
HYST: A Source Transformation and Translation Tool
for Hybrid Automaton Models

Stanley Bak
Air Force Research Laboratory Rome, NY, USA

Sergiy Bogomolov
IST Austria

University of Freiburg,
Germany

Taylor T. Johnson
University of Texas at

Arlington USA

ABSTRACT
A number of powerful and scalable hybrid systems model
checkers have recently emerged. Although all of them honor
roughly the same hybrid systems semantics, they have dras-
tically different model description languages. This situation
(a) makes it difficult to quickly evaluate a specific hybrid
automaton model using the different tools, (b) obstructs
comparisons of reachability approaches, and (c) impedes
the widespread application of research results that perform
model modification and could benefit many of the tools. In
this paper, we present Hyst, a Hybrid Source Transformer.
Hyst is a source-to-source translation tool, currently taking
input in the SpaceEx model format, and translating to the
formats of HyCreate, Flow*, or dReach. Internally, the tool
supports generic model-to-model transformation passes that
serve to both ease the translation and potentially improve
reachability results for the supported tools. Although these
model transformation passes could be implemented within
each tool, the Hyst approach provides a single place for
model modification, generating modified input sources for
the unmodified target tools. Our evaluation demonstrates
Hyst is capable of automatically translating benchmarks
in several classes (including affine and nonlinear hybrid au-
tomata) to the input formats of several tools. Additionally,
we illustrate a general model transformation pass based on
pseudo-invariants implemented in Hyst that illustrates the
reachability improvement.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cationModel checking

General Terms
Verification

Keywords
Hybrid systems, formal methods, reachability

DISTRIBUTION A. Approved for public release; Distribu-
tion unlimited. (Approval AFRL PA #88ABW-2015-0468,
09 FEB 2015)
Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
HSCC ’15 April 14 - 16, 2015, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3433-4/15/04...$15.00
http://dx.doi.org/10.1145/2728606.2728630.

1. INTRODUCTION
Hybrid systems are mathematical models that combine

discrete and continuous dynamics. This formalism can cap-
ture the behavior of a large range of real-world systems. For
example, embedded systems [27] and biological systems [15,
17] can be modeled using the hybrid systems formalism. At
the same time, the resulting system behavior requires a care-
ful handling to ensure a precise yet time efficient analysis.
A number of powerful and scalable model checkers have re-
cently emerged [6, 12, 20, 22, 26]. They cover a number of
hybrid system classes, e.g., affine vs. non-linear continu-
ous dynamics and monolithic vs. automata networks. Fur-
thermore, the analysis algorithms are built around different
ideas and state representations, e.g., flow-pipe construction
vs. decision procedures for differential equations. These de-
sign decisions make the tools particularly efficient in some
settings, e.g., such as only for some classes of continuous
dynamics.
We present an automatic source-to-source model converter

from the SpaceEx input format to the Flow*, HyCreate,
and dReach formats. At present, direct comparisons be-
tween model checkers cannot be done out-of-the-box as the
input languages are syntactically different. However, a man-
ual comparison is possible because, although the input lan-
guages of the considered model checkers differ syntactically,
they rely on the same behavioral semantics.
We envision Hyst being used in three main ways. First, a

user of verification tools can quickly generate a model file for
a number of tools in order to find a tool that best fits the sys-
tem under consideration. Second, a developer of hybrid sys-
tems model checkers can use Hyst to both compare the per-
formance of newly developed algorithms with other up-to-
date analysis tools, as well as to quickly check for correctness
against a common set of models and as part of a regression
test suite. Third, researches can write generic model trans-
formation passes that modify the tool’s hybrid automaton
intermediate representation. Then, all supported tools can
immediately benefit from these research advances, rather
than having to reimplement new approaches piecemeal for
each tool.
Related Work. In the last decade, several research

groups have worked on approaches to unify the syntax of hy-
brid model checkers. Sangiovanni-Vincentelli et al suggest
the hybrid systems interchange format (HSIF) [9,10,31,32].
A further attempt to provide a common input language fo-
cused on the model composition has been undertaken within
the FP7 Multiform project [2, 35]. The project resulted in
the Compositional Interchange Format (CIF). Earlier efforts

