UNIVERSITY OF TEXASAARLINGTON

Computer Organization &
Assembly Language
Programming (CSE 2312)

Lecture 27: Floating Point (IEEE 754), Combining C and
Assembly, and ARM Review

Taylor Johnson

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

e Student Feedback Survey (SFS)
e Invitation by email sent on Wednesday, November 19.
e MUST complete BEFORE Wednesday, December 3, 2014

* PLEASE complete, very important for the university and your future
classes

e Note: university average and median ratings are ~4.25+ out of 5.0

University-wide statistics for all Mean 430 | 412 | 426 | 438 | 431 | 418
courses

included in the survey for Spring 2013 N 31,318 31,246 31,153 31,088 29,870 30,998
... used ... was well Was ...isone |

) _ ... provided teaching encouraged prepared a-v-éilable would

The instructor for this course: clearly defined | methods to | me to take foreach |~ cideof | recommend

expectations. help me part in my class e to other
learn. own learning. meeting.) students.

* Programming assignment 3 assignhed, due tonight by midnight
e Programming assignment 4 assigned, due 12/2 by midnight

e Quiz 5 assigned, due by Monday 12/1 by midnight

 Floating Point

e ARM Architecture and Computer Organization Review

UNIVERSITY OF TEXASAARLINGTON

Floating Point

UNIVERSITY OF TEXASAARLINGTON

Representing Fractional Numbers

* Seen several ways to encode information using
binary numbers
e Unsigned integers as binary representation
e Signed integers using two’s complement
e Letters using ASCII
* Etc.

* How can we represent fractional (non-whole)
numbers?
e Fixed-point
* Floating-point

UNIVERSITY OF TEXAS%ARLINGTON

Fixed-Point

e Suppose we have 16-bits to represent a fractional number
e Use upper 8 bits to represent whole (integer) portion
e Use lower 8 bits to represent fractional (non-whole) portion

Whole Part Decimal Point (.) Fractional

Part
8 bits] 8 bits
0010 0000 ; 0000 0001
32 ; 1/256
32 0.00390625

* Nummlnes

significance of each fractional part

e Here, we have 8 bits, so each fractional part is 1/256, since
28 = 256

UNIVERSITY OF TEXASAARLINGTON

Why Not Fixed-Point?

e Hard to represent very larger or very small numbers

* Smallest number representable using 64 bits, supposin%
we keep 32 bits for whole part and 32 bits for fractiona
part, is:

1/(2732) =
0.00000000023283064365386962890625...

e Largest number is still 22432

* What if we need to represent larger or small numbers?
e Utilize idea of significant digits
 I[f a number is very large, a small deviation results in a small
error

 If a number if very small, a small deviation may result in a large
error

 Utilize relative (percentage) error as opposed to absolute error

UNIVERSITY OF TEXASAARLINGTON

Floating Point

e System for representing number where the range of
expressible numbers if independent of the number of
significant digits

e Represent number n in scientific notation:
n=fx*10°

* n: number being represented

e f: fraction (mantissa)
* e: positive or negative integer

e Examples
e3.14=0.314 * 1071 =3.14 * 1070
e 0.000001=0.1 *10~-5=1.0 * 10"-6
e 1941 =0.1941 * 1074 =1.941 * 10”3

UNIVERSITY OF TEXAS%ARLINGTON

Floating Point

* Representation for non-integral numbers
* Including very small and very large numbers

e Like scientific notatign
A2 % 1056 | normalized |
I

¢ +987.02 x 10°

*In binary
o £1.XXXXXXX, X 2YYVY

* Types Float and doublein C

UNIVERSITY OF TEXASAARLINGTON

Real Number Line Regions

e Divided real number line into seven regions:
* Large negative numbers less than —-0. 999 x 10°°
* Negative between -0.999 x 10°° and -0.100x107°°
* Small negative, magnitudes less than 0.100x10~°
e Zero
* Small positive, magnitudes less than 0.100x10~°
e Positive between 0.100x107°° and 0.999x10°°
e Large positive numbers greater than 0.999x10°°

