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ABSTRACT
Hybridization methods enable the analysis of hybrid au-
tomata with complex, nonlinear dynamics through a sound
abstraction process. Complex dynamics are converted to
simpler ones with added noise, and then analysis is done us-
ing a reachability method for the simpler dynamics. Several
such recent approaches advocate that only “dynamic” hy-
bridization techniques—i.e., those where the dynamics are
abstracted on-the-fly during a reachability computation—
are effective. In this paper, we demonstrate this is not the
case, and create static hybridization methods that are more
scalable than earlier approaches.
The main insight in our approach is that quick, numeric

simulations can be used to guide the process, eliminating
the need for an exponential number of hybridization do-
mains. Transitions between domains are generally time-
triggered, avoiding accumulated error from geometric inter-
sections. We enhance our static technique by combining
time-triggered transitions with occasional space-triggered
transitions, and demonstrate the benefits of the combined
approach in what we call mixed-triggered hybridization. Fi-
nally, error modes are inserted to confirm that the reachable
states stay within the hybridized regions.
The developed techniques can scale to higher dimensions

than previous static approaches, while enabling the paral-
lelization of the main performance bottleneck for many dy-
namic hybridization approaches: the nonlinear optimization
required for sound dynamics abstraction. We implement our
method as a model transformation pass in the HYST tool,
and perform reachability analysis and evaluation using an
unmodified version of SpaceEx on nonlinear models with up
to six dimensions.
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1. INTRODUCTION
A hybrid automaton [7] is an expressive mathematical

model useful for describing complex dynamic processes in-
volving both continuous and discrete states and their evolu-
tion. Efficient algorithms and analysis tools for linear and
affine systems have recently emerged [24]. However, the be-
haviour of many real-world systems can only be modeled
with nonlinear differential equations.
Hybridization methods attempt to address this issue, en-

abling the application of existing algorithms for simpler dy-
namics (such as constant or affine dynamics) on the analy-
sis of hybrid automata with nonlinear differential equations.
Alternative recent approaches for analyzing nonlinear sys-
tems include simulation-based verification [22] or using effi-
cient representations such as Taylor models [17]. Most hy-
bridization methods work by dividing the state space into a
set of domains. In each domain, the nonlinear dynamics are
then converted to simpler ones with added noise to account
for the abstraction error within the domain. Hybridization
is also known as conservative approximation [8], which il-
lustrates that it is a sound (or conservative) abstraction.
Hybridization has been used to verify properties for several
types of systems, from analog/mixed-signal circuits [19] to
autonomous satellite maneuvers in space [14,31].
We classify existing hybridization approaches along two

axes as shown in Table 1: static versus dynamic, and space-
triggered versus time-triggered. Static hybridization ap-
proaches use a fixed partitioning, and can make use unmod-
ified, off-the-shelf analysis tools. In contrast, dynamic meth-
ods exploit runtime information to perform hybridization,
and therefore must be tightly integrated within an analysis
tool. On the other axis, space-triggered techniques perform
geometric intersections along hybridization domain bound-
aries. Time-triggered hybridization, on the other hand,
avoids this operation by creating a series of overlapping
domains, and switches between them at specific points in
time.
Based on this classification, a gap exists in existing re-

search: no methods exist that perform static, time-triggered
hybridization. The main contribution of this paper is the
investigation of this category, and demonstrating that such
methods can overcome some of the drawbacks of existing
hybridization methods. Notably, the new hybridization
methods are more scalable than existing space-triggered
approaches. Furthermore, the expensive dynamics abstrac-
tion step, which is generally a global optimization problem,
is easily parallelizable, which is not the case in dynamic
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Space- Time- Mixed-
Triggered Triggered Triggered

Static [8, 10,29,31] this paper this paper
Dynamic [8, 9] [1–3,5, 20,28] none

Table 1: Breakdown of hybridization approaches into static
versus dynamic, and space-triggered versus time-triggered,
as well as combinations thereof (mixed-triggered).

approaches. We further enhance our static technique by
combining time-triggered transitions with occasional space-
triggered transitions, and demonstrate the benefits of the
combined approach in what we call mixed-triggered hy-
bridization.
The static mixed-triggered hybridization approach works

by hybridizing only a part of the state space. We use quick
numeric simulations to guide the partitioning process. In
this way, we mitigate the problem of exponential growth in
the number of partitions. In addition, we generally use time-
triggered guards in the transitions between partitions. This
prevents costly geometric intersection computations which
typically add overapproximation error to the result. We en-
sure the soundness of the constructed abstraction by adding
error modes to guarantee that the computed reachable states
remain within the hybridized region (which is constructed
from simulations that may be imprecise).
We implement the hybridization method described in this

paper as a model transformation pass in the Hyst source-to-
source translation tool. Since it is a static approach, we can
use unmodified reachability tools on the hybridized models.
We create affine abstractions of nonlinear dynamics, and use
to perform reachability analysis.

Contributions and Paper Organization. The main con-
tribution of this paper is the development of the first static
time-triggered and mixed-triggered hybridization methods.
Of critical importance in the proposed approaches is the
choice of hybridization parameters, and a second contribu-
tion is an algorithm which uses simulations to generate these
values. This algorithm is implemented in the Hyst [12]
model transformation tool, which allows it to quickly be
applied to new systems and with new simulation param-
eters. Finally, we validate our claims that the method is
more scalable than existing static approaches by evaluat-
ing it on nonlinear models, including a six-dimensional wa-
ter tank model, and then using an unmodified version of
SpaceEx [13, 15, 24], which does not natively support non-
linear dynamics, to compute the set of reachable states.
This paper first reviews and classifies existing hybridiza-

tion methods in Section 2. Section 3 then presents math-
ematical background and formalisms, which are used in
Section 4 to give formal descriptions and correctness ar-
guments for several hybrid automaton transformations. A
simulation-based algorithm to create the hybridization pa-
rameters used by the transformations is described next in
Section 5. Section 6 discusses the implementation in Hyst
and experimental reachability results in SpaceEx, followed
by a conclusion in Section 7.