for interchange formats were initiated for Charon [4]. The
above outlined projects have in common an idea to collect all
the features available in different hybrid model checkers and
provide an input language which essentially subsumes the
languages of every particular tool. Although having a com-
mon interchange language supported by all the tools would
be an ultimate solution, this approach hinges on the willing-
ness of the tool developers to support such an input format.
Furthermore, the incorporation of a common format into an
established tool by third party developers would be difficult
due to the time overhead needed to get acquainted with the
code of each particular hybrid model checker.
Alternative approaches include using other frequently-used

languages as standard input formats. Agrawal et al. [1] sug-
gest an algorithm to translate Simulink and Stateflow mod-
els (SSM) into the equivalent HSIF models. In a slightly dif-
ferent setting, Schrammel et al. [34] consider the translation
problem for complex SSMs where involved treatment of zero-
crossings (enabling conditions for guards) is needed. Chen
et al. [11] provide a translation from Stateflow to CSP [25].
Alur et al. [5] propose to use the symbolic analysis in or-
der to improve the test coverage of SSMs. In this scope,
a considered SSM is converted to a linear hybrid automa-
ton. Assuming that a SSM can be converted to a hybrid
automaton, our tool can principally use the resulting au-
tomaton as its input. Mathworks, unfortunately, does not
provide any rigid operational semantics for its tools. This
makes the model translation process error-prone and am-
biguous, whereas we are mostly concerned with the formal
verification of a given model. Other recent languages in-
clude the HYbrid systems with Discrete Interaction (HyDI)
language, which is an extension of the SMV input language
[13]. Recent converter initiatives include a converter from
Ptolemy II to SpaceEx [33], and the HyLink converter from
SSMs to hybrid automata [28].

2. HYBRID MODEL CHECKERS
Hyst allows for the same model to be analyzed in several

hybrid system model checkers. Each tool has unique char-
acteristics and will have varying performance depending on
the features of the model. In this section a brief compari-
son of the different tools supported by Hyst is given, along
with their different features. For syntax and semantics, we
assume the hybrid automaton framework [3], particularly
the same setup as defined for SpaceEx (modulo explicitly
allowing nonlinear polynomials for expressions) [20].

2.1 SpaceEx
SpaceEx [20] is a reachability tool for affine hybrid sys-

tems. It operates on symbolic states comprising of a dis-
crete location and a continuous region. Its reachability al-
gorithm can be represented as a fixed point computation:
S0 := postc(Init),Si+1 := Si ∪ postc(postd(Si)), where Init
stands for the initial states of the considered hybrid system,
postc(S) denotes the continuous post operator and postd(S)
is the discrete post operator.
The continuous post operator in SpaceEx can be done in

one of three scenarios: PHAVer [18], LGG [20], or STC [19].
The PHAVer scenario uses the constraint polyhedra repre-
sentation. The reachability computation is exact for the
class of hybrid systems with piecewise constant dynamics
as the PHAVer scenario uses the exact arithmetic, although
for affine dynamics the computed reachable sets of states is

rather coarse because the tool internally abstracts the affine
dynamics with piecewise constant ones. LGG performs bet-
ter on systems with affine dynamics through computation
of linear maps, Minkowski sums and convex hulls, using a
support function representation. The STC scenario extends
the ideas of the LGG scenario. It introduces the notion of
a flowpipe sampling. A flowpipe sampling maps every time
moment to a polyhedral enclosure of the states reachable at
that moment. In other words, the algorithm attributes to
every time moment the values of the support function on
the predefined template direction set.

