
Computer Organization & 
Assembly Language 

Programming (CSE 2312)
Lecture 28: Course Review

Taylor Johnson



Announcements and Outline

• Student Feedback Survey (SFS)
• Invitation by email sent on Wednesday, November 19.
• Also accessible via Blackboard
• MUST complete BEFORE Wednesday, December 3, 2014, 11pm
• PLEASE complete, very important for the university and your 

future classes
• Note: university average and median ratings are ~4.25+ out of 5.0

• Programming assignment 4 due 12/3 by midnight

• Course Review
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Final Exam Details

• December 9, 2-4:30pm
• Closed book, no calculator
• Cheat sheet: one sheet of paper no larger than letter size 

(8.5”x11”), both sides
• Comprehensive: also review chapters tested in midterm

• Midterm review slides: 
http://www.taylortjohnson.com/class/cse2312/f14/slides/cse2312_2
014-10-07.pdf

• Slightly more focus on programming and the 2nd half of 
course material (e.g. sections we covered in chapters 3, 4, 
and 5)

• Practice Final Online later this week, will email when ready 
and also provide practice problems on using gdb, caches, 
floating point, etc.

3

http://www.taylortjohnson.com/class/cse2312/f14/slides/cse2312_2014-10-07.pdf


Floating Point
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IEEE 754 Floating-Point Format

• S: sign bit (0  non-negative, 1  negative)

• Normalize significand: 1.0 ≤ |significand| < 2.0
• Always has a leading pre-binary-point 1 bit, so no need to represent it 

explicitly (hidden bit)
• Significand is Fraction with the “1.” restored

• Exponent: excess representation: actual exponent + Bias
• Ensures exponent is unsigned
• Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x 
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IEEE 754 Example

•𝑛 = 𝑠𝑖𝑔𝑛 ∗ 2𝑒 ∗ 𝑓

• 9 = b1.001 * 2^3 = 1.125 * 2^3 = 1.125 * 8 = 9

• Multiply by 2^3  is shift right by 3

• e = exponent – 127 (biasing)

• f = 1.fraction
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IEEE 754 Example

•𝑛 = 𝑠𝑖𝑔𝑛 ∗ 2𝑒 ∗ 𝑓

• 5/4 = 1.25 = (-1)^0 * 2^0 * 1.25 = b1.01 = 1 + 1^-2

• e = exponent – 127 (biasing)

• f = 1.fraction
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Sign Exponent Fraction

0 0111 1111 01000000000000000000000

+ 127-127=0 1.25



IEEE 754 Example

•𝑛 = 𝑠𝑖𝑔𝑛 ∗ 2𝑒 ∗ 𝑓

• -0.15625 = -5/32 = -1*b1.01 * 2^-3 = b0.00101
• Multiply by 2^-3  is shift left by 3

• e = exponent – 127 (biasing)
• f = 1.fraction
• -5/32 = -0.15625 = -1.25 / 2^3 = -1.25 / 8 = -5/(4*8)
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Sign Exponent Fraction

1 0111 1100 01000000000000000000000

- 124-127=-3 1.25



ARM Floating Point

• Instructions prefixed with v, suffixed with, e.g., .f32

• Registers are s0 through s31 and d0 through d15

foperandA: .float 3.14

foperandB: .float 2.5

vldr.f32 s1, foperandA @ s1 = 

mem[foperandA]

vldr.f32 s1, foperandB @ s2 = 

mem[foperandB]

vadd.f32 s0, s1, s2
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Single-Precision Range

• Exponents 00000000 and 11111111 reserved
• Smallest value

• Exponent: 00000001
 actual exponent = 1 – 127 = –126

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–126 ≈ ±1.2 × 10–38

• Largest value
• Exponent: 11111110
 actual exponent = 254 – 127 = +127

• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+127 ≈ ±3.4 × 10+38

10



Double-Precision Range

• Exponents 0000…00 and 1111…11 reserved
• Smallest value

• Exponent: 00000000001
 actual exponent = 1 – 1023 = –1022

• Fraction: 000…00  significand = 1.0
• ±1.0 × 2–1022 ≈ ±2.2 × 10–308

• Largest value
• Exponent: 11111111110
 actual exponent = 2046 – 1023 = +1023

• Fraction: 111…11  significand ≈ 2.0
• ±2.0 × 2+1023 ≈ ±1.8 × 10+308
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Floating-Point Example