2. HYBRIDIZATION METHODS
In this section, we discuss and classify previous research

on hybridization. Hybridiziation is the process of using sim-
ple dynamics with noise to create an abstraction of a system
with more complicated, usually nonlinear, dynamics. This is

done to enable the analysis of systems with the more compli-
cated dynamics by methods which work exclusively on the
simpler ones.
This process is typically targeted for flow-pipe construc-

tion methods, where the set of reachable states is iteratively
computed or overapproximated at monotonically increasing
instances in time, starting from an initial set of states. Com-
putational approaches maintain some representation of the
set of states at each time instances, which we informally
refer to as the currently-tracked set of states.

Static Space-Triggered Hybridization. Early hybridiza-
tion methods were both static and space-triggered [29]. In
these approaches, the state space is partitioned using a
(typically uniform) grid or mesh, and transitions are added
along the partition boundaries, resulting in state-dependent
switching. The advantage of this approach is that exist-
ing termination checking techniques can be used, which is
particularly useful in the case of periodic systems where
linearizing a bounded subset of the state-space is reason-
able [31].
There are, however, three main drawbacks. First, static

mesh construction is traditionally done without knowledge
of the reachable states. Therefore, it requires computing the
mesh over the entire state space (or bounded subset thereof),
which scales exponentially with the number of continuous
dimensions in the system. Second, the geometric intersec-
tions required by space-triggered approaches may introduce
error during reachability computation [4, 17]. This is be-
cause such intersections can require tools to convert from
precise internal representations such as zonotopes [25], sup-
port functions [27], or Taylor models [17], to simpler repre-
sentations where intersection operations can be computed,
such as polytopes [6]. After intersection, the simpler rep-
resentation is then converted back to the internal represen-
tation for subsequent computation [26]. These conversions
can result in overapproximations of the original currently-
tracked set of states, adding error each time they are per-
formed. Since hybridization can be done more accurately
when domains are small, many intersection operations may
be necessary and this can quickly lead to error explosion,
as well as an explosion in the number of modes of the hy-
brid automaton. Third, the currently-tracked set of reach-
able states may leave a hybridization domain along multiple
facets, requiring splitting and, later, possibly remerging the
set of reachable states, which can be both computationally
expensive and inaccurate [20].

Dynamic Space-Triggered Hybridization. In order to
help increase scalability, methods were developed that per-
form hybridization during reachability analysis [8]. This
results in dynamic methods where the domain construction
and the abstraction process is performed on-the-fly and only
on states that are reachable [9]. Although dynamic space-
triggered methods scale better into higher dimensions, they
still suffer from the other two problems mentioned above:
error accumulation due to many geometric intersections,
and the splitting of the currently-tracked set of states along
multiple facets.

Dynamic Time-Triggered Hybridization. To address the
other two drawbacks, dynamic time-triggered approaches
were developed [5, 20, 28]. These methods avoid geometric



intersections by choosing hybridization domains around the
currently-tracked set of states. As time is advanced, the hy-
bridization domains are updated to be near the new position
of the currently-tracked set of states, without requiring an
intersection operation. This can be done at each step [28],
or whenever the currently-tracked set of states leaves the hy-
bridization domain [20]. This can be viewed as the mode of
the abstract hybrid automaton changing at specific instances
in time to a mode with new dynamics, which corresponds
to a time-triggered transition.
Although dynamic time-triggered methods perform well,

they also suffer from certain drawbacks. The most impor-
tant drawback is that, in the earlier static approaches, per-
forming the dynamics abstraction step was an embarrass-
ingly parallel problem, so parallelism could be leveraged
to reduce total runtime (or equivalently, increase precision
for a fixed runtime). In dynamic methods, the bounds of
each new abstraction domain depend on the set of reachable
states in the previous domain, forcing this expensive step to
be performed serially. For example, abstracting nonlinear
dynamics using polynomial differential inclusions can yield
an accurate hybridization, but it requires bounding the La-
grange remainder of the dynamics’ Taylor expansion [1]. In
previous work, this step was reported to take 1121 out of
1180 seconds on a nine-dimensional biological aging model
(about 95% of the runtime), and 1155 out of 1296 seconds
on hybrid variant of the same model (about 89%), although
it was mentioned that some implementation optimizations
were possible [1]. Some parallelization of reachability com-
putation was considered to enable online reachability of car
manoeuvres [2,3]. However, the crucial step of dynamics ab-
straction (computing the linearization errors) was still per-
formed serially because the overapproximation of the La-
grange remainders of the Taylor expansions of the dynamics
at each step was based on the Lagrange remainders at the
previous step. This serial step dominated the reported run-
time of the technique.
A second drawback of time-triggered approaches is that, if

the currently-tracked set of states becomes large (which can
be a property of the system regardless of the method used),
the domains over which dynamics abstraction is performed
also become large. This, in turn, increases the dynamics
approximation error that must be added to the simpler dy-
namics to result in a sound abstraction, increasing error in
the overapproximation of the set of reachable states. This
can be overcome by splitting the set of reachable states [21],
although this may yield an exponential number of sets that
need to be tracked, and possibly redundant computation.
This problem can be partially mitigated through extra track-
ing to perform cancellation of redundant sets of reachable
states, which requires (expensive and error-introducing) in-
tersection operations on the internal representations [5].
Space-triggered approaches do not suffer from this prob-
lem. In fact, introducing occasional artificial space-triggered
transitions can serve to reduce the size and complexity of
the currently-tracked set of reachable states [11].