2.2 HyCreate
HyCreate [6] is a tool which computes reachable states

in a way similar to mixed face-lifting [14], combined with
support for pseudo-invariants [7]. This technique works by
over-approximating the reachable set of states by moving
the faces of a tracked polytope outward at the maximum
derivative near each face. Neighborhoods around each face
are constructed, and then the maximum derivative in the
outward direction is considered along each face. Time is ad-
vanced in such as way that guarantees no trajectories leave
the constructed neighborhoods. After time is advanced, a
new polytope provides a bound on the reach state at some
future time instant and the process repeats.
In HyCreate, states are tracked as N-dimensional rect-

angles (intervals aligned with the axes). This can lead to
wrapping-effect error [29] for larger time bounds, which is
somewhat controlled though splitting tracked boxes into smaller
states. However, for large dimensional systems the boxes
may need to be split into an exponential number of smaller
boxes, such that the work needed to evaluate a certain pas-
sage of time keeps increasing. Thus, it works best for low-
dimensional systems. In HyCreate, a limit can be set to
prevent splitting if too many boxes are being tracked, which
has the effect of letting the computation proceed at the price
of over-approximation error.

2.3 Flow*
Flow* [12] is a tool which computes reach sets for nonlin-

ear hybrid systems using Taylor models [30] as a state-space
representation. The set of states is over-approximated at
each point in time using a single Taylor model with an or-
der that is configurable. A Taylor model is a polynomial
with interval terms for each of the variables, along with an
interval bloating term.
Time is advanced in Flow* by repeated application of the

Picard iteration. This requires symbolically integrating the
Taylor model, which is not difficult since it is a polynomial
(or a polynomial Taylor expansion for non-polynomials).
The error interval is bloated to encompass the result after a
certain number of iterations (the Taylor model is trimmed to
have a maximum order, and the remaining terms are pushed
into the remainder interval). Time can then be advanced
again from the newly obtained Taylor model. Taylor mod-
els work well even for medium-dimension (∼ 10) nonlinear
systems, as long as the set of states being tracked remains
relatively small. For high accuracy, a high order is desired.
However, in high dimensions a lower order might be neces-
sary because the number of combinations of variables grows
quickly, so the number of terms in each polynomial can grow
as well; it is not uncommon to get hundreds of terms being
tracked for each variable.

Tool Dynamics Extra Inputs Representation Problem
SpaceEx (PHAVer) Affine n/a Polyhedra Unbounded reachability
SpaceEx (LGG) Affine Sampling time Support functions Unbounded reachability
SpaceEx (STC) Affine Sampling time Support functions Unbounded reachability
Flow* Nonlinear Order Cutoff, Error Interval, Time Step Taylor models Bounded reachability
HyCreate Nonlinear Min/max derivatives, Time Step Hyper-rectangles Bounded reachability
dReach Nonlinear Max time, bad states SMT Bounded model checking

Table 1: Summary comparison between tools supported by Hyst.

2.4 dReach and dReal
dReach is a tool for bounded reachability analysis (bounded

model checking [BMC]) of hybrid systems [22] that uses
the dReal satisfiability modulo theories (SMT) solver for δ-
complete decidability queries over the reals [21]. In dReach,
after conversion to the SMT representation, the continuous
variables of a hybrid automaton are represented as nullary
real-valued functions (i.e., symbolic real constants). The lo-
cations of a hybrid automaton are also represented as nullary
real-valued functions, albeit their constraints ensure they
correspond to bounded integers to create a one-to-one cor-
respondence with the finite set of locations. The continuous
dynamics are specified as ODEs, and invariants over contin-
uous variables are supported. Sets of states are represented
symbolically as formulas over these variables. The inputs to
dReach are a hybrid system model, an integer bound k ≥ 0,
and a safety property φ, and dReach unrolls the transition
and trajectory relations k times to check if φ is reachable in
exactly k iterations.

2.5 Tool Comparison
A summary of the output tools and comparison between

them appears in Table 1.
Verification Problem. Tools may be classified by the

verification problem they address. All of the SpaceEx sce-
narios target unbounded reachability for enabling verifica-
tion primarily of safety properties (invariants). Addition-
ally, as unbounded reachability is a generalization of time-
bounded reachability, SpaceEx may solve the time-bounded
reachability problem. All the other tools focus on time-
bounded verification.
Networks and Compositions of Hybrid Automata.

