 2^3 = -1.25 / 8 = -5/(4*8)
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Sign Exponent Fraction

1 0111 1100 01000000000000000000000

-1 124-127=-3 1.25



ARM Floating Point

• Instructions prefixed with v, suffixed with, e.g., .f32

•Registers are s0 through s31 and d0 through d15

foperandA: .float 3.14

foperandB: .float 2.5

vldr.f32 s1, foperandA @ s0 = 

mem[foperandA]

vldr.f32 s2, foperandB @ s1 = 

mem[foperandB]

vadd.f32 s0, s1, s2
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Single-Precision Range

•Exponents 00000000 and 11111111 reserved
•Smallest value

• Exponent: 00000001
 actual exponent = 1 – 127 = –126

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–126 ≈ ±1.2 × 10–38

• Largest value
• exponent: 11111110
 actual exponent = 254 – 127 = +127

• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+127 ≈ ±3.4 × 10+38
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Double-Precision Range

•Exponents 0000…00 and 1111…11 reserved
•Smallest value

• Exponent: 00000000001
 actual exponent = 1 – 1023 = –1022

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–1022 ≈ ±2.2 × 10–308

• Largest value
• Exponent: 11111111110
 actual exponent = 2046 – 1023 = +1023

• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+1023 ≈ ±1.8 × 10+308
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Floating-Point Precision

•Relative precision
• all fraction bits are significant
• Single: approx 2–23

• Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits of precision

• Double: approx 2–52

• Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits of precision
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Floating-Point Example

•Represent –0.75
• –0.75 = (–1)1 × 1.12 × 2–1

• S = 1
• Fraction = 1000…002

• Exponent = –1 + Bias
• Single: –1 + 127 = 126 = 011111102

• Double: –1 + 1023 = 1022 = 011111111102

•Single: 1011111101000…00

•Double: 1011111111101000…00
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Floating-Point Example

•What number is represented by the single-precision 
float

11000000101000…00
• S = 1
• Fraction = 01000…002

• Fxponent = 100000012 = 129

• x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0
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Infinities and NaNs

•Exponent = 111...1, Fraction = 000...0
• ±Infinity
• Can be used in subsequent calculations, avoiding need for 

overflow check

•Exponent = 111...1, Fraction ≠ 000...0
• Not-a-Number (NaN)
• Indicates illegal or undefined result

• e.g., 0.0 / 0.0

• Can be used in subsequent calculations
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Floating-Point Addition

•Consider a 4-digit decimal example
• 9.999 × 101 + 1.610 × 10–1

•1. Align decimal points
• Shift number with smaller exponent
• 9.999 × 101 + 0.016 × 101

•2. Add significands
• 9.999 × 101 + 0.016 × 101 = 10.015 × 101

•3. Normalize result & check for over/underflow
• 1.0015 × 102

•4. Round and renormalize if necessary
• 1.002 × 102
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Floating-Point Addition

•Now consider a 4-digit binary example
• 1.0002 × 2–1 + –1.1102 × 2–2 (i.e., 0.5 + –0.4375)

•1. Align binary points
• Shift number with smaller exponent
• 1.0002 × 2–1 + –0.1112 × 2–1

•2. Add significands
• 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

•3. Normalize result & check for over/underflow
• 1.0002 × 2–4, with no over/underflow

•4. Round and renormalize if necessary
• 1.0002 × 2–4 (no change)  = 0.0625
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Accurate Arithmetic

• IEEE Std 754 specifies additional rounding control
• Extra bits of precision (guard, round, sticky)
• Choice of rounding modes
• Allows programmer to fine-tune numerical behavior of a 

computation

•Not all FP units implement all options
• Most programming languages and FP libraries just use 

defaults

•Trade-off between hardware complexity, 
performance, and market requirements
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Who Cares About FP Accuracy?

• Important for scientific code
• But for everyday consumer use?

• “My bank balance is out by 0.0002¢!” 

•The Intel Pentium FDIV bug
• The market expects accuracy
• See Colwell, The Pentium Chronicles
• Cost hundreds of millions of dollars
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Floating-Point Summary

•Floating-point
• Decimal point moves due to exponents (bit shifting)
• Positive / negative zeros

•Fixed-point
• Decimal point remains at fixed point (e.g., after bit 8)

•Spacing between these numbers and real numbers
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