UNIVERSITY OF TEXASAARLINGTON

Computer Organization &
Assembly Language
Programming (CSE 2312)

Lecture 28: Course Review

Taylor Johnson

UNIVERSITY OF TEXASAARLINGTON

Announcements and Outline

e Student Feedback Survey (SFS)

* Invitation by email sent on Wednesday, November 19.
* Also accessible via Blackboard
* MUST complete BEFORE Wednesday, December 3, 2014, 11pm

* PLEASE complete, very important for the university and your
future classes

* Note: university average and median ratings are ~4.25+ out of 5.0

University-wide statistics for all Mean 430 | 412 | 426 | 438 | 431 | 418
courses

included in the survey for Spring 2013 N 31,318 31,246 31,153 31,088 29,870 30,998
... used ... was well Was ...isone |

) _ ... provided teaching encouraged prepared a.\;féilable would

The instructor for this course: clearly defined | methods to | me to take foreach | itside of | recommend

expectations. help me part in my class e to other
learn. own learning. meeting.) students.

* Programming assignment 4 due 12/3 by midnight
* Course Review

UNIVERSITY OF TEXASAARLINGTON

Final Exam Details

* December 9, 2-4:30pm
e Closed book, no calculator

* Cheat sheet: one sheet of paper no larger than letter size
(8.5”x11”), both sides

 Comprehensive: also review chapters tested in midterm

 Midterm review slides:
http://www.taylortiohnson.com/class/cse2312/f14/slides/cse2312 2

014-10-0/.pdf

* Slightly more focus on programming and the 2"? half of
course material (e.g. sections we covered in chapters 3, 4,

and 5)

* Practice Final Online later this week, will email when ready
and also provide practice problems on using gdb, caches,
floating point, etc.

http://www.taylortjohnson.com/class/cse2312/f14/slides/cse2312_2014-10-07.pdf

UNIVERSITY OF TEXASAARLINGTON

Floating Point

UNIVERSITY OF TEXASAARLINGTON

IEEE 754 Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

X = (_1)8 < (1_|_ Fraction) v 2(Exponent—Bias)

* S: sign bit (0 = non-negative, 1 = negative)

* Normalize significand: 1.0 < |significand| < 2.0
* Always has a leading pre-binary-point 1 bit, so no need to represent it
explicitly (hidden bit)
* Significand is Fraction with the “1.” restored
* Exponent: excess representation: actual exponent + Bias

* Ensures exponent is unsigned
* Single: Bias = 127; Double: Bias = 1023

UNIVERSITY OF TEXAS%ARLINGTON

IEEE 754 Example

'n=signx*2°x*f
*9=0bH1.001 * 2703 =1.125*2723=1.125*8=9
* Multiply by 273 is shift right by 3

Sign Exponent Fraction
0 1000 0010 00100000000000000000000

*e = exponent — 127 (biasing)
f =1.fraction

UNIVERSITY OF TEXAS%ARLINGTON

IEEE 754 Example

'n=sign*x2°x*f
*5/4=1.25=(-1)A0 * 270 *1.25=b1.01=1 + 17-2

Sign Exponent Fraction
0 0111 1111 01000000000000000000000
+ 127-127=0 1.25

*e = exponent — 127 (biasing)
f =1.fraction

UNIVERSITY OF TEXAS%ARLINGTON

IEEE 754 Example

'n=signx*2°x*f
*-0.15625 =-5/32 =-1*b1.01 * 2~-3 = b0.00101
* Multiply by 27-3 is shift left by 3

Sign Exponent Fraction
1 0111 1100 01000000000000000000000
- 124-127=-3 1.25

*e = exponent — 127 (biasing)
f =1.fraction
«-5/32=-0.15625=-1.25/2~3=-1.25/8 =-5/(4*8)

UNIVERSITY OF TEXASAARLINGTON

ARM Floating Point

* Instructions prefixed with v, suffixed with, e.g., .f32
* Registers are sO through s31 and dO through d15
foperandA: .float 3.14

foperandB: .float 2.5

vldr.£f32 sl1, foperandA @ sl1 =
mem [foperandA]

vldr.f£32 sl1, foperandB @ s2 =
mem | foperandB]

vadd.f32 s0, sl, sZ

UNIVERSITY OF TEXASAARLINGTON

Single-Precision Range

* Exponents 00000000 and 11111111 reserved

* Smallest value

* Exponent: 00000001
—> actual exponent=1-127 =-126

* Fraction: 000...00 = significand = 1.0
*+1.0x27126=+]1.2x10738

* Largest value

* Exponent: 11111110
—> actual exponent =254 - 127 = +127

* Fraction: 111...11 = significand = 2.0
¢ +2.0 x 2127 = +3.4 x 10*38

UNIVERSITY OF TEXASAARLINGTON

Double-Precision Range

* Exponents 0000...00 and 1111...11 reserved

* Smallest value

* Exponent: 00000000001
—> actual exponent =1-1023 =-1022

* Fraction: 000...00 = significand = 1.0
¢+1.0x 271022 < 42 2 x 107308

* Largest value

* Exponent: 11111111110
—> actual exponent = 2046 — 1023 = +1023

* Fraction: 111...11 = significand = 2.0
¢ +2.0 x 2+1023 = +1 .8 x 10*308

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Example

* Represent —0.75 in floating point (IEEE 754)
«—0.75=(-1)1x 1.1, x 2
*b1.1=d1.5, and note 1.5 * %, =0.75
eS=1
* Fraction = 1000...00,

* Exponent = -1 + Bias
* Single: -1 +127=126=01111110,
* Double: -1 + 1023 = 1022 = 01111111110,