SpaceEx supports composing networks of hybrid automata,
whereas the other tools work with flat automata. SpaceEx
does include preliminary support for flattening which can be
used to interface with the other tools.
State Representation and Error Control. All tools

maintain symbolic representations of reachable states, al-
though the specific representation and its possible error con-
trol capabilities differ. For example, SpaceEx uses either
polyhedra (in PHAVer scenario) or support functions (in
STC and LGG scenarios). Flow* works with Taylor mod-
els, HyCreate uses sets of hyper-rectangles, and dReach uti-
lizes symbolic formulas in the SMT-LIB standard (effectively
nonlinear real arithmetic with transcendentals) [8].
Flows, Invariants, Guards, Resets. SpaceEx sup-

ports affine functions for flows (as affine ODEs), invariants,
and resets. The SpaceEx syntax, however, does not restrict
from using nonlinear functions (although the tool itself will
not compute reachability for such models). Therefore, we
can define nonlinear functions in SpaceEx XML and trans-
late them to the corresponding tool with Hyst. Flow*, Hy-
Create, and dReach support nonlinear flows, invariants, and
resets. All tools use may transition semantics, so urgency
may be modeled by modifying the invariant and guard con-
ditions appropriately.

SpaceEx
XML HYST

Intermediate
Representation

Flow*

HyCreate

dReach

(other
formats)

Model
Transformation

Passes

(other
formats)

Figure 1: Hyst conversion architecture. SpaceEx XML
models specifying hybrid automata are translated to an in-
termediate representation (IR) inside Hyst, where model
transformation passes are performed. Then, the hybrid au-
tomaton is output in different syntax for input to other tools,
including HyCreate, Flow*, and dReach. It is not shown,
but the SpaceEx configuration file is also used, where, e.g.,
initial states and potentially bad states are specified.

Comparison Challenges. Given that Hyst can trans-
late the same model to multiple tools, a reasonable question
is which tool is the best for a particular model. A com-
parison between tools is not a straightforward operation.
First, the problems the tools solve differs. SpaceEx typically
solves an unbounded verification problem, and typically ter-
minates based on a fixed-point check. Flow* and HyCreate
solve time-bounded reachability, while dReach solves time-
bounded verification problems in a bounded model checking
manner. One way to force termination of SpaceEx to com-
pare to time-bounded reachability tools is to add a time
variable ṫ = 1 and add an invariant in every location that
t ≤ Tmax. Typically this is achieved by composing the orig-
inal SpaceEx hybrid automaton model of interest with a
single-location timed automaton with ṫ = 1 and invariant
t ≤ Tmax, which after composition ensures every location
has the time variable with dynamics ṫ = 1 and invariant
t ≤ Tmax. Adding such a variable, however, may affect tool
performance.
Another issue is subtle differences in allowed tool seman-

tics. In SpaceEx, for example, a location without defined dy-
namics means that every continuous state is possible. Other
tools may not support this directly, and this could be either
expressed using a non-deterministic assignment, or simply
rejected during generation.
Finally, the outputs of the tools are typically in the in-

ternal representation of the tools, and therefore difficult to
compare. A conversion to a common format, for example
the bounding box at a point in time, needs to be done prior
to comparison.

3. CONVERTER ARCHITECTURE
The conversion architecture used in Hyst is shown in Fig-

ure 1. The tools takes as input a source file, parses it to an
intermediate representation (IR), then prints the resulting
output source format desired. Using the SpaceEx format has
a number of practical advantages: several available examples

`off `on

ẋ = −8 · x

ṫ = 1

x ≥ 18
0 ≤ t ≤ Tmax

ẋ = −8 · (x − 30)
ṫ = 1

x ≤ 22
0 ≤ t ≤ Tmax

x ≤ 18.1

x := 20

t := 0

H:

x ≥ 21.9

Figure 2: Thermostat/heater example hybrid automaton.

