
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Hybrid automata: from verification to implementation

Stanley Bak1, Omar Ali Beg2, Sergiy Bogomolov3,
Taylor T. Johnson4, Luan Viet Nguyen2, Christian Schilling5

1 Air Force Research Laboratory, USA,
2 University of Texas at Arlington, USA
3 Australian National University, Australia and IST Austria, Austria
4 Vanderbilt University, USA
5 University of Freiburg, Germany

The date of receipt and acceptance will be inserted by the editor

Abstract Hybrid automata are an important formal-
ism for modeling dynamical systems exhibiting mixed
discrete-continuous behavior such as control systems and
are amenable to formal verification. However, hybrid au-
tomata lack expressiveness compared to integrated
model-based design (MBD) frameworks such as the
MathWorks’ Simulink/Stateflow (SLSF). In this paper,
we propose a technique for correct-by-construction com-
positional design of cyber-physical systems (CPS) by
embedding hybrid automata into SLSF models. Hybrid
automata are first verified using verification tools such
as SpaceEx, and then automatically translated to em-
bed the hybrid automata into SLSF models such that
the properties verified are transferred and maintained in
the translated SLSF model. The resultant SLSF model
can then be used for automatic code generation and de-
ployment to hardware, resulting in an implementation.
The approach is implemented in a software tool build-
ing on the HyST model transformation tool for hybrid
systems. We show the effectiveness of our approach on a
CPS case study—a closed-loop buck converter—and val-
idate the overall correct-by-construction methodology:
from formal verification to implementation in hardware
controlling an actual physical plant.

1 Introduction

In this paper, we present the theory and associated im-
plementation for the translation of hybrid automaton
models (used for verification) to the MathWorks Simu-
link/Stateflow (SlSf) models, subsequently used for de-
sign refinement, simulation, implementation, and code
generation for target embedded hardware. Our approach
is particularly useful if the design process is structured

DISTRIBUTION A. Approved for public release; Distribution
unlimited. (Approval AFRL PA #88ABW-2015-2402)

Hybrid Automaton
Model

Model Analysis
Verification

Converter

SlSf Model

Translation
(This Paper)

Simulation
Code Generation

Figure 1: High-level overview of the model-based de-
sign process enabled by this work. Verification using the
hybrid automaton is first performed in a hybrid sys-
tems model checker, then we automatically generate a
trajectory-equivalent SlSf diagram. The diagram can
then be embedded into a more complex system, possi-
bly with other, unverified, components (because they are
too large to verify, exist for legacy reasons, etc.), and can
then be used for code generation and implementation in
actual systems.

in a bottom-up fashion. In other words, we assume that
the individual system components are first modeled in
detail, such as modeling a control algorithm as a hybrid
automaton and verifying properties (typically safety) for
it. These components are then linked together to form
the whole system under consideration within SlSf. This
leads to overall system models consisting of heteroge-
neous components where a number of components are
modeled as hybrid automata, but the entire system may
be too complex to formally model and verify. In the
last decade, a number of powerful formal design, anal-
ysis, and verification tools for hybrid automata such as
SpaceEx [9–12,22] and Flow∗ [17] have emerged. In our
proposed approach, a designer can ensure the correct-
ness of individual components before using our transla-
tion process to link the system together in SlSf (see
Fig. 1).

2 Stanley Bak et al.: Hybrid automata: from verification to implementation

We introduce a technique to automatically convert
the hybrid automata into trajectory-equivalent SlSf di-
agrams. By trajectory-equivalent, we mean that behav-
iors (trajectories) of the translated SlSf diagram match
those of the original hybrid automaton. One technical
challenge is that hybrid automata and SlSf differ in se-
mantics: a hybrid automaton is typically defined with
may-semantics with respect to the discrete transitions,
whereas SlSf employs must-semantics. In other words,
a transition in SlSf is taken as soon as the transition
guard is enabled subject to some numerical aspects with
zero-crossing detection, whereas the hybrid automaton
still has the freedom to stay in the current location as
long as the location invariant has not been violated. In
case of non-deterministic hybrid automata, trajectory-
equivalence means that the behaviors of the original hy-
brid automaton will be exhaustively explored. Our ap-
proach incorporates additional randomization steps into
the resulting SlSf diagram. In this way, in every run,
the diagram produces a possibly different trace that still
reflects a trajectory from the original hybrid automaton
semantics. After running more and more simulations, we
get a better and better approximation of the reachable
state space of the original hybrid automaton.

Related Work Significant research has been done on the
translation of SlSf diagrams into other analysis tools,
such as hybrid systems model checkers [2, 4, 8, 14, 15,
29–31, 36, 37, 40, 42]. Agrawal et al. [2] suggest an al-
gorithm to translate SlSf diagrams into the equivalent
HSIF [14, 15, 36, 37] models. The Compositional Inter-
change Format (CIF) provides a common input language
focused on model compositionality for networks of hy-
brid automata [3]. Alur et al. translated SlSf to linear
hybrid automata for applying symbolic analysis to im-
prove test coverage of SlSf [4]. In a different setting,
Schrammel et al. [40] consider the translation problem
for complex SlSf diagrams where involved treatment of
zero-crossings is needed. Manamcheri et al. [29] have de-
veloped the tool HyLink to translate a restricted class of
SlSf to hybrid automata. Minopoli et al. [30, 31] have
developed a theory of urgent semantics for hybrid au-
tomata and the SL2SX tool that translates a restricted
subset of SlSf diagrams to hybrid automata. The ap-
plication of the above techniques is restricted by the fact
that no complete semantics of SlSf is provided (in spite
of recent progress [8, 13,23,24,29,38]).

In contrast to all these existing works, we consider
the converse direction, i.e., to translate a given hybrid
automaton into an SlSf diagram. Sanfelice et al. [39]
have developed the hybrid equations toolbox (HyEQ)
to approximately simulate the hybrid systems that may
include Zeno, zero-crossing, and non-deterministic be-
haviors. However, the applicability of the Simulink De-
sign Verifier (SDV) model checker1 integrated with SlSf

1 http://www.mathworks.com/products/sldesignverifier/

does not apply to this class of models, so verification is
not possible. In our setting, we benefit from clear and un-
ambiguous hybrid automata semantics and may formally
verify properties of the hybrid automata prior to trans-
lating them to SlSf diagrams. Pajic et al. [25, 33–35]
consider a similar problem of converting timed automata
encoded in Uppaal [27] to SlSf diagrams. However,
in their translation, they consider only runs of Uppaal
models that obey the must-semantics. In our work, be-
yond considering the much more expressive framework
of hybrid automata (as timed automata are a subclass
of hybrid automata), we provide a translation handling
the non-determinism by producing trajectory-equivalent
SlSf diagrams. Operational semantics of (purely dis-
crete) Stateflow have been developed [24], and alterna-
tive formalizations of discrete semantics have been inves-
tigated using, e.g., translation from Stateflow to C [38].
In contrast to these prior works, we focus on continuous-
time Stateflow diagrams. Another recent line of research
focusses on the translation from Hybrid Communicat-
ing Sequential Processes (HCSP) to Simulink block dia-
grams [16,43,44]. In our work we consider the translation
of the hybrid automaton model which is extensively used
in the industry for CPS modeling.

Contributions. This paper has four primary contribu-
tions.

(a) This is the first work, as far as we are aware,
to provide a translation scheme from hybrid automata
to SlSf diagrams, which is useful as part of a mod-
el-based design (MBD) process. (b) In order to overcome
the difference in semantics between the modeling frame-
works, we introduce the notion of trajectory-equivalence,
and show how the conversion preserves trajectory-equiv-
alence with respect to several sources of non-determin-
ism in hybrid automata. (c) We provide an implementa-
tion of the trajectory-equivalent translation scheme as a
part of the HyST model translation framework [6], which
enables completely automatic translation of existing hy-
brid automaton models. (d) We show the applicability
of our contributions in several case studies where hybrid
automata are automatically translated to SlSf for sim-
ulation, use in larger SlSf diagrams, and deployment to
actual hardware. For one case study—a closed-loop buck
converter—the entire correct-by-construction MBD pro-
cess is illustrated, from verification through implemen-
tation in hardware. This includes formal verification of
the hybrid automaton in SpaceEx, translation to SlSf,
code generation for the controller in SlSf, then subse-
quent compilation, and finally execution in embedded
hardware controlling the physical plant.

Paper Organization. The remainder of the paper is orga-
nized as follows. After introducing the necessary back-
ground in Sect. 2, we present our trajectory-equivalent
translation scheme in Sect. 3. In Sect. 4, we evaluate our
approach on four case studies. We conclude in Sect. 5.

http://www.mathworks.com/products/sldesignverifier/

Stanley Bak et al.: Hybrid automata: from verification to implementation 3

2 Preliminaries

In this section, we introduce the preliminaries that are
needed for this work. We first define a hybrid automaton
model and discuss its semantics, and then do the same
for SlSf diagrams.

2.1 Hybrid Automata

A hybrid automaton is formally defined as follows.

Definition 1 (Hybrid Automaton). A hybrid auto-

maton is a tuple H ∆
= (Loc,Var , Init ,Flow ,Trans, Inv)

with: (a) the finite set of locations Loc, (b) the set of con-

tinuous variables Var
∆
= {x1, . . . , xn} from Rn, (c) the

initial condition, given by Init(`) ⊆ Rn for each loca-
tion `, (d) the flow, a deterministic function Flow(`)
from the variables to their derivatives for each location
`, (e) the discrete transition relation Trans, where every
transition is a tuple (`, g, υ, `′) with: (i) the source loca-
tion ` and the target location `′, (ii) the guard, given by
a constraint g, (iii) the update, given by a mapping υ
that modifies the variable valuation, and (f) the invari-
ant Inv(`) ⊆ Rn for each location `.

We use the common . (dot) notation to specifically indi-
cate components of H as necessary, e.g., H.Var are the
variables of H.