*Single: 1011111101000...00
*Double: 1011111111101000...00

n = sign * f * 2°

12

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Example

* What number is represented by the single-precision
float

11000000101000...00
*S=1 n = sign * f = 2¢
* Fraction = 01000...00,
* Exponent = 10000001, = 129
ex = (—1)! x (1 +01,) x 2(129-127)
=(—1) x 1.25 x 22
=-5.0

13

UNIVERSITY OF TEXASAARLINGTON

Infinities and NaNs

*Exponent =111...1, Fraction = 000...0
* t+Infinity

* Can be used in subsequent calculations, avoiding need for
overflow check

*Exponent =111...1, Fraction # 000...0

* Not-a-Number (NaN)

* Indicates illegal or undefined result
*e.g.,00/0.0
* Can be used in subsequent calculations

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Addition

* Consider a 4-digit decimal example
©9.999 x 10* +1.610 x 101

1. Align decimal points
* Shift number with smaller exponent
*9.999 x 10! + 0.016 x 10?

2. Add significands
9.999 x 10 + 0.016 x 10 = 10.015 x 10?

* 3. Normalize result & check for over/underflow
* 1.0015 x 102

*4. Round (4 digits!) and renormalize if necessary
« 1.002 x 102

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Addition

* Now consider a 4-digit binary example
*1.000, x 271 +-1.110, x 272 (i.e., 0.5 + —0.4375)
1. Align binary points
* Shift number with smaller exponent
*1.000, x 271 +-0.111, x 22
2. Add significands
¢ 1.000, x 271 +-0.111, x 21 = 0.001, x 2"

* 3. Normalize result & check for over/underflow
* 1.000, x 274, with no over/underflow

4. Round (4 digits!) and renormalize if necessary
* 1.000, x 274 (no change) =0.0625

UNIVERSITY OF TEXASAARLINGTON

Accurate Arithmetic

* |[EEE Std 754 specifies additional rounding control
e Extra bits of precision (guard, round, sticky)
* Choice of rounding modes
* Allows programmer to fine-tune numerical behavior of a
computation
* Not all FP units implement all options
* Most programming languages and FP libraries just use
defaults
* Trade-off between hardware complexity,
performance, and market requirements

UNIVERSITY OF TEXASAARLINGTON

Who Cares About FP Accuracy?

* Important for scientific code

* But for everyday consumer use?
* “My bank balance is out by 0.0002¢!” ®

* The Intel Pentium FDIV bug
* The market expects accuracy
* See Colwell, The Pentium Chronicles
 Cost hundreds of millions of dollars

UNIVERSITY OF TEXASAARLINGTON

Floating-Point Summary

* Floating-point
* Decimal point moves due to exponents (bit shifting)
* Positive / negative zeros

* Fixed-point
* Decimal point remains at fixed point (e.g., after bit 8)
* Spacing between these numbers and real numbers

UNIVERSITY OF TEXASAARLINGTON

Combining C and Assembly and
Compiler Optimizations

UNIVERSITY OF TEXASAARLINGTON

Compiling C

* How did we go from ASM to machine language?
e Two-pass assembler

* How do we go from C to machine language?
* Compilation

e Can think of as generating ASM code, then assembling it (use —
S option)

* Complication: optimizations
e Any time you see the word “optimization” ask yourself,
according to what metric?

* Program Speed
e Code Size
* Energy

UNIVERSITY OF TEXASAARLINGTON

GCC Optimization Levels

—Q0:Same as -01

—00: do no optimization, the default if no
optimization level is specified

-01: optimize

—-02:0ptimise even more

-03: optimize the most

—0s: Optimize for size (memory constrained devices)

UNIVERSITY OF TEXASAARLINGTON

Assembly Calls of C Functions

.globl start

_start:
mov sp, #0x12000 @ set up stack
bl ¢ function 0
bl ¢ function 1
bl ¢ function 2

bl ¢ function 3

1loop: b 1loop

UNIVERSITY OF TEXASAARLINGTON

Most Basic Example

int ¢ function 0() {

return 1;

Call via:
bl ¢ function 0

What assembly instructions make up
c function 07

UNIVERSITY OF TEXASAARLINGTON

c_function O (with —00)

10014: e52db004 push {£fp}

10018: €28db000 add fp, sp, #0,; fp = sp
1001c: e3a03005 mov r3, #1

10020: €1a00003 mov r0, r3

10024: €28bd000 add sp, fp, #0 ; sp = fp
10028: e8bd0800 pop {fp}

1002c: el2fffle Dbx 1lr

UNIVERSITY OF TEXASAARLINGTON

c_function O (with —01)

10014: e3a00001 mov rO, #1
10018: el2fffle bx lr

26

UNIVERSITY OF TEXASAARLINGTON

One Argument Example

int ¢ function 1(1int x) {

return 4*x;

Call via:
bl ¢ function 1

What assembly instructions make up
c function 17

UNIVERSITY OF TEXASAARLINGTON

c_function 1 (with —00)

10030: e52db004 push {fp}

10034: €28db000 add fp, sp, #0 ; fp = sp
10038: €24dd00c sub sp, sp, #12

1003c: e50b0008 strr0, [fp, #-8]

10040: 513008 1dr r3, [fp, #-8]

10044: 1a03103 1slr3, r3, #2

10048: €1a00003 movzr0O, r3

1004c: e28bd000 addsp, fp, #0 ; sp = fp
10050: e8bd0800 pop {fp}

10054: el2fffle Dbx 1r

UNIVERSITY OF TEXASAARLINGTON

c_function 1 (with -01)

1001lc: e1la00100 1s1 rO, r0, #2
10020: el2fffle Dbx lr

1sl: logical shift left
Shift left by 2 == multiply by 4

29

UNIVERSITY OF TEXASAARLINGTON

One Argument Example with Conditional

int ¢ function 2 (1int x) {
1f (x <= 0) {
return 1;
}
else {

return XxX;

