
Computer Organization &
Assembly Language

Programming (CSE 2312)
Lecture 27: Floating Point (IEEE 754), Combining C and

Assembly, and ARM Review

Taylor Johnson

Announcements and Outline

• Student Feedback Survey (SFS)
• Invitation by email sent on Wednesday, November 19.
• MUST complete BEFORE Wednesday, December 3, 2014
• PLEASE complete, very important for the university and your future

classes
• Note: university average and median ratings are ~4.25+ out of 5.0

• Programming assignment 3 assigned, due tonight by midnight
• Programming assignment 4 assigned, due 12/2 by midnight
• Quiz 5 assigned, due by Monday 12/1 by midnight
• Floating Point
• ARM Architecture and Computer Organization Review

2

Floating Point

3

Representing Fractional Numbers

• Seen several ways to encode information using
binary numbers

• Unsigned integers as binary representation
• Signed integers using two’s complement
• Letters using ASCII
• Etc.

• How can we represent fractional (non-whole)
numbers?

• Fixed-point
• Floating-point

4

Fixed-Point

• Suppose we have 16-bits to represent a fractional number
• Use upper 8 bits to represent whole (integer) portion
• Use lower 8 bits to represent fractional (non-whole) portion

• Number of bits reserved for fractional part determines
significance of each fractional part

• Here, we have 8 bits, so each fractional part is 1/256, since
2^8 = 256

Whole Part Decimal Point (.) Fractional
Part

8 bits . 8 bits

0010 0000 . 0000 0001

32 . 1/256

32 . 0.00390625

5

Why Not Fixed-Point?

• Hard to represent very larger or very small numbers
• Smallest number representable using 64 bits, supposing

we keep 32 bits for whole part and 32 bits for fractional
part, is:

1/(2^32) =
0.00000000023283064365386962890625…
• Largest number is still 2^32
• What if we need to represent larger or small numbers?

• Utilize idea of significant digits
• If a number is very large, a small deviation results in a small

error
• If a number if very small, a small deviation may result in a large

error
• Utilize relative (percentage) error as opposed to absolute error

6

Floating Point

• System for representing number where the range of
expressible numbers if independent of the number of
significant digits

• Represent number n in scientific notation:
𝑛𝑛 = 𝑓𝑓 ∗ 10𝑒𝑒

• n: number being represented
• f: fraction (mantissa)
• e: positive or negative integer

• Examples
• 3.14 = 0.314 * 10^1 = 3.14 * 10^0
• 0.000001 = 0.1 * 10^-5 = 1.0 * 10^-6
• 1941 = 0.1941 * 10^4 = 1.941 * 10^3

7

Floating Point

• Representation for non-integral numbers
• Including very small and very large numbers

• Like scientific notation
• –2.34 × 1056

• +0.002 × 10–4

• +987.02 × 109

• In binary
• ±1.xxxxxxx2 × 2yyyy

• Types float and double in C

normalized

not normalized

8

Real Number Line Regions
• Divided real number line into seven regions:

• Large negative numbers less than −0. 999 × 1099

• Negative between −0.999 × 1099 and −0.100×10−99

• Small negative, magnitudes less than 0.100×10−99

• Zero
• Small positive, magnitudes less than 0.100×10−99

• Positive between 0.100×10−99 and 0.999×1099

• Large positive numbers greater than 0.999×1099

9

Floating Point Standard

• Defined by IEEE Std 754-1985
• Developed in response to divergence of

representations
• Portability issues for scientific code

• Now almost universally adopted
• Two representations

• Single precision (32-bit)
• Double precision (64-bit)

10

IEEE 754 Floating-Point Format

• S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
• Normalize significand: 1.0 ≤ |significand| < 2.0

• Always has a leading pre-binary-point 1 bit, so no need to represent it
explicitly (hidden bit)

• Significand is Fraction with the “1.” restored
• Exponent: excess representation: actual exponent + Bias

• Ensures exponent is unsigned
• Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −×+×−=

11

Expressible Numbers
• Approximate lower and upper bounds of expressible

(unnormalized) floating-point decimal numbers

13

Normalization

• Problem: many equivalent representation of same
number using the exponent/fraction notation

• Example:
• 0.5: exponent = -1, fraction = 5: 10−1 ∗ 5 = 0.5
• 0.5: exponent = -2, fraction = 50: 10−2 ∗ 50 = 0.5

• Binary normalization
• If leftmost bit is zero, shift all fractional bits left by one

and decrease exponent by 1 (assuming no underflow)
• Fraction with leftmost nonzero bit is normalized

• Benefit: only one normalized representation
• Simplifies equality comparisons, etc.