The semantics of a hybrid automaton H is defined
in terms of trajectories as follows. A state of H is a pair
(`,x) that consists of a location ` ∈ Loc and a point x ∈
Rn. Formally, x is a valuation of the continuous variables
in Var . For the following definitions, let T = [0, ∆] be
an interval for some ∆ ≥ 0.

Definition 2. A trajectory ofH from state s = (`,x) to

state s′ = (`′,x′) is a pair ρ
∆
= (L,X), where L : T → Loc

and X : T → Rn are functions that define for each time
point in T the location and the values of the continuous
variables, respectively. A sequence of time points where
location switches happen in ρ is denoted by (τi)i=0...k ∈
T k+1. In this case, we define the length of ρ as |τ | = k.
Trajectories ρ = (L,X), and the corresponding sequence
(τi)i=0...k, must satisfy the following conditions:

(a) τ0 = 0, τi < τi+1, and τk = ∆ – the sequence of
switching points increases, starts with 0 and ends
with ∆,

(b) L(0) = `, X(0) = x, L(∆) = `′, X(∆) = x′ – the
trajectory starts in s = (`,x) and ends in s′ = (`′,x′),

(c) ∀ i ∀ t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not
changed during the continuous evolution,

(d) ∀ i ∀ t ∈ [τi, τi+1) : (X(t), Ẋ(t)) ∈ Flow(L(τi))
holds and thus the continuous evolution is consistent
with the differential equations of the corresponding
location,

(e) ∀ i ∀ t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the contin-
uous evolution is consistent with the corresponding
invariants, and

(f) ∀ i < k ∃ (L(τi), g, υ, L(τi+1)) ∈ Trans : Xend(i) ∈ g
∧ X(τi+1) = υ(Xend(i)) ∧Xend(i) = limτ→τ−

i+1
X(τ)

– every continuous transition is followed by a discrete
one, where Xend(i) defines the values of continuous
variables immediately before the discrete transition
at the time moment τi+1.

A state s′ is reachable from state s if there exists a tra-
jectory from s to s′.

A symbolic state s
∆
= (`,R) is a pair, where ` ∈ Loc

and R is a convex and bounded set consisting of points
x ∈ Rn. The continuous partR of a symbolic state is also
called region. The symbolic state space of H is called the
region space. The initial set of states Sinit of H is defined
as
⋃
`(`, Init(`)). The reachable state space Reach(H) of

H is defined as the set of symbolic states that are reach-
able from some initial state in Sinit , where the defini-
tion of reachability is extended accordingly for symbolic
states. We refer to the set of all the trajectories of H
starting in Sinit by Traj(H). A safety specification P is
a given set of symbolic states. A hybrid automaton H
satisfies a safety specification P iff Reach(H) ⊆ P . We
are interested in ensuring that the hybrid automaton is
correct, i.e., satisfies P , and then subsequently trans-
late it for simulation, integration, and implementation
in SlSf as discussed in the next sections.

2.2 Continuous-Time Stateflow Diagrams

Simulink is a graphical modeling language for control
systems, plants, and software. Stateflow is a state-based
graphical modeling language integrated within Simulink.
Continuous-time Stateflow diagrams provide methods for
modeling hybrid systems that consist of continuous and
discrete states and behaviors. In this section, we describe
a restricted subclass of continuous-time Stateflow dia-
grams to which we translate a hybrid automaton. In
particular, we focus only on continuous-time Stateflow
state transition diagrams and we do not consider mod-
els with hierarchical states.

Roughly, a Stateflow state transition diagram may
be thought of as an extended state machine with vari-
ables of various types. In addition to states, Stateflow
diagrams may have junctions that are instantaneous. A
transition between states may occur at each simulation
time step, whereas multiple junction transitions may oc-
cur in a single simulation time step.

A continuous-time Stateflow diagram (see Fig. 2) is
roughly analogous to a hybrid automaton, but their be-
havior differs in several ways. In particular, Stateflow di-
agrams (1) are deterministic, (2) have urgent transitions
with priorities, and (3) have events such as enabled tran-
sitions that are determined at runtime by zero-crossing
detection algorithms.

We define Stateflow diagrams more formally now.

4 Stanley Bak et al.: Hybrid automata: from verification to implementation

`S
entry:
entryStatements
during:
duringStatements
exit:
exitStatements

. . . j

[GuardS(τ3)]
{UpdateS(τ3)}

[GuardS(τ4)]
{UpdateS(τ4)}

[GuardS(τ2)]
{UpdateS(τ2)}

[GuardS(τ1)]

1

Figure 2: Snippet of a general continuous-time Stateflow
diagram with a state `S , a junction j, and four transi-
tions τ1 − τ4.

Definition 3 (Stateflow diagram). The tuple S ∆
=

(LocS , JuncS , VarS , TransS , ActionsS) defines the State-
flow diagram. Here, (a) LocS is a finite set of states (also
known as locations), (b) the junctions JuncS are like
locations, but all of which may be evaluated in a sin-
gle simulation event step (i.e., they are instantaneous
“states”), (c) VarS is a finite set of variables of vari-
ous types, and for our formalization we assume they are
real-valued, (d) the ActionsS(`S) for each location `S
are actions described by Matlab or C statements that
are performed at different event times subdivided into
entry, during, and exit actions, where the entry (resp.
exit) action is executed only once when entering (resp.
exiting) the state and the during action performs the
continuous-time evolution of the variables of VarS ac-
cording to a differential equation (this happens strictly
between entering and exiting), (e) the discrete transition
relation TransS where every transition τ ∈ TransS is for-
mally defined as a tuple (`S ,GuardS ,UpdateS ,TPS , `

′
S):

(i) the source location or junction `S ∈ LocS ∪ JuncS
and the target location or junction `′S ∈ LocS ∪ JuncS ,
(ii) the guard, given by a constraint GuardS , must be
satisfied for a transition to be taken, (iii) the update,
given by a mapping UpdateS , defines which variables in
VarS are modified, and to what value (unmodified vari-
ables keep their value), and (iv) the priority, given by
TPS , is a natural number between 1 and od(`S)—the
outdegree of (number of transitions leaving) the state or
junction `S—that indicates the order in which transi-
tions are taken if more than one is enabled.

Simulating an SlSf diagram produces a simulation
trajectory, which is closely related to a trajectory of a
hybrid automaton.

Definition 4 (Simulation trajectory). For an initial
state x0, a time bound Tmax, error bound δ ≥ 0, and time
step τ > 0, a simulation trajectory (of length k) is a

sequence α
∆
= ((Ri, ti))i=1...k, where R0 = {x0}, t0 = 0,

Ri ⊆ Rn, ti ∈ R≥0, and (a) ∀ i : 0 ≤ ti+1 − ti ≤ τ ,
tk = Tmax, (b) ∀ i ∀ t ∈ [ti, ti+1] : the simulation state
after time t is in Ri, and (c) ∀ i : dia(Ri) ≤ δ.

Here dia(·) denotes the diameter and δ is used to
bloat the simulation trajectory to handle numerical er-
rors; picking δ = 0 represents the typical result of a

(idealized) numerical simulation of an SlSf diagram. We
note that the various actions (e.g., entry, during, and
exit actions, and transition updates) are evaluated se-
quentially, while hybrid automaton actions are executed
concurrently. By Tracδ(S) we denote the set of all simu-
lation trajectories of an SlSf diagram S with parameter
δ. A simulation trajectory α satisfies a safety specifica-
tion P if every element α.Ri ⊆ P , i.e., P contains the
states of the simulation trajectory with time projected
away. An SlSf diagram S satisfies a safety specifica-
tion P if all simulation trajectories Tracδ(S) satisfy P .
Note that in practice, any simulation trajectory is finite-
length, although we avoid a finite-length assumption in
the definition of simulation trajectories to relate possibly
infinite trajectories of a hybrid automaton with similar
possibly infinite simulation trajectories. Moreover note
that our definition of a trajectory does not allow instan-
taneous location switches in the hybrid automaton. This
restriction is necessary for practical purposes because
SlSf requires executing a (however small) simulation
step in each state.

3 Translating a Hybrid Automaton to a
Continuous-Time Stateflow Diagram

We describe our main contribution, namely how to trans-
late from a hybrid automaton to an SlSf diagram. For
different classes of hybrid automata, different transla-
tions may be used, and we discuss two classes primarily
based on whether the hybrid automaton is deterministic
or not.

To compare simulation trajectories of an SlSf di-
agram with trajectories of a hybrid automaton, we in-
troduce the concept of correspondence. Here we assume
that the δ parameter of a simulation trajectory is equal
to zero.

Definition 5 (Correspondence). A trajectory ρ of a
hybrid automatonH and a simulation trajectory α (with
δ = 0) of an SlSf diagram S correspond to each other if
the sequences of discrete locations, transitions, and tran-
sition times encountered in both are the same, and the
continuous points of the trajectory and the simulation
trajectory match.

The primary goal of our construction is to ensure
that the set of simulation trajectories Tracδ(S) for the
SlSf diagram can be trajectory-equivalent to the origi-
nal hybrid automaton.

Definition 6 (Trajectory-Equivalence). An SlSf
diagram S is trajectory-equivalent to a hybrid automa-
ton H if, for every trajectory ρ of H, there exists a cor-
responding (Definition 5) simulation trajectory α of S,
and for every simulation trajectory α of S, there exists
a corresponding trajectory ρ of H.

Stanley Bak et al.: Hybrid automata: from verification to implementation 5

3.1 Translating different classes of hybrid automata

As already outlined in Sect. 1, one main difference be-
tween hybrid automata and SlSf diagrams is the ab-
sence of non-determinism in SlSf diagrams. There are
several sources of non-determinism in the general hybrid
automaton formalism.
1. Transitions. If there is more than one outgoing tran-

sition in a location, any of them can be taken as long as
the guard is enabled and the target location’s invariant
is satisfied after applying the transition update.
2. Dwell times. The amount of time that a hybrid au-

tomaton remains in a location is only determined by the
invariant and the transition guards – it is forced to leave
the location only by the invariant. It is not sufficient for
the guard to be enabled at some point in time, as the
automaton can still choose to remain in the location un-
til the invariant becomes false.
3. Initial states. A hybrid automaton is allowed to start

in a whole region, which may be an uncountable number
of possible initial states.
4. Updates. Updates in transitions may be non-deter-

ministic. This gives a (possibly uncountable) number of
successor states after a discrete transition.
5. Flows. Flow definitions in locations may be uncer-

tain. We do not consider this source of non-determinism
in this paper.

