
HYST: A Source-to-Source Transformation Framework for
Hybrid Automata

Stanley Bak1, Sergiy Bogomolov2,3, and Taylor T. Johnson4

1 Air Force Research Laboratory Rome, NY, USA
2 IST Austria, Austria

3 University of Freiburg, Germany
4 University of Texas at Arlington Arlington, TX, USA

Abstract
A number of powerful hybrid systems model checkers have recently emerged. Those

tools share a common goal of establishing an automatic verification process of hybrid sys-
tems, yet use quite different approaches. The two most prominent approaches are flow-pipe
construction and decision procedures. Although both classes of approaches show promise,
they have unique strengths and weaknesses. Therefore, it is natural to investigate the
possible synergies of those tools. Unfortunately, although all the tools support roughly
the same hybrid systems semantics, their model description languages differ dramatically.
This makes it difficult to quickly evaluate a specific hybrid automaton model using the
different tools and, even more importantly, makes the application cost of multiple tools
in a tool chain prohibitively high due to the low level of inter-tool interaction possibili-
ties. In this paper, we present Hyst, a source-to-source translation tool, currently taking
input in the SpaceEx model format, and translating to the formats of HyCreate, Flow*,
or dReach. Besides providing a translation between different model description languages,
our tool supports the concept of model-to-model transformation passes that both ease
the translation and potentially improve reachability results for the supported tools. In
addition, the transformation passes provide a natural way to embed multiple tools into
a single tool chain. We envision Hyst being a research vehicle which will help to boot-
strap novel approaches on the interface of multiple tools and approaches. Our evaluation
demonstrates Hyst is capable of automatically translating benchmarks in several classes
(including affine and nonlinear hybrid automata) to the input formats of several tools.
Additionally, we illustrate reachability improvement with a general model transformation
pass based on pseudo-invariants, currently implemented in Hyst.

1 Introduction
Hybrid systems are mathematical models that combine discrete and continuous dynamics. This
formalism has a large expressive power and therefore can describe the behaviour of a large range
of real-world systems, e.g., from the domain of embedded systems [19] and biological systems [10,
12]. A number of powerful and scalable model checkers have recently emerged [3, 8, 13, 14, 18].
They cover a number of hybrid system classes, e.g., affine vs. non-linear continuous dynamics
and monolithic vs. automata networks. Furthermore, the analysis algorithms are built around
different ideas and state representations, such as flow-pipe construction or decision procedures
for differential equations. These design decisions make the tools particularly efficient in some
settings, such as only for some classes of continuous dynamics. This makes the analysis of
complex heterogeneous systems comprising of multiple components particularly challenging as
the tool suitable for the analysis of the most complex component will be applied to the whole
system. In this paper, we lay the foundations for an inter-tool analysis framework which relies

1



HYST: A Source-to-Source Transformation Framework for Hybrid Automata Bak, Bogomolov, and Johnson

on the power of multiple approaches organised in a single tool chain to attack the system
complexity. In particular, we present an automatic source-to-source model converter from
the SpaceEx input format to the Flow*, HyCreate, and dReach formats. At present, direct
comparisons between model checkers cannot be done out-of-the-box as the input languages
are syntactically different. However, a manual comparison is possible because, although the
input languages of the considered model checkers differ syntactically, they rely on the same
behavioural semantics. In this way, a user of verification tools can quickly generate a model
file for a number of tools in order to find a tool that best fits the system under consideration.
Furthermore, a developer of hybrid systems model checkers can use Hyst to both compare
the performance of newly developed algorithms with other up-to-date analysis tools, as well as
to quickly check for correctness against a common set of models and as part of a regression
test suite. Finally, Hyst supports the concept of model-to-model transformation passes which
provide a way to adjust hybrid models towards the applied system analysis methodology. In
the paper, we discuss a model transformation pass based on pseudo-invariants to show possible
reachability analysis improvements. In the long term, we envision the Hyst being a natural way
to connect multiple tools in a tool chain and in this way providing an efficient way to exploit
possible collaborative verification among different tools.

