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Announcements and Outline

• Student Feedback Survey (SFS)
• Invitation by email sent on Wednesday, November 19.
• MUST complete BEFORE Wednesday, December 3, 2014
• PLEASE complete, very important for the university and your future 

classes
• Note: university average and median ratings are ~4.25+ out of 5.0

• Programming assignment 3 assigned, due tonight by midnight
• Programming assignment 4 assigned, due 12/2 by midnight
• Quiz 5 assigned, due by Monday 12/1 by midnight
• Floating Point
• ARM Architecture and Computer Organization Review
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Floating Point
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Representing Fractional Numbers

• Seen several ways to encode information using 
binary numbers

• Unsigned integers as binary representation
• Signed integers using two’s complement
• Letters using ASCII
• Etc.

• How can we represent fractional (non-whole) 
numbers?

• Fixed-point
• Floating-point
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Fixed-Point

• Suppose we have 16-bits to represent a fractional number
• Use upper 8 bits to represent whole (integer) portion
• Use lower 8 bits to represent fractional (non-whole) portion

• Number of bits reserved for fractional part determines 
significance of each fractional part

• Here, we have 8 bits, so each fractional part is 1/256, since 
2^8 = 256

Whole Part Decimal Point (.) Fractional 
Part

8 bits . 8 bits

0010 0000 . 0000 0001

32 . 1/256

32 . 0.00390625
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Why Not Fixed-Point?

• Hard to represent very larger or very small numbers
• Smallest number representable using 64 bits, supposing 

we keep 32 bits for whole part and 32 bits for fractional 
part, is:

1/(2^32) = 
0.00000000023283064365386962890625…
• Largest number is still 2^32
• What if we need to represent larger or small numbers?

• Utilize idea of significant digits
• If a number is very large, a small deviation results in a small 

error
• If a number if very small, a small deviation may result in a large 

error
• Utilize relative (percentage) error as opposed to absolute error
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Floating Point

• System for representing number where the range of 
expressible numbers if independent of the number of 
significant digits

• Represent number n in scientific notation:
𝑛𝑛 = 𝑓𝑓 ∗ 10𝑒𝑒

• n: number being represented
• f: fraction (mantissa)
• e: positive or negative integer

• Examples
• 3.14 = 0.314 * 10^1 = 3.14 * 10^0
• 0.000001 = 0.1 * 10^-5 = 1.0 * 10^-6
• 1941 = 0.1941 * 10^4 = 1.941 * 10^3
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Floating Point

• Representation for non-integral numbers
• Including very small and very large numbers

• Like scientific notation
• –2.34 × 1056

• +0.002 × 10–4

• +987.02 × 109

• In binary
• ±1.xxxxxxx2 × 2yyyy

• Types float and double in C

normalized

not normalized
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Real Number Line Regions
• Divided real number line into seven regions:

• Large negative numbers less than −0. 999 × 1099

• Negative between −0.999 × 1099 and −0.100×10−99

• Small negative, magnitudes less than 0.100×10−99

• Zero
• Small positive, magnitudes less than 0.100×10−99

• Positive between 0.100×10−99 and 0.999×1099

• Large positive numbers greater than 0.999×1099
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Floating Point Standard

• Defined by IEEE Std 754-1985
• Developed in response to divergence of 

representations
• Portability issues for scientific code

• Now almost universally adopted
• Two representations

• Single precision (32-bit)
• Double precision (64-bit) 

10



IEEE 754 Floating-Point Format

• S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
• Normalize significand: 1.0 ≤ |significand| < 2.0

• Always has a leading pre-binary-point 1 bit, so no need to represent it 
explicitly (hidden bit)

• Significand is Fraction with the “1.” restored
• Exponent: excess representation: actual exponent + Bias

• Ensures exponent is unsigned
• Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −×+×−=
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Expressible Numbers
• Approximate lower and upper bounds of expressible 

(unnormalized) floating-point decimal numbers
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Normalization

• Problem: many equivalent representation of same 
number using the exponent/fraction notation

• Example:
• 0.5: exponent = -1, fraction = 5: 10−1 ∗ 5 = 0.5
• 0.5: exponent = -2, fraction = 50: 10−2 ∗ 50 = 0.5

