

Computer Organization & Assembly Language Programming (CSE 2312)

Lecture 27: Floating Point (IEEE 754), Combining C and Assembly, and ARM Review

Taylor Johnson

Announcements and Outline

- Student Feedback Survey (SFS)
 - Invitation by email sent on Wednesday, November 19.
 - MUST complete BEFORE Wednesday, December 3, 2014
 - <u>PLEASE</u> complete, very important for the university and your future classes
 - *Note:* university average and median ratings are ~4.25+ out of 5.0

University-wide statistics for all	Mean	4.30	4.12	4.26	4.38	4.31	4.18
courses included in the survey for Spring 2013	N	31,318	31,246	31,153	31,088	29,870	30,998
The instructor for this course:		provided clearly defined expectations.	used teaching methods to help me learn.	 encouraged me to take part in my own learning.	was well prepared for each class meeting.	was available outside of class.	is one I would recommend to other students.

- Programming assignment 3 assigned, due tonight by midnight
- Programming assignment 4 assigned, due 12/2 by midnight
- Quiz 5 assigned, due by Monday 12/1 by midnight
- Floating Point
- ARM Architecture and Computer Organization Review

Floating Point

Representing Fractional Numbers

- Seen several ways to encode information using binary numbers
 - Unsigned integers as binary representation
 - Signed integers using two's complement
 - Letters using ASCII
 - Etc.
- How can we represent fractional (non-whole) numbers?
 - Fixed-point
 - Floating-point

Fixed-Point

- Suppose we have 16-bits to represent a fractional number
 - Use upper 8 bits to represent whole (integer) portion
 - Use lower 8 bits to represent fractional (non-whole) portion

Whole Part	Decimal Point	(.)	Fractional Part
8 bits	•		8 bits
0010 0000	•		0000 0001
32	•		1/256
32	•		0.00390625

- Number of bits reserved for fractional part determines significance of each fractional part
- Here, we have 8 bits, so each fractional part is 1/256, since 2^8 = 256

Why Not Fixed-Point?

- Hard to represent very larger or very small numbers
- Smallest number representable using 64 bits, supposing we keep 32 bits for whole part and 32 bits for fractional part, is:
 - $1/(2^{32}) =$
- 0.000000023283064365386962890625...
- Largest number is still 2^32
- What if we need to represent larger or small numbers?
 - Utilize idea of significant digits
 - If a number is very large, a small deviation results in a small error
 - If a number if very small, a small deviation may result in a large error
 - Utilize relative (percentage) error as opposed to absolute error

Floating Point

 System for representing number where the range of expressible numbers if *independent* of the number of significant digits

• Represent number n in scientific notation:

 $n = f * 10^{e}$

- n: number being represented
- f: fraction (mantissa)
- e: positive or negative integer

• Examples

- 3.14 = 0.314 * 10^1 = 3.14 * 10^0
- 0.000001 = 0.1 * 10^-5 = 1.0 * 10^-6
- 1941 = 0.1941 * 10⁴ = 1.941 * 10³

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers

- In binary
 - $\pm 1.xxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Real Number Line Regions

- Divided real number line into seven regions:
 - Large negative numbers less than -0.999×10^{99}
 - Negative between –0.999 \times 10 99 and –0.100 $\times 10^{-99}$
 - Small negative, magnitudes less than 0.100×10⁻⁹⁹
 - Zero
 - Small positive, magnitudes less than 0.100×10⁻⁹⁹
 - Positive between 0.100×10⁻⁹⁹ and 0.999×10⁹⁹
 - Large positive numbers greater than 0.999×10⁹⁹

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE 754 Floating-Point Format

S	Exponent	Fraction
	single: 8 bits double: 11 bit	single: 23 bits s double: 52 bits

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit (0 \Rightarrow non-negative, 1 \Rightarrow negative)
- Normalize significand: $1.0 \le |significand| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Expressible Numbers

• Approximate lower and upper bounds of expressible (unnormalized) floating-point decimal numbers

Digits in fraction	Digits in exponent	Lower bound	Upper bound
3	1	10 ⁻¹²	10 ⁹
3	2	10 ⁻¹⁰²	10 ⁹⁹
3	3	10 ⁻¹⁰⁰²	10 ⁹⁹⁹
3	4	10 ⁻¹⁰⁰⁰²	10 ⁹⁹⁹⁹
4	1	10 ⁻¹³	10 ⁹
4	2	10 ⁻¹⁰³	10 ⁹⁹
4	3	10 ⁻¹⁰⁰³	10 ⁹⁹⁹
4	4	10 ⁻¹⁰⁰⁰³	10 ⁹⁹⁹⁹
5	1	10 ⁻¹⁴	10 ⁹
5	2	10 ⁻¹⁰⁴	10 ⁹⁹
5	3	10 ⁻¹⁰⁰⁴	10 ⁹⁹⁹
5	4	10 ⁻¹⁰⁰⁰⁴	10 ⁹⁹⁹⁹
10	3	10 ⁻¹⁰⁰⁹	10 ⁹⁹⁹
20	3	10 ⁻¹⁰¹⁹	10 ⁹⁹⁹