UNIVERSITY OF TEXASAARLINGTON

c_function 2 (with —0O0)

1005c: e52db004 push {fp} ; (str fp, [sp, #-4]1!)
10060: €28db000 add fp, sp, #0

10064 : e24dd00c sub sp, sp, #12

10068: e50b0008 str r0, [fp, #-8]

1006c: e51b3008 ldr r3, [fp, #-8]

10070: 3530000 cmp r3, #0

10074: ca000001 bgt 10080 <c_ function 2+0x24>
10078: e3a03001 mov r3, #1

1007c: ea000000 b 10084 <c function 2+0x28>
10080: e51b3008 ldr r3, [fp, #-8]

10084: e1a00003 mov r0, r3

10088: €28bd000 add sp, fp, #0

1008c: e8bd0800 pop {fp}

10090: el2fffle bx 1r

31

UNIVERSITY OF TEXASAARLINGTON

c_function 2 (with -02)

10028: 3500001 cmprO, #1
1002c: b3a00001 movlt r0, #1
10030: el2fffle bx 1r

UNIVERSITY OF TEXASAARLINGTON

Loop Example

int ¢ function 3(1nt x) {

int c;

int £ = x;

for (¢ =x - 1; ¢ > 0; c——) {
f *= ¢c;

J

return f;

33

10034:
10038:
1003c:
10040:
10044 :
10048:

UNIVERSITY OF TEXASAARLINGTON

c_function 3 (with -01)

e2403001
e3530000
dl2fffle
c0000093
e2533001
lafffffc

sub
cmp
bxle
mu 1
subs
bne

<c function 3+0xc>

1004c: el2fffle bx 1r

r3, r0,
r3, #0
lr

r0, r3,
r3, r3,
10040

#1

r(
#1

UNIVERSITY OF TEXASAARLINGTON

Compiler Optimization Summary

* First point: stack frames (frame pointer register, fp)

* Second point: often times it’s safe to avoid using
push/pop and the stack

* Easier when we manually ASM write code to just go
ahead and use it (for safety and avoiding bugs), but
the compiler as we’ve seen (when using
optimization levels 1 and 2) will try to avoid the
stack if it’s safe to do so

e Why?

UNIVERSITY OF TEXASAARLINGTON

Final Exam Review

UNIVERSITY OF TEXASAARLINGTON

Course Objective Overview

* Seen how computers really compute

* Processor/memory organization: execution cycle,
registers, memory accesses, caches

* Processor operation: pipeline, fetch-decode-execute
e Computer organization: memory, buses, I/O devices

* Assembly language programming: various architecture
styles (CISC vs. RISC), register-to-register (ARM), etc.

e Saw more representations of information (machine
language instructions, floating point, integers, signed vs.
unsigned, Endianness, ASCII, Unicode, ...)

UNIVERSITY OF TEXASAARLINGTON

Digital Computers

* How do computers compute?

e Machine for carrying out instructions
* Program = sequence of instructions

* Instructions
* Add numbers
e Check if a number is zero
* Copy data between different memory locations (addresses)

* Represented as machine language (binary numbers of a certain

length) opcode srcl
 Example: 00 00 on an 8-bit computer may mean:

* Take numbers in registers O and ! (special memory locations inside the processor) and
add them together, putting their sum into register

* That is, to this computer, 00 00 means r0
* In assembly, this could be written: add r0
e Question: for this same computer, what does 00 00 mean?

* add 0, that is: r0

38

UNIVERSITY OF TEXASAARLINGTON

Computer System Overview

* CPU
e Executes instructions
* Memory Monitor
Hard
* Stores progralT Keyboard C%}ﬁgm disk drive
and data i - —
.R | [(o
uses
* Transfers data
¢ StO rage CPU Memory Video Keyboard CD-ROM l;gg
troll troll troll
. Permanent controner controier controfer controller
*|/O devices
* Input: keypad, Bus

e Qutput: printer, screen

* Both (input and output), such as:
* USB, network, Wifi, touch screen, hard drive

UNIVERSITY OF TEXAS%ARLINGTON

Computer Organization Overview

A Compiler
* ISA: hardware-software s mﬁ
interface D

* CPU

e Executes instructions

* Memory

e Stores programs and
data

* Buses

Computer

Datapath

Processor

Evaluating

* Transfers data performance

*|/O devices

* Input: keypad, mouse,
touch, .

. Output. printer, screen, ...

40

UNIVERSITY OF TEXAS%ARLINGTON

What Computer Have We Used this
Semester?

* ARM Versatilepb computer

* Full computer!
* Input
* Qutput
* Processor
* Memory
* Programs

41

S1 USB UART UART CLCD expansion
configuration ~ Mouse 0 (top) 0 (top) 2 (top) connector 2X16
switches . USB 1 (bottom) 1 (bottom) 3 (bottom) character
] N \ mllL OU [I”—'ll |_|_‘|J] 4 ‘ LCD

Line out il 4 nAa ﬂ ﬂ < <
(top)
Linein GP PUSH
(bottom) E (green LED)
Mic in .) E RESET

ﬂ:ﬂ _,_,_7_7>i;n_7- | 4 (orange LED)
FPGA = — w . DEV CHIP
debug [boooag] e ~ CONFIG
MMC | [T | o E‘EI (blue LED)

B 4 al=
O(top) FPGA
1 (bottom) ml = ~ CONFIG
I“ ¥ e (vellow LED)
Smart IlI sadl
card s3] JTAG
0 (top) - I“ oo
1 (bottom) - Ill oo Trace
Logic Tile -~ ‘ - port
expansion |\ CFGEN LED
— .
S6 GP = = (orange)
(user) Y |G = el CONFIG
switches oy - link
op P =il B 8 - O Standby/
-~ ooooooon o

(User) - g }:’E‘: ‘ljlﬁ goooo = ~ power
LEDs — v d o - Power LED
Ethernet—_ asfl|las (red)

= | oadlzs
Keyboard o ¥ I] E E ==t | ChipScope
Dynamic {k’ IL-I E E EE 7 gs:g (2),;
glxergg?i/on-’"j' = = ARMO926EJ-S E E E E ,

P =1 L Development aalles ~USB debug
AHB — [] Chip aslas . 3V3 0K
monitor 2 I FPGA _ __(green LED)

P (g 5V OK
VGA — - . (green LED)
P FEER EE
Static — HI) 8 & _ Power
memory v' Fuse
expansin | ¥ el
Battery expansion

This is a picture of the
board for the ARM
computer we’ve been
using in QEMU!