• Represent –0.75 in floating point (IEEE 754)
• –0.75 = (–1)1 × 1.12 × 2–1

• b1.1 = d1.5, and note 1.5 * ½ = 0.75
• S = 1

• Fraction = 1000…002

• Exponent = –1 + Bias
• Single: –1 + 127 = 126 = 011111102

• Double: –1 + 1023 = 1022 = 011111111102

• Single: 1011111101000…00

• Double: 1011111111101000…00
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𝑛 = 𝑠𝑖𝑔𝑛 ∗ 𝑓 ∗ 2𝑒



Floating-Point Example

• What number is represented by the single-precision 
float

11000000101000…00
• S = 1
• Fraction = 01000…002

• Exponent = 100000012 = 129

• x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0
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𝑛 = 𝑠𝑖𝑔𝑛 ∗ 𝑓 ∗ 2𝑒



Infinities and NaNs

• Exponent = 111...1, Fraction = 000...0
• ±Infinity
• Can be used in subsequent calculations, avoiding need for 

overflow check

• Exponent = 111...1, Fraction ≠ 000...0
• Not-a-Number (NaN)
• Indicates illegal or undefined result

• e.g., 0.0 / 0.0

• Can be used in subsequent calculations
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Floating-Point Addition

• Consider a 4-digit decimal example
• 9.999 × 101 + 1.610 × 10–1

• 1. Align decimal points
• Shift number with smaller exponent
• 9.999 × 101 + 0.016 × 101

• 2. Add significands
• 9.999 × 101 + 0.016 × 101 = 10.015 × 101

• 3. Normalize result & check for over/underflow
• 1.0015 × 102

• 4. Round (4 digits!) and renormalize if necessary
• 1.002 × 102
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Floating-Point Addition

• Now consider a 4-digit binary example
• 1.0002 × 2–1 + –1.1102 × 2–2 (i.e., 0.5 + –0.4375)

• 1. Align binary points
• Shift number with smaller exponent
• 1.0002 × 2–1 + –0.1112 × 2–1

• 2. Add significands
• 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

• 3. Normalize result & check for over/underflow
• 1.0002 × 2–4, with no over/underflow

• 4. Round (4 digits!) and renormalize if necessary
• 1.0002 × 2–4 (no change)  = 0.0625
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Accurate Arithmetic

• IEEE Std 754 specifies additional rounding control
• Extra bits of precision (guard, round, sticky)
• Choice of rounding modes
• Allows programmer to fine-tune numerical behavior of a 

computation

• Not all FP units implement all options
• Most programming languages and FP libraries just use 

defaults

• Trade-off between hardware complexity, 
performance, and market requirements
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Who Cares About FP Accuracy?

• Important for scientific code
• But for everyday consumer use?

• “My bank balance is out by 0.0002¢!” 

• The Intel Pentium FDIV bug
• The market expects accuracy
• See Colwell, The Pentium Chronicles
• Cost hundreds of millions of dollars
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Floating-Point Summary

• Floating-point
• Decimal point moves due to exponents (bit shifting)
• Positive / negative zeros

• Fixed-point
• Decimal point remains at fixed point (e.g., after bit 8)

• Spacing between these numbers and real numbers
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Combining C and Assembly and 
Compiler Optimizations
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Compiling C

• How did we go from ASM to machine language?
• Two-pass assembler

• How do we go from C to machine language?
• Compilation
• Can think of as generating ASM code, then assembling it (use –

S option)

