UNIVERSITY OF TEXASAARLINGTON

Computer Organization &
Assembly Language
Programming (CSE 2312)

Lecture 27: Floating Point (IEEE 754), Combining C and
Assembly, and ARM Review

Taylor Johnson



UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

e Student Feedback Survey (SFS)
e Invitation by email sent on Wednesday, November 19.
e MUST complete BEFORE Wednesday, December 3, 2014

* PLEASE complete, very important for the university and your future
classes

e Note: university average and median ratings are ~4.25+ out of 5.0

University-wide statistics for all Mean 430 | 412 | 426 | 438 | 431 | 418
courses

included in the survey for Spring 2013 N 31,318 31,246 31,153 31,088 29,870 30,998
... used ... was well Was ...isone |

) _ ... provided teaching encouraged prepared a-v-éilable would

The instructor for this course: clearly defined | methods to | me to take foreach |~ cideof | recommend

expectations. help me part in my class e to other
learn. own learning. meeting. ) students.

* Programming assignment 3 assignhed, due tonight by midnight
e Programming assignment 4 assigned, due 12/2 by midnight

e Quiz 5 assigned, due by Monday 12/1 by midnight

 Floating Point

e ARM Architecture and Computer Organization Review
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Floating Point
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Representing Fractional Numbers

* Seen several ways to encode information using
binary numbers
e Unsigned integers as binary representation
e Signed integers using two’s complement
e Letters using ASCII
* Etc.

* How can we represent fractional (non-whole)
numbers?
e Fixed-point
* Floating-point
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Fixed-Point

e Suppose we have 16-bits to represent a fractional number
e Use upper 8 bits to represent whole (integer) portion
e Use lower 8 bits to represent fractional (non-whole) portion

Whole Part Decimal Point (.) Fractional

Part
8 bits ] 8 bits
0010 0000 ; 0000 0001
32 ; 1/256
32 0.00390625

* Nummlnes

significance of each fractional part

e Here, we have 8 bits, so each fractional part is 1/256, since
28 = 256
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Why Not Fixed-Point?

e Hard to represent very larger or very small numbers

* Smallest number representable using 64 bits, supposin%
we keep 32 bits for whole part and 32 bits for fractiona
part, is:

1/(2732) =
0.00000000023283064365386962890625...

e Largest number is still 22432

* What if we need to represent larger or small numbers?
e Utilize idea of significant digits
 I[f a number is very large, a small deviation results in a small
error

 If a number if very small, a small deviation may result in a large
error

 Utilize relative (percentage) error as opposed to absolute error
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Floating Point

e System for representing number where the range of
expressible numbers if independent of the number of
significant digits

e Represent number n in scientific notation:
n=fx*10°

* n: number being represented

e f: fraction (mantissa)
* e: positive or negative integer

e Examples
e3.14=0.314 * 1071 =3.14 * 1070
e 0.000001=0.1 *10~-5=1.0 * 10"-6
e 1941 =0.1941 * 1074 =1.941 * 10”3
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Floating Point

* Representation for non-integral numbers
* Including very small and very large numbers

e Like scientific notatign
A2 % 1056 | normalized |
I

¢ +987.02 x 10°

*In binary
o £1.XXXXXXX, X 2YYVY

* Types Float and doublein C
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Real Number Line Regions

e Divided real number line into seven regions:
* Large negative numbers less than —-0. 999 x 10°°
* Negative between -0.999 x 10°° and -0.100x107°°
* Small negative, magnitudes less than 0.100x10~°
e Zero
* Small positive, magnitudes less than 0.100x10~°
e Positive between 0.100x107°° and 0.999x10°°
e Large positive numbers greater than 0.999x10°°

3 5
Negative Positive
underflow underflow

1 2 4 6 7
Negative Expressible Zero Expressible Positive
overflow negative numbers ¢ positive numbers overflow

AT A
s A v

-1 {I:,QQ -1 DI—1DU 0 1Dl1':}0 1699
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Floating Point Standard