[http://infocenter.arm
.com/help/topic/com.
arm.doc.dui0224i/DUI
0224l realview platf
orm_baseboard for
arm926ej s ug.pdf]

42

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf

UNIVERSITY OF TEXASAARLINGTON

Review: Some Processor Components

CPU

Register File
* Program Counter (PC)
* Instruction Register (IR)

* General Purpose Registers
* Word size
* Typically 16-32 of these
* PC sometimes one of these

* Floating Point Registers

Arithmetic logic
unit (ALU)

A B
Y v

FWD

R

Other units (pipeline, MMU,
caches, TLB, multicores, ...)

FIoatinFFgai)nt Unit

September 4, 2014

CSE2312, Fall 2014

43

External
coprocessor

interface
CPDOUT CPDIN CPINSTR

Tt

' ITCM .
DRWDATA» TCM
interface DTCM
f ? ? Coprocessor : +—>
ETM interface |«
interface
A f A f 5 DEXT I
> e
ool
<
: DCACHE
Cach
’ acne ’
P PA Writeback }
TAGRAM | | write buffer
el PRI
interface
h 4
WDATA RDATA [DA > MMU Bus
v | interface
DMVA ’ unit
ARMO9EJ-S FCSE TLB —
iAVA '
Instruction AHB
INSTR - * int‘::?ce
A
ICACHE —_—
IROUTE '_’
—
¢
P IEXT =

This is a block
diagram of the
CPU for the
ARM computer
we’ve been
using in
QEMU!

[http://www.at
mel.com/Imag
es/arm 926ejs

trm.pdf]

44

http://www.atmel.com/Images/arm_926ejs_trm.pdf

UNIVERSITY OF TEXAS%ARLINGTON

Why ARM?

350
W x86

300
m AREM

230

200

150

o0 l
D' | |

2010 2011 2012 2013 2014 2015 2016 2017

Shiprments in millions

http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/111024 tablet_pc_architectures_do
minated_by arm_and_ios.asp 45

UNIVERSITY OF TEXAS%ARLINGTON

O Cell Phones B PCs [TVs

46

UNIVERSITY OF TEXASAARLINGTON

Why ARM?

* Easier to program

* RISC (reduced instruction set computing) vs. CISC
(complex instruction set computing)

* RISC: ARM, MIPS, SPARC, Power, (i.e., lots of
modern architectures), ...

* CISC: x86, x86-64, lots of old architectures (PDP-11,
VAX, ...)
* Note: modern x86 processors typically implemented

internally as RISC (micro-instructions / microcode), but
the programming interface is the same as x86

UNIVERSITY OF TEXASAARLINGTON

Review: ARM: Load/Store Architecture

* ARM is a load/store architecture

* This means that memory can only be accessed by load
and store instructions

* All arguments for arithmetic and logical instructions

must either:
 Come from registers
* Be constants specified within the instruction
* (more examples of that later)
* This may not seem like a big deal to you, as you have
not experienced the alternative

 However, it makes life much easier
* This is one reason why we chose ARM 7 for this course

UNIVERSITY OF TEXASAARLINGTON

ARM Arithmetic Instructions in Machine Language

Cond F | [Opcode| S Rn Rd Operand?2
1110 00 0 0100 0 0101
4 bits 2 bits 1 bit 4 bits 1bit 4bits 4 bits 12 bits

e Example: add r5, rl1,

* Cequivalent: r5 = +

* Machine language encoding above

e Opcode: 0100 means add (dependent on digital logic, some encoding)
* Rd: register destination operand. It gets the result of the operation

* Rn: first register source operand

* Operand2: second source operand

* I: Immediate. If | is O, the second source operand is a register. If | is 1,
the second source operand is a 12-bit immediate

e S: Set Condition Code
e Cond: Condition. Related to conditional branch instructions
e F: Instruction Format

UNIVERSITY OF TEXASAARLINGTON

Immediate/Literal Addressing

1. Immediate: ADD r2, r0, #5

cond| f |opcode | rn | rd |Immediate

* Operand comes from the instruction

e Example: 32-bit instruction to move 4 into R1
* ResultisR1:=4

. Useful)for specifying small integer constants (avoids extra memory
access

* Can only specify small constants (limited by size of immediate field)
* ARM: typically 8-12-bits

September 16, 2014 CSE2312, Fall 2014 50

UNIVERSITY OF TEXASAARLINGTON

Register/Register-Direct Addressing

* Operand(s) come(s) from register(s)
* Seen this many times already: ADD RO R1 R2 does RO :=
R1 +R2

* Also: MOV R1 R2: the destination operand is specified by
its register address (Result is R1 := R2)

2. Register: ADD r2, r0, r1

cond| f [opcode| m | rd |...|rm Register

Register

!