3 5
Negative Positive
underflow underflow

1 2 4 6 7
Negative Expressible Zero Expressible Positive
overflow negative numbers ¢ positive numbers overflow

AT A
s A v

-1 {I:,QQ -1 DI—1DU 0 1Dl1':}0 1699

UNIVERSITY OF TEXASAARLINGTON

Floating Point Standard

* Defined by IEEE Std 754-1985

e Developed in response to divergence of
representations
 Portability issues for scientific code

 Now almost universally adopted

* Two representations
e Single precision (32-bit)
e Double precision (64-bit)

UNIVERSITY OF TEXASAARLINGTON

IEEE 754 Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

X = (_1)5 v (1_|_ Fraction) 9 2(Exponent—Bias)

e S: sign bit (0 = non-negative, 1 = negative)

e Normalize significand: 1.0 < |significand| < 2.0

* Always has a leading pre-binary-point 1 bit, so no need to represent it
explicitly (hidden bit)

e Significand is Fraction with the “1.” restored
e Exponent: excess representation: actual exponent + Bias

e Ensures exponent is unsigned
e Single: Bias = 127; Double: Bias = 1023

UNIVERSITY OF TEXASAARLINGTON

Expressible Numbers

e Approximate lower and upper bounds of expressible
(unnormalized) floating-point decimal numbers

Digits in fraction | Digits in exponent | Lower bound | Upper bound
3 1 10712 10°
3 2 107192 10%
] 9 10—1002 1 DQQQ
7 4 10—1‘3002 1 DQQQQ
4 1 10712 10°
4 2 107103 10%
4 3 10—1003 1 UQQQ
4 4 10—1‘3003 1 DQQQQ
5 1 10714 10°
5 2 107104 10%
5 9 10—1004 1 UQQQ
5 4 10—1'3004 1 09999
10 3 1071009 10%%°
20 3 1071019 10%%

UNIVERSITY OF TEXASAARLINGTON

Normalization

* Problem: many equivalent representation of same
number using the exponent/fraction notation

* Example:
¢ 0.5: exponent = -1, fraction=5:10"1 * 5 = 0.5
¢ 0.5: exponent = -2, fraction =50: 1072 * 50 = 0.5

* Binary normalization

e If leftmost bit is zero, shift all fractional bits left by one
and decrease exponent by 1 (assuming no underflow)

* Fraction with leftmost nonzero bit is normalized

* Benefit: only one normalized representation
e Simplifies equality comparisons, etc.

UNIVERSITY OF TEXASAARLINGTON

Normalization in Binary

Example 1: Exponentiation to the base 2

2| 27°

AT

Unnormalized: 0 1010100 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 =2¥(1x2 ™3 1x2 ¥ 1x27®

I v v ’ —16
Sign Excess 64 Fractionis 1 x 272+ 1 x 2713 +1x277) =432
+ exponent is +1x27 1541 x 2718
84 —64 =20

To normalize, shift the fraction left 11 bits and subtract 11 from the exponent.

Normalized: 0 1001001 1 1 011 00000000000 =2°(1x27+1x2%1x2"

L. Sy

h L

Sign Excess 64 Fractionis 1 x 27 +1x272 +1x27°) =432
+ exponent is +1x2F +1x27°
73—-64=9

15

UNIVERSITY OF TEXAS A @ ARLINGTON

Normalization in Hex

Example 2: Exponentiation to the base 16

167 1672 1672 1674

NN N N

Unnormalized: 0 1000101 0000 0000 0001 1011 =16°(1x 16+ B x 167%) = 432

Y ¥ - - W
Sign Excess 64 Fractionis 1 x 16 + Bx 167*
+ exponentis
69-64=5

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

e, Ay LIS
——

Normalized: 0 1000011 0001 1011 0000 0000 =16°(1x167+Bx 167%) =432

"