* Defined by IEEE Std 754-1985

e Developed in response to divergence of
representations
 Portability issues for scientific code

 Now almost universally adopted

* Two representations
e Single precision (32-bit)
e Double precision (64-bit)
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IEEE 754 Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

X = (_1)5 v (1_|_ Fraction) 9 2(Exponent—Bias)

e S: sign bit (0 = non-negative, 1 = negative)

e Normalize significand: 1.0 < |significand| < 2.0

* Always has a leading pre-binary-point 1 bit, so no need to represent it
explicitly (hidden bit)

e Significand is Fraction with the “1.” restored
e Exponent: excess representation: actual exponent + Bias

e Ensures exponent is unsigned
e Single: Bias = 127; Double: Bias = 1023
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Expressible Numbers

e Approximate lower and upper bounds of expressible
(unnormalized) floating-point decimal numbers

Digits in fraction | Digits in exponent | Lower bound | Upper bound
3 1 10712 10°
3 2 107192 10%
] 9 10—1002 1 DQQQ
7 4 10—1‘3002 1 DQQQQ
4 1 10712 10°
4 2 107103 10%
4 3 10—1003 1 UQQQ
4 4 10—1‘3003 1 DQQQQ
5 1 10714 10°
5 2 107104 10%
5 9 10—1004 1 UQQQ
5 4 10—1'3004 1 09999
10 3 1071009 10%%°
20 3 1071019 10%%
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Normalization

* Problem: many equivalent representation of same
number using the exponent/fraction notation

* Example:
¢ 0.5: exponent = -1, fraction=5:10"1 * 5 = 0.5
¢ 0.5: exponent = -2, fraction =50: 1072 * 50 = 0.5

* Binary normalization

e If leftmost bit is zero, shift all fractional bits left by one
and decrease exponent by 1 (assuming no underflow)

* Fraction with leftmost nonzero bit is normalized

* Benefit: only one normalized representation
e Simplifies equality comparisons, etc.
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Normalization in Binary

Example 1: Exponentiation to the base 2

2| 27°

AT

Unnormalized: 0 1010100 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 =2¥(1x2 ™3 1x2 ¥ 1x27®

I v v ’ —16
Sign Excess 64 Fractionis 1 x 272+ 1 x 2713 +1x277) =432
+ exponent is +1x27 1541 x 2718
84 —64 =20

To normalize, shift the fraction left 11 bits and subtract 11 from the exponent.

Normalized: 0 1001001 1 1 011 00000000000 =2°(1x27+1x2%1x2"

L. Sy

h L

Sign Excess 64 Fractionis 1 x 27 +1x272 +1x27°) =432
+ exponent is +1x2F +1x27°
73—-64=9

15



UNIVERSITY OF TEXAS A @ ARLINGTON

Normalization in Hex

Example 2: Exponentiation to the base 16

167 1672 1672 1674

NN N N

Unnormalized: 0 1000101 0000 0000 0001 1011 =16°(1x 16+ B x 167%) = 432

Y ¥ - - W
Sign Excess 64 Fractionis 1 x 16 + Bx 167*
+ exponentis
69-64=5

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

e, Ay LIS
——

Normalized: 0 1000011 0001 1011 0000 0000 =16°(1x167+Bx 167%) =432

"

Sign Excess 64 Fractionis 1 x 167" + Bx 1672
+ exponentis
67 —-64=3

16
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ltem Single precision Double precision
Bits in sign 1 1
Bits in exponent 8 11
Bits in fraction 23 52
Bits, total 32 64
Exponent system Excess 127 Excess 1023
Exponent range —126 to +127 —1022 to +1023
Smallest normalized number o126 p-1022
Largest normalized number approx. 0128 approx. 1024
Decimal range approx. 108 t0 10 approx. 107398 to 10°%

Smallest denormalized number

approx. 1 0%

approx. 1 02

17
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IEEE Numerical Types

Normalized | = 0 < Exp < Max Any bit pattern
Denormalized | £ 0 Any nonzero bit pattern
Zero | £ 0 0
Infinity | = 111...1 0
Not a number | £ 111...1 Any nonzero bit pattern