• Complication: optimizations
• Any time you see the word “optimization” ask yourself, 

according to what metric?
• Program Speed
• Code Size
• Energy
• …
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GCC Optimization Levels

-O: Same as -O1

-O0: do no optimization, the default if no 
optimization level is specified

-O1: optimize

-O2:optimise even more

-O3: optimize the most

-Os: Optimize for size (memory constrained devices)
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Assembly Calls of C Functions

.globl _start

_start:

mov sp, #0x12000 @ set up stack

bl c_function_0

bl c_function_1

bl c_function_2

bl c_function_3

iloop: b iloop
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Most Basic Example

int c_function_0() {

return 1;

}

Call via:

bl c_function_0

What assembly instructions make up 
c_function_0?
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c_function_0 (with –O0)

10014: e52db004 push {fp}

10018: e28db000 add fp, sp, #0; fp = sp

1001c: e3a03005 mov r3, #1

10020: e1a00003 mov r0, r3

10024: e28bd000 add sp, fp, #0 ; sp = fp

10028: e8bd0800 pop {fp}

1002c: e12fff1e bx lr
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c_function_0 (with –O1)

10014: e3a00001 mov r0, #1

10018: e12fff1e bx lr
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One Argument Example

int c_function_1(int x) {

return 4*x;

}

Call via:

bl c_function_1

What assembly instructions make up 
c_function_1?
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c_function_1 (with –O0)

10030: e52db004 push {fp}

10034: e28db000 add fp, sp, #0 ; fp = sp

10038: e24dd00c sub sp, sp, #12

1003c: e50b0008 str r0, [fp, #-8]

10040: e51b3008 ldr r3, [fp, #-8]

10044: e1a03103 lsl r3, r3, #2

10048: e1a00003 mov r0, r3

1004c: e28bd000 add sp, fp, #0 ; sp = fp

10050: e8bd0800 pop {fp}

10054: e12fff1e bx lr
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c_function_1 (with –O1)

1001c: e1a00100 lsl r0, r0, #2

10020: e12fff1e bx lr

lsl: logical shift left

Shift left by 2 == multiply by 4
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One Argument Example with Conditional

int c_function_2(int x) {

if (x <= 0) {

return 1;

}

else {

return x;

}

}
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c_function_2 (with –O0)

1005c: e52db004 push {fp} ; (str fp, [sp, #-4]!)

10060: e28db000 add fp, sp, #0

10064: e24dd00c sub sp, sp, #12

10068: e50b0008 str r0, [fp, #-8]

1006c: e51b3008 ldr r3, [fp, #-8]

10070: e3530000 cmp r3, #0

10074: ca000001 bgt 10080 <c_function_2+0x24>

10078: e3a03001 mov r3, #1

1007c: ea000000 b 10084 <c_function_2+0x28>

10080: e51b3008 ldr r3, [fp, #-8]

10084: e1a00003 mov r0, r3

10088: e28bd000 add sp, fp, #0

1008c: e8bd0800 pop {fp}

10090: e12fff1e bx lr
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c_function_2 (with –O2)

10028: e3500001 cmpr0, #1

1002c: b3a00001 movlt r0, #1

10030: e12fff1e bx lr
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Loop Example

int c_function_3(int x) {

int c;

int f = x;

for (c = x - 1; c > 0; c--) {

f *= c;

}

return f;

}
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c_function_3 (with –O1)

10034: e2403001 sub r3, r0, #1

10038: e3530000 cmp r3, #0

1003c: d12fff1e bxle lr

10040: e0000093 mul r0, r3, r0

10044: e2533001 subs r3, r3, #1

10048: 1afffffc bne 10040 

<c_function_3+0xc>

1004c: e12fff1e bx lr
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Compiler Optimization Summary

• First point: stack frames (frame pointer register, fp)

• Second point: often times it’s safe to avoid using 
push/pop and the stack

• Easier when we manually ASM write code to just go 
ahead and use it (for safety and avoiding bugs), but 
the compiler as we’ve seen (when using 
optimization levels 1 and 2) will try to avoid the 
stack if it’s safe to do so

• Why?
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Final Exam Review
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Course Objective Overview

• Seen how computers really compute

• Processor/memory organization: execution cycle, 
registers, memory accesses, caches

• Processor operation: pipeline, fetch-decode-execute

• Computer organization: memory, buses, I/O devices

• Assembly language programming: various architecture 
styles (CISC vs. RISC), register-to-register (ARM), etc.