already exist in the format, there is a visual model editor
for these files, SpaceEx can import from the CIF format [23]
and output SpaceEx XML, and there is preliminary support
in SpaceEx for hybrid automata flattening. As an input for-
mat, the grammar specifying flows, guards, invariants, and
resets of the automata does not have any restrictions on be-
ing affine, so we use the input format of SpaceEx for Hyst
and allow for nonlinear expressions. We note that in its
current version, however, SpaceEx cannot analyze nonlinear
examples as the algorithms it uses do require affine expres-
sions. In terms of output formats, the supported tools are
Flow*, HyCreate (both reachability and simulation), and
dReach, and output to other tools is part of our planned
future work.
Internally, the IR is currently a set of data structures in

Java which encode the modes, transitions, continuous vari-
ables, flow differential equations, guards, and invariants.
The intermediate representation may be modified prior to
output for a specific tool’s format through model transfor-
mation passes. Passes can be viewed as model-to-model con-
versions. Some passes can aid in the exporting process. For
example, dReach requires that identity resets are explicitly
defined, whereas other tools do not. A model transforma-
tion pass is therefore run before writing a dReach source file
which adds identity resets to transitions which did not de-
fine them. Another model transformation pass can be used
to check and rename variables that are disallowed keywords
for specific tools. Finally, model transformation passes can
be used to modify the reachability computation itself. For
example, the method of pseudo-invariants [7] has previously
been shown to improve the accuracy and speed of the reach-
ability computation for multiple tools. Implementing it as
a model transformation pass allows all supported tools to
be able to use the technique. An example using this pass is
shown later in Section 4. Other candidate passes we plan on
implementing include over-approximating abstraction tech-
niques, such as hybridization. Once implemented in Hyst,
these techniques would not need to be reimplemented for
each tool to use the approach, saving implementation effort
and reducing the likelihood of mistakes.

4. RESULTS
In the introduction, three classes of users were consid-

ered for Hyst: (1) Users of verification tools, (2) developers
of the tools, and (3) researchers who develop general tech-
niques which may be applicable to a wide variety of tools.

4.1 Users of Verification Tools
Users can use Hyst as a quick way to create workable

model files for all of the supported tools. We used Hyst
to convert numerous hybrid system models from different
classes, including typical affine and nonlinear examples. For
the purposes of illustration, we use the example of a heater
system interacting with the temperature in a room measured

(a) SpaceEx LGG (b) SpaceEx STC (c) SpaceEx PHAVer

(d) Flow*
(e) HyCreate2 Sim (f) HyCreate2

(g) dReach
Figure 3: Default reach set visualizations for ther-
mostat/heater hybrid automata example from Figure 2 for
the various output model files and tools.
by a thermostat, as shown in Figure 2 [24]. Although a
simple system, it is illustrative of most of the features found
in hybrid automata including invariants, guards, flows, and
non-determinism. More complicated benchmarks have been
converted using Hyst, however this system is sufficient for
reach-set illustration.
This system was converted by Hyst into the input format

of the various tools. Each tool was then run on the files, pro-
ducing a reach set as the output. The graphical results for
each of the tools are shown in Figure 3. For all tools except
dReach, these figures correspond to reachable states. For
dReach, the image corresponds to a witness counterexample
execution that leads to a bad (goal) set of states. These
models serve as initial starting points for users who want
to analyze a model, as they can immediately see the rough
performance of the various tools. As described earlier, the
tools contain tool-specific parameters which, after genera-
tion using Hyst, can be further tweaked by the user.
We currently have about a dozen benchmarks which can

be run through the translator and executed by the vari-
ous tools. These examples range from biological systems,
neuron models, power converters, and typical systems for
evaluations of nonlinear reachability methods. The full set
of examples and their converted models are available on the
Hyst website1. The conversion process for each model takes
less than a second and is negligible when compared with the
reachability computation runtime.