\Sign bit
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IEEE 754 Example

N = Slgn* 28 *f
e9=bp1.001 *273=1.125*2~3=1.125*8=9
* Multiply by 223 is shift right by 3

Sign Exponent Fraction
0) 1000 0010 00100000000000000000000

ee = exponent — 127 (biasing)
of =1.fraction
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IEEE 754 Example

N = Slgn* 26 *f
*5/4=1.25=(-1)"0 * 270 * 1.25=b1.01 =1 + 17-2

Sign Exponent Fraction
0 0111 1111 01000000000000000000000
+ 127-127=0 1.25

ee = exponent — 127 (biasing)
of =1.fraction

20



UNIVERSITY OF TEXAS%ARLINGTON

IEEE 754 Example

N = Slgn* 28 *f
¢-0.15625 =-5/32 =-1*b1.01 * 2~-3 = b0.00101
* Multiply by 2/-3 is shift left by 3

Sign Exponent Fraction
1 0111 1100 01000000000000000000000
- 124-127=-3 1.25

ee = exponent — 127 (biasing)
of =1.fraction
e-5/32=-0.15625=-1.25/2~3=-1.25/8 =-5/(4*8)
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ARM Floating Point

* Instructions prefixed with v, suffixed with, e.g., .f32
e Registers are sO through s31 and dO through d15
foperandA: .float 3.14

foperandB: .float 2.5

vidr.f32 sl1, foperandA @ sl
mem| foperandA]

vidr.f32 sl1, foperandB @ s2
mem|[ foperandB]

vadd.f32 s0, sl1, s2
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Single-Precision Range

* Exponents 00000000 and 11111111 reserved

* Smallest value

* Exponent: 00000001
—> actual exponent=1-127=-126

 Fraction: 000...00 = significand = 1.0
e+1.0x2126x+12x1038

* Largest value

e Exponent: 11111110
—> actual exponent =254 - 127 = +127

e Fraction: 111...11 = significand = 2.0
e+2.0x 2*127 = +3 4 x 10*38
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Double-Precision Range

e Exponents 0000...00 and 1111...11 reserved

* Smallest value

* Exponent: 00000000001
—> actual exponent =1-1023 =-1022

 Fraction: 000...00 = significand = 1.0
e+]1.0x 271022 +2 2 x 107308

* Largest value

* Exponent: 11111111110
—> actual exponent = 2046 — 1023 = +1023

e Fraction: 111...11 = significand = 2.0
e +2 .0 x 2*1023 x +7 8 x 10+308



UNIVERSITY OF TEXASAARLINGTON

Floating-Point Precision

* Relative precision
e all fraction bits are significant
* Single: approx 2723
* Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal digits of precision

* Double: approx 272
e Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal digits of precision
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Floating-Point Example

* Represent —0.75 in floating point (IEEE 754)
e—0.75=(-1)1 x 1.1, x 21
epl.1=d1.5,and note 1.5 * %4 =0.75
eS=1
* Fraction = 1000...00,

e Exponent = -1 + Bias

e Single: -1 + 127 =126 = 01111110,
* Double: -1 + 1023 = 1022 = 01111111110,

*Single: 1011111101000...00
*Double: 1011111111101000...00

n = sign x f x 2¢

26
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Floating-Point Example

* What number is represented by the single-precision
float

11000000101000...00
eS=1 n = sign * f * 2¢
* Fraction = 01000...00,
* Exponent = 10000001, = 129

ox = (1)t x (1+01,) x 2(129 - 127)
=(—1) x 1.25 x 22
=-=5.0
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Infinities and NaNs

e Exponent = 111...1, Fraction = 000...0
e t|nfinity
e Can be used in subsequent calculations, avoiding need for
overflow check

e Exponent = 111...1, Fraction # 000...0
e Not-a-Number (NaN)