This report is an extended abstract of an earlier paper presented recently at HSCC 2015 [5].
Related Work. In the last decade, several research groups have worked on approaches

to unify the syntax of hybrid model checkers. Sangiovanni-Vincentelli et al suggest the hybrid
systems interchange format (HSIF) [6]. A further attempt to provide a common input language
focused on the model composition has been undertaken within the FP7 Multiform project [23].
The project resulted in the Compositional Interchange Format (CIF). Earlier efforts for inter-
change formats were initiated for Charon [2]. The above outlined projects have in common an
idea to collect all the features available in different hybrid model checkers and provide an input
language which essentially subsumes the languages of every particular tool. Although having
a common interchange language supported by all the tools would be an ultimate solution, this
approach hinges on the willingness of the tool developers to support such an input format.
Furthermore, the incorporation of a common format into an established tool by third party
developers would be difficult due to the time overhead needed to get acquainted with the code
of each particular hybrid model checker.

Alternative approaches include using other frequently-used languages as standard input
formats. Agrawal et al. [1] suggest an algorithm to translate Simulink and Stateflow models
(SSM) into the equivalent HSIF models. In a slightly different setting, Schrammel et al. [22]
consider the translation problem for complex SSMs where involved treatment of zero-crossings
(enabling conditions for guards) is needed. Chen et al. [7] provide a translation from Stateflow
to CSP [17]. Mathworks, unfortunately, does not provide any rigid operational semantics for
its tools. This makes the model translation process error-prone and ambiguous, whereas we are
mostly concerned with the formal verification of a given model. Other recent languages include
the HYbrid systems with Discrete Interaction (HyDI) language, which is an extension of the
SMV input language [9]. Recent converter initiatives include a converter from Ptolemy II to
SpaceEx [21], and the HyLink converter from SSMs to hybrid automata [20].

2 Converter Architecture
The conversion architecture used in Hyst is shown in Figure 1. The tools takes as input a
source file, parses it to an intermediate representation (IR), then prints the resulting output
source format desired. Using the SpaceEx format has a number of practical advantages: several

2



HYST: A Source-to-Source Transformation Framework for Hybrid Automata Bak, Bogomolov, and Johnson

SpaceEx
XML HYST

Intermediate
Representation

Flow*

HyCreate

dReach

(other 
formats)

Model 
Transformation

Passes

(other 
formats)

Figure 1: Hyst conversion architecture. SpaceEx XML models specifying hybrid automata
are translated to an intermediate representation (IR) inside Hyst, where model transformation
passes are performed. Then, the hybrid automaton is output in different syntax for input
to other tools, including HyCreate, Flow*, and dReach. It is not shown, but the SpaceEx
configuration file is also used, where, e.g., initial states and potentially bad states are specified.

available examples already exist in the format, there is a visual model editor for these files,
SpaceEx can import from the CIF format [15] and output SpaceEx XML, and there is prelim-
inary support in SpaceEx for hybrid automata flattening. As an input format, the grammar
specifying flows, guards, invariants, and resets of the automata does not have any restrictions
on being affine, so we use the input format of SpaceEx for Hyst and allow for nonlinear ex-
pressions. We note that in its current version, however, SpaceEx cannot analyze nonlinear
examples as the algorithms it uses do require affine expressions. In terms of output formats,
the supported tools are Flow*, HyCreate (both reachability and simulation), and dReach, and
output to other tools is part of our planned future work.

Internally, the IR is currently a set of data structures in Java which encode the modes,
transitions, continuous variables, flow differential equations, guards, and invariants. The in-
termediate representation may be modified prior to output for a specific tool’s format through
model transformation passes. Passes can be viewed as model-to-model conversions. Some
passes can aid in the exporting process. For example, dReach requires that identity resets are
explicitly defined, whereas other tools do not. A model transformation pass is therefore run
before writing a dReach source file which adds identity resets to transitions which did not define
them. Another model transformation pass can be used to check and rename variables that are
disallowed keywords for specific tools. Finally, model transformation passes can be used to
modify the reachability computation itself. For example, the method of pseudo-invariants [4]
has previously been shown to improve the accuracy and speed of the reachability computation
for multiple tools. Implementing it as a model transformation pass allows all supported tools
to be able to use the technique. An example using this pass is shown later in Section 3. Other
candidate passes we plan on implementing include over-approximating abstraction techniques,
such as hybridization. Once implemented in Hyst, these techniques would not need to be
reimplemented for each tool to use the approach, saving implementation effort and reducing
the likelihood of mistakes.