For the translations, we make the following assump-
tions on the original hybrid automaton.

Assumption 1 The hybrid automaton H is Zeno-free,
which means that only finitely many discrete transitions
may be taken in finite time.

Translating deterministic hybrid automata is fairly
straightforward, so we first discuss how to translate de-
terministic hybrid automata, and then discuss the more
complex non-deterministic scenario. There may be addi-
tional numerical issues with SlSf that are outside the
scope of this work. For example, the integration of the
differential equations in SlSf may not be exact, which
may cause differences in observed behavior. In practice,
simulations can be made arbitrarily accurate by reduc-
ing the simulation time step at a computational cost.

3.1.1 Translating a deterministic hybrid automaton

The next definition states when a hybrid automaton is
deterministic.

Definition 7. A hybrid automaton H is deterministic
if, for any initial state (`, x0) ∈ Sinit for any point x0 ∈
Init(`), there is one unique trajectory ρ starting from
(`, x0). Otherwise, H is non-deterministic.

Syntactic restrictions may be enforced on a hybrid au-
tomaton to ensure it is deterministic. For example, a
sufficient condition for a hybrid automaton to be de-
terministic includes all of the following being satisfied:

(1) at most one discrete transition is enabled simulta-
neously, (2) a discrete transition guard is enabled when
the continuous flow exits the invariant, and (3) no state
can be mapped onto two different states by the transi-
tion updates [26, Lemma 2]. Note that requirement (2)
is not an urgent definition of semantics, but it is a condi-
tion that ensures an enabled transition is forced to occur
once it becomes enabled, so it is in essence a syntactic
restriction that enforces urgency.

Under such assumptions that enforce a hybrid au-
tomaton to be deterministic, the translation from the
deterministic hybrid automaton to an SlSf diagram is
straightforward and proceeds as follows. Let S = (LocS ,
JuncS , VarS , TransS , ActionsS) be the SlSf diagram.
Instantiate LocS = H.Loc, JuncS = ∅, and VarS =
H.Var . For each location ` ∈ Loc and each correspond-
ing location `S ∈ LocS , and for each variable v ∈ Var
and the corresponding variable vS ∈ VarS , we set the
ActionsS(`S , vS) during action for vS to be equal to the
flow Flow(`, v) for variable v, and do not instantiate the
entry and exit actions. For continuous-time Stateflow
models, the during action is used to specify an ordinary
differential equation for variables, so in essence this just
copies the flow from H to S for each location and each
variable, and the other action types (entry and exit)
are unused.

Finally, we instantiate the transitions as follows. For
each location ` ∈ Loc and corresponding location `S ∈
LocS , and for each transition (`, g, υ, `′) ∈ Trans with a
natural number i indicating the iteration count over the
transitions, we instantiate a transition γ ∈ TransS as the
tuple (`S ,GuardS ,UpdateS ,TPS , `

′
S), where γ.`S = `,

γ.GuardS = g, γ.UpdateS = υ, TPS = i, and γ.`′S = `′.
Since H is deterministic, the choice of the transition pri-
ority TPS is unimportant as only at most one transition
is enabled at a time, so it is in essence set arbitrarily
to i based on whatever iteration order is chosen. Ad-
ditionally, the restriction on guards and invariants to
ensure determinism means the invariant translation is
naturally handled through the translation of the guard
as described above.

There are some additional minor syntactic transla-
tions that also must occur which we discuss briefly. The
first is due to the fact that updates in SlSf are evalu-
ated sequentially, whereas in a hybrid automaton they
are evaluated concurrently, so additional temporary vari-
ables are introduced to handle this as necessary (e.g., the
hybrid automaton update x′ := x+ 1∧ y′ := x is rewrit-
ten to the SlSf update x′tmp := x;x′ := xtmp + 1; y′ :=
xtmp, where xtmp is a fresh temporary variable).

The second more significant difference is related to
how SlSf identifies events during execution or simula-
tion, which is influenced in part by the simulator not be
infinitely precise and have numerical errors. In particu-
lar, this influences event detection such as when transi-
tions are enabled and may be taken, and this is imple-

6 Stanley Bak et al.: Hybrid automata: from verification to implementation

mented using zero-crossing detection algorithms inside
the simulation routines of SlSf.

In particular, if a guard is only enabled at one (sin-
gular) point in time, it will almost surely not be de-
tected by the zero-crossing mechanisms used by SlSf,
and the transition is usually missed. In order to not ex-
clude certain behaviors systematically, we consider an ε-
relaxation of each guard constraint, similar to the relax-
ations considered in translations from SlSf to hybrid au-
tomata [30]. For instance, a guard constraint of the form
x = c∧y ≤ x becomes c− ε ≤ x ≤ c+ ε∧y ≤ x− ε. The
simulation time step can then be chosen small enough
such that, based on the value of ε and the Lipschitz con-
stant of the dynamics, no transitions will be missed.

Although this may permit more behaviors than the
original hybrid automaton, it critically prevents transi-
tions from being missed, which is necessary for trajec-
tory-equivalence. The extra behaviors introduced from
this necessary step can be reduced by considering smaller
values of ε, which will require a smaller simulation time
step. Reducing the time step, however, will be at the
cost of additional simulation runtime.

Example Translation. We illustrate the translation pro-
cess with a running case study evaluated in more de-
tail later (Section 4.1). A deterministic hybrid automa-
ton for this example appears in Figure 3, which is a
model of a closed-loop control system. Specifically, here a
periodically-updated hysteresis controller is used to reg-
ulate a voltage VC by controlling the state of a switch.
This is a flattened (composed) model of the closed-loop
system, originally consisting of a timed automaton model
of the hysteresis controller which has periodic updates
every 20 microseconds, and a hybrid automaton model
with affine dynamics of the plant, which is a circuit
known as a buck converter. The resulting continuous-
time Stateflow diagram for the buck converter created
using our translator appears in Figure 4 (with no ε-
relaxations).

3.1.2 Translating a non-deterministic hybrid
automaton

For a non-deterministic hybrid automaton, we achieve
trajectory-equivalence by replacing non-determinism in
the hybrid automaton by (uniformly distributed) ran-
dom number generation in the SlSf diagram. In this
way, by executing multiple SlSf simulations we can ap-
proximate the reachable states of the original hybrid au-
tomaton.

In our converter, we currently support initial regions
and non-deterministic updates to hyper-rectangles, as
well as deterministic updates which can be arbitrary
functions. When non-deterministic assignments or initial
states are used, they must be strict subsets of the invari-
ant of the target or initial location, respectively, which
we note can be statically checked. Under this assump-
tion, the choice of the initial continuous state and the

non-determinism possible during updates can be done by
randomly choosing one point from the set of all points
available.

In the rest of this section, we focus on the harder
problem of non-determinism from the transitions and
dwell time. We first give an overview of the translation
scheme. Here it is helpful to regard the trajectory of
a hybrid automaton as a sequence of jumps, and after
each jump, the automaton chooses the next transition
and dwell time. The crucial difference in our conversion
is that the choices might be infeasible, i.e., violating the
invariant. To account for this, we incorporate a back-
tracking mechanism, where the current state of all vari-
ables is stored when entering a new location. Note that
time is an entity which is implicitly present in all hy-
brid automaton models and we can always add a (fresh)
time variable t with flow ṫ = 1. This allows for a general
translation scheme without further knowledge about the
hybrid automaton under consideration.

We translate a hybrid automaton location ` into a
corresponding location cluster ˆ̀, comprising of a number
of SlSf states, junctions, and transitions. The clusters
are then connected by the same transitions as in the
original hybrid automaton. A simulation trajectory of
the resulting SlSf diagram then visits those clusters.
Inside a cluster, the execution consists of three phases,
depicted in Fig. 5.

Three phases in a location cluster. In the first phase, we
randomly choose a transition out from the transitions
currently available. In the second phase, we choose a
time threshold T . In the final phase, we incorporate the
original continuous dynamics of the location `.

In the translated model, the transition tries to be
taken by checking the original guard condition, but only
after dwelling in ˆ̀ for at least until time moment T . If
the transition out cannot be taken – possibly due to an
invariant violation – in the time frame [T , Tmax], where
Tmax is the maximum simulation time, we backtrack2

and return to the second phase, and select a new time
threshold T which is strictly less than the previously-
chosen threshold. To ensure termination, we bound the
number of times backtracking may occur before trying
T = 0. If the chosen transition can still not be taken, we
can conclude that it cannot be taken at all, and go back
to the first phase, this time trying another transition.

3.2 Trajectory-Equivalence

The translation process described above maintains the
defined notion of trajectory-equivalence. For this, we
consider an idealized conversion, where there are no nu-
merical errors in the simulation, the value of ε is zero,

2 We note that our notion of backtracking is different from the
one that occurs with multiple junctions in SlSf. In particular,
we require allowing some dwell time to elapse in states, whereas
junctions are instantaneous.

Stanley Bak et al.: Hybrid automata: from verification to implementation 7

Open[
i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
ṫd = 1

iL ≥ 0 ∧ VC ≥ Vref − Vtol
∧td ≤ T

Closed[
i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
+

[
1
L
0

]
VS

ṫd = 1
iL ≥ 0 ∧ VC ≤ Vref + Vtol ∧ td ≤ T

DCM[
i̇L
V̇C

]
=

[
0 0
0 − 1

RC

] [
iL
VC

]
ṫd = 1

iL ≤ 0 ∧ VC ≥ Vref − Vtol
∧td ≤ T

VC ≥ Vref + Vtol ∧ td ≥ T
td := 0

VC ≤ Vref − Vtol ∧ td ≥ T
td := 0

iL ≤ 0 ∧ VC ≥ Vref − Vtol ∧ td ≥ T
td := 0

VC ≤ Vref − Vtol ∧ td ≥ T
td := 0

start

Figure 3: Composed hybrid automaton model of the closed-loop feedback control system for the buck converter. The
buck converter plant is originally modeled as a hybrid automaton and the hysteresis controller is modeled as a timed
automaton(see Figure 11).