* Indicates illegal or undefined result
* e.g.,0.0/0.0
e Can be used in subsequent calculations
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Floating-Point Addition

e Consider a 4-digit decimal example
©9.999 x 10 + 1.610 x 1071

e 1. Align decimal points
e Shift number with smaller exponent
©9.999 x 10* + 0.016 x 10!

e 2. Add significands
©9.999 x 10! + 0.016 x 10 = 10.015 x 10*

* 3. Normalize result & check for over/underflow
e 1.0015 x 102

*4. Round (4 digits!) and renormalize if necessary
e 1.002 x 102
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Floating-Point Addition

* Now consider a 4-digit binary example

¢ 1.000, x 271 +-1.110, x 272 (i.e., 0.5 + —0.4375)
e 1. Align binary points

e Shift number with smaller exponent

¢ 1.000, x 271 +-0.111, x 22
e 2. Add significands

¢ 1.000, x 271 +-0.111, x 21 = 0.001, x 2

* 3. Normalize result & check for over/underflow
* 1.000, x 274, with no over/underflow

*4. Round (4 digits!) and renormalize if necessary
 1.000, x 27* (no change) =0.0625
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Accurate Arithmetic

 |EEE Std 754 specifies additional rounding control
 Extra bits of precision (guard, round, sticky)
e Choice of rounding modes
e Allows programmer to fine-tune numerical behavior of a
computation
* Not all FP units implement all options
* Most programming languages and FP libraries just use
defaults

* Trade-off between hardware complexity,
performance, and market requirements



UNIVERSITY OF TEXASAARLINGTON

Who Cares About FP Accuracy?

* Important for scientific code

e But for everyday consumer use?
* “My bank balance is out by 0.0002¢!” ®

* The Intel Pentium FDIV bug
 The market expects accuracy
e See Colwell, The Pentium Chronicles
e Cost hundreds of millions of dollars
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Floating-Point Summary

* Floating-point
e Decimal point moves due to exponents (bit shifting)
e Positive / negative zeros

* Fixed-point
e Decimal point remains at fixed point (e.g., after bit 8)
* Spacing between these numbers and real numbers
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Combining C and Assembly and
Compiler Optimizations
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Compiling C

* How did we go from ASM to machine language?
e Two-pass assembler

* How do we go from C to machine language?
e Compilation

e Can think of as generating ASM code, then assembling it (use —
S option)

e Complication: optimizations
e Any time you see the word “optimization” ask yourself,
according to what metric?
* Program Speed

e Code Size
* Energy
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GCC Optimization Levels

—0:Same as -01

—00: do no optimization, the default if no
optimization level is specified

-01: optimize

—-02:0ptimise even more

-03: optimize the most

—-0s: Optimize for size (memory constrained devices)
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Assembly Calls of C Functions

-globl _start

_start:
mov sp, #0x12000 @ set up stack
ol c_function O
ol c_function 1
ol c_function 2
ol c_function_ 3

1loop: b 1loop
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Most Basic Example

int c_function 00 {
return 1,;

L

Call via:
bl c _function O

What assembly instructions make up
c_function 0?
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c_function_ 0O (with —O0)

10014: e52db004 push {fp}

10018: e28db000 add fp, sp, #0; fp = sp
1001c: e3a03005 mov r3, #1

10020: e1a00003 mov ro, r3

10024: e28bdO00 add sp, fp, #0 ; sp = fp
10028: e8bd0800 pop {fp}

1002c: el2fffle Dbx Ir
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c_function O (with —01)

10014 : e3a00001 mov ro, #1
10018: el2fffle bx Ir
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One Argument Example

int c_function _1(int x) {
return 47*=x;

L

Call via:
bl c function 1

What assembly instructions make up
c_function_1?
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c_function_ 1 (with —00)

10030: e€52db004 push {fp}

10034: e28db000 add fp, sp, #0 ; fp = sp
10038: e24ddO00c subsp, sp, #12

1003c: e50b0008 strrO, [fp, #-8]

10040: e51b3008 Idrr3, [fp, #-8]