3 Results
In the introduction, three classes of users were considered for Hyst: (1) Users of verification
tools, (2) developers of tools, and (3) researchers who develop general techniques that may be
applicable to a wide variety of tools.

Users of Verification Tools Users can use Hyst as a quick way to create workable model
files for all of the supported tools. We used Hyst to convert numerous hybrid system models

3



HYST: A Source-to-Source Transformation Framework for Hybrid Automata Bak, Bogomolov, and Johnson

`off `on

ẋ = −8 · x

ṫ = 1

x ≥ 18
0 ≤ t ≤ Tmax

ẋ = −8 · (x − 30)
ṫ = 1

x ≤ 22
0 ≤ t ≤ Tmax

x ≤ 18.1

x := 20

t := 0

H:

x ≥ 21.9

Figure 2: Thermostat/heater example hybrid automaton.

(a) SpaceEx LGG (b) SpaceEx STC (c) SpaceEx PHAVer

(d) Flow*

(e) HyCreate2 Sim (f) HyCreate2 (g) dReach

Figure 3: Default reach set visualizations for thermostat/heater hybrid automata example
from Figure 2 for the various output model files and tools.

from different classes, including typical affine and nonlinear examples. For the purposes of
illustration, we use the example of a heater system interacting with the temperature in a room
measured by a thermostat, as shown in Figure 2 [16]. Although a simple system, it is illustrative
of most of the features found in hybrid automata including invariants, guards, flows, and non-
determinism. More complicated benchmarks have been converted using Hyst, however this
system is sufficient for reach-set illustration.

This system was converted by Hyst into the input format of the various tools. Each tool
was then run on the files, producing a reach set as the output. The graphical results for each
of the tools are shown in Figure 3. For all tools except dReach, these figures correspond to
reachable states. For dReach, the image corresponds to a witness counterexample execution
that leads to a bad (goal) set of states. These models serve as initial starting points for users
who want to analyze a model, as they can immediately see the rough performance of the various
tools. As described earlier, the tools contain tool-specific parameters which, after generation
using Hyst, can be further tweaked by the user.

We currently have about a dozen benchmarks which can be run through the translator and
executed by the various tools. These examples range from biological systems, neuron models,
power converters, and typical systems for evaluations of nonlinear reachability methods. The

4



HYST: A Source-to-Source Transformation Framework for Hybrid Automata Bak, Bogomolov, and Johnson

full set of examples and their converted models are available on the Hyst website1. The
conversion process for each model takes less than a second and is negligible when compared
with the reachability computation runtime.

Tool Developers For tool developers such output can also be illuminating. One unexpected
finding was that the visualization output for a buck-boost converter differed between HyCreate2
and Flow* for the same model, shown in Figure 4. If the produced reach sets do not intersect,
this is indicative of a bug in one of the tools (or in the translation process). In this case, the
issue was not caused by the reachability algorithm but rather by the visualization output of
Flow* being strictly six digits after the decimal point, which is not sufficient for the time scales
considered for this fast-switching system. This was confirmed by rescaling time in the model
file (using milliseconds as the X-axis instead of seconds), which corrected the visualization of
the reach set.

Researchers Many research results are applicable to general hybrid automata models, and
not only a specific tool. Reimplementing these results in each tool would require significant
effort, and be an error prone process. Piecemeal implementation of such results is also prob-
lematic because it is not clear if a tool is superior to another one because of an optimization
performed on the model, or the underlying algorithm, or due to subtle differences in the imple-
mentation of the technique. By implementing generic model transformations in Hyst, effort
and errors can be reduced, and a more fine-grained comparison of tools becomes possible.