Open
during:[

i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
ṫd = 1

Closed
during:[

i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
+

[
1
L
0

]
VS

ṫd = 1

DCM
during:[

i̇L
V̇C

]
=

[
0 0
0 − 1

RC

] [
iL
VC

]
ṫd = 1

[VC ≥ Vref + Vtol && td ≥ T]
{td = 0; } 1

[VC ≤ Vref − Vtol && td ≥ T]
{td = 0; } 2

[iL ≤ 0 && VC ≥ Vref − Vtol && td ≥ T]
{td = 0; } 1

[VC ≤ Vref − Vtol && td ≥ T]
{td = 0; } 1start

Figure 4: Composed SlSf diagram for the translated closed-loop feedback control system for the buck converter.

choose
transition out

choose
threshold T

continuous
evolution

· · ·

transition
out not
possible

in [0, Tmax]

transition out not possible in [T , Tmax]

check t ≥ T
check g`out
apply υ`

out

Figure 5: High-level location cluster translation pattern
consisting of three phases. The location cluster ˆ̀denotes
a group of SlSf states and junctions which reflects the
behavior of the hybrid automaton in the location `.

and the SlSf diagram encodes the intended semantics
of the described transformation process.

Theorem 1. If H is a Zeno-free hybrid automaton and
S is the SlSf diagram created using our transformation
process, then S is trajectory-equivalent to H.

The proof for the more complex non-deterministic case
is given in the Section 3.3.4. From the theorem we can
conclude that our translation preserves safety properties.

Corollary 1. If a Zeno-free hybrid automaton H satis-
fies a safety specification P , then every simulation tra-

jectory of the translated SlSf diagram S also satisfies
P .

3.3 Additional Translation Details and Proof

3.3.1 Detailed Translator Description

We provide a detailed description of our translation. It
iteratively converts every location ` of a hybrid automa-
ton and its outgoing transitions into an SlSf diagram of
location clusters ˆ̀ in the following way (see Fig. 6). We
first describe the data structures we use in our construc-
tion. The list outList stores the ordering in which the
outgoing transitions of the location ` are considered in
the simulation. The variable out keeps track of the cur-
rently chosen outgoing transition. The variable Tv stores
the first time moment when the location invariant is vio-
lated. Tmax keeps the maximum simulation time, i.e., the
simulation is stopped as soon as this bound has been
reached. The variable T stores the time threshold af-
ter which the outgoing transition should be taken. The
variable R keeps the maximum number of backtrackings
we want to allow, whereas r stores the current number
of backtrackings in the location cluster ˆ̀. Finally, the
variable t stores the current time that is simulated. In-
troducing this variable allows us to model going back in
time when backtracking, which is not possible for the
actual simulation time that is tracked by SlSf.

8 Stanley Bak et al.: Hybrid automata: from verification to implementation

We continue with the description of every individual
(SlSf) state in our construction. The current simula-
tion time and the hybrid automaton state when enter-
ing the location ` (and respectively the location cluster
ˆ̀) is stored in the (SlSf) state `in. Furthermore, the
algorithm randomly chooses the ordering in which the
outgoing transitions are considered. In this way, we han-
dle the non-determinism due to multiple simultaneously
enabled transition guards. Finally, the variable Tv is ini-
tialized to Tmax as we do not have any information about
the invariant violation at that moment.

The state `choose covers two kinds of non-determinism.
It takes care of the situation when the intersection of the
invariant and the transition guard is non-singular, i.e.,
when a switch to the next location can happen not only
at a particular time moment, but within a time interval.
Note that if the continuous dynamics are non-monotonic,
there can be multiple disjoint time intervals where the
guard is enabled. We resolve such situations by generat-
ing a random time threshold T in the state `choose and
allowing the discrete transition only from the time mo-
ment T onward, i.e., we add a constraint of the form
t ≥ T as a part of the transition guard for every outgo-
ing transition from the location `. Thus, we disable the
SlSf must-semantics up until time moment T to mimic
the original may-semantics of hybrid automata.

Note that we also use the state `choose for backtrack-
ing purposes. We observe that an unfortunate choice of
the outgoing transition out and the time threshold T can
lead to the simulation getting stuck, as the transition
guard of out is not enabled in the time frame [T , Tmax]
and thus the transition cannot be taken. In such cases,
we return to the state `choose to select a further time
threshold T . For this purpose, we restore the simulation
time t and the state of the hybrid automaton from the
moment we entered ` resp. ˆ̀. Afterward, we can choose
the next time threshold from the interval [t, T]. Here we
observe that in general before reaching the time thresh-
old, the invariant can be violated. Thus, we actually se-
lect a new threshold from the interval [t,min(T , Tv)]. In
this way, we end up with a sequence of monotonically
decreasing thresholds. Still, as it is not guaranteed that
the chosen threshold is eventually equal to 0, we add a
further termination criterion by bounding the number
of backtracking by some user-defined constant R > 0.
The last time before exceeding this limit, we try out the
weakest threshold T = 0 to ensure that we have covered
all cases. If the transition cannot be taken at all, we
either proceed with a further outgoing transition (junc-
tion jin) or, if none is left, the simulation is stopped and
reports an actual deadlock in the model.

The continuous evolution corresponding to the loca-
tion ` is modeled by the state `dwell. We can leave this
state under two conditions. First, the invariant can be
violated. Then we store the time moment when the vio-
lation has happened in the variable Tv and move to the
state `choose (via junction jv). Note that if we have al-

ready considered all the outgoing transitions of `, we will
stop the simulation since a deadlock has been found. In
the other case, the time threshold T can be reached. We
take the transition to the successor location of ` if the
guard of the chosen transition out is enabled and after
applying the update, the target location’s invariant is
satisfied (junction jt). Furthermore, here we also check
whether the maximum simulation time Tmax has been
reached, in which case we stop the simulation.

In the following, we illustrate the translation process
using an example simulation.

3.3.2 Example

We consider an execution in some location cluster for a
simple location `1 with one continuous variable x and
two outgoing transitions, as depicted in Fig. 7. For sim-
plicity, assume that the location is entered at time t = 0
in state x = 0 and the total simulation time is Tmax = 20.

First we store the current continuous state (t, x) =
(0, 0). Next, in phase 1, we choose a transition, say, the
one to `2. Then, in phase 2, we choose a random mini-
mum dwell time in the range [0, 20], say T = 3. The sim-
ulation proceeds in phase 3 until an event occurs. In this
case, events are either violating the location invariant
x < 10 or enabling the guard condition of the selected
transition t ≥ 3∧ x ≥ 8. The guard condition is enabled
first, at state (t, x) = (4, 8). This transition cannot be
taken, however, as the target invariant would be violated
after applying the update x := 2.The simulation contin-
ues until the next event, when the state (t, x) = (5, 10) is
reached and a violation of the invariant is detected. That
is why the simulation goes back to phase 2, backtrack-
ing to the saved state (t, x) = (0, 0). At this point, it
was checked that for all T ≥ 3, the transition cannot be
taken. In phase 2, a new value for T is chosen from the
restricted interval [0, 3), and the simulation is run again
in phase 3. After reaching the same conclusion and af-
ter further backtracking, a finite threshold of attempts
is reached, and T = 0 is forced. Even with T = 0 there
will be a violation of the invariant before the transition
can be taken. Then, we will conclude that the selected
transition can never be taken when starting in the state
(t, x) = (0, 0). Thus we can safely ignore this transition,
go back to phase 1 and choose the transition leading to
`3, where the process repeats.

3.3.3 Translation Correctness and Discussion

Correctness. The proof of Theorem 1 required three as-
sumptions, mentioned before the theorem statement and
proven below. First, we assumed the simulations were
exactly accurate. Although real simulations will always
have some error, this can be reduced to arbitrarily small
values by reducing the time step used in the simula-
tion. Similarly, for the second assumption we can con-

Stanley Bak et al.: Hybrid automata: from verification to implementation 9

`in
entry: store variables(t,Var);
outList = permute(n);
Tv := Tmax;

jin

`choose
entry: t,Var := restore variables();
T = chooseT(t, T , Tv, r, R);

jv

`dwell

during: Flow(`);

jt · · ·

...

· · ·

[|outList | > 0]
{ T := Tmax;
out := pop(outList);

r := 0; }
[r = R]

[|outList | = 0]
{ T := Tmax;

out := 0; }

[r < R]

[out > 0]
{Tv := t;
r++; }

[out = 0]
{ stop(); }[¬Inv(`)]

[t ≥ Tmax]
{ stop(); }

1[t ≥ T]

1

[out = 1]

[g`1]

{υ`
1}

[out = n] [g`n]

{υ`
n}

Figure 6: General location cluster of some location ` with n outgoing transitions. (re-)store variables stores and
restores the current simulation state (including the time variable t) from when entering the cluster, respectively.
permute(n) returns a permuted list outList with all integers from 1 to n. pop(outList) removes and returns the first
element from outList . chooseT chooses a new time threshold T . A subscript “1” indicates that a transition has the
highest priority among all the outgoing transitions from a state/junction.

`1
x < 10
ẋ = 2

`2
x > 8

`3
x ≤ 3

x ∈ [0, 3]
x ≥ 8
x := 2

x ≤ 4

Figure 7: Snippet of an example hybrid automaton with
three locations `1 − `3.

sider smaller and smaller values of ε, although in de-
generate cases this might permit extra transitions in
the simulation. For example, a degenerate guard like
x < 5 ∧ x > 5 will always be false, but any positive
ε-relaxation will have a possible transition when 5− ε <
x < 5+ε. The third assumption is that the SlSf diagram
correctly encodes the described transformation process.
This means that correctness is subject to possible im-
plementation bugs in our conversion implementation in
HyST, as well as the semantics of Stateflow. In addi-
tion to the trajectory-equivalence theorem, we provide
empirical justification for the correctness of the imple-
mentation of our translation scheme, through extensive
case studies including the buck converter detailed in the
main body, and additional case studies presented later
in the appendix.