Sign Excess 64 Fractionis 1 x 167" + Bx 1672
+ exponentis
67 —-64=3

16

IEEE Floating-Point Types

UNIVERSITY OF TEXASAARLINGTON

ltem Single precision Double precision
Bits in sign 1 1
Bits in exponent 8 11
Bits in fraction 23 52
Bits, total 32 64
Exponent system Excess 127 Excess 1023
Exponent range —126 to +127 —1022 to +1023
Smallest normalized number o126 p-1022
Largest normalized number approx. 0128 approx. 1024
Decimal range approx. 108 t0 10 approx. 107398 to 10°%

Smallest denormalized number

approx. 1 0%

approx. 1 02

17

UNIVERSITY OF TEXASAARLINGTON

IEEE Numerical Types

Normalized | = 0 < Exp < Max Any bit pattern
Denormalized | £ 0 Any nonzero bit pattern
Zero | £ 0 0
Infinity | = 111...1 0
Not a number | £ 111...1 Any nonzero bit pattern

\Sign bit

UNIVERSITY OF TEXAS%ARLINGTON

IEEE 754 Example

N = Slgn* 28 *f
e9=bp1.001 *273=1.125*2~3=1.125*8=9
* Multiply by 223 is shift right by 3

Sign Exponent Fraction
0) 1000 0010 00100000000000000000000

ee = exponent — 127 (biasing)
of =1.fraction

UNIVERSITY OF TEXAS%ARLINGTON

IEEE 754 Example

N = Slgn* 26 *f
*5/4=1.25=(-1)"0 * 270 * 1.25=b1.01 =1 + 17-2

Sign Exponent Fraction
0 0111 1111 01000000000000000000000
+ 127-127=0 1.25

ee = exponent — 127 (biasing)
of =1.fraction

20

UNIVERSITY OF TEXAS%ARLINGTON

IEEE 754 Example

N = Slgn* 28 *f
¢-0.15625 =-5/32 =-1*b1.01 * 2~-3 = b0.00101
* Multiply by 2/-3 is shift left by 3

Sign Exponent Fraction
1 0111 1100 01000000000000000000000
- 124-127=-3 1.25

ee = exponent — 127 (biasing)
of =1.fraction
e-5/32=-0.15625=-1.25/2~3=-1.25/8 =-5/(4*8)

UNIVERSITY OF TEXASAARLINGTON

ARM Floating Point

* Instructions prefixed with v, suffixed with, e.g., .f32
e Registers are sO through s31 and dO through d15
foperandA: .float 3.14

foperandB: .float 2.5

vidr.f32 sl1, foperandA @ sl
mem| foperandA]

vidr.f32 sl1, foperandB @ s2
mem|[foperandB]

vadd.f32 s0, sl1, s2

UNIVERSITY OF TEXASAARLINGTON

Single-Precision Range

* Exponents 00000000 and 11111111 reserved

* Smallest value

* Exponent: 00000001
—> actual exponent=1-127=-126

 Fraction: 000...00 = significand = 1.0
e+1.0x2126x+12x1038

* Largest value

e Exponent: 11111110
—> actual exponent =254 - 127 = +127

e Fraction: 111...11 = significand = 2.0
e+2.0x 2*127 = +3 4 x 10*38

UNIVERSITY OF TEXASAARLINGTON

Double-Precision Range

e Exponents 0000...00 and 1111...11 reserved

* Smallest value

* Exponent: 00000000001
—> actual exponent =1-1023 =-1022

 Fraction: 000...00 = significand = 1.0
e+]1.0x 271022 +2 2 x 107308

* Largest value

* Exponent: 11111111110
—> actual exponent = 2046 — 1023 = +1023

e Fraction: 111...11 = significand = 2.0
e +2 .0 x 2*1023 x +7 8 x 10+308

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Precision

* Relative precision
e all fraction bits are significant
* Single: approx 2723
* Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal digits of precision