For example, the time-scaling performed on the buck-boost system in Figure 4 was done
using a time-scaling model transformation pass. Using a command-line flag to Hyst, the user
can select the pass to perform and time scale desired, and the output model will be modified
accordingly.

Another model transformation pass implemented in Hyst is the method of pseudo-invariants
(PI) [4]. This method splits an individual mode of a hybrid automaton into several using a
set of provided conditions (called pseudo-invariants). The modes after splitting have identical
dynamics to the mode they came from, and the transformed automaton is bisimilar to the
original automaton. However, these artificial discrete transitions allow accumulating the set
of states being tracked for tools that use flow-pipe construction methods. This can, in certain
cases, serve to increase computation accuracy and reduce computation time.

To demonstrate this pass, we used the 2-d nonlinear model of a FitzHugh-Nagumo Neuron,
using the dynamics and initial states given by Dang et al. [11]. This system was converted to
both Flow* and HyCreate2 (which support nonlinear dynamics). Without pseudo-invariants,
neither tool can complete a single cycle within the state-space of the system due to accumulated
error. By passing the appropriate flag and parameters to Hyst, a modified model is produced,
resulting in visibly improved accuracy in the computed reach set for both tools. Other model-
transformations passes implemented in Hyst include expression simplification and zeno behavior
regularization.

4 Conclusion
In this paper, we present a source-to-source conversion tool called Hyst for hybrid automata.
The tool is capable of quickly converting a model to a number of hybrid system model checking

1HYST and examples are available at: http://www.verivital.com/hyst/

5

http://www.verivital.com/hyst/


HYST: A Source-to-Source Transformation Framework for Hybrid Automata Bak, Bogomolov, and Johnson

(a) HyCreate2 (b) Flow* original (c) Flow* rescaled

Figure 4: The reach set computed by HyCreate2 and Flow* appears to differ. By rescaling
time in the Flow* model, this is confirmed as a result of the number of decimal digits Flow*
outputs, rather than a bug in the tool.

tools. Additionally, it supports model transformation passes, which serve to both ease conver-
sion, and allow generic application of model-transformation research results. As future work,
we plan to extend Hyst to more case studies and more tools, and we welcome contributions of
tool authors interested to integrate in the Hyst framework.

Acknowledgment
The material presented in this paper is based upon work supported by the Air Force Research Labo-
ratory’s Information Directorate (AFRL/RI) through the Visiting Faculty Research Program (VFRP)
under contract number FA8750-13-2-0115 and the Air Force Office of Scientific Research (AFOSR).
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the AFRL/RI or AFOSR. This work was also
partly supported by the German Research Foundation (DFG) as part of the Transregional Collabora-
tive Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,
http://www.avacs.org/), by the European Research Council (ERC) under grant 267989 (QUAREM)
and by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE) and Z211-N23 (Wittgenstein
Award).

DISTRIBUTION A. Approved for public release; Distribution unlimited. (Approval AFRL PA
#88ABW-2015-0468, 09 FEB 2015)

References
[1] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic translation of simulink/stateflow

models to hybrid automata using graph transformations. Electronic Notes in Theoretical Computer
Science, 109:43–56, 2004.

[2] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee. Modular specification
of hybrid systems in Charon. In Nancy Lynch and BruceH. Krogh, editors, Hybrid Systems:
Computation and Control, volume 1790 of LNCS, pages 6–19. Springer Berlin Heidelberg, 2000.

[3] Stanley Bak. HyCreate: A tool for overapproximating reachability of hybrid automata.
[4] Stanley Bak. Reducing the wrapping effect in flowpipe construction using pseudo-invariants. In

4th ACM SIGBED International Workshop on Design, Modeling, and Evaluation of Cyber-Physical
Systems (CyPhy 2014), pages 40–43, 2014.

[5] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HyST: A source transformation and
translation tool for hybrid automaton models. In Proc. of the 18th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC). ACM, 2015.

6

http://www.avacs.org/


HYST: A Source-to-Source Transformation Framework for Hybrid Automata Bak, Bogomolov, and Johnson

[6] Luca Carloni, Maria D Di Benedetto, Alessandro Pinto, and Alberto Sangiovanni-Vincentelli.
Modeling techniques, programming languages, design toolsets and interchange formats for hybrid
systems, 2004.