14

Normalization in Binary

15

Normalization in Hex

16

IEEE Floating-Point Types

17

IEEE Numerical Types

18

IEEE 754 Example

•𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 2𝑒𝑒 ∗ 𝑓𝑓
• 9 = b1.001 * 2^3 = 1.125 * 2^3 = 1.125 * 8 = 9
• Multiply by 2^3 is shift right by 3

• e = exponent – 127 (biasing)
• f = 1.fraction

Sign Exponent Fraction

0 1000 0010 00100000000000000000000

19

IEEE 754 Example

•𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 2𝑒𝑒 ∗ 𝑓𝑓
• 5/4 = 1.25 = (-1)^0 * 2^0 * 1.25 = b1.01 = 1 + 1^-2

• e = exponent – 127 (biasing)
• f = 1.fraction

Sign Exponent Fraction

0 0111 1111 01000000000000000000000

+ 127-127=0 1.25

20

IEEE 754 Example

•𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 2𝑒𝑒 ∗ 𝑓𝑓
• -0.15625 = -5/32 = -1*b1.01 * 2^-3 = b0.00101
• Multiply by 2^-3 is shift left by 3

• e = exponent – 127 (biasing)
• f = 1.fraction
• -5/32 = -0.15625 = -1.25 / 2^3 = -1.25 / 8 = -5/(4*8)

Sign Exponent Fraction

1 0111 1100 01000000000000000000000

- 124-127=-3 1.25

21

ARM Floating Point

• Instructions prefixed with v, suffixed with, e.g., .f32
• Registers are s0 through s31 and d0 through d15
foperandA: .float 3.14
foperandB: .float 2.5
vldr.f32 s1, foperandA @ s1 =
mem[foperandA]
vldr.f32 s1, foperandB @ s2 =
mem[foperandB]
vadd.f32 s0, s1, s2

22

Single-Precision Range

• Exponents 00000000 and 11111111 reserved
• Smallest value

• Exponent: 00000001
⇒ actual exponent = 1 – 127 = –126

• Fraction: 000…00 ⇒ significand = 1.0
• ±1.0 × 2–126 ≈ ±1.2 × 10–38

• Largest value
• Exponent: 11111110
⇒ actual exponent = 254 – 127 = +127

• Fraction: 111…11 ⇒ significand ≈ 2.0
• ±2.0 × 2+127 ≈ ±3.4 × 10+38

23

Double-Precision Range

• Exponents 0000…00 and 1111…11 reserved
• Smallest value

• Exponent: 00000000001
⇒ actual exponent = 1 – 1023 = –1022

• Fraction: 000…00 ⇒ significand = 1.0
• ±1.0 × 2–1022 ≈ ±2.2 × 10–308

• Largest value
• Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023

• Fraction: 111…11 ⇒ significand ≈ 2.0
• ±2.0 × 2+1023 ≈ ±1.8 × 10+308

24

Floating-Point Precision

• Relative precision
• all fraction bits are significant
• Single: approx 2–23

• Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits of precision

• Double: approx 2–52

• Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

25

Floating-Point Example

• Represent –0.75 in floating point (IEEE 754)
• –0.75 = (–1)1 × 1.12 × 2–1

• b1.1 = d1.5, and note 1.5 * ½ = 0.75
• S = 1
• Fraction = 1000…002
• Exponent = –1 + Bias

• Single: –1 + 127 = 126 = 011111102

• Double: –1 + 1023 = 1022 = 011111111102

• Single: 1011111101000…00
• Double: 1011111111101000…00

𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 𝑓𝑓 ∗ 2𝑒𝑒

26

Floating-Point Example

• What number is represented by the single-precision
float
11000000101000…00

• S = 1
• Fraction = 01000…002
• Exponent = 100000012 = 129

• x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 𝑓𝑓 ∗ 2𝑒𝑒

27

Infinities and NaNs

• Exponent = 111...1, Fraction = 000...0
• ±Infinity
• Can be used in subsequent calculations, avoiding need for

overflow check
• Exponent = 111...1, Fraction ≠ 000...0

• Not-a-Number (NaN)
• Indicates illegal or undefined result

• e.g., 0.0 / 0.0
• Can be used in subsequent calculations

29

Floating-Point Addition

• Consider a 4-digit decimal example
• 9.999 × 101 + 1.610 × 10–1

• 1. Align decimal points
• Shift number with smaller exponent
• 9.999 × 101 + 0.016 × 101