Normalization

- Problem: many equivalent representation of same number using the exponent/fraction notation
- Example:
 - 0.5: exponent = -1, fraction = 5: $10^{-1} * 5 = 0.5$
 - 0.5: exponent = -2, fraction = 50: $10^{-2} * 50 = 0.5$
- Binary normalization
 - If leftmost bit is zero, shift all fractional bits left by one and decrease exponent by 1 (assuming no underflow)
 - Fraction with leftmost nonzero bit is normalized
- Benefit: only one normalized representation

• Simplifies equality comparisons, etc.

Normalization in Binary

Sign Excess 64 + exponent is 73 - 64 = 9Fraction is $1 \times 2^{-1} + 1 \times 2^{-2}$ Fraction is $1 \times 2^{-1} + 1 \times 2^{-5}$ Fraction is $1 \times 2^{-4} + 1 \times 2^{-5}$

Normalization in Hex

IEEE Floating-Point Types

Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess 127	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2 ⁻¹²⁶	2 ⁻¹⁰²²
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴
Decimal range	approx. 10 ⁻³⁸ to 10 ³⁸	approx. 10 ⁻³⁰⁸ to 10 ³⁰⁸
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴

IEEE Numerical Types

IEEE 754 Example

•
$$n = sign * 2^e * f$$

- •9 = b1.001 * 2^3 = 1.125 * 2^3 = 1.125 * 8 = 9
- Multiply by 2^3 is shift right by 3

Sign	Exponent	Fraction
0	1000 0010	001000000000000000000000000000000000000

- e = exponent 127 (biasing)
- f = 1.fraction

IEEE 754 Example

•
$$n = sign * 2^e * f$$

• 5/4 = 1.25 = (-1)^0 * 2^0 * 1.25 = b1.01 = 1 + 1^-2

Sign	Exponent	Fraction
0	0111 1111	010000000000000000000000000000000000000
+	127-127=0	1.25

- e = exponent 127 (biasing)
- f = 1.fraction

IEEE 754 Example

•
$$n = sign * 2^e * f$$

- •-0.15625 = -5/32 = -1*b1.01 * 2^-3 = b0.00101
- Multiply by 2^-3 is shift left by 3

Sign	Exponent	Fraction
1	0111 1100	010000000000000000000000000000000000000
_	124-127=-3	1.25

- e = exponent 127 (biasing)
- f = 1.fraction
- •-5/32 = -0.15625 = -1.25 / 2³ = -1.25 / 8 = -5/(4*8)

ARM Floating Point

- Instructions prefixed with v, suffixed with, e.g., .f32
- Registers are s0 through s31 and d0 through d15
- foperandA: .float 3.14
- foperandB: .float 2.5
- vldr.f32 s1, foperandA @ s1 =
 mem[foperandA]
- vldr.f32 s1, foperandB @ s2 =
 mem[foperandB]
- vadd.f32 s0, s1, s2

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - Exponent: 11111110 ⇒ actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110 ⇒ actual exponent = 2046 - 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent –0.75 in floating point (IEEE 754)

- $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
- b1.1 = d1.5, and note 1.5 * ½ = 0.75
- S = 1
- Fraction = 1000...00₂
- Exponent = −1 + <u>**Bias**</u>
 - Single: -1 + <u>127</u> = 126 = 01111110₂
 - Double: -1 + <u>1023</u> = 1022 = 0111111110₂
- Single: 101111110100...00
- Double: 101111111101000...00

 $n = sign * f * 2^e$

Floating-Point Example

- What number is represented by the single-precision float
 - ${\color{red}1100000101000...00}$
 - S = 1
 - Fraction = 01000...00₂
 - Exponent = 10000001₂ = 129

•
$$x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

 $n = sign * f * 2^e$

Infinities and NaNs

• Exponent = 111...1, Fraction = 000...0

- ±Infinity
- Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^{2}
- •4. Round (<u>4 digits!</u>) and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

• Now consider a 4-digit binary example

- $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$ (i.e., 0.5 + -0.4375)
- •1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- •4. Round (4 digits!) and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

Accurate Arithmetic

• IEEE Std 754 specifies additional rounding control

- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Who Cares About FP Accuracy?