• Saw more representations of information (machine 
language instructions, floating point, integers, signed vs. 
unsigned, Endianness, ASCII, Unicode, …)
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Digital Computers

• How do computers compute?
• Machine for carrying out instructions

• Program = sequence of instructions

• Instructions
• Add numbers
• Check if a number is zero
• Copy data between different memory locations (addresses)
• Represented as machine language (binary numbers of a certain 

length)

• Example:  00

𝑜𝑝𝑐𝑜𝑑𝑒

 10

𝑑𝑒𝑠𝑡

 01

𝑠𝑟𝑐0

 00

𝑠𝑟𝑐1

on an 8-bit computer may mean:
• Take numbers in registers 0 and 1 (special memory locations inside the processor) and 

add them together, putting their sum into register 2
• That is, to this computer, 00100100means 𝑟2 = 𝑟1 + 𝑟0
• In assembly, this could be written: add r2 r1 r0

• Question: for this same computer, what does 00000000 mean?
• add r0 r0 r0, that is: 𝑟0 = 𝑟0 + 𝑟0
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Computer System Overview

• CPU
• Executes instructions 

• Memory
• Stores programs 

and data 

• Buses
• Transfers data 

• Storage
• Permanent

• I/O devices
• Input: keypad, mouse, touch
• Output: printer, screen
• Both (input and output), such as:

• USB, network, Wifi, touch screen, hard drive
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Computer Organization Overview

• ISA: hardware-software 
interface

• CPU
• Executes instructions 

• Memory
• Stores programs and 

data 

• Buses
• Transfers data 

• I/O devices
• Input: keypad, mouse, 

touch, …
• Output: printer, screen, …

40



What Computer Have We Used this 
Semester?

• ARM Versatilepb computer

• Full computer!
• Input
• Output
• Processor
• Memory
• Programs
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This is a picture of the 
board for the ARM 
computer we’ve been 
using in QEMU!

[http://infocenter.arm
.com/help/topic/com.
arm.doc.dui0224i/DUI
0224I_realview_platf
orm_baseboard_for_
arm926ej_s_ug.pdf]

http://infocenter.arm.com/help/topic/com.arm.doc.dui0224i/DUI0224I_realview_platform_baseboard_for_arm926ej_s_ug.pdf


Review: Some Processor Components
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CPU

Register File
• Program Counter (PC)
• Instruction Register (IR)
• General Purpose Registers

• Word size
• Typically 16-32 of these
• PC sometimes one of these

• Floating Point Registers

Arithmetic logic 
unit (ALU)

Floating Point Unit 
(FPU)

Other units (pipeline, MMU, 
caches, TLB, multicores, …)
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This is a block 
diagram of the 
CPU for the 
ARM computer 
we’ve been 
using in 
QEMU!

[http://www.at
mel.com/Imag
es/arm_926ejs
_trm.pdf] 

http://www.atmel.com/Images/arm_926ejs_trm.pdf


Why ARM?
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http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/111024_tablet_pc_architectures_do
minated_by_arm_and_ios.asp



Why ARM?
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Why ARM?