• 2. Add significands
• 9.999 × 101 + 0.016 × 101 = 10.015 × 101

• 3. Normalize result & check for over/underflow
• 1.0015 × 102

• 4. Round (4 digits!) and renormalize if necessary
• 1.002 × 102

30

Floating-Point Addition

• Now consider a 4-digit binary example
• 1.0002 × 2–1 + –1.1102 × 2–2 (i.e., 0.5 + –0.4375)

• 1. Align binary points
• Shift number with smaller exponent
• 1.0002 × 2–1 + –0.1112 × 2–1

• 2. Add significands
• 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

• 3. Normalize result & check for over/underflow
• 1.0002 × 2–4, with no over/underflow

• 4. Round (4 digits!) and renormalize if necessary
• 1.0002 × 2–4 (no change) = 0.0625

31

Accurate Arithmetic

• IEEE Std 754 specifies additional rounding control
• Extra bits of precision (guard, round, sticky)
• Choice of rounding modes
• Allows programmer to fine-tune numerical behavior of a

computation
• Not all FP units implement all options

• Most programming languages and FP libraries just use
defaults

• Trade-off between hardware complexity,
performance, and market requirements

37

Who Cares About FP Accuracy?

• Important for scientific code
• But for everyday consumer use?

• “My bank balance is out by 0.0002¢!”

• The Intel Pentium FDIV bug
• The market expects accuracy
• See Colwell, The Pentium Chronicles
• Cost hundreds of millions of dollars

38

Floating-Point Summary

• Floating-point
• Decimal point moves due to exponents (bit shifting)
• Positive / negative zeros

• Fixed-point
• Decimal point remains at fixed point (e.g., after bit 8)

• Spacing between these numbers and real numbers

39

Combining C and Assembly and
Compiler Optimizations

40

Compiling C

• How did we go from ASM to machine language?
• Two-pass assembler

• How do we go from C to machine language?
• Compilation
• Can think of as generating ASM code, then assembling it (use –

S option)

• Complication: optimizations
• Any time you see the word “optimization” ask yourself,

according to what metric?
• Program Speed
• Code Size
• Energy
• …

41

GCC Optimization Levels

-O: Same as -O1
-O0: do no optimization, the default if no
optimization level is specified
-O1: optimize
-O2:optimise even more
-O3: optimize the most
-Os: Optimize for size (memory constrained devices)

42

Assembly Calls of C Functions

.globl _start

_start:
mov sp, #0x12000 @ set up stack
bl c_function_0
bl c_function_1
bl c_function_2
bl c_function_3

iloop: b iloop

43

Most Basic Example

int c_function_0() {
return 1;

}

Call via:
bl c_function_0

What assembly instructions make up
c_function_0?

44

c_function_0 (with –O0)

10014: e52db004 push {fp}
10018: e28db000 add fp, sp, #0; fp = sp
1001c: e3a03005 mov r3, #1
10020: e1a00003 mov r0, r3
10024: e28bd000 add sp, fp, #0 ; sp = fp
10028: e8bd0800 pop {fp}
1002c: e12fff1e bx lr

45

c_function_0 (with –O1)

10014: e3a00001 mov r0, #1
10018: e12fff1e bx lr

46

One Argument Example

int c_function_1(int x) {
return 4*x;

}

Call via:
bl c_function_1

What assembly instructions make up
c_function_1?

47

c_function_1 (with –O0)

10030: e52db004 push {fp}
10034: e28db000 add fp, sp, #0 ; fp = sp
10038: e24dd00c sub sp, sp, #12
1003c: e50b0008 str r0, [fp, #-8]
10040: e51b3008 ldr r3, [fp, #-8]
10044: e1a03103 lsl r3, r3, #2
10048: e1a00003 mov r0, r3
1004c: e28bd000 add sp, fp, #0 ; sp = fp
10050: e8bd0800 pop {fp}
10054: e12fff1e bx lr

48

c_function_1 (with –O1)

1001c: e1a00100 lsl r0, r0, #2
10020: e12fff1e bx lr

lsl: logical shift left
Shift left by 2 == multiply by 4

49

One Argument Example with Conditional

int c_function_2(int x) {
if (x <= 0) {

return 1;
}
else {

return x;
}

}

50

c_function_2 (with –O0)

1005c: e52db004 push {fp} ; (str fp, [sp, #-4]!)