Important for scientific code

- But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" Θ
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, *The Pentium Chronicles*
 - Cost hundreds of millions of dollars

Floating-Point Summary

• Floating-point

- Decimal point moves due to exponents (bit shifting)
- Positive / negative zeros
- Fixed-point
 - Decimal point remains at fixed point (e.g., after bit 8)
- Spacing between these numbers and real numbers

Combining C and Assembly and Compiler Optimizations

Compiling C

• How did we go from ASM to machine language?

- Two-pass assembler
- How do we go from C to machine language?
 - Compilation
 - Can think of as generating ASM code, then assembling it (use S option)
- Complication: optimizations
 - Any time you see the word "optimization" ask yourself, according to what metric?
 - Program Speed
 - Code Size
 - Energy
 - ...

GCC Optimization Levels

-0: Same as -01

-00: do no optimization, the default if no optimization level is specified

- -01: optimize
- -02:optimise even more
- -03: optimize the most
- -Os: Optimize for size (memory constrained devices)

Assembly Calls of C Functions

.globl _start

_start:

- mov sp, #0x12000
- bl c_function_0
- bl c_function_1
- bl c_function_2
- bl c_function_3

iloop: b iloop

@ set up stack

Most Basic Example

int c_function_0() { return 1; }

Call via: bl c_function_0

What assembly instructions make up c_function_0?

c_function_0 (with -00)

- 10014: e52db004 push
- 10018: e28db000 add
- 1001c: e3a03005 mov
- 10020: ela00003 mov
- 10024: e28bd000 add
- 10028: e8bd0800 pop
- 1002c: el2fffle bx

$\{\underline{fp}\}$						
fp,	sp,	#0;	f	p	= 5	sp
r3,	#1					
r0,	r3					
sp,	fp,	#0	;	sp	=	fp
{fp}						
lr						

c_function_0 (with –01)

10014:e3a00001 mov r0, #1 10018:e12fffle bx lr

One Argument Example

int c_function_1(int x) { return 4*x; }

Call via: bl c_function_1

What assembly instructions make up c_function_1?

c_function_1 (with -O0)

10030:	e52db004	ρι
10034:	e28db000	ac
10038:	e24dd00c	รเ
1003c:	e50b0008	st
10040:	e51b3008	lc
10044:	ela03103	ls
10048:	e1a00003	mc
1004c:	e28bd000	ac
10050:	e8bd0800	pc
10054:	el2fffle	b>

oush	${fp}$					
ıdd fp,	sp,	#0	;	fp	=	sp
sub sp,	sp,	#12]			
strr0,	[fp]	, #-	-8	<u>1</u>		
.drr3,	[fp,	, #-	-8]		
.slr3,	r3,	#2				
novr0,	r3					
ldd sp,	fp,	#0	;	sp	=	fp
op {fp]	}					
vx lr						

c_function_1 (with –O1)

1001c:ela00100 lsl r0, r0, #2 10020:el2fffle bx lr

lsl: logical shift left
Shift left by 2 == multiply by 4

One Argument Example with Conditional

```
int c_function_2(int x) {
   if (x <= 0) {
      return 1;
   else {
      return x;
```


c_function_2 (with –O0)

1005c:e52db004	push	{fp} ; (str fp, [sp, #-4]!)
10060:e28db000	add	fp, sp, #0
10064:e24dd00c	sub	sp, sp, #12
10068:e50b0008	str	r0, [fp, #-8]
1006c:e51b3008	ldr	r3, [fp, #-8]
10070:e3530000	cmp	r3, #0
10074: ca000001	bgt	10080 <c_function_2+0x24></c_function_2+0x24>
10078:e3a03001	mov	r3, #1
1007c:ea000000	b	10084 <c_function_2+0x28></c_function_2+0x28>
10080:e51b3008	ldr	r3, [fp, #-8]
10084:e1a00003	mov	r0, r3
10088:e28bd000	add	sp, fp, #0
1008c:e8bd0800	pop	{fp}
10090:e12fff1e	bx	lr

c_function_2 (with –O2)

10028:e3500001 cmpr0, #1 1002c:b3a00001 movlt r0, #1 10030:e12fffle bx lr

Loop Example

int c_function_3(int x) { int c; int f = x;

c_function_3 (with –01)

- 10034:e2403001 sub r3, r0, #1
- 10038:e3530000 cmp r3, #0
- 1003c:dl2fffle bxle lr
- 10040:e0000093 mul r0, r3, r0
- 10044:e2533001 subs r3, r3, #1
- 10048: laffffc bne 10040
 <c function 3+0xc>
- 1004c:el2fffle bx lr

54

Compiler Optimization Summary

- First point: stack frames (frame pointer register, fp)
- Second point: often times it's safe to avoid using push/pop and the stack
- Easier when we manually ASM write code to just go ahead and use it (for safety and avoiding bugs), but the compiler as we've seen (when using optimization levels 1 and 2) will try to avoid the stack if it's safe to do so
 - Why?