Non-determinism. By replacing non-determinism with
random number generation, some behaviors of the orig-
inal hybrid automaton might be obscured. For instance,
a non-deterministic die can roll a six forever, while the
probability of this behavior for a random die approaches
zero as more rolls are taken. We always deal with finite
executions in a simulation, and thus end up with a finite
number of choices, so there is still a nonzero chance that
the ‘right’ random values will be chosen, assuming that
the hybrid automaton is Zeno-free.

Generalizations. Although we consider a large class of
hybrid automata, further generalizations are possible.
For example, the initial sets and non-deterministic resets
in our framework were hyper-rectangles, whereas in gen-
eral the initial state could be in a non-convex set, and the
reset might be an arbitrary function which maps from a
single state to a non-convex set. To handle such systems,
we need a way to sample in the non-convex destination
sets, which may be possible in certain situations, but is
difficult in general. One possibility would be to require
the user to give this sampling function.

Another generalization possible is to consider non-
deterministic dynamics. More general hybrid automata
may include differential inclusions or other non-deter-
ministic ways for the continuous states to evolve. This
could be handled by adding ranged inputs to the sys-
tem, and at each time step choosing a random value in
the range for each input. However, as the time steps be-
come smaller, the random inputs will approximate the
main value in their ranges, which in practice results in
poor simulation coverage. An alternative is to choose a
time step where the inputs will vary, such that a trade-
off is possible between the amount of coverage possi-
ble, and the effect of this tendency towards the mean.
Other simulation methods, perhaps based on state ex-
ploration mechanisms such as rapidly-exploring random
trees (RRTs) [28] may also be possible.

3.3.4 Proof

Proof (Theorem 1). We first show the forward direc-
tion, i.e., given an arbitrary trajectory of the hybrid au-
tomaton, there exists a set of random decisions in the
constructed SlSf diagram that produce a correspond-
ing simulation trajectory.

10 Stanley Bak et al.: Hybrid automata: from verification to implementation

Recall that correspondence (Definition 5) requires
that the encountered locations can be the same, and that
the deviation in continuous states can be bounded by an
arbitrarily small constant.

For the ordering of locations, notice that the ran-
dom choice of an outgoing transition in phase 1 of the
construction can pick the corresponding transition from
the trajectory. Since the minimum dwell time is chosen
randomly, it can be picked to be arbitrarily close to the
dwell time in the hybrid automaton trajectory. In this
way, as long as the continuous evolution in the simula-
tion remains close to the hybrid automaton trajectory’s
continuous evolution, every transition will be explored.

The second part of correspondence requires that the
deviation in the continuous states is bounded. We show
that this bound can be chosen to be arbitrarily small
across both every continuous evolution and after every
discrete transition. During a continuous evolution, if the
start state in a location in the simulation is chosen close
to the start state in the corresponding location in the
hybrid automaton trajectory, its deviation will also be
bounded as a function of the Lipschitz constant (see
Proposition 1 in [20]). Thus, for a single bounded con-
tinuous evolution and every nonzero final state deviation
desired, there is a corresponding nonzero initial state de-
viation that will achieve the desired closeness.

During initial state selection, since we consider hyper-
rectangles, the set of states is bounded. Randomly choos-
ing states, we will in finite time pick one arbitrarily close
to any trajectory’s start state in the hybrid automaton.

Finally, for updates, the dwell time of a simulation
can be made arbitrarily close to a hybrid automaton
trajectory, and since the state can be made arbitrarily
close, a deterministic update function (under assump-
tions of Lipschitz continuity) can also result in a state
arbitrarily close to the trajectory. For nondeterministic
updates, the argument is similar to the initial state se-
lection, and thus the continuous states of the simulation
remain arbitrarily close to the hybrid automaton trajec-
tory.

The sequence of discrete transitions between the tra-
jectory and simulation match. Since each trajectory is a
finite sequence of discrete transitions (due to Zeno-free
behavior) and continuous evolutions (each of which can
have arbitrarily small error between the trajectory and a
possible simulation), the accumulated error for the whole
trajectory can also be made arbitrarily small. Thus, the
constructed SlSf diagram has simulations which corre-
spond to any arbitrary hybrid automaton trajectory.

The reverse direction in the proof shows that any ar-
bitrary simulation has a corresponding hybrid automa-
ton trajectory. Again, we proceed by decomposing this
into showing that the sequence of locations is the same,
and that the deviation in the continuous state is bounded.

Since we assumed an idealized relaxation where ε is
zero, every transition in the simulation exactly matches
the guard conditions in the hybrid automaton, and thus

the hybrid automaton can match the simulation. Every
update in the constructed SlSf diagram is also copied
from the automaton, so that the automaton’s trajectory
can match the random choices made by a simulation.

For continuous trajectories, the simulation will choose
some dwell time where the invariant remains satisfied
until a guard becomes true. The hybrid automaton can
also pick the same dwell time, and its invariant will also
remain true until the same guard condition is reached.
Thus, the hybrid automaton can pick a trajectory which
corresponds to the simulation.

Since every trajectory of the hybrid automaton cor-
responds to a simulation trajectory of the SlSf diagram,
and every simulation trajectory corresponds to a trajec-
tory, the two models are trajectory-equivalent. �

4 Evaluation and Experimental Results

To evaluate the translation methodology presented in
this paper, we implemented a prototype translator that
uses the HyST intermediate representation for source-to-
source transformation of hybrid automata [6], and the
SlSf API within Matlab (tested with versions 2014a
through 2016a). The input to the translator is a hybrid
automaton H in the SpaceEx XML format. Networks
of hybrid automata are first composed within HyST to
yield a single hybrid automaton representing the net-
work. Once parsed in the tool, an object representing
the syntactic structure of H is traversed, and then the
tool applies the sequence of translation steps described
in Sect. 3. In the simulator, we varied the seeds of the
uniform pseudo-random number generator rng in Mat-
lab. We evaluated the prototype tool using several ex-
amples. For this we first computed the reachable states
of the models in SpaceEx or Flow∗, then performed the
translation and simulations in SlSf. The tool and ex-
amples are available for download [1].

4.1 Case Study: Buck Converter with Periodic
Hysteresis Controller

A buck converter is a DC-to-DC switched-mode power
supply that takes a DC input source voltage and lowers
(“bucks”) it to a smaller DC output voltage [32]. A stan-
dard model of the converter has three modes, where: the
switch is closed and the voltage source is connected, the
switch is open and the voltage source is disconnected,
and based on the possible dynamics of the converter,
a third mode, known as the discontinuous conduction
mode (DCM), where the current is not allowed to go
below zero (which is physically unrealizable, but may
occur without this third mode). Interested readers may
find detailed derivations of models in power electronics
textbooks [41]. A hybrid automaton model of the closed-
loop buck converter (plant and timed controller) appears
in Fig. 3.

Stanley Bak et al.: Hybrid automata: from verification to implementation 11

A standard closed-loop controller for the buck con-
verter is a hysteresis controller, which changes the mode
of the buck converter plant based on the measured out-
put voltage. Its operation depends on opening and clos-
ing the MOSFET switch. Intuitively, it operates like a
thermostat, i.e., the switch is toggled so that the source
voltage is connected to the circuit if the output voltage
is too low, and it is toggled in case if the output voltage
is too high to disconnect the voltage source. We note
that by Kirchhoff’s voltage law (KVL), VC = Vout [41].
In part to avoid switching too frequently, a hysteresis
band is typically used so switches occur when Vout ≥
Vref + Vtol or Vout ≤ Vref − Vtol . This creates a volt-
age ripple on the output voltage that should be within
a given range Vrip of the desired reference output volt-
age Vref . Together, these define a safety specification:

P (t)
∆
= t ≥ ts ⇒ Vout(t) = Vref ± Vrip , which projected

onto the phase space is P
∆
= Vref − Vrip ≤ Vout ≤

Vref + Vrip . SpaceEx is used to verify P by computing
the reachable states Reach(H) (to a fixed-point) from a
startup state where the initial states Sinit are iL = 0 and
VC = 0. For every time t ≥ ts after a startup trajectory
of duration ts, if Vref −Vrip ≤ Vout(t) ≤ Vref +Vrip , then
the converter satisfies the specification P .

For actual implementations, the measured voltage
values are sensed periodically through an analog-to-
digital converter (ADC), and subsequently, the control
signals are sent periodically to control the state of the
buck converter transistor (open/closed). We model this
periodic update process as a timed automaton for the
controller with a timer variable td that evolves at unit
rate and is upper bounded by T of 20 microseconds. The
reachable states of the closed-loop buck converter hybrid
automaton are computed with SpaceEx, and as shown
in Fig. 8, the model satisfies the safety specification P
for a sufficient choice of Vrip .

A hardware setup consisting of a buck converter plant
and a dSpace DS1103 is used to perform the experiments
with the physical buck converter plant. The DS1103 con-
tains a Power PC processor and a DSP board and is
used for implementation of the hybrid automata in both
hardware-in-the-loop (HiL) simulations with a “virtual
plant” (the plant model simulated on the DS1103 hard-
ware) and the actual buck converter plant.