• Binary normalization
• If leftmost bit is zero, shift all fractional bits left by one 

and decrease exponent by 1 (assuming no underflow)
• Fraction with leftmost nonzero bit is normalized

• Benefit: only one normalized representation
• Simplifies equality comparisons, etc.
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Normalization in Binary
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Normalization in Hex
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IEEE Floating-Point Types
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IEEE Numerical Types
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IEEE 754 Example

•𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 2𝑒𝑒 ∗ 𝑓𝑓
• 9 = b1.001 * 2^3 = 1.125 * 2^3 = 1.125 * 8 = 9
• Multiply by 2^3  is shift right by 3

• e = exponent – 127 (biasing)
• f = 1.fraction

Sign Exponent Fraction

0 1000 0010 00100000000000000000000
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IEEE 754 Example

•𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 2𝑒𝑒 ∗ 𝑓𝑓
• 5/4 = 1.25 = (-1)^0 * 2^0 * 1.25 = b1.01 = 1 + 1^-2

• e = exponent – 127 (biasing)
• f = 1.fraction

Sign Exponent Fraction

0 0111 1111 01000000000000000000000

+ 127-127=0 1.25
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IEEE 754 Example

•𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 2𝑒𝑒 ∗ 𝑓𝑓
• -0.15625 = -5/32 = -1*b1.01 * 2^-3 = b0.00101
• Multiply by 2^-3  is shift left by 3

• e = exponent – 127 (biasing)
• f = 1.fraction
• -5/32 = -0.15625 = -1.25 / 2^3 = -1.25 / 8 = -5/(4*8)

Sign Exponent Fraction

1 0111 1100 01000000000000000000000

- 124-127=-3 1.25
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ARM Floating Point

• Instructions prefixed with v, suffixed with, e.g., .f32
• Registers are s0 through s31 and d0 through d15
foperandA: .float 3.14
foperandB: .float 2.5
vldr.f32 s1, foperandA @ s1 = 
mem[foperandA]
vldr.f32 s1, foperandB @ s2 = 
mem[foperandB]
vadd.f32 s0, s1, s2
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Single-Precision Range

• Exponents 00000000 and 11111111 reserved
• Smallest value

• Exponent: 00000001
⇒ actual exponent = 1 – 127 = –126

• Fraction: 000…00 ⇒ significand = 1.0
• ±1.0 × 2–126 ≈ ±1.2 × 10–38

• Largest value
• Exponent: 11111110
⇒ actual exponent = 254 – 127 = +127

• Fraction: 111…11 ⇒ significand ≈ 2.0
• ±2.0 × 2+127 ≈ ±3.4 × 10+38
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Double-Precision Range

• Exponents 0000…00 and 1111…11 reserved
• Smallest value

• Exponent: 00000000001
⇒ actual exponent = 1 – 1023 = –1022

• Fraction: 000…00 ⇒ significand = 1.0
• ±1.0 × 2–1022 ≈ ±2.2 × 10–308

• Largest value
• Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023

• Fraction: 111…11 ⇒ significand ≈ 2.0
• ±2.0 × 2+1023 ≈ ±1.8 × 10+308
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Floating-Point Precision

• Relative precision
• all fraction bits are significant
• Single: approx 2–23

• Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits of precision

• Double: approx 2–52

• Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits of precision
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Floating-Point Example

• Represent –0.75 in floating point (IEEE 754)
• –0.75 = (–1)1 × 1.12 × 2–1

• b1.1 = d1.5, and note 1.5 * ½ = 0.75
• S = 1
• Fraction = 1000…002
• Exponent = –1 + Bias

• Single: –1 + 127 = 126 = 011111102

• Double: –1 + 1023 = 1022 = 011111111102

• Single: 1011111101000…00
• Double: 1011111111101000…00

𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 𝑓𝑓 ∗ 2𝑒𝑒
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Floating-Point Example

• What number is represented by the single-precision 
float
11000000101000…00

• S = 1
• Fraction = 01000…002
• Exponent = 100000012 = 129

• x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 ∗ 𝑓𝑓 ∗ 2𝑒𝑒
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Infinities and NaNs