Novel Hybridization Approaches. A classification of ex-
isting hybridization research is shown in Table 1. A research
gap is noticeable in the static time-triggered category. This
paper attempts to fill this gap by developing, to the best
of the authors’ knowledge, the first static time-triggered hy-
bridization method. The approach is static, and therefore

can perform the bottleneck step of dynamics abstraction in
a parallel fashion. Since the approach is time-triggered, it
can scale to larger numbers of dimensions while avoiding
the accumulation of intersection error. Additionally, as the
method is static and modifies the model directly, it can work
with unmodified reachability tools, yielding immediate ben-
efit of its application using the latest reachability methods.
There are also no fundamental reasons why a method

could not use both time-triggered and space-triggered tran-
sitions during analysis. We develop such a mixed-triggered
hybridization approach, which generally uses time-triggered
transitions, but occasionally performs a state-triggered tran-
sition to attempt to reduce the size and complexity of the
currently-tracked set of states. In our review of existing
research, no such approaches currently exist.

Other Hybridization Factors. Research in hybridization
also explores other aspects that are important, but less criti-
cal to the methods developed in this paper. One choice when
performing hybridization is the shape of space-triggered do-
mains. Rectangular domains are simple to reason about,
although manual region selection [29], simplexes [9, 21, 31],
and nonuniform meshes [8,10,31] have been considered. The
sound and tight abstraction of dynamics within each domain
is critical to control error when performing hybridization.
The main reason to consider alternative domains is in or-
der to reduce this error. For general nonlinear dynamics,
this often requires solving constrained nonlinear optimiza-
tion problems, which can be impossible in theory and ex-
pensive in practice. For rectangular domains, interval anal-
ysis [30] can be used to provide guaranteed bounds for this
problem. For other types of domains, the success of the
method depends on the system being analyzed. For exam-
ple, to perform the nonlinear optimization step for simplicial
domains, one can use knowledge of the system’s Lipschitz
constant (which will be sound but inaccurate), or compute
bounds on the second partial derivatives (the elements of
the Hessian matrix) [8, 9, 21]. In general, this is a nonlin-
ear optimization problem with linear constraints, but for
specific cases it can be efficiently solved. For example, for
quadratic dynamics [20,21], the Hessian matrix is constant.
The choice of domains is not critical to the methods be-
ing developed in this paper, so for simplicity, we considered
rectangular domains.
A second choice when performing hybridization is the

type of ‘simpler’ dynamics. Choices range from constant
bounds [16, 29, 31, 32], linear and affine bounds [9, 21, 31],
to polynomial bounds [1, 18]. In this paper, we target an
unmodified implementation of the SpaceEx tool [24], and
therefore simplify from nonlinear dynamics to affine dynam-
ics.

3. PRELIMINARIES
In order to define and justify the soundness of the model

transformation steps used in our approach, we need to
first precisely define the syntax and semantics of hybrid
automata.

Definition 1. A hybrid automaton H is defined by a tuple
H ∆= (Modes,Var , Init,Flow,Trans, Inv), where: (a) Modes
is a finite set of modes. (b) Var = {x1, . . . , xn} is a set of
real-valued variables. (c) Init(m) ⊆ Rn is the set of initial
values for x1, . . . , xn for each mode m ∈ Modes. (d) For



each m ∈ Modes, the flow relation Flow(m) is a relation
over the variables in x and their derivatives ẋ = fm(x),
where x(t) ∈ Rn and f : Rn → 2Rn

, i.e., differential inclu-
sions are allowed. (e) Trans is a set of discrete transitions
t = (m, g, υ,m′), where m and m′ are the source and the
target modes, g is the guard of t, and υ is the update of t.
(f) Inv(m) ⊆ Rn is an invariant for each mode m ∈ Modes.

For a time interval T , we define a trajectory of H from
state s = (m,x) to state s′ = (m′,x′) as a tuple (L,X). In
this tuple, the function L : T → Modes and X : T → Rn are
functions that define for each time point in T the mode and
values of the continuous variables, respectively.
A state s′ is reachable from a state s if there exists a

trajectory starting with s and ending with s′. A state s′
is reachable if s′ is reachable from a state s where s is an
initial state. We denote the set of states reachable from
the set X in mode m by ReachH(m,X). Reach(H) of H is
defined as the set of states that are reachable from the set
of initial states. We use Reachc

H(m,X) and Reachc(H) to
denote the versions of the these operators that return only
the continuous part of the computed state space. We refer
to Reachc(H) as the continuous reachable state space of H.
We denote the projection of the set R ⊆ Rn over variables
Var to the subset Var ′ ⊆ Var by R �Var′ . Throughout the
paper, we always refer to time-bounded reachability, i.e., we
consider trajectories which evolve up to the time horizon
Tmax. In order to simplify notations, we implicitly take this
assumption for granted in our reasoning. Finally, given a
mode m of the automaton H, we refer to the set of outgoing
transitions as TransH(m).

4. TRANSFORMATIONS
We are interested in methods to compute an overapprox-

imation of the time-bounded set of reachable states, which
produce tight overapproximations, yet are feasible from the
computational point of view. The proposed approaches rely
on several hybrid automaton transformations. A source-to-
source transformation takes as input a hybrid automaton H,
a mode m ∈ Modes,1 possibly some additional parameters,
and returns as output another hybrid automaton θ(H). The
four described transformations are (1) time-triggered split-
ting, (2) space-triggered splitting, (3) domain contraction,
and (4) dynamics abstraction. In time-triggered splitting, a
given mode of H is split into possibly multiple modes via
a time-triggered splitting of the modes. Similarly, in space-
triggered splitting, a mode is split by augmenting the mode
invariant with a constraint induced by a space trigger func-
tion. Domain contraction adds auxiliary invariants called
contraction domains to a mode by intersecting them with
the existing invariants of the mode. Dynamics abstraction
overapproximates the dynamics in a mode of the automaton,
which in this paper, abstracts nonlinear differential equa-
tions by linear differential inclusions, in particular a linear
differential equation with an additive set-valued (interval
vector) input.
As hybridization of the continuous dynamics of hybrid

automata is the most challenging part of the hybridization
1For simplicity of presentation, each transformation is de-
fined for a given mode of the hybrid automaton H, and their
application to multiple modes of H is straightforward by it-
erating over each element of Modes.