* Double: approx 272
e Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal digits of precision

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Example

* Represent —0.75 in floating point (IEEE 754)
e—0.75=(-1)1 x 1.1, x 21
epl.1=d1.5,and note 1.5 * %4 =0.75
eS=1
* Fraction = 1000...00,

e Exponent = -1 + Bias

e Single: -1 + 127 =126 = 01111110,
* Double: -1 + 1023 = 1022 = 01111111110,

*Single: 1011111101000...00
*Double: 1011111111101000...00

n = sign x f x 2¢

26

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Example

* What number is represented by the single-precision
float

11000000101000...00
eS=1 n = sign * f * 2¢
* Fraction = 01000...00,
* Exponent = 10000001, = 129

ox = (1)t x (1+01,) x 2(129 - 127)
=(—1) x 1.25 x 22
=-=5.0

UNIVERSITY OF TEXASAARLINGTON

Infinities and NaNs

e Exponent = 111...1, Fraction = 000...0
e t|nfinity
e Can be used in subsequent calculations, avoiding need for
overflow check

e Exponent = 111...1, Fraction # 000...0
e Not-a-Number (NaN)

* Indicates illegal or undefined result
* e.g.,0.0/0.0
e Can be used in subsequent calculations

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Addition

e Consider a 4-digit decimal example
©9.999 x 10 + 1.610 x 1071

e 1. Align decimal points
e Shift number with smaller exponent
©9.999 x 10* + 0.016 x 10!

e 2. Add significands
©9.999 x 10! + 0.016 x 10 = 10.015 x 10*

* 3. Normalize result & check for over/underflow
e 1.0015 x 102

*4. Round (4 digits!) and renormalize if necessary
e 1.002 x 102

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Addition

* Now consider a 4-digit binary example

¢ 1.000, x 271 +-1.110, x 272 (i.e., 0.5 + —0.4375)
e 1. Align binary points

e Shift number with smaller exponent

¢ 1.000, x 271 +-0.111, x 22
e 2. Add significands

¢ 1.000, x 271 +-0.111, x 21 = 0.001, x 2

* 3. Normalize result & check for over/underflow
* 1.000, x 274, with no over/underflow

*4. Round (4 digits!) and renormalize if necessary
 1.000, x 27* (no change) =0.0625

UNIVERSITY OF TEXASAARLINGTON

Accurate Arithmetic

 |EEE Std 754 specifies additional rounding control
 Extra bits of precision (guard, round, sticky)
e Choice of rounding modes
e Allows programmer to fine-tune numerical behavior of a
computation
* Not all FP units implement all options
* Most programming languages and FP libraries just use
defaults

* Trade-off between hardware complexity,
performance, and market requirements

UNIVERSITY OF TEXASAARLINGTON

Who Cares About FP Accuracy?

* Important for scientific code

e But for everyday consumer use?
* “My bank balance is out by 0.0002¢!” ®

* The Intel Pentium FDIV bug
 The market expects accuracy
e See Colwell, The Pentium Chronicles
e Cost hundreds of millions of dollars

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Summary

* Floating-point
e Decimal point moves due to exponents (bit shifting)
e Positive / negative zeros

* Fixed-point
e Decimal point remains at fixed point (e.g., after bit 8)
* Spacing between these numbers and real numbers

UNIVERSITY OF TEXASAARLINGTON

Combining C and Assembly and
Compiler Optimizations

UNIVERSITY OF TEXASAARLINGTON

Compiling C

* How did we go from ASM to machine language?
e Two-pass assembler

* How do we go from C to machine language?
e Compilation

e Can think of as generating ASM code, then assembling it (use —
S option)

e Complication: optimizations
e Any time you see the word “optimization” ask yourself,
according to what metric?
* Program Speed

e Code Size
* Energy

UNIVERSITY OF TEXASAARLINGTON

GCC Optimization Levels

—0:Same as -01

—00: do no optimization, the default if no
optimization level is specified

-01: optimize

—-02:0ptimise even more

-03: optimize the most

—-0s: Optimize for size (memory constrained devices)

UNIVERSITY OF TEXASAARLINGTON

Assembly Calls of C Functions

-globl _start

_start:
mov sp, #0x12000 @ set up stack
ol c_function O
ol c_function 1
ol c_function 2
ol c_function_ 3

1loop: b 1loop

UNIVERSITY OF TEXASAARLINGTON

Most Basic Example

int c_function 00 {
return 1,;

L

Call via:
bl c _function O

What assembly instructions make up
c_function 0?