The hysteresis controller is executed on the DS1103.
First, we generate C code using the translated SlSf di-
agram in Matlab, then compile it and download it onto
the DS1103. A discrete fixed-step solver with a time step
of 20 microseconds is used for the code generation pro-
cess and also for the DS1103’s sampling and control pe-
riods, which is sufficiently small to ensure ε is sufficiently
small, as discussed in Sect. 3. The measured voltage sig-
nal from the buck converter is periodically sensed and
sent to the embedded controller through an ADC. The
embedded controller generates Boolean valued signals
and these are converted to suitably spaced rectangular

Time, Sec
0 0.01 0.02 0.03

v C
, V

0

5

10

15

SpaceEx
dSPACE - Virtual
dSPACE - Actual
Stateflow

Figure 8: Reachable states of the hybrid automaton
computed with SpaceEx, verifying the voltage-regulation
property, along with HiL simulation results of the trans-
lated SlSf diagram on the DS1103 (“virtual plant”),
and control of the physical plant with the translated
SlSf diagram (“actual plant”). Our results validate the
high-level vision of correct-by-construction control im-
plementation from Fig. 1.

pulses to operate the MOSFET switch of the buck con-
verter plant. For the experiments with the actual plant,
the input signals fed to the controller (specifically the VC
voltage) are replaced from the simulation model with the
measurement of the actual plant, and the output signals
(the desired mode, open or closed) are fed to the actual
plant instead of the simulation model. The experimental
results are recorded and a comparison to SlSf simula-
tions is shown in Fig. 8. The experimental and simu-
lation traces are contained in the SpaceEx reach sets,
which validates the translation correctness (Theorem 1)
and that the safety property is maintained in the im-
plementation (Corollary 1). Note that in the hardware
experiments, the controller has essentially been deter-
minized, as the purpose of non-determinism in the hy-
brid automaton model was to model plant inaccuracies.

4.1.1 Additional Details

The buck converter circuit appears in Fig. 9(a). Parame-
ter values used for the case study appear in Figure 9(b).

A hybrid automata network model of the buck con-
verter plant and a timed automaton of the hysteresis
controller appears in Fig. 11, where θ is a synchroniza-
tion label and δ is a discrete control signal, and a bisimi-
lar hybrid automaton model after flattening (composing)
the network was shown earlier in Fig. 3. The composed
model from Fig. 3 is used for verification, translation,
and code generation purposes as discussed earlier, while
the network model is conceptually simpler and illustrates
the decomposition between the physical plant hardware
and the controller. The physical hardware used in the
evaluation appears in Fig. 10.

Fig. 13 shows the reachable states in the phase space,
and illustrates that the SLSF simulations are contained
in the reachable states computed with SpaceEx and gives
empirical evidence for the correctness of the translation.

12 Stanley Bak et al.: Hybrid automata: from verification to implementation

VS
iL

Vo
-

+
Vc
-

+

L

C R

VS
iL

Vo
-

+
Vc
-

+

L

C R

iL
Vo
-

+
Vc
-

+

L

C R

S

(a)

Component / Parameter Name Symbol Value

Source Input Voltage VS 24 V

Desired Output (Reference) Voltage Vref 12 V

Actual Output Voltage VC = Vout 12 V ± Vrip

Hysteresis Band Tolerance Vtol 0.1 V

Voltage Ripple Tolerance Vrip 0.6 V

Load Resistance with Parameter Variation R 10± 2% Ω

Capacitor Value with Parameter Variation C 2.2± 2% mF

Inductor Value with Parameter Variation L 2.65± 2% mH

Periodic Updation Parameter T 20 µ sec

(b)

Figure 9: (a) Buck converter circuit—a DC input VS is decreased to a lower DC output VC = Vo = Vout . (b) Buck
converter parameter values and variations.

Laptop installed
with dSpace and
MATLAB Software

Load

dSpace
CP1103
Connector
Panel

dSpace
DS1103
System

Experimental Buck
Converter

Figure 10: The buck converter plant controlled with a
dSPACE DS1103 system. Our results controlling the ac-
tual plant with the translated controller validate the
high-level vision of correct-by-construction control im-
plementation from Fig. 1.

4.2 Case Study: Yaw Damper Controller for 747
Aircraft

A yaw damper is modeled as a multiple-input multiple-
output (MIMO) system which uses the aileron and rud-
der in order to reduce oscillations in the yaw and roll
angle of an aircraft. In this section, we use the proposed
method to analyze the control design of a yaw damper
for a 747 aircraft, taken from the Control Systems Tool-
box case studies in Matlab.

In particular, we analyze the final designed controller,
which includes a washout filter capable of eliminating
oscillations, but maintaining the spiral mode. The spiral
mode is a desired control characteristic in yaw damper
systems, where an impulse input from the aileron will
result in a bank angle which does not immediately de-
crease to zero.

The model for the system is given at Mach 0.8 at
40,000 ft using standard linear time-invariant dynam-

ics, ẋ = Ax + Bu. There are four physical variables in
the system x = (x1, x2, x3, x4)T , which are sideslip an-
gle (x1), yaw rate (x2), roll rate (x3), and bank angle
(x4), represented by the column vector x. The two in-
puts u = (u1, u2)T , are the rudder (u1) and aileron (u2).
The outputs are the yaw rate and bank angle.

The specific values for A and B are:

A =


−0.0558 −.9968 0.0802 0.0415

0.598 −0.115 −0.0318 0

−3.05 0.388 −0.4650 0

0 0.0805 1 0

, B =


.00729 0

−0.475 0.00775

0.153 0.143

0 0


This physical system is put into a feedback loop with

a washout filter, which has a single variable w and dy-
namics ẇ = x2 − 0.2 · w. The filter variable is combined
with the yaw to produce an effect on the rudder input.
In particular, the washout filter adds to u1 the value
2.34 · (x2 − 0.2 · w).

We consider analysis of a system model which has the
guarantees given by a real-time scheduler, which periodi-
cally executes the washout filter and sets the output val-
ues. Between controller executions we take the output of
the washout filter to be constant (zero-order hold). The
control task is guaranteed to execute every period using a
common scheduler like Rate Monotonic (RM) or Earliest
Deadline First (EDF). There is non-determinism in the
exact time the controller runs, however, due to the offset
of the execution of the control task within each period.
Since the control logic is simple, we take the control task
to be nonpreemptive and short, so that the model will
sample the physical system and update the filter output
at a single point in time, but that point in time may vary
within each period. Furthermore, we look at the system
response due to an impulse input from the aileron from a
range of start conditions. We take the initial bank angle
to be between 0 and 0.1.

This system was modeled in SpaceEx, and reachabil-
ity analysis was attempted in both SpaceEx and Flow∗.

Stanley Bak et al.: Hybrid automata: from verification to implementation 13

Open[
i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
σ = 1 ∧ iL ≥ 0 ∧ VC ≥ 0

Closed[
i̇L
V̇C

]
=

[
0 − 1

L
1
C −

1
RC

] [
iL
VC

]
+

[
1
L
0

]
VS

σ = 2 ∧ iL ≥ 0 ∧ VC ≥ 0

DCM[
i̇L
V̇C

]
=

[
0 0
0 − 1

RC

] [
iL
VC

]
σ = 1 ∧ iL ≤ 0 ∧ VC ≥ 0

θ

θ θ
iL ≤ 0

θstart

Plant

Opened
σ = 1 ∧ VC ≥ Vref − Vtol

Closed
σ = 2 ∧ VC ≤ Vref + Vtol

θ
VC ≤ Vref − Vtol ∧ td ≥ T

σ := 2 ∧ td := 0

θ
VC ≥ Vref + Vtol ∧ td ≥ T

σ := 1 ∧ td := 0

θ
VC > Vref − Vtol ∧ td ≥ T

td := 0

θ
VC < Vref + Vtol ∧ td ≥ T

td := 0

start

Controller
VCσ

Figure 11: Hybrid automaton model of the buck converter plant with timed automaton of the hysteresis controller
as a network.

Figure 12: Left: Buck converter VC versus time, with
SpaceEx reach set for the hybrid automatom model in
red, and black points from 10 simulation traces of the
translated SlSf diagram. Right: Detailed and zoomed
view illustrating multiple simulation trajectories.

Figure 13: Left: Buck converter VC versus iL (phase
space), with SpaceEx reach set in red, and black points
from 100 simulation traces. Right: Detailed and zoomed
view illustrating multiple simulation trajectories.

Due to the large number of discrete switches, however,
neither tool is able to directly compute reachability (the
computed reach sets grow exponentially).

Instead, we investigate the system using our conver-
sion to SlSf and randomized execution. Since the main
source of non-determinism in this model is the discrete
switches, we can investigate simulations of the system

where they occur at varying offsets from the start of
each period.

The simulations showed the expected response of the
system when using a controller period of T = 0.1. The
response of the system is shown in Fig. 14. Here, the im-
pulse response from the aileron to the bank angle is plot-
ted, which does not immediately converge (spiral mode),
and does not contain excessive oscillations. Thus, using
the technique proposed in this paper we are able to an-
alyze a system which cannot be directly analyzed using
reachability tools.

This system can be analyzed formally, however this
requires a non-trivial model transformation using the
technique of continuization, as well as using a smaller
control period. Continuization converts the periodically-
actuated model into a continuous one with bounded
noise, where the bound is based on the controller period
and maximum rate of change of the output signal [7].
The same model can be used as the basis for the con-
version using continuization, as well as the conversion
to SlSf for simulation and further Matlab-based anal-
ysis and code generation. In this way, the conversion to
SlSf is one part of a larger toolflow, where models are
first created in SpaceEx, possibly converted for formal
analysis using HyST, and then can be directly imported
into SlSf after the conversion described in this paper for
simulation and controller synthesis, as well as embedding
in a larger CPS model.