• Exponent = 111...1, Fraction = 000...0
• ±Infinity
• Can be used in subsequent calculations, avoiding need for 

overflow check
• Exponent = 111...1, Fraction ≠ 000...0

• Not-a-Number (NaN)
• Indicates illegal or undefined result

• e.g., 0.0 / 0.0
• Can be used in subsequent calculations
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Floating-Point Addition

• Consider a 4-digit decimal example
• 9.999 × 101 + 1.610 × 10–1

• 1. Align decimal points
• Shift number with smaller exponent
• 9.999 × 101 + 0.016 × 101

• 2. Add significands
• 9.999 × 101 + 0.016 × 101 = 10.015 × 101

• 3. Normalize result & check for over/underflow
• 1.0015 × 102

• 4. Round (4 digits!) and renormalize if necessary
• 1.002 × 102
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Floating-Point Addition

• Now consider a 4-digit binary example
• 1.0002 × 2–1 + –1.1102 × 2–2 (i.e., 0.5 + –0.4375)

• 1. Align binary points
• Shift number with smaller exponent
• 1.0002 × 2–1 + –0.1112 × 2–1

• 2. Add significands
• 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

• 3. Normalize result & check for over/underflow
• 1.0002 × 2–4, with no over/underflow

• 4. Round (4 digits!) and renormalize if necessary
• 1.0002 × 2–4 (no change)  = 0.0625
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Accurate Arithmetic

• IEEE Std 754 specifies additional rounding control
• Extra bits of precision (guard, round, sticky)
• Choice of rounding modes
• Allows programmer to fine-tune numerical behavior of a 

computation
• Not all FP units implement all options

• Most programming languages and FP libraries just use 
defaults

• Trade-off between hardware complexity, 
performance, and market requirements

37



Who Cares About FP Accuracy?

• Important for scientific code
• But for everyday consumer use?

• “My bank balance is out by 0.0002¢!” 

• The Intel Pentium FDIV bug
• The market expects accuracy
• See Colwell, The Pentium Chronicles
• Cost hundreds of millions of dollars
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Floating-Point Summary

• Floating-point
• Decimal point moves due to exponents (bit shifting)
• Positive / negative zeros

• Fixed-point
• Decimal point remains at fixed point (e.g., after bit 8)

• Spacing between these numbers and real numbers
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Combining C and Assembly and 
Compiler Optimizations
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Compiling C

• How did we go from ASM to machine language?
• Two-pass assembler

• How do we go from C to machine language?
• Compilation
• Can think of as generating ASM code, then assembling it (use –

S option)

• Complication: optimizations
• Any time you see the word “optimization” ask yourself, 

according to what metric?
• Program Speed
• Code Size
• Energy
• …
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GCC Optimization Levels

-O: Same as -O1
-O0: do no optimization, the default if no 
optimization level is specified
-O1: optimize
-O2:optimise even more
-O3: optimize the most
-Os: Optimize for size (memory constrained devices)
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Assembly Calls of C Functions

.globl _start

_start:
mov sp, #0x12000 @ set up stack
bl c_function_0
bl c_function_1
bl c_function_2
bl c_function_3

iloop: b iloop
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Most Basic Example

int c_function_0() {
return 1;

}

Call via:
bl c_function_0

What assembly instructions make up 
c_function_0?
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c_function_0 (with –O0)

10014: e52db004 push {fp}
10018: e28db000 add fp, sp, #0; fp = sp
1001c: e3a03005 mov r3, #1
10020: e1a00003 mov r0, r3
10024: e28bd000 add sp, fp, #0 ; sp = fp
10028: e8bd0800 pop {fp}
1002c: e12fff1e bx lr
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c_function_0 (with –O1)

10014: e3a00001 mov r0, #1
10018: e12fff1e bx lr
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One Argument Example

int c_function_1(int x) {
return 4*x;

}

Call via:
bl c_function_1

What assembly instructions make up 
c_function_1?
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c_function_1 (with –O0)