UNIVERSITY OF TEXASAARLINGTON

c_function_ 0O (with —O0)

10014: e52db004 push {fp}

10018: e28db000 add fp, sp, #0; fp = sp
1001c: e3a03005 mov r3, #1

10020: e1a00003 mov ro, r3

10024: e28bdO00 add sp, fp, #0 ; sp = fp
10028: e8bd0800 pop {fp}

1002c: el2fffle Dbx Ir

UNIVERSITY OF TEXASAARLINGTON

c_function O (with —01)

10014 : e3a00001 mov ro, #1
10018: el2fffle bx Ir

UNIVERSITY OF TEXASAARLINGTON

One Argument Example

int c_function _1(int x) {
return 47*=x;

L

Call via:
bl c function 1

What assembly instructions make up
c_function_1?

UNIVERSITY OF TEXASAARLINGTON

c_function_ 1 (with —00)

10030: e€52db004 push {fp}

10034: e28db000 add fp, sp, #0 ; fp = sp
10038: e24ddO00c subsp, sp, #12

1003c: e50b0008 strrO, [fp, #-8]

10040: e51b3008 Idrr3, [fp, #-8]

10044: el1a03103 Islr3, r3, #2

10048: e1a00003 movrO, r3

1004c: e28bdO00 addsp, fp, #0 ; sp = fp

10050: e8bd0800 pop {fp}
10054 : el2fffle bx 1Ir

UNIVERSITY OF TEXASAARLINGTON

c_function_ 1 (with —01)

1001c: e1a00100 1Isli ro, rO, #2
10020: el2fffle bx Ir

Isl: logical shift left
Shift left by 2 == multiply by 4

UNIVERSITY OF TEXASAARLINGTON

One Argument Example with Conditional

int c_function 2(int x) {
iIT (x <= 0) {

return 1;
}
else {
return X;
}

UNIVERSITY OF TEXASAARLINGTON

c_function_ 2 (with —00)

1005c: e52db004 push {fp} ; (str fp, [sp, #-4]1)
10060: e28db000 add fp, sp, #0

10064 : e24dd00c sub sp, Sp, #12

10068: e50b0008 str ro, [fp, #-8]

1006¢c: €51b3008 Idr r3, [fp, #-8]

10070: e3530000 cmp r3, #0

10074 : ca000001 bgt 10080 <c_function_2+0x24>
10078: €3a03001 mov r3, #1

1007c: ea000000 b 10084 <c_function_2+0x28>
10080: €51b3008 Idr r3, [fp, #-8]

10084 : e1a00003 mov ro, r3

10088: €28bd000 add sp, fp, #0

1008c: e8bd0800 pop {fp}

10090: el2fffle bx Ir

UNIVERSITY OF TEXASAARLINGTON

c_function_ 2 (with —02)

10028: e3500001 cmprO, #1
1002c: b3a00001 movit r0, #1
10030: el2fffle bx Ir

UNIVERSITY OF TEXASAARLINGTON

Loop Example

int c_function 3(Int x) {
Int c;
int ¥ = x;

for (c = x -1; ¢ > 0; c--) {
T *= c;
+

return T;

UNIVERSITY OF TEXASAARLINGTON

c_function_ 3 (with —01)

10034 : €2403001 sub r3, rO, #1
10038: e3530000 cmp r3, #0
1003c: d12fffle bxle Ir