10044: el1a03103 Islr3, r3, #2

10048: e1a00003 movrO, r3

1004c: e28bdO00 addsp, fp, #0 ; sp = fp

10050: e8bd0800 pop {fp}
10054 : el2fffle bx 1Ir
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c_function_ 1 (with —01)

1001c: e1a00100 1Isli ro, rO, #2
10020: el2fffle bx Ir

Isl: logical shift left
Shift left by 2 == multiply by 4
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One Argument Example with Conditional

int c_function 2(int x) {
iIT (x <= 0) {

return 1;
}
else {
return X;
}
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c_function_ 2 (with —00)

1005c: e52db004 push {fp} ; (str fp, [sp, #-4]1)
10060: e28db000 add fp, sp, #0

10064 : e24dd00c sub sp, Sp, #12

10068: e50b0008 str ro, [fp, #-8]

1006¢c: €51b3008 Idr r3, [fp, #-8]

10070: e3530000 cmp r3, #0

10074 : ca000001 bgt 10080 <c_function_2+0x24>
10078: €3a03001 mov r3, #1

1007c: ea000000 b 10084 <c_function_2+0x28>
10080: €51b3008 Idr r3, [fp, #-8]

10084 : e1a00003 mov ro, r3

10088: €28bd000 add sp, fp, #0

1008c: e8bd0800 pop {fp}

10090: el2fffle bx Ir
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c_function_ 2 (with —02)

10028: e3500001 cmprO, #1
1002c: b3a00001 movit r0, #1
10030: el2fffle bx Ir
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Loop Example

int c_function 3(Int x) {
Int c;
int ¥ = x;

for (c = x -1; ¢ > 0; c--) {
T *= c;
+

return T;
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c_function_ 3 (with —01)

10034 : €2403001 sub r3, rO, #1
10038: e3530000 cmp r3, #0
1003c: d12fffle bxle Ir

10040: e0000093 mul ro, r3, rO
10044 : e2533001 subs r3, r3, #1

10048: 1lafffffc bne 10040
<c_function_ 3+0xc>

1004c: el2fffle bx Ir
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Compiler Optimization Summary

* First point: stack frames (frame pointer register, fp)

e Second point: often times it’s safe to avoid using
push/pop and the stack

e Easier when we manually ASM write code to just go
ahead and use it (for safety and avoiding bugs), but
the compiler as we’ve seen (when using
optimization levels 1 and 2) will try to avoid the
stack if it’s safe to do so

e Why?
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ARM Architecture and Computer
Organization Review
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Computer Organization Overview

N2
[ J . -
!ﬁ"?‘ér?aa gglwa re-software o —

° CP U ;;er T

* Executes instructions
* Memory

e Stores programs and

data

*Buses o =

* Transfers data perfomance LN
*|/O devices T

Processor

* Input: keypad, mouse,
touch, ...

* Output: printer, screen, ...

57
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What Computer Have We Used this
Semester?

* ARM Versatilepb computer

 Full computer!
* Input
e Qutput
* Processor
* Memory
* Programs

58
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This is a picture of the
board for the ARM
computer we’ve been
using in QEMU!

[http://infocenter.arm
.com/help/topic/com.
arm.doc.dui0224i/DUl
02241 realview platf
orm_ baseboard for
arm926ej s ug.pdf]
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This is a block
diagram of the
CPU for the
ARM computer
we’ve been
using in
QEMU!
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mel.com/Imag
es/arm 926ejs

trm.pdf]
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Why ARM?

320

300 " x80

m ARM
2310
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[I B I I
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http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/111024 tablet_pc_architectures_do
minated_by arm_and _ios.asp ot

Shipments in millions
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O Cell Phones @ PCs

O TVs

62
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Why ARM?

e Easier to program

* RISC (reduced instruction set computing) vs. CISC
(complex instruction set computing)

e RISC: ARM, MIPS, SPARC, Power, (i.e., lots of
modern architectures), ...

 CISC: x86, x86-64, lots of old architectures (PDP-11,
VAX, ...)