10060: e28db000 add fp, sp, #0

10064: e24dd00c sub sp, sp, #12

10068: e50b0008 str r0, [fp, #-8]

1006c: e51b3008 ldr r3, [fp, #-8]

10070: e3530000 cmp r3, #0

10074: ca000001 bgt 10080 <c_function_2+0x24>

10078: e3a03001 mov r3, #1

1007c: ea000000 b 10084 <c_function_2+0x28>

10080: e51b3008 ldr r3, [fp, #-8]

10084: e1a00003 mov r0, r3

10088: e28bd000 add sp, fp, #0

1008c: e8bd0800 pop {fp}

10090: e12fff1e bx lr

51

c_function_2 (with –O2)

10028: e3500001 cmpr0, #1
1002c: b3a00001 movlt r0, #1
10030: e12fff1e bx lr

52

Loop Example

int c_function_3(int x) {
int c;
int f = x;

for (c = x - 1; c > 0; c--) {
f *= c;

}
return f;

}

53

c_function_3 (with –O1)

10034: e2403001 sub r3, r0, #1
10038: e3530000 cmp r3, #0
1003c: d12fff1e bxle lr
10040: e0000093 mul r0, r3, r0
10044: e2533001 subs r3, r3, #1
10048: 1afffffc bne 10040
<c_function_3+0xc>
1004c: e12fff1e bx lr

54

Compiler Optimization Summary

• First point: stack frames (frame pointer register, fp)
• Second point: often times it’s safe to avoid using

push/pop and the stack
• Easier when we manually ASM write code to just go

ahead and use it (for safety and avoiding bugs), but
the compiler as we’ve seen (when using
optimization levels 1 and 2) will try to avoid the
stack if it’s safe to do so

• Why?

55

ARM Architecture and Computer
Organization Review

56

Computer Organization Overview

• ISA: hardware-software
interface

• CPU
• Executes instructions

• Memory
• Stores programs and

data
• Buses

• Transfers data
• I/O devices

• Input: keypad, mouse,
touch, …

• Output: printer, screen, …

57

What Computer Have We Used this
Semester?

• ARM Versatilepb computer
• Full computer!

• Input
• Output
• Processor
• Memory
• Programs

58

This is a picture of the
board for the ARM
computer we’ve been
using in QEMU!

[http://infocenter.arm
.com/help/topic/com.
arm.doc.dui0224i/DUI
0224I_realview_platf
orm_baseboard_for_
arm926ej_s_ug.pdf]

59

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf

This is a block
diagram of the
CPU for the
ARM computer
we’ve been
using in
QEMU!

[http://www.at
mel.com/Imag
es/arm_926ejs
_trm.pdf]

60

http://www.atmel.com/Images/arm_926ejs_trm.pdf

Why ARM?

http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/111024_tablet_pc_architectures_do
minated_by_arm_and_ios.asp 61

Why ARM?

62

Why ARM?

• Easier to program

• RISC (reduced instruction set computing) vs. CISC
(complex instruction set computing)

• RISC: ARM, MIPS, SPARC, Power, (i.e., lots of
modern architectures), …

• CISC: x86, x86-64, lots of old architectures (PDP-11,
VAX, …)

• Note: modern x86 processors typically implemented
internally as RISC (micro-instructions / microcode), but
the programming interface is the same as x86

63

Course Objective Overview

• Seen how computers really compute
• Processor/memory organization: execution cycle,

registers, memory accesses
• Processor operation: pipeline
• Computer organization: memory, buses, I/O devices
• Assembly language programming: various

architecture styles (stack-based), register-to-register
(ARM), etc.

• Saw more representations of data (floating point,
integers)

64

Representing Data

• Finite precision numbers
• Unsigned integers
• Signed integers

• Two’s complement
• Word ints (32-bits) vs. longs/doubles (64-bits)
• Rational numbers

• Fixed point
• Floating point

• Strings / character arrays
• ASCII
• Unicode

65

Multilevel Architectures

Physical Device Level (Electronics)

Digital Logic Level

Microarchitecture Level

Instruction Set Architecture (ISA)
Level

Operating System Level

Level 0

Level 1

Level 2

Level 3

Level 4

n/a /
Physics

VHDL /
Verilog

n/a /
Microcode

Assembly /
Machine
Language

C / …

66

Processor (CPU) Components

• Pipeline: stages (fetch, decode, execute)
• ALU: arithmetic logic unit
• MMU: memory management unit

• TLB: translation lookaside buffer (cache for virtual
memory)