10040: e0000093 mul ro, r3, rO
10044 : e2533001 subs r3, r3, #1

10048: 1lafffffc bne 10040
<c_function_ 3+0xc>

1004c: el2fffle bx Ir

UNIVERSITY OF TEXASAARLINGTON

Compiler Optimization Summary

* First point: stack frames (frame pointer register, fp)

e Second point: often times it’s safe to avoid using
push/pop and the stack

e Easier when we manually ASM write code to just go
ahead and use it (for safety and avoiding bugs), but
the compiler as we’ve seen (when using
optimization levels 1 and 2) will try to avoid the
stack if it’s safe to do so

e Why?

UNIVERSITY OF TEXASAARLINGTON

ARM Architecture and Computer
Organization Review

UNIVERSITY OF TEXAS%ARLINGTON

Computer Organization Overview

N2
[J . -
!ﬁ"?‘ér?aa gglwa re-software o —

° CP U ;;er T

* Executes instructions
* Memory

e Stores programs and

data

*Buses o =

* Transfers data perfomance LN
*|/O devices T

Processor

* Input: keypad, mouse,
touch, ...

* Output: printer, screen, ...

57

UNIVERSITY OF TEXAS%ARLINGTON

What Computer Have We Used this
Semester?

* ARM Versatilepb computer

 Full computer!
* Input
e Qutput
* Processor
* Memory
* Programs

58

S1

configuration =~ Mouse OTG
switches usSB

Line out | t]f‘fff‘] L

Line in
(bottom)

Mic in

U) I B

debug [booooo

UART
0 (top)
1 (bottom)

[, o0

m

UART

2 (top)
3 (bottom)

CLCD expansion

'|H|]":._..II O

|

MMC —
O(top) || =
1 (bottom) Al —

Smart
card

0 (top)

1 (bottom)

Logic Tile -~
expansion

i
= 5 e n

S6 GP = =
(user) Yi— |8
switches =]
| & |

GP
(user) ~
LEDs

Ethernet-

Keyboard

Dynamic
memory
expansion

AHB |

monitor
=

VGA — |

mer'nory

expansion | rS\

m : -t

===1-—1

I==—1——1—IF
[=

FPGA

ARMO26EJ-S
Development
Chip

ooooorgoo

UUUUUUUUUDUUU“UUU
ooo

coocooooodooloooo

oooo

=]

Battery

I AR

germ S

S

oooooooooo
opopooooopoooo

2X16
character

LCD

GP PUSH
(green LED)

RESET
(orange LED)

DEV CHIP
CONFIG
(blue LED)

FPGA

- CONFIG

(yellow LED)

" JTAG

Trace

- port

CFGEN LED

" (orange)

CONFIG

link

| Standby/
- power

— Power LED

(red)

. . ChipScope

© T GPI0O,1
~ GPIO 2.3

—USB debug

- 3V3 OK
- (green LED)

5V OK

" (green LED)
 Power

Fuse
~_ PClI

expansion

This is a picture of the
board for the ARM
computer we’ve been
using in QEMU!

[http://infocenter.arm
.com/help/topic/com.
arm.doc.dui0224i/DUl
02241 realview platf
orm_ baseboard for
arm926ej s ug.pdf]

59

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf

External
coprocessor
interface

CPDOUT CPDIN CPINSTR

Pt e ey
IRDATA ITCM
DRWDATA> T(I:.;fM
interface DTCM
f ? f Coprocessor : +—>
ETM interface
interface
A f A f > DEXT I—
P —
7]
<
: DCACHE
| Cach |
> ache >
> PA Writeback »
TAGRAM [| write buffer
e PTG
interface
\ 4
WDATA RDATA |bA > MMU Bus
v > interface
Sl > unit
ARMSEJ-S FCSE TLB —
IMV A ’
Instruction AHB
INSTR = * P niortace
A
>
ICACHE —
IROUTE =P
f—
<
> I[EXT _

This is a block
diagram of the
CPU for the
ARM computer
we’ve been
using in
QEMU!