* Note: modern x86 processors typically implemented
internally as RISC (micro-instructions / microcode), but
the programming interface is the same as x86
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Course Objective Overview

e Seen how computers really compute

* Processor/memory organization: execution cycle,
registers, memory accesses

* Processor operation: pipeline
e Computer organization: memory, buses, I/0 devices

* Assembly language programming: various
architecture styles (stack-based), register-to-register
(ARM), etc.

e Saw more representations of data (floating point,
integers)
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Representing Data

* Finite precision numbers
e Unsigned integers
e Signed integers
e Two’s complement
e Word ints (32-bits) vs. longs/doubles (64-bits)
e Rational numbers
* Fixed point
e Floating point
o Strings / character arrays
e ASCI|
e Unicode
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Multilevel Architectures

Operating System Level / ...

Level 4

Instruction Set Architecture (ISA) Assembly /
Level Machine

Language
Microarchitecture Level

n/a/

Microcode
Digital Logic Level

Level 3

Level 2

VHDL /
Verilog

n/a/
Physics

Level 1

Level O J physical Device Level (Electronics)

66
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Processor (CPU) Components

* Pipeline: stages (fetch, decode, execute)
e ALU: arithmetic logic unit

* MMU: memory management unit

e TLB: translation lookaside buffer (cache for virtual
memory)

e Cache (L1, L2, L3, ...)

e Caches for main memory

* Registers

* Hold values for all ongoing computations (i.e., only can do
computation on these values, otherwise first load/store)

* FPU: floating point unit
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Von Neumann Architecture

Both data and program
stored in memory

Memory

(Data + Program [Instructions]) * Allows the computer to
be “re-programmed

e Input/output (I/0) goes
through CPU

e 1/0 partis not
representative of
modern systems (direct
memory access [DMA])

e Memory layout is
representative of
modern systems

68
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Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from
memory)

EXECUTE
(Execute instruction

fetched from memory)

Handle PC++
Interrupt Interrupt (Increment
(Input/Output ? the Program
Event) Counter)

69
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ARM 3-Stage Pipeline Processor Execution

Cycle FETCH[PC]
IR := MEM[PC]
(Get instruction from
memory at address PC)
Decoded
instruction has DECODE(IR)
PC-4 (Decode fetched instruction,
find operands)
Executed
instruction has EXECUTE
PC-8 (Execute instruction
fetched from memory)

Handle PC:=PC+4

Interrupt Y Interrupt (Increment
(Input/Output ? the Program
Event) Counter)
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ARM 3 Stage Pipeline

 Stages: fetch, decode, execute

* PC value = instruction being fetched
 PC—4: instruction being decoded

* PC — 8: instruction being executed

* Beefier ARM variants use deeper pipelines (5
stages, 13 stages)
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C to Assembly and Machine Language

* How did we go from ASM to machine language?
e Two-pass assembler

* How do we go from C to machine language?

e Compilation
e Can think of as generating ASM code, then assembling

* Optimizations
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Instruction Set Architectures

e Interface between software and hardware

e Examples: x86, x86-64, ARM, AVR, SPARC, ALPHA, MIPS
* RISC vs. CISC

e High-level language to computer instructions

* How do we execute a high-level language (e.g., C, Python, Java)
using instructions the computer can understand?

e Compilation (translation before execution)
 Interpretation (translation-on-the-fly during execution)

* What are examples of these processes?
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Some Questions You Should Be Able to

Answer

1. What is a register? Where is it located? How many are there?

2. What is memory? What is a memory address / location?

3. What is the difference between a register and memory?

4. What is translation (compilation)? What is interpretation?

5. How are translation and interpretation different?

6. Why do we use translators and/or interpreters?

7. If a multiply instruction is not available, how can it be created
using loops and addition?

8. What is a virtual machine?

9. What is sequential logic? How is it different than combinational

logic?

10. How is a 32-bit processor different from a 64-bit processor?
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Ssummary

* Floating point (IEEE 754) oA B
e Compiler optimizations — |

»More Exam Review Next Time ~___~

Computer

; - Datapath
Evaluating
performance

Processor
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