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Abstract—The Simplex Architecture ensures the safe use of
an unverifiable complex controller by using a verified safety
controller and verified switching logic. This architecture enables
the safe use of high-performance, untrusted, and complex control
algorithms without requiring them to be formally verified. Sim-
plex incorporates a supervisory controller and safety controller
that will take over control if the unverified logic misbehaves.
The supervisory controller should (1) guarantee the system never
enters and unsafe state (safety), but (2) use the complex controller
as much as possible (minimize conservatism).

The problem of precisely and correctly defining this switching
logic has previously been considered either using a control-
theoretic optimization approach, or through an offline hybrid
systems reachability computation. In this work, we prove that a
combined online/offline approach, which uses aspects of the two
earlier methods along with a real-time reachability computation,
also maintains safety, but with significantly less conservatism.
We demonstrate the advantages of this unified approach on a
saturated inverted pendulum system, where the usable region of
attraction is 227% larger than the earlier approach.

I. INTRODUCTION

Modern cyber-physical systems are large complex systems
of systems, where arguments about the behavior of the whole
system rely on guarantees about the individual components.
Individual components, however, may be designed using ma-
chine learning methods such as neural networks that are cur-
rently not amenable to formal analysis, or the components may
simply be too large and complex for complete verification.

One approach to provide formally verified behavior despite
the use of unverified control logic is the Simplex Archi-
tecture [1]. Similar to how a driving instructor’s car may
have two steering wheels and two sets of brakes, a Simplex
system contains two controllers and supervisory switching
logic. As long as the instructor intervenes to prevent dangerous
situations, the untrusted student is allowed to drive. Similarly
in Simplex, an unverified controller can actuate the system,
as long as the verified one takes over quickly at potentially
unsafe times.

In the Simplex Architecture, shown in Figure 1, unverified
control logic (the complex controller) is wrapped with a
verified controller (the safety controller) and switching logic
(the decision module). The complex controller typically has
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Figure 1. The Simplex Architecture produces a verified system despite the
use of an unverified complex controller. The decision module should switch
between the controllers to provide overall system safety.

better performance, or is concerned with mission-critical re-
quirements, whereas the safety controller is designed with
simplicity and provability in mind, and may concern itself
only with safety-critical aspects. When the system is in dan-
ger of entering an unrecoverable state, the decision module
must switch control to the safety controller. In this way, the
complex controller can be used while still maintaining the
formal guarantees of the safety controller. The key challenge
when designing a system with the Simplex Architecture is to
properly create the decision module logic.

It is easy to design safe decision module switching logic;
one can simply always use the safety controller. This is
undesirable, however, as mission-critical objectives might be
delayed or ignored since the complex controller is never used.
The key challenge, which is the focus of this paper, is to reduce
the conservatism in the decision module design. Control should
not be switched too late, though, as the safety controller may
not be able to safely recover the system.

In earlier Simplex designs, the switching logic was designed
in one of two ways. From a control theoretic perspective,
verified switching logic can be synthesized from the solution
of a linear matrix inequality (LMI) along with the system
dynamics and constraints [2]. Alternatively, approaches based
on hybrid systems reachability can be used to produce a
provably safe decision module [3]. These earlier approaches
will be reviewed in Section II. In this paper, we propose the
use of a unified approach, where the offline LMI result is
combined with an online reachability computation to produce
a significantly less conservative Simplex system which is still
safe. We elaborate on this approach and prove its safety in
Section III.
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The proposed approach requires computing reachability
online for short time intervals. Previous hybrid systems reach-
ability algorithms, however, were not designed for real-time
computation. For this reason, in Section IV, we propose a real-
time reachability algorithm based on mixed face lifting [4]
which is compatible with the imprecise computation model in
real-time scheduling literature [5]. Real-time reachability has
applications beyond Simplex, and is presented as a general
online reachability approach. Next, we evaluate the proposed
unified Simplex design in Section V. In order to provide a
direct comparison, we use the existing system model from
earlier Simplex work of an inverted pendulum system with
saturation. The run-time approach significantly expands the
space where the complex controller may be used.

Other work related to Simplex and reachability is then pre-
sented in Section VI, followed by conclusions in Section VII.

II. BACKGROUND

There have been several verified design methodologies for
systems which use the Simplex Architecture. Before going into
their details, we first present useful definitions.

The system is defined with a set of operational constraints,
such as limits of actuators, physical restrictions, invariant
safety properties which cannot be violated, or linearization
boundaries where the model is considered valid.

Definition. States which do not violate any of the operational
constraints are called admissible states. Those which violate
the constraints are called inadmissible states.

From this definition, we can then define the set of states
that are recoverable for a particular control strategy, assumed
to be a given safety controller in the Simplex architecture.

Definition. The set of recoverable states is a subset of the
admissible states, such that if the given safety controller is
used from these states, all future states will remain admissible.

With these definitions, we now describe two earlier ap-
proaches for verified Simplex design. The first is based on
solving linear matrix inequalities (LMIs), and the second is
based on reachability analysis of hybrid systems.

A. Verified Design using LMI

The first proposed way to design a verified decision module
is based on solving linear matrix inequalities [2], [6], which
has been used to design Simplex systems as complicated as
automated landing maneuvers for an F-16 [7]. In this approach,
system dynamics are approximated by a linear model using the
standard control-theoretic approach, where ẋ = Ax+Bu for
state vector x and input u.