10030: e52db004 push {fp}
10034: e28db000 add fp, sp, #0 ; fp = sp
10038: e24dd00c sub sp, sp, #12
1003c: e50b0008 str r0, [fp, #-8]
10040: e51b3008 ldr r3, [fp, #-8]
10044: e1a03103 lsl r3, r3, #2
10048: e1a00003 mov r0, r3
1004c: e28bd000 add sp, fp, #0 ; sp = fp
10050: e8bd0800 pop {fp}
10054: e12fff1e bx lr
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c_function_1 (with –O1)

1001c: e1a00100 lsl r0, r0, #2
10020: e12fff1e bx lr

lsl: logical shift left
Shift left by 2 == multiply by 4
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One Argument Example with Conditional

int c_function_2(int x) {
if (x <= 0) {

return 1;
}
else {

return x;
}

}
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c_function_2 (with –O0)

1005c: e52db004 push {fp} ; (str fp, [sp, #-4]!)

10060: e28db000 add fp, sp, #0

10064: e24dd00c sub sp, sp, #12

10068: e50b0008 str r0, [fp, #-8]

1006c: e51b3008 ldr r3, [fp, #-8]

10070: e3530000 cmp r3, #0

10074: ca000001 bgt 10080 <c_function_2+0x24>

10078: e3a03001 mov r3, #1

1007c: ea000000 b 10084 <c_function_2+0x28>

10080: e51b3008 ldr r3, [fp, #-8]

10084: e1a00003 mov r0, r3

10088: e28bd000 add sp, fp, #0

1008c: e8bd0800 pop {fp}

10090: e12fff1e bx lr

51



c_function_2 (with –O2)

10028: e3500001 cmpr0, #1
1002c: b3a00001 movlt r0, #1
10030: e12fff1e bx lr
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Loop Example

int c_function_3(int x) {
int c;
int f = x;

for (c = x - 1; c > 0; c--) {
f *= c;

}
return f;

}
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c_function_3 (with –O1)

10034: e2403001 sub r3, r0, #1
10038: e3530000 cmp r3, #0
1003c: d12fff1e bxle lr
10040: e0000093 mul r0, r3, r0
10044: e2533001 subs r3, r3, #1
10048: 1afffffc bne 10040 
<c_function_3+0xc>
1004c: e12fff1e bx lr
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Compiler Optimization Summary

• First point: stack frames (frame pointer register, fp)
• Second point: often times it’s safe to avoid using 

push/pop and the stack
• Easier when we manually ASM write code to just go 

ahead and use it (for safety and avoiding bugs), but 
the compiler as we’ve seen (when using 
optimization levels 1 and 2) will try to avoid the 
stack if it’s safe to do so

• Why?
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ARM Architecture and Computer 
Organization Review
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Computer Organization Overview

• ISA: hardware-software 
interface

• CPU
• Executes instructions 

• Memory
• Stores programs and 

data 
• Buses

• Transfers data 
• I/O devices

• Input: keypad, mouse, 
touch, …

• Output: printer, screen, …
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What Computer Have We Used this 
Semester?

• ARM Versatilepb computer
• Full computer!

• Input
• Output
• Processor
• Memory
• Programs
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This is a picture of the 
board for the ARM 
computer we’ve been 
using in QEMU!

[http://infocenter.arm
.com/help/topic/com.
arm.doc.dui0224i/DUI
0224I_realview_platf
orm_baseboard_for_
arm926ej_s_ug.pdf]
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This is a block 
diagram of the 
CPU for the 
ARM computer 
we’ve been 
using in 
QEMU!

[http://www.at
mel.com/Imag
es/arm_926ejs
_trm.pdf] 
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Why ARM?

http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/111024_tablet_pc_architectures_do
minated_by_arm_and_ios.asp 61



Why ARM?

62



Why ARM?

• Easier to program

• RISC (reduced instruction set computing) vs. CISC 
(complex instruction set computing)

• RISC: ARM, MIPS, SPARC, Power, (i.e., lots of 
modern architectures), …

• CISC: x86, x86-64, lots of old architectures (PDP-11, 
VAX, …)

• Note: modern x86 processors typically implemented 
internally as RISC (micro-instructions / microcode), but 
the programming interface is the same as x86
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Course Objective Overview

• Seen how computers really compute
• Processor/memory organization: execution cycle, 

registers, memory accesses
• Processor operation: pipeline
• Computer organization: memory, buses, I/O devices
• Assembly language programming: various 

architecture styles (stack-based), register-to-register 
(ARM), etc.