4.3 Case Study: Glycemic Control in Diabetics

Glycemic control is an approach to control the blood
glucose levels in insulin dependent diabetes mellitus pa-
tients. There are several different mathematical models
of glycemic control used to design insulin infusion de-
vices that help diabetic patients control their blood glu-
cose levels [21]. Here we investigate a nonlinear hybrid

14 Stanley Bak et al.: Hybrid automata: from verification to implementation

Figure 14: 50 simulations of the yaw damper sys-
tem. Left: The spiral mode is confirmed. Right: Non-
determinism in controller execution time causes simu-
lated trajectories to cross.

system of the glycemic control in diabetic patients such
that all dynamics are defined by polynomials. The math-
ematical model is described by the following ODEs:

Ġ = −0.01G −X (G + GB) + g(t) (1)

Ẋ = −0.025X + 0.000013I (2)

İ = −0.093(I + IB) + u(t)/12 (3)

In Equation 1 and Equation 3, G and I are the plasma
glucose concentration and the plasma insulin concentra-
tion above their basal value GB and IB , which are equal
to 4.5 and 15, respectively. The variable X shown in
Equation 2 is the insulin concentration in an intersti-
tial chamber. Moreover, g(t) and u(t) are the influx of
glucose and the insulin control input, presented in Equa-
tion 4 and Equation 5, respectively.

g(t) =


t/60 if t ≤ 30

(120− t)/180 if 30 < t ≤ 120

0 if t > 120

(4)

u(t) =


25/3 if G(t) ≤ 4

25/3(G(t)− 3) if 4 < G(t) ≤ 8

125/3 if G(t) > 8

(5)

The glycemic control was first modeled in SpaceEx and
then translated to Flow∗ by using the HyST model con-
verter. This model is nonlinear, non-deterministic, and
includes 4 variables, 9 locations and 18 discrete transi-
tions in total. The simulations of the glycemic control
model translated to SLSF are shown in Fig. 15. We sim-
ulated the translated model with 100 different random-
ized executions. All simulation traces of G are contained
in the reach set computed by Flow∗, which validates the
translation.

4.4 Case Study: Fischer Mutual Exclusion

Fischer mutual exclusion is a timed distributed algo-
rithm that ensures a mutual exclusion safety property,

Figure 15: 100 simulations of the glycemic control model
with simulations and reach set computed by Flow∗

(gray) for variable G .

rem
ẋi = 1start

try
ẋi = 1
xi ≤ A

waits
ẋi = 1

cs
ẋi = 1

g = ⊥
xi := 0

g := i; xi := 0
g 6= i ∧ xi ≥ B

xi := 0

g = i ∧ xi ≥ B
xi := 0

g := ⊥

Figure 16: Fischer’s mutual exclusion algorithm for a
process with identifier i ∈ {1, . . . , N}. Here, g is a global
variable of type {⊥, 1, . . . , N}, xi is a local variable of
type R, and both A and B are constants of type R.

namely that at most one process in a network of N pro-
cesses may enter a critical section simultaneously. An au-
tomaton for Fischer appears in Fig. 16. Fischer involves
two real timing parameters, A and B, and mutual exclu-

sion is ensured iffA < B. Let Loc
∆
= {rem, try ,waits, cs}.

We translated a network of two automata (N = 2) from
SpaceEx to SLSF. In one instance, we ensured A <
B by picking A = 5 and B = 70, so mutual exclu-
sion was maintained, which we verified in SpaceEx using
the PHAVer scenario. In the other instance, we ensured
A > B by picking A = 75 and B = 70, and mutual
exclusion was not maintained. Consequently, we could
not verify this instance using SpaceEx’s PHAVer sce-
nario since a location cs ∼ cs was reachable, corre-
sponding to the case where both processes are in the
critical section. We conducted K = 1000 simulations
with maximum time T = 1000s of the translated SLSF
model in each case. In Fig. 17 we show respectively the
property satisfaction and violation through the auto-
matic translation from SpaceEx to SLSF by plotting
the corresponding locations versus time, where differ-
ent colors correspond to different simulations. In the
safe case (A < B), the locations reached via simulations
all maintained the mutual exclusion property and were
Loc2 \ {cs ∼ cs, try ∼ cs, cs ∼ try}. In the unsafe case
(A > B), the locations reached via simulation included
every location (e.g., all 16 locations of the permutations
of LocN for N = 2) and violated the mutual exclusion

Stanley Bak et al.: Hybrid automata: from verification to implementation 15

Figure 17: Locations reached for 1000 SlSf simulations
of Fischer, where different colors indicate different tra-
jectories. Left: safe case (A < B). Right: unsafe case
(A > B).

property. These results give further empirical evidence
for the correctness of the translation procedure.

4.5 Additional Case Studies

Table 1 summarizes the different types of benchmarks
that were all successfully translated and checked for tra-
jectory-equivalence in addition to the previously pre-
sented case studies. The experiments were performed on
an Intel I5 2.4GHz machine with 8GB RAM. All the
benchmarks are available in the supplementary mate-
rial [1].

5 Conclusion

In this paper, we presented a trajectory-equivalent trans-
formation of a hybrid automaton into a continuous-time
SlSf diagram, and described its implementation in a
prototype software tool. For non-deterministic models,
our approach adds auxiliary randomization for various
sources of non-determinism to mimic the semantics of
hybrid automata. We have empirically validated our ap-
proach on a number of challenging benchmarks. To ac-
count for zero-crossing issues in the simulation engine,
our translation is parametrized by an ε relaxation; for
ε = 0 we obtain an under-approximation of the hybrid
automaton trajectories (which is precise assuming a per-
fect simulation engine), while for ε > 0 we obtain an
over-approximation.

For the future, it will be interesting to further refine
and extend our approach by, e.g., considering the trans-
lation of networks of hybrid automata—directly with-
out first composing them—into SlSf diagrams and ex-
ploring further sources of non-determinism such as non-
deterministic flows. Another gainful direction would be
to make the distribution over all possible executions uni-
form. A focus on rare events in the line of [18] could also
be considered, and evaluating the SlSf diagrams us-
ing tools integrated with SlSf such as S-TaLiRo [5] or
Breach [19] would be useful.

Acknowledgment

The material presented in this paper is based upon work
supported by the Air Force Office of Scientific Research
(AFOSR), in part under contract numbers FA9550-15-
1-0258 and W911NF-16-1-0534, by AFRL through con-
tract number FA8750-15-1-0105, and by the National
Science Foundation (NSF) under grant numbers CNS
1464311, EPCN 1509804, and CCF 1527398. Further-
more, this research was supported in part by the Euro-
pean Research Council (ERC) under grant 267989
(QUAREM) and by the Austrian Science Fund (FWF)
under grant numbers S11402-N23 (RiSE/SHiNE) and
Z211-N23 (Wittgenstein Award). Any opinions, findings,
and conclusions or recommendations expressed in this
publication are those of the authors and do not neces-
sarily reflect the views of AFRL, AFOSR, or NSF.

References

1. Hybrid automata: from verification to implementation
– supplementary material, http://swt.informatik.

uni-freiburg.de/tool/spaceex/ha2slsf/ha2slsf

2. Agrawal, A., Simon, G., Karsai, G.: Semantic translation
of Simulink/Stateflow models to hybrid automata using
graph transformations. Electronic Notes in Theoretical
Computer Science 109, 43–56 (2004)

3. Agut, D.N., van Beek, D., Rooda, J.: Syntax and seman-
tics of the compositional interchange format for hybrid
systems. The Journal of Logic and Algebraic Program-
ming 82(1), 1 – 52 (2013)

4. Alur, R., Kanade, A., Ramesh, S., Shashidhar, K.C.:
Symbolic analysis for improving simulation coverage of
Simulink/Stateflow models. In: Proceedings of the 8th
ACM International Conference on Embedded Software.
pp. 89–98. EMSOFT ’08, ACM, New York, NY, USA
(2008)

5. Annpureddy, Y., Liu, C., Fainekos, G., Sankara-
narayanan, S.: S-TaLiRo: A tool for temporal logic falsi-
fication for hybrid systems. In: TACAS. Springer (2011)

6. Bak, S., Bogomolov, S., Johnson, T.T.: HyST: A source
transformation and translation tool for hybrid automa-
ton models. In: HSCC. ACM (2015)

7. Bak, S., Johnson, T.T.: Periodically-scheduled controller
analysis using hybrid systems reachability and con-
tinuization. In: 36th IEEE Real-Time Systems Sympo-
sium (RTSS). IEEE Computer Society, San Antonio,
Texas (Dec 2015)

8. Balasubramanian, D., Păsăreanu, C.S., Whalen, M.W.,
Karsai, G., Lowry, M.: Polyglot: Modeling and analysis
for multiple statechart formalisms. In: Proceedings of the
2011 International Symposium on Software Testing and
Analysis. pp. 45–55. ISSTA ’11, ACM, New York, NY,
USA (2011)

9. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., John-
son, T.T., Ladan, H., Podelski, A., Wehrle, M.: Guided
search for hybrid systems based on coarse-grained space
abstractions. International Journal on Software Tools for
Technology Transfer pp. 1–19 (2015)

http://swt.informatik.uni-freiburg.de/tool/spaceex/ha2slsf/ha2slsf
http://swt.informatik.uni-freiburg.de/tool/spaceex/ha2slsf/ha2slsf

16 Stanley Bak et al.: Hybrid automata: from verification to implementation

No. Name Type |Var | |Loc| |Trans| tc ts

1 biology 1 NLC 7 1 0 8.894 20.912

2 biology 2 NLC 9 1 0 7.892 12.939

3 bouncing ball LC 2 1 1 8.149 11.960

4 brusselator NLC 2 1 0 7.428 10.650

5 buckling column NLC 2 1 0 7.738 11.056

6 coupledVanderPol NLC 4 1 0 8.202 11.746

7 E5 NLC 5 1 0 8.230 36.635

8 fischer N2 flat safe LH 6 16 82 20.158 54.145

9 fischer N2 flat unsafe LH 6 16 82 19.287 59.627

10 glycemic control 1 NLH 5 3 4 8.319 15.385

11 glycemic control 2 NLH 5 3 4 8.301 15.567

12 glycemic control poly1 NLH 4 9 18 10.528 23.938

13 glycemic control poly2 NLH 4 6 10 9.237 19.341

14 helicopter LC 28 1 0 10.096 14.897

15 Hires NLC 9 1 0 7.912 9.001

16 jet engine NLC 2 1 0 7.667 11.816

17 lac operon NLC 2 1 0 7.586 13.257

18 lorentz NLC 3 1 0 7.739 11.253

19 lotka volterra NLC 2 1 0 7.740 11.025

20 circuits n2 NLH 3 3 2 9.39 13.895

21 circuits n4 NLH 5 3 2 8.506 14.202

22 circuits n6 NLH 7 3 2 8.585 15.113

23 circuits n8 NLH 9 3 2 8.624 15.386

24 circuits n10 NLH 11 3 2 8.752 15.813

25 circuits n12 NLH 13 3 2 9.604 19.837

26 OREGO NLC 4 1 0 9.157 11.111

27 randgen LH 3 3 6 9.056 15.112

28 Rober NLC 4 1 0 8.266 16.999

29 roessler NLC 3 1 0 9.144 12.771

30 small circuit NLC 5 1 0 10.265 13.660

31 spiking neuron NLH 2 2 2 8.703 13.559

32 spring pendulum NC 4 1 0 9.861 6.251

33 vanderpol NLC 2 1 0 8.119 12.226

Table 1: Overview of the benchmark problems successfully translated to SLSF by using the method in this paper.
Column Type presents different classes of dynamics, where LC, NLC, LH, and NLH are abbreviations for linear
continuous, nonlinear continuous, linear hybrid, and nonlinear hybrid, respectively. Columns |Var |, |Loc|, and |Trans|
show the number of variables, locations, and transitions, respectively, while tc and ts show respectively the time our
tool required to translate the model, and the time to simulate the translated SlSf diagram twice.