[http://www.at
mel.com/Imag
es/arm 926ejs

trm.pdf]

60

http://www.atmel.com/Images/arm_926ejs_trm.pdf

UNIVERSITY OF TEXAS%ARLINGTON

Why ARM?

320

300 " x80

m ARM
2310

200

150

o0 l
[I B I I
2010 2011 2012 2013 2014 2015 201e 2017

http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/111024 tablet_pc_architectures_do
minated_by arm_and _ios.asp ot

Shipments in millions

UNIVERSITY OF TEXAS%ARLINGTON

O Cell Phones @ PCs

O TVs

62

UNIVERSITY OF TEXASAARLINGTON

Why ARM?

e Easier to program

* RISC (reduced instruction set computing) vs. CISC
(complex instruction set computing)

e RISC: ARM, MIPS, SPARC, Power, (i.e., lots of
modern architectures), ...

 CISC: x86, x86-64, lots of old architectures (PDP-11,
VAX, ...)

* Note: modern x86 processors typically implemented
internally as RISC (micro-instructions / microcode), but
the programming interface is the same as x86

UNIVERSITY OF TEXASAARLINGTON

Course Objective Overview

e Seen how computers really compute

* Processor/memory organization: execution cycle,
registers, memory accesses

* Processor operation: pipeline
e Computer organization: memory, buses, I/0 devices

* Assembly language programming: various
architecture styles (stack-based), register-to-register
(ARM), etc.

e Saw more representations of data (floating point,
integers)

UNIVERSITY OF TEXASAARLINGTON

Representing Data

* Finite precision numbers
e Unsigned integers
e Signed integers
e Two’s complement
e Word ints (32-bits) vs. longs/doubles (64-bits)
e Rational numbers
* Fixed point
e Floating point
o Strings / character arrays
e ASCI|
e Unicode

UNIVERSITY OF TEXAS%ARLINGTON

Multilevel Architectures

Operating System Level / ...

Level 4

Instruction Set Architecture (ISA) Assembly /
Level Machine

Language
Microarchitecture Level

n/a/

Microcode
Digital Logic Level

Level 3

Level 2

VHDL /
Verilog

n/a/
Physics

Level 1

Level O J physical Device Level (Electronics)

66

UNIVERSITY OF TEXASAARLINGTON

Processor (CPU) Components

* Pipeline: stages (fetch, decode, execute)
e ALU: arithmetic logic unit

* MMU: memory management unit

e TLB: translation lookaside buffer (cache for virtual
memory)

e Cache (L1, L2, L3, ...)

e Caches for main memory

* Registers

* Hold values for all ongoing computations (i.e., only can do
computation on these values, otherwise first load/store)

* FPU: floating point unit

UNIVERSITY OF TEXAS%ARLINGTON

Von Neumann Architecture

Both data and program
stored in memory

Memory

(Data + Program [Instructions]) * Allows the computer to
be “re-programmed

e Input/output (I/0) goes
through CPU

e 1/0 partis not
representative of
modern systems (direct
memory access [DMA])

e Memory layout is
representative of
modern systems

68

UNIVERSITY OF TEXAS%ARLINGTON

Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from
memory)

EXECUTE
(Execute instruction

fetched from memory)

Handle PC++
Interrupt Interrupt (Increment
(Input/Output ? the Program
Event) Counter)

69

UNIVERSITY OF TEXAS%ARLINGTON
ARM 3-Stage Pipeline Processor Execution

Cycle FETCH[PC]
IR := MEM[PC]
(Get instruction from
memory at address PC)
Decoded
instruction has DECODE(IR)
PC-4 (Decode fetched instruction,
find operands)
Executed
instruction has EXECUTE
PC-8 (Execute instruction
fetched from memory)

Handle PC:=PC+4

Interrupt Y Interrupt (Increment
(Input/Output ? the Program
Event) Counter)