• Saw more representations of data (floating point, 
integers)
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Representing Data

• Finite precision numbers
• Unsigned integers
• Signed integers

• Two’s complement
• Word ints (32-bits) vs. longs/doubles (64-bits)
• Rational numbers

• Fixed point
• Floating point

• Strings / character arrays
• ASCII
• Unicode
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Multilevel Architectures

Physical Device Level (Electronics)

Digital Logic Level

Microarchitecture Level

Instruction Set Architecture (ISA) 
Level

Operating System Level

Level 0

Level 1

Level 2

Level 3

Level 4

n/a / 
Physics

VHDL / 
Verilog

n/a / 
Microcode

Assembly / 
Machine 
Language

C / …
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Processor (CPU) Components

• Pipeline: stages (fetch, decode, execute)
• ALU: arithmetic logic unit
• MMU: memory management unit

• TLB: translation lookaside buffer (cache for virtual 
memory)

• Cache (L1, L2, L3, …)
• Caches for main memory

• Registers
• Hold values for all ongoing computations (i.e., only can do 

computation on these values, otherwise first load/store)
• FPU: floating point unit
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Von Neumann Architecture

• Both data and program 
stored in memory

• Allows the computer to 
be “re-programmed”

• Input/output (I/O) goes 
through CPU

• I/O part is not 
representative of 
modern systems (direct 
memory access [DMA])

• Memory layout is 
representative of 
modern systems

Memory
(Data + Program [Instructions])

CPU I/O

DMA
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Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from 

memory)

EXECUTE
(Execute instruction 

fetched from memory)

Interrupt
?

PC++
(Increment 

the Program 
Counter)

NoYes
Handle 

Interrupt
(Input/Output

Event)
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ARM 3-Stage Pipeline Processor Execution 
Cycle FETCH[PC]

IR := MEM[PC]
(Get instruction from 

memory at address PC)

EXECUTE
(Execute instruction 

fetched from memory)

Interrupt
?

PC := PC + 4
(Increment 

the Program 
Counter)

NoYes
Handle 

Interrupt
(Input/Output

Event)

DECODE(IR)
(Decode fetched instruction, 

find operands)
Executed 

instruction has 
PC-8

Decoded 
instruction has 

PC-4
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ARM 3 Stage Pipeline

• Stages: fetch, decode, execute
• PC value = instruction being fetched
• PC – 4: instruction being decoded
• PC – 8: instruction being executed

• Beefier ARM variants use deeper pipelines (5 
stages, 13 stages)
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C to Assembly and Machine Language

• How did we go from ASM to machine language?
• Two-pass assembler

• How do we go from C to machine language?
• Compilation
• Can think of as generating ASM code, then assembling

• Optimizations
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Instruction Set Architectures

• Interface between software and hardware

• Examples: x86, x86-64, ARM, AVR, SPARC, ALPHA, MIPS
• RISC vs. CISC

• High-level language to computer instructions
• How do we execute a high-level language (e.g., C, Python, Java) 

using instructions the computer can understand?
• Compilation (translation before execution)
• Interpretation (translation-on-the-fly during execution)

• What are examples of these processes?
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Some Questions You Should Be Able to 
Answer

1. What is a register?  Where is it located?  How many are there?
2. What is memory?  What is a memory address / location?
3. What is the difference between a register and memory?
4. What is translation (compilation)?  What is interpretation?
5. How are translation and interpretation different?
6. Why do we use translators and/or interpreters?
7. If a multiply instruction is not available, how can it be created 

using loops and addition?
8. What is a virtual machine?
9. What is sequential logic?  How is it different than combinational 

logic?
10. How is a 32-bit processor different from a 64-bit processor?
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Summary

• Floating point (IEEE 754)
• Compiler optimizations
• More Exam Review Next Time
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