• Easier to program

• RISC (reduced instruction set computing) vs. CISC 
(complex instruction set computing)

• RISC: ARM, MIPS, SPARC, Power, (i.e., lots of 
modern architectures), …

• CISC: x86, x86-64, lots of old architectures (PDP-11, 
VAX, …)

• Note: modern x86 processors typically implemented 
internally as RISC (micro-instructions / microcode), but 
the programming interface is the same as x86
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Review: ARM: Load/Store Architecture

• ARM is a load/store architecture

• This means that memory can only be accessed by load 
and store instructions

• All arguments for arithmetic and logical instructions 
must either:

• Come from registers
• Be constants specified within the instruction

• (more examples of that later)

• This may not seem like a big deal to you, as you have 
not experienced the alternative

• However, it makes life much easier
• This is one reason why we chose ARM 7 for this course

48September 4, 2014 CSE2312, Fall 2014



ARM Arithmetic Instructions in Machine Language

• Example: add r5, r1, r2

• C equivalent: r5 = r1 + r2

• Machine language encoding above
• Opcode: 0100 means add (dependent on digital logic, some encoding)
• Rd: register destination operand. It gets the result of the operation
• Rn:   first register source operand
• Operand2:   second source operand
• I:  Immediate. If I is 0, the second source operand is a register. If I is 1, 

the second source operand is a 12-bit immediate
• S:   Set Condition Code
• Cond:   Condition. Related to conditional branch instructions
• F:   Instruction Format
September 4, 2014 CSE2312, Fall 2014 49

1110 00 0 0100 0 0001

4 bits 4 bits2 bits 1 bit 4 bits 1 bit

0101 0000 0000 0010

4 bits 12 bits

Cond F I Opcode S Rn Rd Operand2



Immediate/Literal Addressing

• Operand comes from the instruction
• Example: 32-bit instruction to move 4 into R1

• Result is R1 := 4
MOV R1 #4

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 #4
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑

• Useful for specifying small integer constants (avoids extra memory 
access)

• Can only specify small constants (limited by size of immediate field)
• ARM: typically 8-12-bits

September 16, 2014 CSE2312, Fall 2014 50



Register/Register-Direct Addressing

• Operand(s) come(s) from register(s)
• Seen this many times already: ADD R0 R1 R2 does R0 := 

R1 + R2
• Also: MOV R1 R2: the destination operand is specified by 

its register address (Result is R1 := R2)

𝑀𝑂𝑉
𝑜𝑝𝑐𝑜𝑑𝑒
𝑓𝑖𝑒𝑙𝑑

 𝑅1

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟
𝑓𝑖𝑒𝑙𝑑

 𝑅2
𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒
𝑓𝑖𝑒𝑙𝑑
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PC-Relative Indirect

September 16, 2014 CSE2312, Fall 2014 52

• Uses the current PC value with an immediate offset to 
determine the value

• Example: branch if equal to location PC + 1000
• Updates PC = MEM[PC + 1000]

• Example: LDR r6, [PC]
• Updates r6 = MEM[PC]



Indirect with Immediate Offset
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• Uses a register value and an immediate offset
• Example: LDR r2, [r0, #8]

• Updates r2 = MEM[r0 + #8]



Indirect Register Offset

September 16, 2014 CSE2312, Fall 2014 54

• Uses a register value and another register value as an 
offset

• Example: LDR r2, [r0, r1]
• Updates r2 = MEM[r0 + r1]



Making a Function

• Functions are easy to define and call in languages 
like C and Java

• In assembly, calling a function requires several steps

• This reflects that the CPU can do only a limited 
amount of work in a single step

• Note that, to correctly do a function call, both the 
caller (program/function making the function call) 
and the called function must do the right steps

55September 18, 2014 CSE2312, Fall 2014



Caller Steps 
• Step 1: Put arguments in the right place.

• Specific machines use specific conventions.
• "R0-R3 hold parameters to the procedure being called".

• So:
• Argument 1 (if any) goes to r0.

• Argument 2 (if any) goes to r1.

• Argument 3 (if any) goes to r2.

• Argument 4 (if any) goes to r3.

• If there are more arguments, they have to be placed in memory. 
We will worry about this case only if we encounter it.
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Caller Steps 
• Step 2: branch to the first instruction of the function.

• Here, we typically use the bl instruction, not the b instruction.