In this approach, the operational constraints, as well as
saturation limits are expressed as linear constraints in an
LMI. These constraints, along with linear dynamics for the
system are input into a convex optimization problem that
produces both linear proportional controller gains K as well
a positive-definite matrix P . The controller produced is a
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Figure 2. The LMI Simplex design approach uses switching logic based on an
ellipsoid within the system constraints in order to produce a verified system.

linear-state feedback controller, u = Kx, yielding the closed-
loop dynamics ẋ = (A + BK)x. Given state x, when input
Kx is used, the P matrix defines a Lyapunov potential func-
tion (xTPx) which is positive-definite with negative-definite
derivative (so it is monotonically decreasing over time), thus
guaranteeing stability of the linear system using Lyapunov’s
direct or indirect (if the plant is nonlinear and was linearized)
methods. Furthermore, the matrix P is constructed by the
method such that it defines an ellipsoid in the state space
where all the constraints are satisfied when xTPx < 1. Since
the states where saturation occurs were input as constraints to
the method, this means that states inside the ellipsoid result
in control commands that are not beyond the actuator limits
(where saturation would occur).

In this way, when the gains K define the safety controller,
the ellipsoid of states xTPx < 1 is a subset of the recoverable
states. The situation is shown visually in Figure 2.

This approach is used to determine the proper behavior of
the decision module. As long as the system remains inside
the ellipsoid, any unverified, complex controller can be used.
If the state approaches the boundary of the ellipsoid, control
can be switched to the safety controller which will drive the
system towards the equilibrium point where xTPx = 0.

Care must be taken to ensure control is switched to the
safety controller before the state leaves the ellipsoid. If the
decision module simply checks the Lyapunov potential of the
current state, then, once the state is outside of the ellipsoid, the
system is not guaranteed to be recoverable without violating
the operational constraints. Thus, a smaller region must be
used to define the region where the complex controller is
allowed to actuate the system. In the figure, the distance d
defines this extra buffer, which can be determined offline by
computing the maximum gradient for any control command
inside the ellipsoid, multiplied by the period of the decision
logic.

For safety it is sufficient to consider only a single switch to
the safety controller and never switching back. If switching
back is desired, this should not be done arbitrarily as the
composed switched system might be unstable. Specifically, the
safety controller should be used at least until a state within the
complex controller region (as shown in Figure 2) is reentered,
before switching back to the complex controller.
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B. Verified Design using Reachability

An alternative method for verified Simplex design is based
on reachability analysis of hybrid systems [8], which has
been used, for example, to create a Simplex system to
prevent off-road vehicle rollover [9]. In this approach, the
dynamics are defined using a hybrid automaton, which is a
formal model for a system with both continuous and discrete
behaviors. Mathematically, a hybrid automaton is a tuple,
H = (X , L,X0, I, F, T ) [10], where:
• X is the set of continuous states. For a system with n

real-valued dimensions, the continuous state is Rn.
• L is the set of discrete states (locations). The state of a

hybrid automaton is an element of X = L×X .
• X0 is a set of initial states, which is a subset of X .
• I is a set of invariants that defines the continuous states

possible for each location. It is a function L→ 2X .
• F is a set of flows that defines the differential equations

in each location. It is a function X → 2R
n

.
• T is a set of discrete transitions that defines switching

between discrete locations. A transition is composed of
a guard condition for when the transition is enabled, and
a reset map that can reassign the continuous states from
the predecessor mode to the successor mode. In general,
it is a relation T ⊆ X ×X .

Semantically, a hybrid automaton behaves by advancing time
according to the differential equations defined in the mode
of the current discrete state l ∈ L. The guard conditions on
the outgoing transitions define when the location can change,
whereas the invariants of the locations can be used to force
transitions by preventing time from elapsing further in the
current mode. This therefore allows nondeterminsim in the
discrete behavior. A hybrid automaton can be visually depicted
as a finite-state machine with differential equations in each
discrete state. The model also allows for nondeterminism in
the continuous behavior because a single state x ∈ X defines,
via the set of flows F , a set of derivative values for each
variable.

This modeling framework is very expressive, and computing
exactly the sets of states a hybrid automaton may enter, called
the reachable set of states, is undecidable [11]. Thus, analysis
of hybrid systems often restricts either the continuous dynam-
ics or the discrete dynamics [12], [13], [14]. In this paper,
the reachability algorithm proposed in Section IV considers
restricted hybrid automata models where the state invariants
are disjoint and cover the continuous states Rn, there are
no reset maps in the transitions between discrete states, and
the guards of incoming transitions are defined by the state
invariants.

In addition to dynamics restrictions, practical reachabil-
ity approaches often over-approximate the reachable set of
states [15], [16], [17], which is sufficient for proving safety
properties. If a sound over-approximation of the reachable set
of states of a hybrid automaton does not contain any unsafe
states, then the system is verified as safe since no unsafe
states are in the actual reachable set of states either. This
approach may, however, lead to false positives where the error
in the over-approximation contains unsafe states, but the actual

reachable set of states does not.
Here, REACH∞(x, HA) refers to all the states reached in

any amount of time from state x in hybrid automaton HA,
REACH≤t(x, HA) refers to the states reached from x in up
to t time, and REACH=t(x, HA) are the states reached after
exactly t time has elapsed. Also, we naturally extend REACH
to initial sets of states, where the resultant set of reachable
states is the union of the set of reachable states from each
state in the initial set.

In terms of Simplex design, the behavior of an optimal
decision module can be defined in terms of reachability.
Optimal here means that the given safety controller takes over
only if it has to; if it did not take over, then the system could
enter an inadmissible state in the future. Furthermore, it never
takes over when the complex controller could safely be used.
The switching condition (formalized as the transition’s guard
and invariant in the hybrid automaton) between the safety
controller and complex controller modes is defined using the
following theorem [3]:

Theorem 1. The optimal switching condition for Simplex is
given when, at every control iteration, the complex controller
is used if and only if (1) REACH≤δ(x, CC) ∩ U = ∅ and
(2) REACH∞(REACH=δ(x, CC), SC) ∩ U = ∅, where x ∈ X
is the current state and U ⊆ X is the set of inadmissible
(unsafe) states.