4.2 Tool Developers
For tool developers such output can also be illuminating.

One unexpected finding was that the visualization output
1HYST and examples are available at: http://www.
verivital.com/hyst/

http://www.verivital.com/hyst/
http://www.verivital.com/hyst/

(a) HyCreate2 (b) Flow* original (c) Flow* rescaled

Figure 4: The reach set computed by HyCreate2 and Flow* appears to differ. By rescaling time in the Flow* model, this is
confirmed as a result of the number of decimal digits Flow* outputs, rather than a bug in the tool.
for a buck-boost converter differed between HyCreate2 and
Flow* for the same model, shown in Figure 4. If the pro-
duced reach sets do not intersect, this is indicative of a bug in
one of the tools (or in the translation process). In this case,
the issue was not caused by the reachability algorithm but
rather by the visualization output of Flow* being strictly six
digits after the decimal point, which is not sufficient for the
time scales considered for this fast-switching system. This
was confirmed by rescaling time in the model file (using mil-
liseconds as the X-axis instead of seconds), which corrected
the visualization of the reach set.

4.3 Researchers
Many research results are applicable to general hybrid au-

tomata models, and not only a specific tool. Reimplement-
ing these results in each tool would require significant effort,
and be an error prone process. Piecemeal implementation
of such results is also problematic because it is not clear if
a tool is superior to another one because of an optimization
performed on the model, or the underlying algorithm, or due
to subtle differences in the implementation of the technique.
By implementing generic model transformations in Hyst,
effort and errors can be reduced, and a more fine-grained
comparison of tools becomes possible.
For example, the time-scaling performed on the buck-

boost system in Figure 4 was done using a time-scaling
model transformation pass. Using a command-line flag to
Hyst, the user can select the pass to perform and time scale
desired, and the output model will be modified accordingly.
Another model transformation pass implemented in Hyst

is the insertion of pseudo-invariants (PI) [7]. This method
splits an individual mode of a hybrid automaton into several
using a set of provided conditions (called pseudo-invariants).
The modes after splitting have identical dynamics to the
mode they came from, and the transformed automaton is
bisimilar to the original automaton. However, these artifi-
cial discrete transitions allow accumulating the set of states
being tracked for tools that use flow-pipe construction meth-
ods. This can, in certain cases, serve to increase computa-
tion accuracy and reduce computation time.
To demonstrate this pass, we used the 2-d nonlinear model

of a FitzHugh-Nagumo Neuron, using the dynamics and ini-
tial states given by Dang et al. [16]. This system was con-
verted to both Flow* and HyCreate2 (which support nonlin-
ear dynamics). Without pseudo-invariants, neither tool can
complete a single cycle within the state-space of the system
due to accumulated error. By passing the appropriate flag
and parameters to Hyst, a modified model is produced, for

(a) HyCreate2 (no PI) (b) Flow* (no PI)

(c) HyCreate2 (with PI) (d) Flow* (with PI)
Figure 5: A single implementation of pseudo-invariants
within Hyst improves reachability computation for both
Flow* and HyCreate2.
which an improvement in computation is visible for both of
the tools. The reachability plots with and without the PI
pass are shown in Figure 5. Other model-transformations
passes that we plan to implement include variants of hy-
bridization.

5. CONCLUSION
In this paper, we present a source-to-source conversion

tool called Hyst for hybrid automata. The tool is capable
of quickly converting a model to a number of hybrid system
model checking tools. Additionally, it supports model trans-
formation passes, which serve to both ease conversion, and
allow generic application of model-transformation research
results.
As future work, we plan to extend Hyst to more case

studies and more tools, and we welcome contributions of tool
authors interested to integrate in the Hyst framework. The
limitations of the converter include a lack of compositions
beyond using SpaceEx to compute the composition (which
may in general blow up), and some limitations in automation
for comparing different tools. Additionally, as the language
of SpaceEx corresponds closely to the hybrid automata mod-
eling framework, other tools that support more general lan-
guage definitions may be better suited as the source input
format, and we can envision extensions of Hyst as a general

source-to-source translation framework. Once composition
is better supported, we can envision integrating other tools
like Passel [26].