• Cache (L1, L2, L3, …)
• Caches for main memory

• Registers
• Hold values for all ongoing computations (i.e., only can do

computation on these values, otherwise first load/store)
• FPU: floating point unit

67

Von Neumann Architecture

• Both data and program
stored in memory

• Allows the computer to
be “re-programmed”

• Input/output (I/O) goes
through CPU

• I/O part is not
representative of
modern systems (direct
memory access [DMA])

• Memory layout is
representative of
modern systems

Memory
(Data + Program [Instructions])

CPU I/O

DMA

68

Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from

memory)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC++
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

69

ARM 3-Stage Pipeline Processor Execution
Cycle FETCH[PC]

IR := MEM[PC]
(Get instruction from

memory at address PC)

EXECUTE
(Execute instruction

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment

the Program
Counter)

NoYes
Handle

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction,

find operands)
Executed

instruction has
PC-8

Decoded
instruction has

PC-4

70

ARM 3 Stage Pipeline

• Stages: fetch, decode, execute
• PC value = instruction being fetched
• PC – 4: instruction being decoded
• PC – 8: instruction being executed

• Beefier ARM variants use deeper pipelines (5
stages, 13 stages)

71

C to Assembly and Machine Language

• How did we go from ASM to machine language?
• Two-pass assembler

• How do we go from C to machine language?
• Compilation
• Can think of as generating ASM code, then assembling

• Optimizations

72

Instruction Set Architectures

• Interface between software and hardware

• Examples: x86, x86-64, ARM, AVR, SPARC, ALPHA, MIPS
• RISC vs. CISC

• High-level language to computer instructions
• How do we execute a high-level language (e.g., C, Python, Java)

using instructions the computer can understand?
• Compilation (translation before execution)
• Interpretation (translation-on-the-fly during execution)

• What are examples of these processes?

73

Some Questions You Should Be Able to
Answer

1. What is a register? Where is it located? How many are there?
2. What is memory? What is a memory address / location?
3. What is the difference between a register and memory?
4. What is translation (compilation)? What is interpretation?
5. How are translation and interpretation different?
6. Why do we use translators and/or interpreters?
7. If a multiply instruction is not available, how can it be created

using loops and addition?
8. What is a virtual machine?
9. What is sequential logic? How is it different than combinational

logic?
10. How is a 32-bit processor different from a 64-bit processor?

74

Summary

• Floating point (IEEE 754)
• Compiler optimizations
• More Exam Review Next Time

75

	Computer Organization & Assembly Language Programming (CSE 2312)
	Announcements and Outline
	Floating Point
	Representing Fractional Numbers
	Fixed-Point
	Why Not Fixed-Point?
	Floating Point
	Floating Point
	Real Number Line Regions
	Floating Point Standard
	IEEE 754 Floating-Point Format
	Expressible Numbers
	Normalization
	Normalization in Binary
	Normalization in Hex
	IEEE Floating-Point Types
	IEEE Numerical Types
	IEEE 754 Example
	IEEE 754 Example
	IEEE 754 Example
	ARM Floating Point
	Single-Precision Range
	Double-Precision Range
	Floating-Point Precision
	Floating-Point Example
	Floating-Point Example
	Infinities and NaNs
	Floating-Point Addition
	Floating-Point Addition
	Accurate Arithmetic
	Who Cares About FP Accuracy?
	Floating-Point Summary
	Combining C and Assembly and Compiler Optimizations
	Compiling C
	GCC Optimization Levels
	Assembly Calls of C Functions
	Most Basic Example
	c_function_0 (with –O0)
	c_function_0 (with –O1)
	One Argument Example
	c_function_1 (with –O0)
	c_function_1 (with –O1)
	One Argument Example with Conditional
	c_function_2 (with –O0)
	c_function_2 (with –O2)
	Loop Example
	c_function_3 (with –O1)
	Compiler Optimization Summary
	ARM Architecture and Computer Organization Review
	Computer Organization Overview
	What Computer Have We Used this Semester?
	Slide Number 59
	Slide Number 60
	Why ARM?
	Why ARM?
	Why ARM?
	Course Objective Overview
	Representing Data
	Multilevel Architectures
	Processor (CPU) Components
	Von Neumann Architecture
	Abstract Processor Execution Cycle
	ARM 3-Stage Pipeline Processor Execution Cycle
	ARM 3 Stage Pipeline
	C to Assembly and Machine Language
	Instruction Set Architectures
	Some Questions You Should Be Able to Answer
	Summary