The inner REACH=δ in part (2) is the time-bounded reach-
ability of the system for one decision logic switching interval
time, δ, while using the complex controller (CC). The outer
REACH∞ is the infinite-time reachability for the system under
control of the safety controller (SC).

Intuitively, this check is examining what happens if the
complex controller is used for a single control interval of time
δ, and then the safety controller is used thereafter. If this set of
states contains an inadmissible state (either before the switch
as in part (1) or after as in part (2)), then the complex controller
cannot be used for one more control interval, and instead
the safety controller must be used right away. Assuming the
system starts in a recoverable state, this guarantees it will
remain in the recoverable set for all time.

Several factors prevent the direct use of Theorem 1. The
first is that the reason to apply Simplex is that a precise
model of the complex controller is not available, but rather an
over-approximation must be used which can be computed, for
example, based on the plant model and actuator limits. Second,
as discussed before, computing reachability exactly for a
general hybrid automaton is undecidable. A safe switching
set, however, can still be computed using over-approximations,
where the conservativeness of the resultant decision module
depends on the amount of over-approximation. Third, the
switching condition is defined in terms of a specific state x,
which is not useful for offline computation since every state
would need to be enumerated. Instead, the condition can be
rewritten in terms of backwards reachability from the set of
inadmissible states, which can then be computed offline [3],
[8]. As with the LMI approach, the output is a set of states
which forms a guaranteed subset of the recoverable states.



4

III. UNIFIED APPROACH FOR SIMPLEX DESIGN

The two approaches for Simplex design previously dis-
cussed each have their own limitations.

The LMI approach works with purely linear physical dy-
namics. If there are actuator limits, and the input to the
actuators u (from ẋ = Ax+Bu) can saturate, the output of the
optimization will be a set of states where the command used
by the safety controller is within the saturation limits. This
is done by adding a constraint based on the state-feedback
gain as part of the optimization (the input is u = Kx, which
is bounded by the linear constraints Kx ≤ MAX_INPUT and
Kx ≥ MAX_INPUT).

The set of states output by the LMI approach is safe,
but may be pessimistic, since a saturated safety controller
may still be able to recover the system. Furthermore, the
resultant switching condition is based on a Lyapunov function
which, due to convexity and quadratic restrictions required
in the optimization algorithms, is always an ellipsoid. This
is a sufficient but not necessary condition for stability and
therefore the switching set is almost certainly conservative. We
demonstrate this pessimism in our evaluation in Section V.

The reachability-based Simplex approach is not restricted
to linear systems, and can have its conservatism decreased by
increasing the accuracy of the reachability computation1. One
downside of this approach is that over-approximation error
occurs from the need to abstract the complex controller hybrid
automaton by a hybrid automaton which takes into account any
possible complex controller command. A second issue is the
difficulty of succinctly and accurately encoding the result of
the computation, which in general may be a large non-convex
set in many dimensions. Lastly, hybrid systems reachability
over-approximation methods introduce error, especially when
the initial set of states is large and the reachability time
bound is large. The back-reachability formulation of Theorem
1 includes a time-unbounded reachability computation from
the set of inadmissible states, which can be large.

We now present an alternative design for a verified Simplex
system. The proposed technique makes use of aspects from
both of the previous verified design approaches in order to
overcome some of their individual limitations.

First, we formalize the connection of the ellipsoid from
of the LMI approach with that of a reachability computation
of a hybrid automaton (which by the ellipsoid’s construction
remains in a single, unsaturated mode):

Lemma 2. The output of the LMI approach, the potential
function P and controller gains K, define a safety controller
SC and a subset of the recoverable set of states R =
{x|xTPx < 1}, where REACH∞(R, SC) ∩ U = ∅.

This is true because the potential function is guaranteed
to satisfy the constraints passed to the LMI solver, including
avoidance of the inadmissible states, when XTPX < 1.
Furthermore, when the gain vector K output by the approach
is used (which defines the safety controller u = Kx), the
potential function is strictly decreasing over time (i.e., it is a

1Over-approximating reachability approaches typically have an accuracy /
computation time trade off.

Lyapunov function). Therefore, it is guaranteed for unbounded
time that any state starting inside R will remain inside R.
Since there are no inadmissible states in R, no inadmissible
states will ever be reached.

We can now define an alternate condition for safe switching
logic:

Theorem 3. A safe switching condition for Simplex is
given when, at every control iteration, the complex con-
troller is used if, for some α time, (1) REACH≤δ(x, CC) ∩
U = ∅, (2) REACH≤α(REACH=δ(x, CC), SC) ∩ U = ∅ and
(3) REACH=α(REACH=δ(x, CC), SC) ⊆ R.

Proof: Intuitively, this switching condition says the com-
plex controller can be used if, (1) the complex controller
cannot reach an unsafe state before the next decision interval
(at time δ), (2) if the safety controller takes over at the next
decision interval, it will avoid unsafe states until δ + α times
passes, and (3) after δ + α time, a state in R will be safely
reached.

More formally, assume by contradiction that this is not a
safe switching condition, so an inadmissible state is reached
at some time. This time will be either less than δ, more than
δ and less than δ + α, or more than δ + α. The first two of
these cases are ruled out directly by conditions (1) and (2), so
only the third case needs to be examined.

From Lemma 2 REACH∞(R, SC) ∩ U = ∅. Since if R′ ⊆
R, REACH∞(R′, SC) ⊆ REACH∞(R, SC), the smaller set of
states R′ = REACH=α(REACH=δ(x, CC), SC) ⊆ R will also
satisfy the condition REACH(R′, SC)∩U = ∅. Therefore, every
state reached after δ + α is also admissible.

Since all three cases do not contain an inadmissible state,
our assumption that an inadmissible state is reached was
wrong, and therefore this is a safe switching condition.