UNIVERSITY OF TEXASAARLINGTON

PC-Relative Indirect

4. PC-relative: BEQ 1000

cond opcode offset Memory

PC @ - [Byte] Half Word
|

e Uses the current PC value with an immediate offset to
determine the value
 Example: branch if equal to location PC + 1000
 Updates PC=MEM[PC + 1000]
 Example: LDR r6, [PC]
e Updates r6 = MEMI[PC]

September 16, 2014 CSE2312, Fall 2014 52

UNIVERSITY OF TEXASAARLINGTON

Indirect with Immediate Offset

5. Immediate offset: LDR r2, [r0, #8]

cond| f |opcode | rn | rd | address Memory

[Byte| Half Word

>l register

* Uses a register value and an immediate offset
e Example: LDR r2, [rO, #8]
e Updates r2 = MEMJrO + #8]

September 16, 2014 CSE2312, Fall 2014 53

UNIVERSITY OF TEXASAARLINGTON

Indirect Register Offset

6. Register offset: LDR r2, [rO, r1]

cond| f |opcode| m | rd [...]| rm Memory
|
~| register ~ [[Byte] Half Word
> register

* Uses a register value and another register value as an
offset
e Example: LDR r2, [rO, rl1]
 Updatesr2 = MEMJrO + r1]

September 16, 2014 CSE2312, Fall 2014 54

UNIVERSITY OF TEXASAARLINGTON

Making a Function

* Functions are easy to define and call in languages
like C and Java

*In assembly, calling a function requires several steps

* This reflects that the CPU can do only a limited
amount of work in a single step

* Note that, to correctly do a function call, both the
caller (program/function making the function call)
and the called function must do the right steps

UNIVERSITY OF TEXASAARLINGTON

Caller Steps
e Step 1: Put arguments in the right place.

* Specific machines use specific conventions.
* "RO-R3 hold parameters to the procedure being called".

* So:
* Argument 1 (if any) goes to rO.
* Argument 2 (if any) goes to r1.
* Argument 3 (if any) goes to r2.
* Argument 4 (if any) goes to r3.

* If there are more arguments, they have to be placed in memory.
We will worry about this case only if we encounter it.

UNIVERSITY OF TEXASAARLINGTON

Caller Steps

* Step 2: branch to the first instruction of the function.
* Here, we typically use the bl instruction, not the b instruction.

* The bl instruction, before branching, saves to register Ir (the link register,
aka r14) the return address.

* The return address is the address of the instruction that should be
executed when the function is done.

* Step 3: after the function has returned, recover the return
value, and use it.
* We will follow the convention that the return value goes to rO.
* If there is a second return value, it goes to rl.

UNIVERSITY OF TEXASAARLINGTON

Called (callee) Function Steps

e Step 1: Do the preamble:
» Allocate memory on the stack (more details in a bit).
e Save to memory the return address. Why?

» Save to memory all registers (except possibly for r0) that the function
modifies. Why?

* Step 2: Do the main body of the function.
* Assume arguments areinrQ, rl, r2, r3.
* This is where the actual work is done.

e Step 3: Do the wrap-up:
. Stori the return value (if any) on r0O, and second return value (if any)
onrl.
* Retrieve from memory the return address. Why?

* Retrieve from memory, and restore to registers, the original values of
all registers that the function modified (except possibly for r0). Why?

* Deallocate memory on the stack.
* Branch to the return address.

UNIVERSITY OF TEXAS%ARLINGTON

Assembly Language Format

Label Opcode Operands Comments
iloop: add rl,rl,#1 @ rl :=rl + 1
b iloop @ pc := iloop

val: .byte O0x9F @ put 0x96 at
address val

S : .asclz “hello!” @ put “hello!”
at sequential
addresses

starting at
address s

September 16, 2014 CSE2312, Fall 2014 59

UNIVERSITY OF TEXASAARLINGTON

Representing Data

* Finite precision numbers
* Unsigned integers
* Signed integers
e Two’s complement
* Word ints (32-bits) vs. longs/doubles (64-bits)
e Rational numbers
* Fixed point
* Floating point
* Strings / character arrays
 ASCII
e Unicode

UNIVERSITY OF TEXASAARLINGTON

Review: Two’s Complement Signed Negation
* Complement and add 1

* Complementmeans1—->0,0->1
* Representation called one’s complement

X+x=1111...111, =-1

X+1=-X

= Example: negate +2
=« +2 = 0000 0000 ... 0010,

 2=11111111 ... 1101, + 1
= 1111 1111 ... 1110,

UNIVERSITY OF TEXASAARLINGTON

Review: Hexadecimal
e Base 16

* Compact representation of bit strings
* 4 bits (also called a nibble or nybble) per hex digit

O (0000 |4 |0100 |8 |1000 |c 1100
1 (0001 (5 (0101 |9 |1001 |d |1101
2 (0010 |6 |0110 |a |1010 |e |1110
3 |0011 (|7 (0111 (b |1011 (f |1111

= Example: OXECAS8 6420
= 1110 1100 1010 1000 0110 0100 0010 0000

UNIVERSITY OF TEXASAARLINGTON

Review: Arithmetic Operations

* Add and subtract, three operands
* Operand: quantity on which an operation is performed
* Two sources and one destination

add a, b, ¢ # a updated to b + c
 All arithmetic operations have this form

* Design Principle 1: Simplicity favours regularity
* Regularity makes implementation simpler
* Simplicity enables higher performance at lower cost

UNIVERSITY OF TEXAS%ARLINGTON

Multilevel Architectures

Level 4 Operating System Level /...