• The bl instruction, before branching, saves to register lr (the link register, 
aka r14) the return address.

• The return address is the address of the instruction that should be 
executed when the function is done.

• Step 3: after the function has returned, recover the return 
value, and use it.

• We will follow the convention that the return value goes to r0.

• If there is a second return value, it goes to r1.

57September 18, 2014 CSE2312, Fall 2014



Called (callee) Function Steps

• Step 1: Do the preamble: 
• Allocate memory on the stack (more details in a bit).
• Save to memory the return address. Why?
• Save to memory all registers (except possibly for r0) that the function 

modifies. Why?

• Step 2: Do the main body of the function.
• Assume arguments are in r0, r1, r2, r3.
• This is where the actual work is done.

• Step 3: Do the wrap-up:
• Store the return value (if any) on r0, and second return value (if any) 

on r1.
• Retrieve from memory the return address. Why?
• Retrieve from memory, and restore to registers, the original values of 

all registers that the function modified (except possibly for r0). Why?
• Deallocate memory on the stack.
• Branch to the return address.
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Assembly Language Format

September 16, 2014 CSE2312, Fall 2014 59

Label Opcode Operands Comments

iloop: add r1,r1,#1 @ r1 := r1 + 1

b iloop @ pc := iloop

val: .byte 0x9F @ put 0x96 at 

address val

s: .asciz “hello!” @ put “hello!” 

at sequential 

addresses 

starting at 

address s



Representing Data

• Finite precision numbers
• Unsigned integers
• Signed integers

• Two’s complement

• Word ints (32-bits) vs. longs/doubles (64-bits)
• Rational numbers

• Fixed point

• Floating point

• Strings / character arrays
• ASCII
• Unicode
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Review: Two’s Complement Signed Negation
• Complement and add 1

• Complement means 1 → 0, 0 → 1
• Representation called one’s complement

x1x

11111...111xx 2





 Example: negate +2

 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102

September 4, 2014 61CSE2312, Fall 2014



Review: Hexadecimal
• Base 16

• Compact representation of bit strings
• 4 bits (also called a nibble or nybble) per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: 0xECA8 6420

 1110 1100 1010 1000 0110 0100 0010 0000
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Review: Arithmetic Operations

• Add and subtract, three operands
• Operand: quantity on which an operation is performed
• Two sources and one destination

add a, b, c  # a updated to b + c

• All arithmetic operations have this form

• Design Principle 1: Simplicity favours regularity
• Regularity makes implementation simpler

• Simplicity enables higher performance at lower cost

September 4, 2014 63CSE2312, Fall 2014



Multilevel Architectures

64

Physical Device Level (Electronics)

Digital Logic Level

Microarchitecture Level

Instruction Set Architecture (ISA) 
Level

Operating System Level

Level 0

Level 1

Level 2

Level 3

Level 4

n/a / 
Physics

VHDL / 
Verilog

n/a / 
Microcode

Assembly / 
Machine 
Language

C / …



Processor (CPU) Components

• Pipeline: stages (fetch, decode, execute)
• ALU: arithmetic logic unit
• MMU: memory management unit

• TLB: translation lookaside buffer (cache for virtual 
memory)

• Cache (L1, L2, L3, …)
• Caches for main memory

• Registers
• Hold values for all ongoing computations (i.e., only can do 

computation on these values, otherwise first load/store)

• FPU: floating point unit
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Von Neumann Architecture

• Both data and program 
stored in memory

• Allows the computer to 
be “re-programmed”

• Input/output (I/O) goes 
through CPU

• I/O part is not 
representative of 
modern systems (direct 
memory access [DMA])

• Memory layout is 
representative of 
modern systems

66

Memory
(Data + Program [Instructions])

CPU I/O

DMA



Abstract Processor Execution Cycle
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(Get instruction from 
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ARM 3-Stage Pipeline Processor Execution 
Cycle
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FETCH[PC]
IR := MEM[PC]

(Get instruction from 
memory at address PC)

EXECUTE
(Execute instruction 
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Interrupt
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Decoded 
instruction has 

PC-4



ARM 3 Stage Pipeline

• Stages: fetch, decode, execute

• PC value = instruction being fetched

• PC – 4: instruction being decoded

• PC – 8: instruction being executed

• Beefier ARM variants use deeper pipelines (5 
stages, 13 stages)
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Un-Pipelined Laundry
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Pipelined Laundry
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Why Pipelining?