In summary, the proposed approach is as follows: when the
system is well-inside the ellipsoid that represents the Lyapunov
function, we do not need to invoke an extensive reachability
analysis using the safety controller, as we know the state is
recoverable. When the system is about to reach the boundary
of the ellipsoid, runtime reachability analysis is used to allow
the system to cross the boundary of the ellipsoid as long as the
analysis shows that (1) no system constraints are violated when
this is done, and (2) the state can be guaranteed to be brought
back into the ellipsoid. This can allow the complex controller
to be used in a larger region compared with the LMI-approach
because it can soundly reason about the behavior of the
system outside of the ellipsoid (remember that the Lyapunov
function from the LMI method is only a sufficient condition for
safe switching). This condition can also be less conservative
than the pure reachability approach because the computation
needed is from a single state x, rather than the possibly large
set of inadmissible states. Additionally, it involves reasoning
over a finite-time horizon (α + δ), rather than infinite-time
reachability needed in the method based on Theorem 1.

There are still two issues which need to be addressed
before the condition in Theorem 3 is usable. First, since we
cannot compute reachability exactly for complex hybrid au-
tomata [11], we will instead compute an over-approximation.
This will result in a more conservative switching set depending
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on the accuracy of the computation. Second, this computation
is defined from the system’s current state x, which is not
available offline. In order to resolve this issue, we propose an
online, real-time reachability computation method in the next
section. After that, in Section V, we will evaluate the conser-
vatism in the switching set due to the over-approximation in
the proposed algorithm.

IV. REAL-TIME REACHABILITY ALGORITHM

Hybrid systems reachability computations have been tradi-
tionally computed offline, and are both memory and processor
intensive operations. Above, we have demonstrated a need to
perform the computation at runtime. This requires a reachabil-
ity algorithm capable of use within a real-time system. In this
section, we describe a real-time reachability algorithm with
the following key features:
• High-performance for a quick runtime for short reacha-

bility times.
• The ability to check the three conditions from Theorem 3.
• No dynamic data structures (or large preallocations) or

recursion, for usability in a real-time system.
• Iterative improvement in accuracy with increased compu-

tation time.
The last point is important because it allows the reachability
task to be scheduled in the framework of imprecise real-
time system computation [18]. In this framework, each task
produces a partial result that is usable and improved upon
as more computation time is added (this is sometimes called
an anytime algorithm). In particular, the proposed reachability
algorithm is based on the milestone approach [5], where partial
results are recorded at various points during the execution,
and the last-recorded values are used when the final result
is needed. This is in contrast to the traditional real-time
systems execution model where each task has a fixed worst-
case execution time (WCET) [19].

We now present a reachability algorithm suitable for real-
time, online, computation which satisfies the above require-
ments. We distinguish between reach-time, which is the time
we are computing reachability for, and runtime, which is
the wall time the method is allowed to run. Recall that the
types of hybrid systems we consider are ones where the state
invariants are disjoint and cover the continuous state Rn, there
are no reset maps in the transitions between discrete states,
and the guards of incoming transitions are defined by the
state invariants. In these piecewise systems, the state of the
hybrid automaton can be determined solely by the continuous
state, although different differential equations can be used in
different parts of the state space. This is applicable to many
state-feedback continuous systems with saturation since the
states where saturation occurs are typically disjoint from the
unsaturated states (because the actuator command is a function
of the state), and the continuous states do not jump along the
saturation boundary.

To employ the proposed algorithm, as in our earlier
work [3], the user defines the system dynamics through a
function (a C function, in this implementation) that returns
the minimum or maximum derivative in each dimension given

Algorithm 1 The real-time face-lifting reachability algorithm
uses a desired reach-time step to tune its runtime.

Box c u r r e n t B o x := i n i t i a l B o x

whi le ( reachTimeRemain ing > 0)
Box [ ] nebs = c o n s t r u c t N e i g h b o r h o o d s ( cu r r en tBox ,

r eachT imeS tep )

c rossReachTime := minCrossReachTime ( nebs )
advanceReachTime := min ( crossReachTime ,

reachTimeRemain ing )
c u r r e n t B o x := advanceBox ( nebs , advanceReachTime )

reachTimeRemain ing := reachTimeRemain ing −
reachTimeToAdvance

end whi l e

an arbitrary box of the state space. Nonlinear dynamics are
permitted in this approach, so long as the user-provided
function maximizes/minimizes the nonlinear derivatives within
an arbitrary box. Notice that this does not require solving the
differential equations (which is generally a harder problem),
since the bounds are on the derivatives themselves. Further-
more, we require the derivatives are defined in the entire state
space, and that they are bounded.

The proposed reachability algorithm is based on mixed face
lifting [20], [21]. This approach is a flow-pipe construction
method, which means that snapshots of the reachable set of
states are computed at increasing points in reach-time, and
reasoning is done about which states can be encountered
between snapshots.

To create a fast implementation, we use boxes as our
representation of the set of states. Over long reach-times,
this representation can be problematic because, if the actual
reachable set of states is not a box, error is introduced by
over-approximating it as one (called the wrapping effect [22]).
However, since we only need to compute reachability for
short reach-times (δ + α from Theorem 3), a simpler, faster,
representation is preferred to better long-term error control. In
mixed face lifting, the dynamics along each face are over-
approximated by the maximum derivative along that face.
Reach-time is then advanced uniformly along all faces.

We modify the original mixed face lifting algorithm to
make it more usable in a real-time setting. In particular,
instead of using the desired error in order to control the
width neighborhood around each face [21], we instead use
a desired reach-time step to control neighborhood widths.
This parameter allows us to tune the total number of steps
used in the method, and therefore alter the runtime. After the
given reach-time is obtained, the desired step size is decreased
(which reduces the width of the neighborhoods, and therefore
the derivative error at each step) and the computation is
restarted. In this way, the algorithm will produce progressively
more accurate answers, for as much runtime as the task is
given.