process, we focus on the continuous dynamics of hybrid sys-
tems in the rest of the paper and assume that an input
hybrid automaton has only one mode. Our approach over-
approximates the behavior of the original system by a hy-
brid automata consisting of multiple modes. Therefore, only
reachable continuous states are relevant for the soundness
of the transformations. This fact allows us to to conclude
that the inclusion of the original continuous reachable state
space into the transformed one is enough to show sound-
ness of our transformations. Note, however, that although
the input hybrid automaton for the whole hybridization ap-
proach is assumed to be a singleton, our transformations are
defined in terms of general hybrid automata.
In this section, each of these four transformations is pre-

cisely defined. After, these will be combined in order to per-
form static time-triggered and mixed-triggered hybridiza-
tion.

4.1 Time-Triggered Splitting
The time-triggered splitting transformation, informally,

separates the handling of system behavior in the first τ time
units, and the rest of the trajectory up to the time hori-
zon. In order to achieve this goal, the transformation splits
a given mode of a hybrid automaton into two and imposes
constraints that guarantee that the system dwells in the first
mode for τ time units and proceeds to the second one once
the time threshold has been reached.

Definition 2. A time-triggered splitting is a transforma-
tion θtt of a hybrid automaton H, that takes as input an
automaton H, a mode m ∈ Modes that has no outgoing
transitions2, and a real positive time τ , a time-trigger thresh-
old. The hybrid automaton Htt

∆= θtt(H) is defined as:
(a) ModesHtt

∆= ModesH ∪ {mtt}, where mtt is a fresh (i.e.,
unique) mode name, (b) VarHtt

∆= VarH ∪ {t}, where t is
known as the time-trigger variable and is fresh, i.e., assume
without loss of generality that t is a unique variable name,3
(c) the initial states are copied; in addition, if InitH(m) is
not the empty set (i.e.,m is an initial mode), then InitHtt (m)
∆= InitH(m) ∧ t = τ , and otherwise InitHtt (m) ∆= InitH(m);
InitHtt (mtt)

∆= ∅, (d) the flows are copied, and FlowHtt (mtt)
∆= FlowH(m), so mode mtt copies the original dynamics of
m, and in m, ṫ = −1, and in all modes other than m, ṫ = 0,
(e) the transitions are copied; in addition, TransHtt (mtt)

∆=
TransH(m), with an additional transition created from m to
mtt with the guard t = 0; moreover, every incoming tran-
sition to m has the reset t := τ added, (f) the invariants
are copied; in addition t ≥ 0 is added to InvHtt (m) and
InvHtt (mtt)

∆= InvH(m) (mtt copied the original invariant of
m).

Figure 1 illustrates the time-triggered splitting for a single
mode. A time-triggered transition corresponds to any tran-
sition with guard t = 0 taken when the time-trigger variable
2In order to make the presentation of our transformation
clearer, we consider a mode with no outgoing transitions.
Our construction can be easily generalized to also accom-
modate this feature.
3 If the time-triggered splitting transformation θtt is applied
to an automaton multiple times, the time-trigger variable
may be reused in each splitting, as it needs only to be fresh
on the first application of the transformation. This opti-
mization is done in our implementation.



Mode: m

ẋ = fm(x)

Inv: x ∈ Inv(m)

Mode: m

ẋ = fm(x)
ṫ = −1

Inv: x ∈ Inv(m)
t ≥ 0

Mode: mtt

ẋ = fm(x)
ṫ = 0

Inv: x ∈ Inv(m)

t := τ

Guard:
t = 0?

Figure 1: The time-triggered splitting transformation applied to the original automaton (left, blue) produces the output
automaton (right, yellow). An additional time-trigger variable t is added that counts down to zero from an initial time τ .

t = 0. In contrast to general guards, the reachability along
time-triggered transitions can be computed computationally
efficient as many reachability algorithms automatically cap-
ture time dependencies as part of their workflow. For ex-
ample, the STC scenario [23] of the hybrid model checker
SpaceEx computes time-dependent piecewise-linear approx-
imations of the support functions evolution.
The following lemma connects the time-triggered splitting

transformation with the original hybrid automaton.

Lemma 4.1. Let H be a hybrid automaton with a set of
continuous variables Var , m ∈ Modes be a mode without
outgoing transitions, and τ ∈ R>0 be a time-trigger thresh-
old. Then it holds that Reachc(H) ⊆ Reachc(θtt(H)) �Var .

Here, we note that we need to project away the auxiliary
variable t in order to ensure that the sets of reachable states
of H and θtt(H) can be compared.

4.2 Space-Triggered Splitting
Space-triggered splitting, similar to time-triggered split-

ting, breaks a given mode into several modes. However,
in contrast to the time-triggered transformation, it uses a
space-trigger function to define criteria for mode splitting.

Definition 3. A space-triggered splitting is a transforma-
tion θst of a hybrid automaton H, that takes as input an
automaton H, a mode m ∈ Modes that has no outgoing
transitions, and a function π : Rn → R called the space-
trigger function. The function π must satisfy the condition
that upon entering mode m, π(x) ≥ 0, where x is the cur-
rent state. This means that if m is an initial mode, for all
states x ∈ Init(m), π(x) ≥ 0. The hybrid automaton Hst

∆=
θst(H) defined as: (a) ModesHst

∆= ModesH ∪ {mst}, where
mst is a fresh (i.e., unique) mode name, (b) VarHst

∆= VarH,
(c) the initial states are copied; InitHst (mst)

∆= ∅, (d) the
flows are copied; in addition, FlowHst (mst)

∆= FlowH(m),
(e) the transitions are copied; in addition, TransHst (mst)
∆= TransH(m); moreover, an additional transition created
from m to mst with the guard π(x) = 0, and (f) the in-
variants are copied, with π(x) ≥ 0 added to InvHst (m) and
InvHst (mst)

∆= InvH(m) (mst copied the original invariant
of m).