ARM Architecture and Computer Organization Review

Computer Organization Overview

Evaluating

performance

- ISA: hardware-software interface
- CPU
 - Executes instructions
- Memory
 - Stores programs and data
- Buses
 - Transfers data
- I/O devices
 - Input: keypad, mouse, touch, ...
 - Output: printer, screen, ...

Compiler

UNIVERSITY OF TEXAS ARLINGTON What Computer Have We Used this Semester?

- ARM Versatilepb computer
- Full computer!
 - Input
 - Output
 - Processor
 - Memory
 - Programs

This is a picture of the board for the ARM computer we've been using in QEMU!

[http://infocenter.arm .com/help/topic/com. arm.doc.dui0224i/DUI 0224I realview platf orm baseboard for arm926ej s_ug.pdf]

Why ARM?

http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/111024_tablet_pc_architectures_do minated_by_arm_and_ios.asp

Why ARM?

Why ARM?

- Easier to program
- RISC (reduced instruction set computing) vs. CISC (complex instruction set computing)
- RISC: ARM, MIPS, SPARC, Power, (i.e., lots of modern architectures), ...
- CISC: x86, x86-64, lots of old architectures (PDP-11, VAX, ...)
 - Note: modern x86 processors typically implemented internally as RISC (micro-instructions / microcode), but the programming interface is the same as x86

Course Objective Overview

- Seen how computers really *compute*
- Processor/memory organization: execution cycle, registers, memory accesses
- Processor operation: pipeline
- Computer organization: memory, buses, I/O devices
- Assembly language programming: various architecture styles (stack-based), register-to-register (ARM), etc.
- Saw more representations of data (floating point, integers)

Representing Data

• Finite precision numbers

- Unsigned integers
- Signed integers
 - Two's complement
- Word ints (32-bits) vs. longs/doubles (64-bits)
- Rational numbers
 - Fixed point
 - Floating point
- Strings / character arrays
 - ASCII
 - Unicode

Multilevel Architectures

Level 4	Operating System Level	C /
Level 3	Instruction Set Architecture (ISA) Level	Assembly / Machine Language
Level 2	Microarchitecture Level	n/a / Microcode
Level 1	Digital Logic Level	VHDL / Verilog
Level 0	Physical Device Level (Electronics)	n/a / Physics

Processor (CPU) Components

- Pipeline: stages (fetch, decode, execute)
- ALU: arithmetic logic unit
- MMU: memory management unit
 - TLB: translation lookaside buffer (cache for virtual memory)
- Cache (L1, L2, L3, ...)
 - Caches for main memory
- Registers
 - Hold values for all ongoing computations (i.e., only can do computation on these values, otherwise first load/store)
- FPU: floating point unit

Von Neumann Architecture

- Both data and program stored in memory
- Allows the computer to be "re-programmed"
- Input/output (I/O) goes through CPU
- I/O part is not representative of modern systems (direct memory access [DMA])
- Memory layout is representative of modern systems

Abstract Processor Execution Cycle

ARM 3 Stage Pipeline

- Stages: fetch, decode, execute
- PC value = instruction being fetched
- PC 4: instruction being decoded
- PC 8: instruction being executed
- Beefier ARM variants use deeper pipelines (5 stages, 13 stages)

C to Assembly and Machine Language

- How did we go from ASM to machine language?
 Two-pass assembler
- How do we go from C to machine language?
 - Compilation
 - Can think of as generating ASM code, then assembling
- Optimizations

Instruction Set Architectures

- Interface between software and hardware
- Examples: x86, x86-64, ARM, AVR, SPARC, ALPHA, MIPS
 RISC vs. CISC
- High-level language to computer instructions
 - How do we execute a high-level language (e.g., C, Python, Java) using instructions the computer can understand?
 - Compilation (translation before execution)
 - Interpretation (translation-on-the-fly during execution)
 - What are examples of these processes?

UNIVERSITY OF TEXAS ARLINGTON Some Questions You Should Be Able to Answer

- 1. What is a register? Where is it located? How many are there?
- 2. What is memory? What is a memory address / location?
- 3. What is the difference between a register and memory?
- 4. What is translation (compilation)? What is interpretation?
- 5. How are translation and interpretation different?
- 6. Why do we use translators and/or interpreters?
- 7. If a multiply instruction is not available, how can it be created using loops and addition?
- 8. What is a virtual machine?
- 9. What is sequential logic? How is it different than combinational logic?
- 10. How is a 32-bit processor different from a 64-bit processor?

Summary

- Floating point (IEEE 754)
- Compiler optimizations
- More Exam Review Next Time

Evaluating performance