The high-level algorithm, given a fixed desired step size
(reachTimeStep), is given in Figure 1. For a box, there
are two faces for every dimension (one for the minimum
face along that dimension and one for the maximum face),
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currentBox
nebs[0] nebs[1]

nebs[2]

nebs[3]y

x

Figure 3. The neighborhood widths are determined by reachTimeStep
and the derivatives along the faces of currentBox.

and thus there are also two face neighborhoods for every
dimension. The neighborhoods, nebs, are constructed based
on the desired reach-time step. This neighborhood construction
process will be elaborated on later.

Next, the minimum reach-time for any point along each face
to cross the corresponding neighborhood in the corresponding
direction is computed. What this means is that, for example in
Figure 3, the minimum reach-time for any point along the left
face of currentBox to cross to the left side of nebs[0]
in the x direction is computed, as well as the minimum reach-
time for any point along the right face to cross nebs[1],
as well as the neighborhoods in the y directions, and then
the minimum of all of these is returned. This is computed by
looking at the minimum or maximum derivative within the
box for each neighborhood (from the user-provided derivative
bounds function), as well as the width of the neighborhood
along the corresponding dimension.

Finally, the currentBox at the next reach-time step
is computed based on the neighborhoods and computed
reach-time to advance (which may be reduced if it exceeds
reachTimeRemaining). This is done by advancing each
face by the maximum derivative in the outward direction in
its neighborhood (from the user-provided derivative bounds
function) multiplied by advanceReachTime.

The new aspect of this algorithm is that the
widths of the neighborhoods are tunable by the
reachTimeStep parameter. The neighborhood construction
(the constructNeighborhoods function) proceeds in
three steps:

1) The maximum outward derivative along each face of
currentBox is computed. One neighborhood is con-
structed for each face, where the width of the cor-
responding neighborhood is based on the derivative
(the width is the derivative multiplied by the passed-in
desired reachTimeStep).

2) The neighborhood boxes are all constructed based on
the computed widths, such that the edges overlap as
shown in Figure 4. We call a neighborhood constructed
on the inside of the corresponding face an inward-facing
neighborhood (such as nebs[1] in the figure).

3) The outward derivatives in the constructed neighbor-

nebs[1]

Figure 4. Although the derivative along the face may be inward-facing,
the derivative in the neighborhood can still be outward facing. The first
condition of step 3 in the neighborhood construction process checks for this
and reconstructs the neighborhoods if such a situation occurs. Here, nebs[1]
would be updated to an outward-facing neighborhood, which would require
subsequent reconstruction of the other neighborhoods (because the edges
overlap).

hoods are sampled. If either (1) an inward-facing neigh-
borhood contains an outward-facing derivative, or (2)
a derivative has doubled in value since the previous
derivative computation for that neighborhood, the width
of the neighborhood is recomputed and the process
repeats by returning to step 2.

The check in step 3 ensures two things. The first condition
is necessary in case a derivative was inward-facing in a
previously-constructed neighborhood, but outward-facing in
the new, larger neighborhood. This case is shown visually in
Figure 4. The second condition guarantees that the reach-time
to progress through the face is at least reachTimeStep/2.
Due to this, we can bound the maximum number of iterations
of the while loop as the desired reach time divided by
reachTimeStep/2. Since the edges of the neighborhoods
overlap, the neighborhoods of the other faces need to be
reconstructed as well, which is why the algorithm backtracks
to step 2.

The number of times the neighborhood construction back-
tracks from step 3 to step 2 is also bounded. This is because a
face can flip from inward-facing to outward-facing only once,
and since it was assumed there is a maximum derivative in the
state space, the observed derivative can only double a finite
number of times.

The imprecise computation version of the algorithm
proceeds by running Algorithm 1 repeatedly, decreasing
reachTimeStep after each repetition. In our implemen-
tation, after each execution reachTimeStep was halved,
although strategies other than halving are also possible (this
is a trade off between the time between milestones and the
error reduction obtained at each iteration). When the deadline
is reached (or the task is stopped), the most-recent result is
the output. For this reason, the exact number of iterations
of the neighborhood construction loop is not too useful, as
long as it has an upper bound, and we can adjust it with
reachTimeStep.

If the derivative doubles several times, the tracked box
will be pessimistic, since the conservatism comes from over-
approximating a derivative in a neighborhood by its maximum
value. For this reason, we also set a threshold in the loop for
how large the tracked boxes are allowed to get (not shown),
and if it is exceeded we immediately halve reachTimeStep
and restart the loop. If the number of backtracks to step 2 is



7

small (which is true in practice), each advancement of time
takes O(n) where n is the number of dimensions in the system.

From the four desired properties of a real-time reacha-
bility algorithm mentioned earlier, this algorithm is quick
(no exponential complexity operations), requires no dynamic
memory or recursion, and can iteratively provide a better
answer. In order to satisfy the remaining desired condition,
we need to provide the ability to check the three conditions
from Theorem 3. Rather than first computing the reachable
set of states and then checking the conditions in that set
(which would require dynamic storage to store the reachable
set), we instead modify the core algorithm in Figure 1 to
do the checks during the computation. Conditions (1) and
(2) of the theorem deal with the safety of reachable states
at intermediate reach-times. This can be checked inside the
while loop by taking the convex hull of currentBox before
and after the advanceTime call, and passing that to a
function which ensures the hull does not contain a state which
violates the system constraints. For checking condition (3),
the final currentBox value can be used. Furthermore, these
checks can be done at each iteration of the refinement; if a
reachTimeStep is found such that the three conditions of
the theorem are satisfied, no further refinement is necessary
(and the complex controller can be used).