The space-triggered splitting transformation adapts the
idea of pseudo-invariants [11] to the hybridization setting.
In our setting, a space-trigger function π basically plays a
role of a pseudo-invariant.
The resulting automaton overapproximates the continu-

ous reachable state space of the original one which is for-
mally stated in the following lemma.

Lemma 4.2. Let H be a hybrid automaton, m ∈ Modes
be a mode without outgoing transitions, and π : Rn → R be
a function satisfying the assumptions in Definition 3. Then
Reachc(H) ⊆ Reachc(θst(H)).

4.3 Domain Contraction
Domain contraction adds auxiliary invariants known as

contraction domains that should contain the set of reachable
states. Given a set D and a mode m of a hybrid automaton
H where ẋ = fm(x), if ReachH(m,X) ⊆ D for X ⊆ Inv(m),
i.e. the set of reachable states from mode m starting from a
subset X ⊆ Inv(m) is contained in D, then D may safely be
added as an invariant of m. Of course, the set of reachable
states is not available and is what is being computed or
approximated, so error modes known as domain contraction
error modes (DCEMs) are used to maintain soundness if
the system leaves the states represented by these auxiliary
invariants.

Definition 4. A domain contraction is a transformation
θdc of a hybrid automaton H, that takes as input an au-
tomaton H, a mode m ∈ Modes, and a set D ⊆ Rn called
the contraction domain auxiliary invariant.
The transformed hybrid automaton Hdc

∆= θdc(H) is de-
fined as: (a) ModesHdc

∆= ModesH ∪ {err}, the modes are the
copied, with a new domain contraction error mode (DCEM)
err added, (b) VarHdc

∆= VarH, (c) the initial states are
copied; additionally, if m is an initial mode, and Init(m) is
not entirely contained in D, then add the err DCEM to the
initial states; in this way, we capture a degenerate case if
the initial set has states outside of the contraction domain.
(d) the flows are copied; additionally, FlowHdc (err) of the
form ẋ = 0 are added, (e) the transitions are copied, with
additional transformations of the following form: given an
incoming transition d = (n, g, υ,m) to mode m in H, (1)
augment the guard of the transition d with x ∈ D, and (2)
add an additional transition d′ = (n, g ∧ x ∈ cl(D̄), err)
with an extra condition x ∈ cl(D̄) on the guard and leading
to the DCEM err, where D̄ denotes the complement of D
and cl(·) stands for topological closure and (3) add an addi-
tional transition d′′ = (m,x ∈ cl(D̄), err), (f) the invariants
are copied, except for the invariant InvHdc (m) ∆= InvH(m)
∩ x ∈ D.

A visualization of the domain contraction transformation
is given in Figure 2.
The conditions to enter a DCEM together ensure that

regardless of the choice of the contraction domain, if the
DCEM err is not reached, then the overapproximation of the
reachable states is sound. Additionally, the condition that
the dynamics are zero in the DCEM err ensures that during



Mode: m

ẋ = fm(x)

Inv: x ∈ Inv(m)

Mode: m

ẋ = fm(x)

Inv: x ∈ Inv(m)
∩ D

Mode: err

ẋ = 0

x ∈ cl(D̄)?

x ∈ D

Guard:
x ∈ cl(D̄)?

Figure 2: The domain contraction transformation applied to the original automaton (left, blue) produces the output automa-
tion (right, yellow). The contraction domain D is added to the invariant, with DCEM err inserted to detect if the reachable
set of states leaves D.

a reachability computation, the exploration of the err will
terminate and be a dead-end in the exploration of the state-
space. Note that the notion of topological closure is required
to ensure that the intersection of guard and invariant is non-
empty.

Lemma 4.3. Let H be a hybrid automaton, m ∈ Modes
be a mode, and D ⊆ Rn be a contraction domain. Then, if
no DCEM is reachable, Reachc(H) ⊆ Reachc(θdc(H)).

The contraction domain auxiliary invariants may be arbi-
trary and may be determined using any method, so they may
not actually contain the set of reachable states. To main-
tain soundness, the DCEMs are added such that if the con-
traction domains do not contain the set of reachable states,
transitions to the DCEMs may be taken.4 If no DCEMs
are reached, then the domain contraction transformation is
sound, but otherwise, if a DCEM is reached, the resultant
set of set of reachable states may not be subset of the original
automaton’s set of reachable states. If it is known that the
set of reachable states will not leave the contraction domain
by some other analysis, then the DCEMs are not necessary
and the invariants may simply be augmented (conjuncted)
with the contraction domain. In summary, if the contrac-
tion domains do not contain the set of reachable states for a
given mode, then a state with a mode equal to the DCEM
will be reached.

4.4 Dynamics Abstraction
Continuous dynamics are abstracted by transforming the

flows of the original hybrid automaton into flows with in-
creased nondeterminism. In this paper, nonlinear differ-
ential inclusions are overapproximated using linear differ-
ential inclusions, specifically linear ODEs with an additive
set-valued input.

Definition 5. A dynamics abstraction is a transformation
θda of a hybrid automatonH, that takes as input an automa-
ton H, a mode m ∈ Modes, and a set-valued function g :
Rn → 2Rn

called the abstract dynamics, where, for the flow
ẋ = fm(x) of mode m with invariant Inv(m), gm(x) is such
that ∀x ∈ Inv(m): fm(x) ⊆ gm(x). The hybrid automa-
ton Hda

∆= θda(H) is defined as: (a) ModesHda
∆= ModesH,

(b) VarHda
∆= VarH, (c) the initial states are copied, (d) the

flows are copied, except for FlowHda (m) which is set to
ẋ = g(x), (e) the transitions are copied, (f) the invariants
are copied.
4Since the semantics of hybrid automata defined do not sup-
port urgency or must transitions, we exploit the fact that
the reachability computation explores all paths to ensure
soundness.