Instruction Set Architecture (ISA) Assem'?'\’/
Level Machine

Language

n/a/

Microcode

Level 3

Level 2 Microarchitecture Level

VHDL /
Verilog

n/a/

Level 1 Digital Logic Level

Level O [Physical Device Level (Electronics)

Physics

64

UNIVERSITY OF TEXASAARLINGTON

Processor (CPU) Components

* Pipeline: stages (fetch, decode, execute)
* ALU: arithmetic logic unit

* MMU: memory management unit

 TLB: translation lookaside buffer (cache for virtual
memory)

e Cache (L1, L2, L3, ...)
* Caches for main memory

* Registers

* Hold values for all ongoing computations (i.e., only can do
computation on these values, otherwise first load/store)

* FPU: floating point unit

UNIVERSITY OF TEXAS%ARLINGTON

Von Neumann Architecture

Both data and program
stored in memory

Memory

(Data + Program [Instructions]) * Allows the computer to
be “re-programmed

* Input/output (I/0) goes
through CPU

* 1/0 partis not
representative of
modern systems (direct
memory access [DMA])

* Memory layout is
representative of
modern systems

66

UNIVERSITY OF TEXAS%ARLINGTON

Abstract Processor Execution Cycle

FETCH[PC]
(Get instruction from
memory)

EXECUTE
(Execute instruction

fetched from memory)

Handle PC++
Interrupt Interrupt (Increment
(Input/Output ? the Program
Event) Counter)

67

UNIVERSITY OF TEXAS%ARLINGTON
ARM 3-Stage Pipeline Processor Execution

Cycle FETCH[PC]
IR := MEM[PC]

(Get instruction from
memory at address PC)
Decoded
instruction has DECODE(IR)
PC-4 (Decode fetched instruction,
find operands)
Executed
instruction has EXECUTE
PC-8 (Execute instruction
fetched from memory)

Handle PC:=PC+4

Interrupt Y Interrupt (Increment
(Input/Output ? the Program
Event) Counter)

68

UNIVERSITY OF TEXASAARLINGTON

ARM 3 Stage Pipeline

* Stages: fetch, decode, execute

* PC value = instruction being fetched
* PC—4: instruction being decoded

* PC — 8: instruction being executed

* Beefier ARM variants use deeper pipelines (5
stages, 13 stages)

UNIVERSITY OF TEXASAARLINGTON
Un-Pipelined Laundry

6PM 7 3 9 10 11 Midnight
I

i

! Tirne

o ||

30 IilﬂﬂZﬂ 30 40 20 30 40 20 30 40 20
. | B [Clolb
5 [[= o
; S _
| & S[h7
= E—] o
"D FD 7

= o D

- M O =

UNIVERSITY OF TEXASAARLINGTON

Pipelined Laundry

6PM 7 8 9 10 11 Midnight

| -

40 40 40 40 20

& o

_.:r

B
© SPhr
o

| I = l-

UNIVERSITY OF TEXASAARLINGTON

Why Pipelining?

* Consider a five-stage pipeline
» Suppose 2ns for the cycle period

* |t takes 10ns for an instruction to progress all the way through
pipeline

* So, the machine runs at 100 MIPS?

* Actual rate: 500 MIPS

* Pipelining
* Tradeoff between latency and processor bandwidth

* Latency: how long it takes to execute an instruction
* Processor bandwidth: MIPS of the CPU

* Example

* Suppose a complex instruction should take 10 ns, under perfect
g%radl\iﬁilgngg, how many stage pipeline should we design to guarantee

 Each pipeline stage should take: 1/500 MIPS = 2 ns
* 10 ns/ 2ns =5 stages

Clock Cycle

][-INIXER-%ITY OF I_;)FEX%S

AAé{LIgGTON

Waiting
Instructions

0
||
|
|

Stage 1: Fetch . .
LLl
2 Jouoe: 1
— ge 2: Decode
= O
E Stage 3: Execute . .
o
Stage 4: Write-back O .
Completed
Instructions
00000000000000

UNIVERSITY OF TEXASAARLINGTON
Flynn’s Taxonomy

sIsD MISD * SISD: Single Instruction,
SISD Instruction Pool MISD Instruction Pool Slngle Data
* Classical Von Neumann
e SIMD: Single Instruction,
c c Multiple Data
& | ———|PU|- EIPU*-_I—'PUh e GPUs
A A : :
 MISD: Multiple Instruction,
Single Data
SIMD VD * More exotic: fault-tolerant

computers using task
SIMD Instruction Pool MIMD Instruction Pool replication (Space Shutt|e
flight control computers)

 MIMD: Multiple Instruction,
—|PU|| |PU|- Multiple Data
* Multiprocessors,

multicomputers, server
— [pul —[pul< L[pyl- farms, clusters, ...

October 16, 201 CSE2B12, Fall 2014 74

———|PU| —|Pul— =|Pu|

———|PU|

Data Pool
Data Pool

————|PU|

—|PUl— |PU|

UNIVERSITY OF TEXASAARLINGTON

C to Assembly and Machine Language

* How did we go from ASM to machine language?
* Two-pass assembler

* How do we go from C to machine language?
* Compilation
* Can think of as generating ASM code, then assembling

* Optimizations

UNIVERSITY OF TEXAS%ARLINGTON

Linker Process

Object file
sub:
Object file . Executable file
Instructions | main: main:
Ja iz jal printf
[] "]
Ja iz jal sub
. P T
Relocati call, sub Linker .
elocafion e NN N :
records .
A sub:
C library .
—
pirints :

September 30, 2014 CSE2312, Fall 2014 76

UNIVERSITY OF TEXASAARLINGTON

Assembly Process

T T T
Source A bl Object
file [T QOCCSEREE— gl M
/_ /\‘
Source I8 bl | Object 5 _ ’ Executable
file > [EErsEEmDICE " file > Linker _>P file
/_ /_ =y
/—_ /\
Source N | Object Program
file » Assembler B file B
/_ /_

The process that produces an executable file. An assembler translates a file of
assembly language into an object file, which is linked with other files and
libraries into an executable file.

October 7, 2014 CSE2312, Fall 2014 77

UNIVERSITY OF TEXASAARLINGTON

QEMU

* Virtual machine: Quick-Emulator: http://www.gemu.org
 “QEMU is a generic and open source machine emulator and virtualizer.”