V. EVALUATION

We now present an evaluation of the proposed methodology.
In order to directly show the advantage of the approach, we
use the same case study which demonstrated the earlier, LMI-
based Simplex work. This model is briefly discussed here,
with more details in the earlier report [2]. The system is an
inverted pendulum with state constraints and input saturation.
The physical system is shown in Figure V and consists of
a DC-motor driven cart that moves along a 1-d track with a
pendulum arm attached by an angular joint to the cart. The
control objective is to keep the angle θ of the pendulum arm at
0◦ measured from the vertical (i.e., to keep the arm upright).

While the system is in general nonlinear, ẋ = f(x, u), we
work with a model linearized about the origin:

ẋ = Ax+Bu.

There are four state variables, the cart position p, cart
velocity v = ṗ, pendulum arm angle θ, and pendulum arm
angular velocity ω = θ̇. We will denote x as the state vector
and p as the position, seen together next in Equation 1:

x =


p
v
θ
ω

 =


p
ṗ
θ

θ̇

 . (1)

The plant system matrix and input vector are:

A =


0 1 0 0
0 −a22 −a23 a24

0 0 0 1
0 a42 a43 −a44

 , B =


0
b2
0
−b4

 ,
where a22 = 4B̄

Dl
, a23 = 3mg

Dl
, a24 = 6Bθ

lDl
, a42 = 6B̄

lDl
, a43 =

6M̄g
lDl

, a44 = 12M̄Bθ
ml2Dl

, b2 = 4Bl
Dl

, and b4 = 6B1

lDl
, for Dl = 4M̄−

Figure 5. An inverted pendulum system maintains an upright rod by
controlling a cart at its base.

3m, B̄ =
KgBm
r2 +

K2
gKiKb
r2Ra

, Bl =
KgKi
rRa

, M̄ =
m+M+(KgJm)

r2 ,
and where g is gravity, Ra is the armature resistance, r is the
driving wheel radius, Jm is the motor rotor inertia, Bm is the
motor’s coefficient of viscous friction, Bθ is the pendulum
joint’s coefficient of viscous friction, Ki is the motor torque
constant, Kb is the motor back-e.m.f. constant, Kg is the gear
ratio, M is the cart mass, m is the pendulum mass, and l is
the pendulum length. Using the parameters from the earlier
Simplex report [2], the A and B matrices used are:

A =


0 1 0 0
0 −10.95 −2.75 0.0043
0 0 0 1
0 24.92 28.58 −0.044

 , B =


0

1.94
0

−4.44

 .
The system is subject to physical constraints. The range of p

is between [−1, 1] meters, ṗ is between[−1.0, 1.0] meters/sec-
ond, θ is between [−15, 15]

◦, and θ̇ is unconstrained (although
the constraints on ṗ do impose limits on θ̇).

The system is stabilized by linear state feedback of the form
ẋ = (A+BK)x. The control input, u = Kx is the armature
voltage of a DC-motor (Va) and is constrained between
[−4.95, 4.95] volts. Thus, due to this control constraint, it is
necessary to look at the system in the form of ẋ = Ax+Bu
at some points of the later analysis. Additionally, this control
saturation prevents the system from being globally stable. The
safety controller is designed following the LMI-based Simplex
approach described in Section II. The LMI approach outputs
a set of gains for the safety control K, such that when the
input u = Kx is used, the system will remain inside the
ellipsoid also output by the method. Without saturation, the
system evolves according to ẋ = (A+BK)x.

A. Feasible and Stabilizable Regions

The feasible region is a subset of the admissible states
defined by the input constraints (saturation), as well as the
operational constraints. The stabilizable region (also known
as the region of attraction) is the region of the state-space
within which a given controller can stabilize the system.
For the purpose of LMI-Simplex, this is also known as the
recoverable region. For linear systems with constraints, this
region may be under-approximated by solving an LMI of
the determinant maximization form [23]. This has the effect
of, for a matrix which describes an ellipsoid xTPx = 1,
maximizing the product of the radii of the ellipsoid (which
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Figure 6. The more runtime given to the real-time reachability algorithm,
the more accurate the result (see also Table I). Shown here are 2-d pro-
jections of the reachable sets for the inverted pendulum system from state
x = [−0.1, 0.85, 0, 0]T for reach-time 0.73. Here, the initial state is outside
of the LMI-recoverable ellipsoid (xTPx = 1.56), but can be proven to reenter
the ellipsoid after 0.73 reach-time, despite the presence of input saturation.

is related to the determinant of the matrix P ). The volume
of an ellipsoid, then, is proportional to this product. We use
YALMIP [24], the SDPT-3 [25] solver, and Matlab to solve
the following semidefinite quadratic programming problem
and under-approximate the recoverable states for the safety
controller. For computing the stabilizable region for the safety
controller, we find the gain vector during the optimization. The
problem is to maximize the volume of the ellipsoid (and thus
maximize the set of recoverable states) defined by:

R = {x | xTPx ≤ 1}. (2)

The LMI to find the positive definite P may formulated as:

min log detQ−1

s.t.QĀT + ĀTQ < 0, Q > 0, αTkQak ≤ 1, k = 1, . . . , n,

where Q = P−1 and the αk for k ∈ {1, ..., n} encode the
state and control constraints. More details of this process are
Appendix A2 of the LMI-Simplex technical report [2].

Variants of this process may either take a given gain vector
K or find a gain vector K [2]. For our use, the output of this
process is both the gain vector K and the matrix P defining
a subset of the recoverable states R, such that when the gain
matrix is used for the safety controller, and the state is in
R, the state is guaranteed to stay in R indefinitely (since
V (x) = xTPx is a Lyapunov function). Furthermore, all
the constraints (including saturation limits) are satisfied for
all states in R.