Acknowledgment
The material presented in this paper is based upon work sup-
ported by the Air Force Research Laboratory’s Information Di-
rectorate (AFRL/RI) through the Visiting Faculty Research Pro-
gram (VFRP) under contract number FA8750-13-2-0115 and the
Air Force Office of Scientific Research (AFOSR). Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect
the views of the AFRL/RI or AFOSR. This work was also partly
supported in part by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Auto-
matic Verification and Analysis of Complex Systems” (SFB/TR
14 AVACS, http://www.avacs.org/), by the European Research
Council (ERC) under grant 267989 (QUAREM) and by the Aus-
trian Science Fund (FWF) under grants S11402-N23 (RiSE) and
Z211-N23 (Wittgenstein Award).

6. REFERENCES
[1] A. Agrawal, G. Simon, and G. Karsai. Semantic translation of

simulink/stateflow models to hybrid automata using graph
transformations. Electronic Notes in Theoretical Computer
Science, 109:43–56, 2004.

[2] D. N. Agut, D. van Beek, and J. Rooda. Syntax and semantics
of the compositional interchange format for hybrid systems.
The Journal of Logic and Algebraic Programming, 82(1):1 –
52, 2013.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho.
Hybrid automata: An algorithmic approach to the specification
and verification of hybrid systems. In R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid
Systems, pages 209–229, London, UK, 1993. Springer-Verlag.

[4] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular
specification of hybrid systems in Charon. In N. Lynch and
B. Krogh, editors, Hybrid Systems: Computation and Control,
volume 1790 of LNCS, pages 6–19. Springer Berlin Heidelberg,
2000.

[5] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar.
Symbolic analysis for improving simulation coverage of
simulink/stateflow models. In Proceedings of the 8th ACM
International Conference on Embedded Software, EMSOFT
’08, pages 89–98, New York, NY, USA, 2008. ACM.

[6] S. Bak. HyCreate: A tool for overapproximating reachability of
hybrid automata.

[7] S. Bak. Reducing the wrapping effect in flowpipe construction
using pseudo-invariants. In 4th ACM SIGBED International
Workshop on Design, Modeling, and Evaluation of
Cyber-Physical Systems (CyPhy 2014), pages 40–43, 2014.

[8] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard:
Version 2.0, 2010.

[9] L. Carloni, M. D. Di Benedetto, A. Pinto, and
A. Sangiovanni-Vincentelli. Modeling techniques, programming
languages, design toolsets and interchange formats for hybrid
systems. Technical report, 2004.

[10] L. P. Carloni, R. Passerone, A. Pinto, and A. L.
Sangiovanni-Vincentelli. Languages and tools for hybrid
systems design. Foundations and Trends in Electronic Design
Automation, 1, 2006.

[11] C. Chen, J. Sun, Y. Liu, J. Dong, and M. Zheng. Formal
modeling and validation of stateflow diagrams. International
Journal on Software Tools for Technology Transfer,
14(6):653–671, 2012.

[12] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model
flowpipe construction for non-linear hybrid systems. 2013
IEEE 34th Real-Time Systems Symposium, 0:183–192, 2012.

[13] A. Cimatti, S. Mover, and S. Tonetta. Hydi: A language for
symbolic hybrid systems with discrete interaction. In Software
Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on, pages 275–278, Aug. 2011.

[14] T. Dang. Verification et synthese des systemes hybrides. PhD
thesis, INPG, oct 2000.

[15] T. Dang, C. Le Guernic, and O. Maler. Computing reachable
states for nonlinear biological models. In Computational
Methods in Systems Biology, pages 126–141. Springer, 2009.

[16] T. Dang and R. Testylier. Reachability analysis for polynomial
dynamical systems using the Bernstein expansion, 2012.

[17] T. Dreossi and T. Dang. Parameter synthesis for polynomial
biological models. In Proceedings of the 17th international
conference on Hybrid systems: computation and control,
pages 233–242. ACM, 2014.

[18] G. Frehse. Phaver: Algorithmic verification of hybrid systems
past hytech. In Hybrid Systems: Computation and Control,
8th International Workshop, HSCC 2005, Zurich,
Switzerland, March 9-11, 2005, Proceedings, pages 258–273,
2005.

[19] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe
approximation and clustering in space-time. In Proc. Hybrid
Systems: Computation and Control (HSCC’13), pages
203–212. ACM, 2013.