* “When used as a machine emulator, QEMU can run OSes and programs
made for one machine (e.g. an ARM board) on a different machine (e.g.
your own PC). By using dynamic translation, it achieves very good
performance.”

* “When used as a virtualizer, QEMU achieves near native performances
by executing the guest code directly on the host CPU. QEMU supports
virtualization when executing under the Xen hypervisor or using the KVM
kernel module in Linux. When using KVM, QEMU can virtualize x86,
server and embedded PowerPC, and S390 guests.”

* QEMU runs like any other Linux process/program

http://www.qemu.org/

UNIVERSITY OF TEXASAARLINGTON

GDB Commands

b label
Sets a breakpoint at a specific label in your source code file. In practice, for some weird reason, the code
actually breaks not at the label that you specify, but after executing the next line.

* b line number
Sets a breakpoint at a specific line in your source code file. In practice, for some weird reason, the code actually
breaks not at the line that you specify, but at the line right after that.

e C
Continues program execution until it hits the next breakpoint.

ir
Shows the contents of all registers, in both hexadecimal and decimal representations; short for info
registers

* list

Shows a list of instructions around the line of code that is being executed.
* quit

This command quits the debugger, and exits GDB.

+ stepi N
This command executes the next instruction.

* set Sregister=val
set $Spc=0
This command updates a register to be equal to val, for example, to restart your program, set the PCto 0

* monitor quit

Send the remote monitor (e.g., QEMU in our case) a command, in this case, tell QEMU to terminate; Call this
before quiting gdb so that the QEMU process gets killed!

October 7, 2014 CSE2312, Fall 2014 79

UNIVERSITY OF TEXASAARLINGTON

Instruction Set Architectures

e Interface between software and hardware

* Examples: x86, x86-64, ARM, AVR, SPARC, ALPHA, MIPS
* RISC vs. CISC

* High-level language to computer instructions

* How do we execute a high-level language (e.g., C, Python, Java)
using instructions the computer can understand?
* Compilation (translation before execution)
* Interpretation (translation-on-the-fly during execution)

* What are examples of these processes?

UNIVERSITY OF TEXASAARLINGTON

Memory-Mapped /O

* Some of our original examples displayed output to
console by writing to a special memory address

.€Ju
ldr
mov
str

ADDR UARTO, 0x101£1000

r0,=ADDR UARTO0@Q r0 := Ox 101f 1000
r2,#"a’ @ R2 := ‘a’
r2, [r0] @ MEM[rQO] := r2

* How does this work? Memory Mapped I/O

» Registers on peripheral devices (keyboards, monitors, network
controllers, etc.) are addressable in same address space as
main memory, and their values are mapped (i.e., readable /
writeable at certain addresses)

* How to read input values?
* Polling vs. interrupts

October 28, 2014

OXFFFFFFFF

Ox80000000

Ox78000000

Ox70000000

Ox410600000

Ox40000000

0x20000000
0x14000000

Ox101F5000
0x10000000

0x08000000

Ox00000000

SSP

Static expansion socket UART 2
(CS3 0x3C000000) UART 1
UART O
2MB SRAM SCI o
Logic Tile expansion (CS2 Bx38000000)
(AHB M1) NOR flash Reserved
(CS1 9x34000000) RTC
Disk On Chip flash GPI0 3
13 n Ip 1ias
(CSO 0x30000000) gg:gf
EYS::;%;“:D’"EEQ{ Static expansion socket GPIO 0
X |
7
(MPMC CS3) St(ct:'s E’“ZC?W@T t Timers 2 & 3
atic expansion socke -
Dynamic memory (CS6 0x28000000) Timers 0 & 1
exiﬁ;?:ﬂog é%czl?:‘ll Static expansion socket S ::Gcr;dn?f;oller
(CS5 Bx24000000) ¥s :
- - AHB Monitor
PCI bus Static expansion socket R 3
(CS4 0x20000000) eserve
MBX VIC
DMAC
CLCD
satcmonoy |/ | egemnme | [WPG cooution
(SSMC CSx) on a Versatile Logic Tile SMC configuration
that is to be accessed at Reserved
0@x0 during boot remapping UsB
AHB M2 EXP Ethernet
Reserved Reserved
Registers Mel 1
g SCI 1
- ‘ UART 3
ynamic expansion Character LCD
socket During boot remapping, KMI 1
(MPMC C51) memory between
0x00000000 and KMI 0
Ox04000000 is mapped to MCI 0O
either:
SDRAM NOR flash SSMC CS1, AAC
(MPMC CS0) DOC flash SSMC CSO0, AIC
Expansion SSMC CS3, Serial Bus
or AHB M2 memory PCI control

CSE2312, Fall 2014

System registers

A\RLINGTON

82

Dx20000000
Bx14000000

Bx101F5000
Px10000000

Bx08000000

Bx00000000

October 28, 2014

B S e = T o T e —~ — - -

—~

/, .