B. Comparison

We now provide a comparison between control based on the
R from the LMI approach above, and the switching condition
produced by the proposed unified approach which uses real-
time reachability. For real-time reachability, we implemented
the algorithm from Section IV. In order to be usable in a
real-time control system, our implementation was written in
C and had no dynamic memory allocations or recursion, and
used no nonstandard external libraries. In our implementation,
we would call the real-time reachability C code from within
Matlab on either Linux and Windows. For the experiments, we

Figure 7. Estimated projections are shown of the LMI-Simplex recoverable
region R (cyan center set), real-time reachability recoverable region (green
middle set), Simulink/Stateflow simulations that converge (yellow middle set),
and simulations that diverge (red exterior set) where θ = 0.19 rad (~10.89◦)
and θ̇ = 0.18 rad (~10.31◦) per second. The LMI-Simplex ellipsoid is small
here because it is a projection near the maximum values of θ and θ̇, although
the true set of recoverable states is significantly larger.

used a modern laptop with an Intel Core i7-2800MQ processor
and 32GB RAM (although the computation does not require
significant memory as described earlier). One remaining input
for the algorithm is the reach-time necessary for a specific
state to reenter R (the time δ + α from Theorem 3). This
was approximated using Euler-based simulation, which added
a fixed overhead at the start of the computation. For states
slightly outside ofR, the necessary reach-time was typically in
the hundreds of milliseconds. Since reachability computation
incurs error, we actually computed the reach set for slightly
more (1.2 times) than what it took the simulation to reachR. If
the Euler simulation did not enter R by some upper bound (4
seconds reach-time), the state was considered unrecoverable.
A projection of the computed reachability for various runtimes
is shown in Figure 6. As more computation time is added, the
accuracy increases.

One difference between the approaches is that the LMI-
Simplex method needs to reason about one-step reachability
of the plant state for any complex controller command in
order to compute the distance d in Figure 2. The proposed
online approach, in contrast, knows what complex-controller
command will be applied and can use that as part of the
reachability computation. For this reason, we restrict the
comparison to only examine the recoverable region for the
safety controller. In this way, we do not give our approach the
advantage of knowing exactly what command the complex
controller is using.

Our comparison shows three different approaches for esti-
mating the recoverable region (Figures 7 and 8). First, using
the LMI-only Simplex we get a subset of the recoverable
region R. Next, using a simulation-based analysis in Matlab,
we can see an approximation of the all recoverable states,
which would be an ideal switching set. If the simulation
returns to a steady state then the initial point is marked as
existing in the recoverable set. Finally, we show the states
that the real-time reachability-based approach can guarantee
as recoverable, which is somewhere between the previous two
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Figure 8. Estimation of LMI-Simplex recoverable region R (cyan center
set), real-time reachability recoverable region (green interior set), Simulink/S-
tateflow simulations that converge (yellow middle set), and simulations that
diverge (red exterior set) shown on the projection of θ and θ̇ = ω onto the
p = 0 m and v = 0 m/s plane.

regions. For these experiments, in order to be runnable in the
control loop, the runtime for the reachability code was capped
at 20 ms.

The stabilizable regions for p and ṗ of the controller is seen
in Figure 7 and the regions for θ and θ̇ of each controller
are in Figure 8. One reason why the runtime reachability
approach can recover more states is that the recoverable set
contains states where input saturation occurs, whereas the
set R contains no such states. The largest improvements in
the switching set for the real-time approach occur under this
saturation situation, because reachability is able to reason
about the behavior of the saturated system. Another reason for
the improvement is that the LMI-produced switching set must
be an ellipsoid, whereas the true set of recoverable states can
be an arbitrary shape. This is seen in Figure 7, where, since
the projection is near the maximum values of θ and θ̇, the
LMI ellipsoid projected onto this plane is small. In Figure 8
the LMI-Simplex recoverable region is clearly ellipsoidal (as
expected from Equation 2). In both Figures 7 and 8, the benefit
of using real-time reachability is highlighted by the larger
provably safe recoverable region. In both cases, even for a
20 ms runtime, the set of states proven recoverable using real-
time reachability is very close to the simulations that converge,
which means that the real-time reachability is close to optimal
in estimating the actual recoverable region.

Next, we evaluated the effect of varying the runtime in
real-time reachability method on the resultant switching set,
which is summarized in Table I. For this table, we sampled
the state-space uniformly between the state bounds presented
earlier using 15 points in each dimension (so 154 = 50625
points). The columns LMI, Real-Time, Sim, and Unrecov
list the number of recoverable points for each approach
(in terms of recoverable states, notice that LMI ⊆ Real-
Time ⊆ Sim), as measured by the uniform sampling. The
column Improve is the improvement of proposed unified
method with real-time reachability over the earlier LMI-
Simplex approach. The improvement is an estimate of the

Runtime (ms) LMI RealTime Sim Unrecov Improve
5 5473 6180 1376 37596 213%

20 5473 6948 608 37596 227%
40 5473 7059 497 37596 229%
50 5473 7108 448 37596 230%
75 5473 7133 423 37596 230%
100 5473 7216 340 37596 232%
200 5473 7286 270 37596 233%
500 5473 7338 218 37596 234%

1000 5473 7382 174 37596 235%

Table I
SUMMARY OF EXPERIMENTS VARYING RUNTIME

increased state-space size (volume) allowed using our real-
time reachability method, over using only the LMI-based re-
coverable region. Since the real-time recoverable states contain
all the LMI-Simplex states, the improvement is calculated as:
(#RealTime Points+#LMI Points)/(#LMI Points). For a
runtime of 20 ms, the improvement in volume of the switching
set is estimated at 227%, whereas based on simulations we
estimate the maximum possible improvement to be around
247% (calculated as (#Sim Points + #RealTime Points +
#LMI Points)/(#LMI Points)).