Similarly to other transformations we have considered, we
formulate a lemma relating the original and transformed sys-
tems.

Lemma 4.4. Let H be a hybrid automaton, m ∈ Modes
be a mode, g : Rn → 2R be a set-valued function satis-
fying the assumptions in Definition 5. Then it holds that
Reachc(H) ⊆ Reachc(θda(H)).

5. MIXED-TRIGGERED HYBRIDIZATION
Now we present the central result of the paper, a static

mixed-triggered hybridization that combines the four trans-
formations we have introduced.

Definition 6. A static mixed-triggered hybridization is a
transformation θmt of a hybrid automaton H and has the
following input:

• a single-mode automaton H,
• a list of splitting elements E1. . . . En−1, where each
element Ei is either a real number to be used for time-
triggered splitting, or a π function to be used for space-
triggered splitting (list 1),
• D1, . . . , Dn are the contraction domains (sets) for each
new location (list 2), and
• g1, . . . , gn are the dynamics abstraction functions for
each location (list 3).

The mixed-triggered hybridization transformation con-
sists of the following three steps:

• Apply either time-triggered splitting or space-triggered
splitting based on the list E1. . . . En−1. We apply each
transformation to the most-recently constructed mode,
which has no outgoing transitions. The result of this
step is a chain of modes.
• For each mode in the chain, apply N domain contrac-
tions based on the list D1, . . . , Dn.
• For each mode in the chain, apply N dynamics ab-
stractions based on the list g1, . . . , gn.

If the list of splitting elements (list 1) contains only time-
triggered splitting elements (and no space-triggered splitting
elements), then it is a static time-triggered hybridization.

The following theorem establishes the soundness of the
mixed-triggered hybridization.

Theorem 5.1. For hybrid automaton H, if no DCEM are
reachable, then the continuous reachable state space of the
mixed-triggered transformation θmt(H) overapproximates the
continuous reachable state space of the original automaton:
Reachc(H) ⊆ Reachc(θmt(H)).



Proof. The proof follows by a straight-forward applica-
tion of Lemmas 4.1, 4.2, 4.3, and 4.4.

We observe that the mixed-triggered hybridization ap-
proach contains a number of parameters which must be
carefully chosen in order to guarantee a sound abstraction,
which is ensured when no error modes (DCEMs) are reach-
able. If the contraction domains are too small, then the set
of reachable states will exit the domain and the DCEM will
be reached. If the contraction domains are too large, then
the dynamics abstraction will be a large overapproximation,
and the set of reachable states will become both large and
inaccurate. In modes copied during time-triggered splitting,
whenever the time-triggered variable t reaches zero, the set
of reachable states at each mode must be contained in the
domains (invariants) of both the source and target locations.
Space-triggered splitting requires as input the π functions
which determine the splitting structure.
In the following, we describe an approach to generate the

parameters for proposed hybridization approach in a way
that will satisfy the above requirements. Again, the ap-
proach is described assuming a single-location hybrid au-
tomaton, where the initial set of states is a rectangle, al-
though generalizations are not difficult.

5.1 Parameter Selection Algorithm
In order to construct the three lists to be used as hy-

bridization parameters, an algorithm is proposed which uses
numerical simulations. The proposed approach has its own
user-provided parameters:
• T is the maximum time,
• S a simulation strategy, one of {point, star, star-

corners}
• δtt is the simulation time in a time-triggered transfor-
mation step,
• npi is the number of space-triggered transformation
steps to use,
• δpi is the maximum simulation time when performing
a space-triggered transformation step,
• ε is a bloating term to account for the difference be-
tween the simulated points the set of reachable states.

The algorithm first selects a finite set of simulation points
sampled from the initial set of states. If S is point, only the
center of the initial rectangle is used. If S is star, the center
is used, as well as the center of every face of the rectangle,
1 + 2n points, where n is the number of variables. If S is
starcorners, the center is used, as well as the centers of
every face, as well as the corners of the initial rectangle,
1 + 2n + 2n points. Selecting more points may permit a
smaller ε, but since the number of points is exponential, the
starcorners strategy may not always be practical. The
collection of points are stored in a variable, sims.
The algorithm proceeds in iterations, at each iteration

doing either a space-triggered step, or a time-triggered step.
The three parameter lists (the output) are initially empty. A
current time variable ct, initially zero, is maintained which
tracks the amount of time elapsed during time-triggered
steps (space-triggered steps do not add to ct). A second
variable next_st tracks the time at which to insert the next
space-triggered value. If npi > 0, next_st is initialized to 0,
otherwise it is set to ∞.
At each iteration, if the current time ct variable is greater

than or equal to next space-triggered time variable next_st,

a space-triggered step is attempted and next_st is increased
by T

npi
. Otherwise, a time-triggered transition is performed

and ct is increased by δtt. The process completes when ct
exceeds the maximum time T .
A time-triggered step adds δtt to output list 1. Then,

it computes the bounding box of sims, bloats it by ε, and
stores it in start. Each point in sims is numerically simu-
lated for δtt time. The bounding box of sims is computed
again, bloated by ε, and stored in end. The bounding box of
start and end is then computed, and put into output list 2
(contraction domains).
A visualization of two consecutive time-triggered steps is

shown in Figure 3. Here, S = point, so sims is just a
single point. Initially, sims is α. After δtt time, the point
β is reached; after δtt further time, the simulation reaches
γ. The modification of the output lists after these two steps
would be the time-triggered value δtt twice inserted into list
1, the red rectangle set inserted into list 2, followed by the
green rectangle set inserted into list 2.
A space-triggered step attempts to use numerical sim-