Stanley Bak et al.: Hybrid automata: from verification to implementation 17

10. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R.,
Pasareanu, C.S., Podelski, A., Strump, T.: Assume-
guarantee abstraction refinement meets hybrid systems.
In: HVC. pp. 116–131. LNCS, Springer (2014)

11. Bogomolov, S., Frehse, G., Grosu, R., Ladan, H., Podel-
ski, A., Wehrle, M.: A box-based distance between re-
gions for guiding the reachability analysis of SpaceEx.
In: CAV. LNCS, vol. 7358, pp. 479–494. Springer (2012)

12. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G.,
Kong, H., Grosu, R.: Abstraction-based parameter syn-
thesis for multiaffine systems. In: HVC. LNCS, vol. 9434,
pp. 19–35. Springer (2015)

13. Bouissou, O., Chapoutot, A.: An operational seman-
tics for Simulink’s simulation engine. In: Proceedings of
the 13th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, Tools and Theory for
Embedded Systems. pp. 129–138. LCTES ’12, ACM,
New York, NY, USA (2012)

14. Carloni, L., Di Benedetto, M.D., Pinto, A., Sangiovanni-
Vincentelli, A.: Modeling techniques, programming lan-
guages, design toolsets and interchange formats for hy-
brid systems. Tech. rep. (2004)

15. Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-
Vincentelli, A.L.: Languages and tools for hybrid systems
design. Foundations and Trends in Electronic Design Au-
tomation 1 (2006)

16. Chen, M., Ravn, A.P., Wang, S., Yang, M., Zhan, N.:
A two-way path between formal and informal design of
embedded systems. In: UTP. Lecture Notes in Computer
Science, vol. 10134, pp. 65–92. Springer (2016)

17. Chen, X., Abraham, E., Sankaranarayanan, S.: Flow*:
An analyzer for non-linear hybrid systems. In: Sharygina,
N., Veith, H. (eds.) CAV, LNCS, vol. 8044, pp. 258–263.
Springer Berlin Heidelberg (2013)

18. Clarke, E.M., Zuliani, P.: Statistical model checking for
cyber-physical systems. In: Bultan, T., Hsiung, P.A.
(eds.) Automated Technology for Verification and Anal-
ysis, LNCS, vol. 6996, pp. 1–12. Springer (2011)

19. Donzé, A.: Breach, a toolbox for verification and param-
eter synthesis of hybrid systems. In: Touili, T., Cook, B.,
Jackson, P. (eds.) Computer Aided Verification, LNCS,
vol. 6174, pp. 167–170. Springer Berlin / Heidelberg
(2010)

20. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification
of annotated models from executions. In: Proceedings of
the Eleventh ACM International Conference on Embed-
ded Software (EMSOFT ’13). IEEE Press, Piscataway,
NJ, USA (2013)

21. Fisher, M.E.: A semiclosed-loop algorithm for the control
of blood glucose levels in diabetics. Biomedical Engineer-
ing, IEEE Transactions on 38(1), 57–61 (1991)

22. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray,
R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler,
O.: SpaceEx: Scalable verification of hybrid systems. In:
Computer Aided Verification. pp. 379–395 (2011)

23. Hamon, G.: A denotational semantics for Stateflow. In:
Proceedings of the 5th ACM International Conference on
Embedded Software. pp. 164–172. EMSOFT ’05, ACM,
New York, NY, USA (2005)

24. Hamon, G., Rushby, J.: An operational semantics for
Stateflow. International Journal on Software Tools for
Technology Transfer 9(5-6), 447–456 (2007)

25. Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-
loop verification of medical devices with model abstrac-
tion and refinement. International Journal on Software
Tools for Technology Transfer 16(2), 191–213 (2014)

26. Johansson, K.H., Egerstedt, M., Lygeros, J., Sastry, S.:
On the regularization of zeno hybrid automata. Systems
& Control Letters 38(3), 141–150 (1999)

27. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nut-
shell. International Journal on Software Tools for Tech-
nology Transfer (STTT) 1(1), 134–152 (1997)

28. Lavalle, S.M., Kuffner, J.J., Jr.: Rapidly-exploring ran-
dom trees: Progress and prospects. In: Algorithmic and
Computational Robotics: New Directions. pp. 293–308
(2000)

29. Manamcheri, K., Mitra, S., Bak, S., Caccamo, M.: A step
towards verification and synthesis from Simulink/State-
flow models. In: Proc. of the 14th Intl. Conf. on Hybrid
Systems: Computation and Control (HSCC). pp. 317–
318. ACM (2011)

30. Minopoli, S., Frehse, G.: From simulation models to hy-
brid automata using urgency and relaxation. In: Pro-
ceedings of the 19th International Conference on Hybrid
Systems: Computation and Control. pp. 287–296. HSCC
’16, ACM, New York, NY, USA (2016)

31. Minopoli, S., Frehse, G.: SL2SX translator: From
Simulink to SpaceEx models. In: Proceedings of the 19th
International Conference on Hybrid Systems: Computa-
tion and Control. pp. 93–98. HSCC ’16, ACM, New York,
NY, USA (2016)

32. Nguyen, L.V., Johnson, T.T.: Benchmark: DC-to-DC
switched-mode power converters (buck converters, boost
converters, and buck-boost converters). In: Applied Ver-
ification for Continuous and Hybrid Systems Workshop
(ARCH 2014). Berlin, Germany (Apr 2014)

33. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D.,
Goldman, J., Lee, I.: Model-driven safety analysis
of closed-loop medical systems. Industrial Informatics,
IEEE Transactions on 10(1), 3–16 (2014)

34. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam,
R.: From verification to implementation: A model trans-
lation tool and a pacemaker case study. In: Real-Time
and Embedded Technology and Applications Symposium
(RTAS), 2012 IEEE 18th. pp. 173–184. IEEE (2012)

35. Pajic, M., Jiang, Z., Lee, I., Sokolsky, O., Mangharam,
R.: Safety-critical medical device development using the
UPP2SF model translation tool. ACM Trans. Embed.
Comput. Syst. 13(4s), 127:1–127:26 (Apr 2014)

36. Pinto, A., Carloni, L., Passerone, R., Sangiovanni-
Vincentelli, A.: Interchange format for hybrid systems:
Abstract semantics. In: Hespanha, J.P., Tiwari, A. (eds.)
Hybrid Systems: Computation and Control, LNCS, vol.
3927, pp. 491–506. Springer Berlin Heidelberg (2006)

37. Pinto, A., Sangiovanni-Vincentelli, A.L., Carloni, L.P.,
Passerone, R.: Interchange formats for hybrid systems:
Review and proposal. In: Morari, M., Thiele, L. (eds.)
Hybrid Systems: Computation and Control, LNCS, vol.
3414, pp. 526–541. Springer Berlin Heidelberg (2005)

38. Sampath, P., Rajeev, A.C., Ramesh, S.: Translation val-
idation for Stateflow to C. In: Proceedings of the The
51st Annual Design Automation Conference on Design
Automation Conference. pp. 23:1–23:6. DAC ’14, ACM,
New York, NY, USA (2014)

18 Stanley Bak et al.: Hybrid automata: from verification to implementation

39. Sanfelice, R., Copp, D., Nanez, P.: A toolbox for sim-
ulation of hybrid systems in Matlab/Simulink: Hybrid
equations (HyEQ) toolbox. In: Proceedings of the 16th
international conference on Hybrid systems: computa-
tion and control. pp. 101–106. ACM (2013)

40. Schrammel, P., Jeannet, B.: From hybrid data-flow lan-
guages to hybrid automata: A complete translation. In:
Proceedings of the 15th ACM International Conference
on Hybrid Systems: Computation and Control. pp. 167–
176. HSCC ’12, ACM, New York, NY, USA (2012)

41. Severns, R.P., Bloom, G.: Modern DC-to-DC Switch-
mode Power Converter Circuits. Van Nostrand Reinhold
Company, New York, New York (1985)

42. Tiwari, A., Shankar, N., Rushby, J.: Invisible formal
methods for embedded control systems. Proceedings of
the IEEE 91(1), 29–39 (Jan 2003)

43. Yan, G., Jiao, L., Li, Y., Wang, S., Zhan, N.: Approxi-
mate bisimulation and discretization of hybrid CSP. In:
FM. Lecture Notes in Computer Science, vol. 9995, pp.
702–720 (2016)

44. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal veri-
fication of simulink/stateflow diagrams. In: ATVA. Lec-
ture Notes in Computer Science, vol. 9364, pp. 464–481.

Springer (2015)

	Introduction
	Preliminaries
	Translating a Hybrid Automaton to a Continuous-Time Stateflow Diagram
	Evaluation and Experimental Results
	Conclusion