We experimented with increasing the number of samples
up to 30 points in each dimension, which yielded similar
improvements, and in the limit as the number of samples
tends to infinity, we would converge to the exact improvement.
However, these approximations are reasonable based on the
consistency of our experimental results (e.g., 20 ms runtime
for 15 samples is about a 227% improvement, and it is also
about a 230% improvement for 30 samples). As expected,
as the runtime allowed for real-time reachability increases,
the improvement increases. Even for small runtimes (e.g.,
5ms), the improvement is already significant at over 200%
more provably recoverable states, which makes the approach
promising for implementation in real-time control loops.

VI. RELATED WORK

The Simplex Architecture [1], [2] has been used exten-
sively to provide guarantees for systems that use untrusted
logic. It has been used for systems ranging from off-road
vehicles [26], to models of airplanes [7], to fleets of remotely
controlled cars [27]. Recently, variants of Simplex have been
proposed to account for physical-system (plant) failures [28],
faults in the OS or microprocessor [29], and to check for
security intrusions [30]. Simplex is closely related to Run-
Time Assurance (RTA) methods [31], [32]. RTA methods were
used to construct a safe supervisory control system for a
simulation of a high-altitude unmanned aerial vehicle [33].
Here, a transition function that projects the current state to
a future state was used to determine the switching boundary.
This transition function as well as the recoverable states were
determined through extensive simulation and online prediction
of trajectories. The proposed real-time reachability approach
in this work could be used to provide verified bounds on
the transition function used in RTA methods. This work also
mentions the interesting idea of using an online/offline design
for switching module logic by leveraging a simplified model
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of the plant dynamics, and taking the model error into account
when doing the switching, which could reduce the complexity
of the online reachability computation.

Another related notion in control theory is that of a viability
kernel [34]. A viability kernel is a set of states where there
exists a trajectory that stays within a predefined environment.
Viability kernels can be approximated for linear systems,
for example, by using analysis of random directions in the
state space [35]. Reachability analysis of hybrid systems has
also been extensively researched in the last 20 years [36].
Reachability analysis tools exist for classes of systems with
timed [37], rectangular [38], [39], linear [17], [39], and non-
linear [40], [41] dynamics, with varying degrees of accuracy
and scalability. However, to the best of our knowledge, the
algorithms in earlier reachability tools were all designed for
offline analysis, and not for real-time, in-the-loop computation.
Specifically, real-time reachability requires performance to be
predictable, which is difficult when there are large external
libraries, huge code bases, and lots of dynamic memory.

The real-time face lifting approach described here primarily
solves the problem of computing the continuous successors
in a hybrid automaton, although as shown it can also work
for invariant-disjoint hybrid dynamics. Research in computing
continuous successors is related to validated integration, which
traditionally has been done using interval analysis [22], as
well as intervals with preconditioning to reduce wrapping-
effect error [42]. More recently, Taylor models have also been
proposed as an alternative shown to provide superior long-
term error control [43], and this is has been integrated into a
more full hybrid automaton model checker [41]. However, the
challenge for runtime approaches such as the one proposed in
this paper is more with quick computation of reasonable accu-
racy rather than long-term error control, and we are unaware
of any previous real-time validated integration approaches.

Some recent work performs online reachability computation
with existing, non-real-time algorithms. This can be used,
for example, when systems do not have statically-known
models [44]. This work, however, treats the reachability com-
putation as a black-box, which may or may not complete
(because it does not use a real-time reachability algorithm).
Another work also uses existing reachability approaches such
as PHAVer [39] in a medical safeguard system [45], and results
in a system which may add safety, but only if the compu-
tation completes on time. While a theoretical upper bound
on execution time may be formulated due to decidability of
the particular class of hybrid automata considered [46], the
implementation of PHAVer does not provide such guarantees,
and it is not clear that such a bound would be usable or
too pessimistic. A real-time reachability algorithm that always
provides an answer like our approach could be integrated into
both of these approaches.

Finally, the results of formal approaches are only as good
as the model they are provided. Accurate system identifica-
tion [47] is therefore essential. The approach here reduces
pessimism in the switching logic for a given model. Accuracy
and validation of the model itself is an important problem, but
beyond the scope of this work.

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed an alternate design for Sim-
plex that leverages two existing design methodologies based
on control-theoretic LMI optimization and hybrid systems
reachability. The unified approach extends the region where
the complex controller can be used by leveraging a real-time
reachability computation, and thus decreases conservatism in
the switching logic. Using a runtime of 20ms (which matches
the control loop iteration time), we were able to expand the set
of states where the complex controller could be used by 227%,
whereas we estimated, through simulation, that the maximum
improvement possible was 247%. Even with a reduced real-
time reachability runtime of 5ms, we were able to improve
upon the LMI-based Simplex design by 213%.

As far as we know, this is the first work to present a
viable real-time reachability algorithm based on the real-time
systems notion of imprecise computation. The algorithm will
always return an over-approximation of the reachable set, with
better accuracy as more computation time is given. The key
difference between online reachability compared with offline
reachability, besides constrained runtime and resources, is that
quick results are preferable to long-term error control. In our
evaluation, for example, we were able to demonstrate signif-
icant improvement in the complex controller region by using
tens of milliseconds of computation time to bound the future
behavior of the system for the next hundreds of milliseconds.
Other reachability algorithms also contain parameters which
could be tuned to have some control over the computation
time, such as the sampling time used in the Le Geurnic-Girard
(LGG) scenario in SpaceEx [17], and we plan to investigate
better approaches for real-time reachability.

In this paper we proposed a single reachability algorithm
for one class of hybrid automata. As with offline reach-
ability computation, we believe it is necessary to develop
classes of reachability algorithms that can work at runtime
for various classes of hybrid automata. Real-time reachability
has applications beyond just determining Simplex switching
logic, however. We foresee future applications involving online
system identification, detecting sensor spoofing, and enabling
a variant of model-predictive control (MPC).
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