• Consider a five-stage pipeline
• Suppose 2ns for the cycle period
• It takes 10ns for an instruction to progress all the way through 

pipeline
• So, the machine runs at 100 MIPS?
• Actual rate: 500 MIPS

• Pipelining
• Tradeoff between latency and processor bandwidth 
• Latency: how long it takes to execute an instruction
• Processor bandwidth: MIPS of the CPU

• Example
• Suppose a complex instruction should take 10 ns, under perfect 

conditions, how many stage pipeline should we design to guarantee 
500 MIPS?

• Each pipeline stage should take: 1/500 MIPS = 2 ns
• 10 ns/ 2ns =5 stages
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Flynn’s Taxonomy

• SISD: Single Instruction, 
Single Data

• Classical Von Neumann

• SIMD: Single Instruction, 
Multiple Data

• GPUs

• MISD: Multiple Instruction, 
Single Data

• More exotic: fault-tolerant 
computers using task 
replication (Space Shuttle 
flight control computers)

• MIMD: Multiple Instruction, 
Multiple Data

• Multiprocessors, 
multicomputers, server 
farms, clusters, …
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C to Assembly and Machine Language

• How did we go from ASM to machine language?
• Two-pass assembler

• How do we go from C to machine language?
• Compilation
• Can think of as generating ASM code, then assembling

• Optimizations

75



Linker Process
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Assembly Process
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The process that produces an executable file. An assembler translates a file of 
assembly language into an object file, which is linked with other files and 
libraries into an executable file. 



QEMU

• Virtual machine: Quick-Emulator: http://www.qemu.org
• “QEMU is a generic and open source machine emulator and virtualizer.”

• “When used as a machine emulator, QEMU can run OSes and programs 
made for one machine (e.g. an ARM board) on a different machine (e.g. 
your own PC). By using dynamic translation, it achieves very good 
performance.”

• “When used as a virtualizer, QEMU achieves near native performances 
by executing the guest code directly on the host CPU. QEMU supports 
virtualization when executing under the Xen hypervisor or using the KVM 
kernel module in Linux. When using KVM, QEMU can virtualize x86, 
server and embedded PowerPC, and S390 guests.”

• QEMU runs like any other Linux process/program
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GDB Commands

• b label
Sets a breakpoint at a specific label in your source code file. In practice, for some weird reason, the code 
actually breaks not at the label that you specify, but after executing the next line.

• b line_number
Sets a breakpoint at a specific line in your source code file. In practice, for some weird reason, the code actually 
breaks not at the line that you specify, but at the line right after that.

• c
Continues program execution until it hits the next breakpoint.

• i r
Shows the contents of all registers, in both hexadecimal and decimal representations; short for info 
registers

• list
Shows a list of instructions around the line of code that is being executed.

• quit
This command quits the debugger, and exits GDB.

• stepi
This command executes the next instruction.

• set $register=val
set $pc=0
This command updates a register to be equal to val, for example, to restart your program, set the PC to 0

• monitor quit
Send the remote monitor (e.g., QEMU in our case) a command, in this case, tell QEMU to terminate; Call this 
before quiting gdb so that the QEMU process gets killed!
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Instruction Set Architectures

• Interface between software and hardware

• Examples: x86, x86-64, ARM, AVR, SPARC, ALPHA, MIPS
• RISC vs. CISC

• High-level language to computer instructions
• How do we execute a high-level language (e.g., C, Python, Java) 

using instructions the computer can understand?
• Compilation (translation before execution)
• Interpretation (translation-on-the-fly during execution)