ulations to find a function π for space-triggered splitting,
but may, in certain cases, be aborted without modifying the
output lists. First, the bounding box of sims is computed,
bloated by ε, and stored in start. The center point in sims,
which we call p, is numerically simulated until either, (1) the
plane induced by the point lies entirely on one side of start,
or (2) the space-triggered time limit δpi is reached. If con-
dition (2) occurs, the space-triggered step returns without
modifying the output lists, and reverts the status of sims.
For condition (1), the plane induced by a point p is a hyper-
plane that both contains p and is orthogonal to the gradient
at p. The function π is created from the equation of the
hyperplane, where π is zero along the plane and positive on
the side of start (in the opposite direction of the gradient
at p). Forcing transitions along hyperplanes orthogonal to
the gradient was previously shown as effective in reducing
the size of the currently-tracked set of reachable states in
the context of pseudo-invariants [11, 12]. Each of the other
points in sims are then numerically simulated until either (1)
they reach a point along the constructed hyperplane where
π evaluates to zero, or (2) they are simulated for the space-
triggered time limit δpi. If for any point condition (2) occurs,
again, the space-triggered step aborts without modifying the
output lists, and reverts the status of sims. If condition (1)
occurs for every point in sims, the bounding box of all the
points in sims (which are all along the hyperplane) is taken,
bloated by ε, and assigned to end. The bounding box of
start and end is then computed, and put into output list
2 (contraction domains). The hyperplane function π is put
into output list 1.
At the end of the iterative construction, output list 3 is

created by performing linearization in each of the contrac-
tion domains in list 2, and then solving for the difference
between the nonlinear dynamics function and its lineariza-
tion. This is, in general, a global optimization problem,
although guaranteed bounds can be computed using, for ex-
ample, interval arithmetic. This is also an embarrassingly
parallel problem, which can be exploited to speed up this
computationally expensive step.
Finally, the last element of list 1 is removed, so that the

last mode in the constructed chain will not be split. This
process results in three lists, the first of size N − 1, and the
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Figure 3: Two time-triggered steps use numerical simula-
tions to create two contraction domains.

other two of size N , as is needed by the proposed mixed-
triggered hybridization approach.

5.2 Generalizations
The proposed construction approach is simple in that only

a small number of user-parameters are required. However,
fine-tuning is possible which can create more precise abstrac-
tions, at the cost of requiring more input from the user.
First, the time step δtt could be changed for each domain.

In Figure 3 this would correspond to the case where the dif-
ference in simulation times between points α and β is not
the same as the difference between β and γ. Next, a per-
domain bloating term ε is possible. Furthermore, each do-
main’s bloating term could be further parameterized based
on the face of the rectangular domain.
The domains need not be rectangles aligned to axes. Do-

mains which are rotated rectangles, aligned with the direc-
tion of the flow, could reduce the error in the dynamics
abstraction step. As with other hybridization work [21], do-
mains which are triangles (simplices), or rotated variants
could also be used. The complication with these approaches
is that the global optimization step of domain abstraction,
which is necessary for soundness, can become more compli-
cated. For example, the simplex-based approach requires
optimizing the Hessian matrix of the dynamics in a simplex
domain, which may be difficult depending on the specific
location’s dynamics.

6. EVALUATION
As stated by Theorem 5.1, in order to soundly reason

about the set of reachable states of the original automa-
ton, the output automaton from the mixed-triggered hy-
bridization process must not reach any DCEMs. The main
purpose of the evaluation, therefore, is (1) to demonstrate
that the hybridization parameters derived from simulations
can result in models where DCEMs are not reached during
reachability analysis of the output automaton. Additionally,
we aim to (2) demonstrate the benefits of occasional space-
triggered transitions compared with a pure time-triggered
approach. Finally, we (3) demonstrate improved scalability
by running our developed static approach on a higher dimen-
sional model, at a granularity that would be impossible for
existing static approaches. The evaluation was performed
with these three goals in mind.
The proposed hybridization method was implemented in

the Hyst model translation and transformation tool [12]5.
The developed transformation pass implements the algo-
rithm described in Section 5 leveraging the transformations
5SpaceEx model files for the examples evaluated, both
before and after hybridization, are available at: http://
verivital.com/hyst/pass-hybridization/.
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Figure 4: The limit cycle for the Van der Pol system was
computed with SpaceEx using our hybridization approach.

of Section 4. We target the latest version of the SpaceEx
tool, which supports time-triggered transitions using the
map-zero-duration-jump-sets flag. In order to derive the
dynamics abstraction function, we use a global optimiza-
tion routine from the scipy.optimize library. Other op-
tions are possible, for example interval arithmetic, interval
arithmetic with grid-paving, SMT solvers, or combinations
of these methods. Since the optimizations in each domain
are run in parallel, more effort can be taken to derive tighter
bounds without significant effects on overall runtime. The
reported times were measured on a computer with an Intel
Core 2 Quad CPU (Q9650) at 3.00 GHz with 4 GB RAM.

6.1 Van der Pol Oscillator
The first set of experiments consider a Van der Pol oscil-

lator, which is a two-dimensional system with the following
nonlinear dynamics:

ẋ = y

ẏ = (1− x2) ∗ y − x

We use the same initial states as evaluated in other hy-
bridization approaches [1], (x, y) ∈ [1.25, 1.55]× [2.28, 2.32].
A maximum time of 5.5 was used, which is sufficient to com-
plete one cycle of the oscillator, as in the earlier work.
We used numerical simulations based on the S = star

strategy, a time-triggered step of δtt = 0.05, a bloating term
of ε = 0.05, a number of space-triggered transformation
steps of npi = 31, and a maximum simulation time in a
space-triggered transformation step of δpi = 1. Analyzing
the generated model with SpaceEx resulted in no DCEMs
being reached, which means that the set of reachable states
overapproximates the set of reachable states in the the orig-
inal automaton. This demonstrates goal (1) of the evalua-
tion. The combined hybridization and computation process
took 10.3 seconds. A visualization of the resultant set of
reachable states produced by SpaceEx is given in Figure 4a,
and can be compared to a streamplot of the dynamics given
in Figure 4b.
It is insightful to examine the bounding box of the numer-

ical simulations upon entering each mode, and compare it to
the bounding box of the set of reachable states at the same
times. In particular, by looking at the maximum width in
any dimension of the bounding box of sims and comparing
it with the maximum width of bounding box of the set of
reachable states, we can estimate how close the set of reach-
able states was to the boundaries of the contraction domains
where a DCEM would be reached. A plot of these widths
upon entering each mode is shown in Figure 5.

http://verivital.com/hyst/pass-hybridization/
http://verivital.com/hyst/pass-hybridization/
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tering a DCEM.