70

UNIVERSITY OF TEXASAARLINGTON

ARM 3 Stage Pipeline

 Stages: fetch, decode, execute

* PC value = instruction being fetched
 PC—4: instruction being decoded

* PC — 8: instruction being executed

* Beefier ARM variants use deeper pipelines (5
stages, 13 stages)

UNIVERSITY OF TEXASAARLINGTON

C to Assembly and Machine Language

* How did we go from ASM to machine language?
e Two-pass assembler

* How do we go from C to machine language?

e Compilation
e Can think of as generating ASM code, then assembling

* Optimizations

UNIVERSITY OF TEXASAARLINGTON

Instruction Set Architectures

e Interface between software and hardware

e Examples: x86, x86-64, ARM, AVR, SPARC, ALPHA, MIPS
* RISC vs. CISC

e High-level language to computer instructions

* How do we execute a high-level language (e.g., C, Python, Java)
using instructions the computer can understand?

e Compilation (translation before execution)
 Interpretation (translation-on-the-fly during execution)

* What are examples of these processes?

UNIVERSITY OF TEXASAARLINGTON

Some Questions You Should Be Able to

Answer

1. What is a register? Where is it located? How many are there?

2. What is memory? What is a memory address / location?

3. What is the difference between a register and memory?

4. What is translation (compilation)? What is interpretation?

5. How are translation and interpretation different?

6. Why do we use translators and/or interpreters?

7. If a multiply instruction is not available, how can it be created
using loops and addition?

8. What is a virtual machine?

9. What is sequential logic? How is it different than combinational

logic?

10. How is a 32-bit processor different from a 64-bit processor?

UNIVERSITY OF TEXAS%ARLINGTON

Ssummary

* Floating point (IEEE 754) oA B
e Compiler optimizations — |

»More Exam Review Next Time ~___~

Computer

; - Datapath
Evaluating
performance

Processor

75

	Computer Organization & Assembly Language Programming (CSE 2312)
	Announcements and Outline
	Floating Point
	Representing Fractional Numbers
	Fixed-Point
	Why Not Fixed-Point?
	Floating Point
	Floating Point
	Real Number Line Regions
	Floating Point Standard
	IEEE 754 Floating-Point Format
	Expressible Numbers
	Normalization
	Normalization in Binary
	Normalization in Hex
	IEEE Floating-Point Types
	IEEE Numerical Types
	IEEE 754 Example
	IEEE 754 Example
	IEEE 754 Example
	ARM Floating Point
	Single-Precision Range
	Double-Precision Range
	Floating-Point Precision
	Floating-Point Example
	Floating-Point Example
	Infinities and NaNs
	Floating-Point Addition
	Floating-Point Addition
	Accurate Arithmetic
	Who Cares About FP Accuracy?
	Floating-Point Summary
	Combining C and Assembly and Compiler Optimizations
	Compiling C
	GCC Optimization Levels
	Assembly Calls of C Functions
	Most Basic Example
	c_function_0 (with –O0)
	c_function_0 (with –O1)
	One Argument Example
	c_function_1 (with –O0)
	c_function_1 (with –O1)
	One Argument Example with Conditional
	c_function_2 (with –O0)
	c_function_2 (with –O2)
	Loop Example
	c_function_3 (with –O1)
	Compiler Optimization Summary
	ARM Architecture and Computer Organization Review
	Computer Organization Overview
	What Computer Have We Used this Semester?
	Slide Number 59
	Slide Number 60
	Why ARM?
	Why ARM?
	Why ARM?
	Course Objective Overview
	Representing Data
	Multilevel Architectures
	Processor (CPU) Components
	Von Neumann Architecture
	Abstract Processor Execution Cycle
	ARM 3-Stage Pipeline Processor Execution Cycle
	ARM 3 Stage Pipeline
	C to Assembly and Machine Language
	Instruction Set Architectures
	Some Questions You Should Be Able to Answer
	Summary