/ CLCD
: This region is typically MPMC configuration
Static memory used for AHB M2 memory SMC conf ?Jrati-:]n
(SSMC CSx) on a Versatile Logic Tile 3
that is to be accessed at Reserved
@x@ during boot remapping USB
AHB M2 EXP Ethernet
Reserved Reserved
Registers e
g SCI 1
5 . 1 UART 3
ynamic expansion Character LCD
socket During boot remapping, ar;M:al;
(MPMC CS1) memory between
Bx00000000 and KMI 0
Ox04000000 is mapped to MCI O
either:
SDRAM NOR flash SSMC CS51, AAC
(MPMC CS0) DOC flash SSMC CSO0, AIC
Expansion SSMC CS3, Serial Bus
or AHB M2 memory PCI control

CSE2312, Fall 2014

System registers

83

OXFFFFFFFF

Ox80000000

Bx78000000

Ox70000000

0x41000000

Bx40000000

Logic Tile expansion
(AHB M1)

Dynamic memory
expansion socket
(MPMC CS3)

Dynamic memaory
expansion socket
(MPMC CS2)

PCI bus

MBX

October 28, 2014

SSP

Static expansion socket
(CS3 Ox3CO00000)

UART 2

UART 1

2MB SRAM
(CS2 O9x38000000)

UART O

SCI 0

NOR flash
(CS1 9x34000000)

Reserved

RTC

Disk On Chip flash
(CS0 9x30000000)

GPIO 3

GPIO 2

Static expansion socket
(CS7 0x2C000000)

GPIO 1

GPIO 0

Static expansion socket
(CS6 0x28000000)

Timers 2 & 3

Timers 0 & 1

Static expansion socket
(CSH Ox24000000)

Watchdog

System controller

Static expansion socket
(CS4 Ox20000000)

AHB Monitor

Reserved

/.

VIC

DMAC

CSE2312, Fall 2014

CLCD

84

UNIVERSITY OF TEXAS%ARLINGTON

/ Cache \
Bigger
Slower Main memory \
/ Magnetic or solid state disk \
/ Tape Optical disk \

October 30, 2014 CSE2312, Fall 2014 85

Memory Hierarchy

UNIVERSITY OF TEXASAARLINGTON

Cache Hit: find necessary data in cache

Viain
_memory

CPU

Bus

UNIVERSITY OF TEXASAARLINGTON
Cache Miss: have to get necessary data from

main memory

Viain
memory

Cache Miss

Bus

October 30, 2014 CSE2312, Fall 2014 87

UNIVERSITY OF TEXASAARLINGTON

Cache Terms

* Cache line: block of cells inside a cache
 Usually store several words in a line (e.g., store 32 bytes on 32-bit
word CPU)
e Cache hit: memory access finds value in cache
* Antonym: cache miss: have to get it from main memory

* Spatial locality: likely we need data from addresses around
one we’re requesting (example: array operations)

* Mean access time: C+ (1 —H) * M
* C: cache access time
* M: main memory access time (usually M >>C, e.g., M > 100 * C)
* H: hit ratio: probability to find a value in the cache
* miss ratio: 1 —H

* Time cost of cache miss: C+ M memory access time

UNIVERSITY OF TEXASAARLINGTON

Associative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ad 2 I 12 J 2

e s TTTTTTT]

November 4, 2014 89

UNIVERSITY OF TEXASAARLINGTON

Virtual Memory

* Use main memory as a “cache” for secondary (disk)
storage

* Managed jointly by CPU hardware and the operating
system (OS)
* Programs share main memory

* Each gets a private virtual address space holding its
frequently used code and data

* Protected from other programs

* CPU and OS translate virtual addresses to physical
addresses
* VM “block” is called a page
* VM translation “miss” is called a page fault

UNIVERSITY OF TEXASAARLINGTON

Address Translation

* Fixed-size pages (e.g., 4K) Virtual address
Virtual addresses Physical addresses 3130292827 «+--vverrnrreriineenes 15141312111098 ---------- 3210
. Address translation
| Virtual page number Page offset
t\\
[—
\
(Translation)
\
0—7b<
4
Disk addresses 202827 creeereiidieeiieenn 15141312111098 ---peveeee 3210
Physical page number Page offset

Physical address

91

UNIVERSITY OF TEXASAARLINGTON

Error Detection — Error Correction

* Memory data can get corrupted, due to things like:
* \Voltage spikes.
* Cosmic rays.

*The goal in error detection is to come up with ways
to tell if some data has been corrupted or not.

* The goal in error correction is to not only detect
errors, but also be able to correct them.

* Both error detection and error correction work by
attaching additional bits to each memory word.

* Fewer extra bits are needed for error detection,
more for error correction.

UNIVERSITY OF TEXAS%ARLINGTON

Parity Bits - Examples

e Size of original word: m = 8.

Original Number of |Codeword (9
Word (8 bits) | 1s in Original | bits): Original
Word Word + Parity Bit
01101101 5 011011011
00110000 2 001100000
11100001 4 111000010
01011110 5 010111101

93

UNIVERSITY OF TEXAS

Some Questions You Should Be Able to
Answer

© o NV A WwN e

NN R R R R R R R R R
PO L o0 Nk WDNRER O

How do computers compute?

What is a register? Where is it located? How many are there?

What is memory? What is a memory address / location?

What is the difference between a register and memory?

What is a cache? What is the memory hierarchy? Why does it exist?
What is translation (compilation)? What is interpretation?

How are translation and interpretation different?

Why do we use translators and/or interpreters?

If a multiply instruction is not available, how can it be created using loops and addition?
What is a virtual machine? What is QEMU?

What is sequential logic? How is it different than combinational logic?
How is a 32-bit processor different from a 64-bit processor?

ARLINGTON

How can you convert C code to assembly? How can you do this for example programs by hand?

How is performance evaluated? Why are benchmarks used?

How does the stack work? What do push and pop do? Why do we have the stack?
What is recursion? What is an iterative program?

What are the common addressing modes for ARM and how do you use them?
What is RISC vs. CISC? What is a Von Neumann architecture?

How can gdb be used to help you understand, write, and debug programs? Hint: know how to use this!

What are the ALU, FPU, MMU, TLB, CPU, etc.? What are the main computer components?
What is ECC used for? How does parity work for detecting errors?

UNIVERSITY OF TEXAS%ARLINGTON

Ssummary

* Floating point (IEEE 754) $ \ compier

* Compiler optimizations P |
] Interface <y
* Exam Review R —

Computer

2

Evaluating
performance

L :
Datapath b -
! ‘h&g Ny _

Processor

95