0 50 100 150 200 250
Linearized Mode

0.0

0.1

0.2

0.3

0.4

0.5

W
id

th

Maximum Widths Upon Entering States

No ST (reachability)
No ST (simulation)
ST count=1 (reachability)
ST count=1 (simulation)
ST count=4 (reachability)
ST count=4 (simulation)

Figure 6: Space-triggered transitions serve to reduce the size
of the tracked set of states.
Since we used a bloating term of ε = 0.05, it is nec-

essary that maximum width of the simulated states plus
2 ∗ ε = 0.1 is greater than the maximum width of the set of
reachable states at all times, otherwise, an error state will
be reached. Additionally, from the plot we can see that the
starcorners strategy has slightly better tracking of widths
of the set of reachable states near the start of the computa-
tion, although it makes less of a difference later on.
In order to show the effect of space-triggered transitions,

we consider the same system using a shorter time bound
of 2.0, a time step of δtt = 0.01, and the same value of
ε = 0.05. We run the system with no space-triggered tran-
sitions, a single space-triggered transition at the start, and
four space-triggered transitions. The widths of the tracked
set of reachable states, and the bounding box of the simu-
lated points is shown in Figure 6. Without space-triggered
transitions, the width of the set of reachable states quickly
gets larger than the simulated bounding box, and around
time 0.29, a DCEM is reached. With a single space-triggered
transition at the start, the tracked set of states is smaller,
and a DCEM is not reached until around time 1.66. With
four space-triggered transitions, the full 2.0 seconds is com-
puted without reaching a DCEM. Furthermore, the decrease
in the size of the tracked states is apparent at the space-
triggered times 0.0 (mode #0), 0.5 (mode #51), 1.0 (mode
#102), and 1.5 (mode #153). This demonstrates the effec-
tiveness of space-triggered transitions in reducing the size of
the currently-tracked set of states, goal (2) of the evaluation.

6.2 Nonlinear Water Tank
The next model we consider is a nonlinear tank model [5].

This model is parameterized on the number of tanks, n,
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Nonlinear Tank Reachability

(a) Computed Reachability (b) Result from [5] (includes
input disturbances)

Figure 7: A plot of a projection of the computed reachable
states for x1 and x2 for the 6-D non-linear tank model.

where we use n = 6. Each tank i adds a single variable xi to
the model, which represents the height of the water in the
tank. The input to the first tank is based on the level of
the last tank, xn. We analyze a deterministic version of the
model, with no disturbance input and fixed tank parameters.
The dynamics for x1 and every other xi>1 are:

ẋ1 = 0.1 + 0.01(4− xn) + 0.015
√

2gx1

ẋi = 0.015
√

2gxi−1 − 0.015
√

2gxi

We used the same initial set of states as the earlier work,
x1 ∈ [1.9, 2.1], x2 ∈ [3.9, 4.1], x3 ∈ [3.9, 4.1], x4 ∈ [1.9, 2.1],
x5 ∈ [9.9, 10.1], and x6 ∈ [3.9, 4.1]. Using the simulation
strategy S = starcorners, a maximum time of T = 400, a
step size of δtt = 4, a bloating term value of ε = 0.2, a num-
ber of space-triggered transformation steps of npi = 10, and
a maximum simulation time in a space-triggered transfor-
mation step of δpi = 10, the hybridized model was created.
SpaceEx was used to analyze this model, and indicated that
no DCEMs were reached. The whole process took about 430
seconds. Figure 7 shows a projection of the set of reachable
states onto x1 and x2, as well as a result from the earlier
hybridization work.
This demonstrates goal (3) of the evaluation, that static-

based hybridization approaches can scale to higher dimen-
sions. Although only a six-dimensional model was consid-
ered, this is higher than we could find for any published
static hybridization method.

7. CONCLUSION
In this paper, we developed the first static time-triggered

and mixed-triggered hybridization approaches. The devel-
oped methods use simulations to guide the hybridization
process and modify an input model for analysis with off-the-
shelf verification tools, unlike dynamic hybridization meth-
ods that require tool modification. Additionally, we can per-
form the expensive dynamics abstraction (linearization) step
for each mode in parallel, which can improve the speed of
the method. We have shown the effectiveness of the method
by hybridizing example nonlinear systems and computing
the set of reachable states using SpaceEx, a tool that is only
capable of reasoning with linear and affine systems.
Since this is the first paper investigating this category of

hybridization techniques, we believe significant further op-
timization is possible. Extending the approach from single-
mode input automata to multiple-mode systems would be
a straightforward enhancement, and has been done in other



hybridization approaches [1]. Dynamic mixed-triggered ap-
proaches, have also yet to be investigated. Parameter se-
lection for the approach can also be challenging and could
be further automated, perhaps by using a CEGAR-like ap-
proach to detect when DCEMs (error modes) are reached,
and performing additional simulations from violation re-
gions. Finally, the simulation-based parameter construc-
tion algorithm does not track the set of reachable states
well when nondeterminism or disturbances are present, and
other approaches from hybrid automaton falsification may
work better in these cases.
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