• What are examples of these processes?
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Memory-Mapped I/O

• Some of our original examples displayed output to 
console by writing to a special memory address
.equ ADDR_UART0, 0x101f1000
ldr r0,=ADDR_UART0@ r0 := 0x 101f 1000

mov r2,#’a’ @ R2 := ‘a’

str r2,[r0] @ MEM[r0] := r2

• How does this work? Memory Mapped I/O
• Registers on peripheral devices (keyboards, monitors, network 

controllers, etc.) are addressable in same address space as 
main memory, and their values are mapped (i.e., readable / 
writeable at certain addresses)

• How to read input values?
• Polling vs. interrupts
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Memory Hierarchy
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Cache Hit: find necessary data in cache
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Cache Miss: have to get necessary data from 
main memory
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Cache Terms

• Cache line: block of cells inside a cache
• Usually store several words in a line (e.g., store 32 bytes on 32-bit 

word CPU)

• Cache hit: memory access finds value in cache
• Antonym: cache miss: have to get it from main memory

• Spatial locality: likely we need data from addresses around 
one we’re requesting (example: array operations)

• Mean access time: C + (1 – H) * M
• C: cache access time
• M: main memory access time (usually M >> C, e.g., M > 100 * C)
• H: hit ratio: probability to find a value in the cache
• miss ratio: 1 – H

• Time cost of cache miss: C + M memory access time
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Associative Cache Example
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Virtual Memory

• Use main memory as a “cache” for secondary (disk) 
storage

• Managed jointly by CPU hardware and the operating 
system (OS)

• Programs share main memory
• Each gets a private virtual address space holding its 

frequently used code and data
• Protected from other programs

• CPU and OS translate virtual addresses to physical 
addresses

• VM “block” is called a page
• VM translation “miss” is called a page fault
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Address Translation

• Fixed-size pages (e.g., 4K)
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Error Detection – Error Correction

• Memory data can get corrupted, due to things like:
• Voltage spikes.
• Cosmic rays.

• The goal in error detection is to come up with ways 
to tell if some data has been corrupted or not.

• The goal in error correction is to not only detect 
errors, but also be able to correct them.

• Both error detection and error correction work by 
attaching additional bits to each memory word.

• Fewer extra bits are needed for error detection, 
more for error correction.
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Parity Bits - Examples

• Size of original word: m = 8.

Original 
Word (8 bits)

Number of 
1s in Original 
Word

Codeword (9 
bits): Original 
Word + Parity Bit

01101101 5 011011011

00110000 2 001100000

11100001 4 111000010

01011110 5 010111101
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Some Questions You Should Be Able to 
Answer
1. How do computers compute?

2. What is a register?  Where is it located?  How many are there?

3. What is memory?  What is a memory address / location?

4. What is the difference between a register and memory?

5. What is a cache? What is the memory hierarchy?  Why does it exist?

6. What is translation (compilation)?  What is interpretation?

7. How are translation and interpretation different?

8. Why do we use translators and/or interpreters?

9. If a multiply instruction is not available, how can it be created using loops and addition?

10. What is a virtual machine?  What is QEMU?

11. What is sequential logic?  How is it different than combinational logic?

12. How is a 32-bit processor different from a 64-bit processor?

13. How can you convert C code to assembly?  How can you do this for example programs by hand?

14. How is performance evaluated?  Why are benchmarks used?

15. How does the stack work? What do push and pop do?  Why do we have the stack?

16. What is recursion? What is an iterative program?

17. What are the common addressing modes for ARM and how do you use them?

18. What is RISC vs. CISC? What is a Von Neumann architecture?

19. How can gdb be used to help you understand, write, and debug programs? Hint: know how to use this!

20. What are the ALU, FPU, MMU, TLB, CPU, etc.?  What are the main computer components?

21. What is ECC used for? How does parity work for detecting errors?
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Summary

• Floating point (IEEE 754)

• Compiler optimizations

• Exam Review
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