[20] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler.
SpaceEx: Scalable verification of hybrid systems. In Computer
Aided Verification (CAV), LNCS. Springer, 2011.

[21] S. Gao, J. Avigad, and E. Clarke. Delta-decidability over the
reals. In Logic in Computer Science (LICS), 2012 27th
Annual IEEE Symposium on, pages 305–314, 2012.

[22] S. Gao, S. Kong, and E. Clarke. Satisfiability modulo ODEs. In
International Conference on Formal Methods in
Computer-Aided Design (FMCAD), Oct. 2013.

[23] M. Goyal. Translation between cif and spaceex/phaver.
Master’s thesis, Verimag Research Lab, 2011.

[24] T. A. Henzinger. The theory of hybrid automata. In IEEE
Symposium on Logic in Computer Science (LICS), page 278,
Washington, DC, USA, 1996. IEEE Computer Society.

[25] C. A. R. Hoare. Communicating sequential processes, volume
178. Prentice-hall Englewood Cliffs, 1985.

[26] T. T. Johnson. Uniform Verification of Safety for
Parameterized Networks of Hybrid Automata. PhD thesis,
University of Illinois at Urbana-Champaign, Electrical and
Computer Engineering, Urbana, IL 61801, 2013.

[27] C. Livadas, J. Lygeros, and N. A. Lynch. High-level modelling
and analysis of tcas. In IEEE Real-Time Systems Symposium,
pages 115–125, 1999.

[28] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo. A step
towards verification and synthesis from Simulink/Stateflow
models. In Proc. of the 14th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC), pages 317–318. ACM,
2011.

[29] R. Moore. Interval analysis. Prentice-Hall series in automatic
computation. Prentice-Hall, 1966.

[30] M. Neher, K. R. Jackson, and N. S. Nedialkov. On taylor model
based integration of odes. SIAM J. Numer. Anal, 45:2007.

[31] A. Pinto, L. Carloni, R. Passerone, and
A. Sangiovanni-Vincentelli. Interchange format for hybrid
systems: Abstract semantics. In J. P. Hespanha and A. Tiwari,
editors, Hybrid Systems: Computation and Control, volume
3927 of LNCS, pages 491–506. Springer Berlin Heidelberg,
2006.

[32] A. Pinto, A. L. Sangiovanni-Vincentelli, L. P. Carloni, and
R. Passerone. Interchange formats for hybrid systems: Review
and proposal. In M. Morari and L. Thiele, editors, Hybrid
Systems: Computation and Control, volume 3414 of LNCS,
pages 526–541. Springer Berlin Heidelberg, 2005.

[33] S. Ran, J. Lin, Y. Wu, J. Zhang, and Y. Xu. Converting
ptolemy ii models to spaceex for applied verification. In X.-h.
Sun, W. Qu, I. Stojmenovic, W. Zhou, Z. Li, H. Guo, G. Min,
T. Yang, Y. Wu, and L. Liu, editors, Algorithms and
Architectures for Parallel Processing, volume 8630 of LNCS,
pages 669–683. Springer International Publishing, 2014.

[34] P. Schrammel and B. Jeannet. From hybrid data-flow languages
to hybrid automata: A complete translation. In Proceedings of
the 15th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC ’12, pages 167–176, New
York, NY, USA, 2012. ACM.

[35] D. van Beek, M. Reniers, R. Schiffelers, and J. Rooda.
Foundations of a compositional interchange format for hybrid
systems. In A. Bemporad, A. Bicchi, and G. Buttazzo, editors,
Hybrid Systems: Computation and Control, volume 4416 of

LNCS, pages 587–600. Springer Berlin Heidelberg, 2007.

http://www.avacs.org/

	1 Introduction
	2 Hybrid Model Checkers
	2.1 SpaceEx
	2.2 HyCreate
	2.3 Flow*
	2.4 dReach and dReal
	2.5 Tool Comparison

	3 Converter Architecture
	4 Results
	4.1 Users of Verification Tools
	4.2 Tool Developers
	4.3 Researchers

	5 Conclusion
	6 References