[7] Chunqing Chen, Jun Sun, Yang Liu, JinSong Dong, and Manchun Zheng. Formal modeling and
validation of stateflow diagrams. International Journal on Software Tools for Technology Transfer,
14(6):653–671, 2012.

[8] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Taylor model flowpipe construction
for non-linear hybrid systems. 2013 IEEE 34th Real-Time Systems Symposium, 0:183–192, 2012.

[9] A Cimatti, S. Mover, and S. Tonetta. Hydi: A language for symbolic hybrid systems with discrete
interaction. In Software Engineering and Advanced Applications (SEAA), 2011 37th EUROMICRO
Conference on, pages 275–278, August 2011.

[10] Thao Dang, Colas Le Guernic, and Oded Maler. Computing reachable states for nonlinear biolog-
ical models. In Computational Methods in Systems Biology, pages 126–141. Springer, 2009.

[11] Thao Dang and Romain Testylier. Reachability analysis for polynomial dynamical systems using
the Bernstein expansion, 2012.

[12] Tommaso Dreossi and Thao Dang. Parameter synthesis for polynomial biological models. In
Proceedings of the 17th international conference on Hybrid systems: computation and control,
pages 233–242. ACM, 2014.

[13] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verification of
hybrid systems. In Computer Aided Verification (CAV), LNCS. Springer, 2011.

[14] Sicun Gao, Soonho Kong, and Edmund Clarke. Satisfiability modulo ODEs. In International
Conference on Formal Methods in Computer-Aided Design (FMCAD), October 2013.

[15] Manish Goyal. Translation between cif and spaceex/phaver. Master’s thesis, Verimag Research
Lab, 2011.

[16] T. A. Henzinger. The theory of hybrid automata. In IEEE Symposium on Logic in Computer
Science (LICS), page 278, Washington, DC, USA, 1996. IEEE Computer Society.

[17] Charles Antony Richard Hoare. Communicating sequential processes, volume 178. Prentice-hall
Englewood Cliffs, 1985.

[18] Taylor T. Johnson. Uniform Verification of Safety for Parameterized Networks of Hybrid Au-
tomata. PhD thesis, University of Illinois at Urbana-Champaign, Electrical and Computer Engi-
neering, Urbana, IL 61801, 2013.

[19] C. Livadas, J. Lygeros, and N. A. Lynch. High-level modelling and analysis of tcas. In IEEE
Real-Time Systems Symposium, pages 115–125, 1999.

[20] Karthik Manamcheri, Sayan Mitra, Stanley Bak, and Marco Caccamo. A step towards verification
and synthesis from Simulink/Stateflow models. In Proc. of the 14th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC), pages 317–318. ACM, 2011.

[21] Shiwei Ran, Jinzhi Lin, Ying Wu, Jianzhong Zhang, and Yuwei Xu. Converting ptolemy ii models
to spaceex for applied verification. In Xian-he Sun, Wenyu Qu, Ivan Stojmenovic, Wanlei Zhou,
Zhiyang Li, Hua Guo, Geyong Min, Tingting Yang, Yulei Wu, and Lei Liu, editors, Algorithms and
Architectures for Parallel Processing, volume 8630 of LNCS, pages 669–683. Springer International
Publishing, 2014.

[22] Peter Schrammel and Bertrand Jeannet. From hybrid data-flow languages to hybrid automata:
A complete translation. In Proceedings of the 15th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC ’12, pages 167–176, New York, NY, USA, 2012. ACM.

[23] D.A. van Beek, M.A. Reniers, R.R.H. Schiffelers, and J.E. Rooda. Foundations of a compositional
interchange format for hybrid systems. In Alberto Bemporad, Antonio Bicchi, and Giorgio But-
tazzo, editors, Hybrid Systems: Computation and Control, volume 4416 of LNCS, pages 587–600.
Springer Berlin Heidelberg, 2007.

7


	1 Introduction
	2 Converter Architecture
	3 Results
	4 Conclusion

