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Model Validation of PWM DC-DC Converters

Abstract—This paper presents hybrid automaton mo-
deling, comparative model validation, and formal verifica-
tion of stability through reachability analysis of PWM DC-
DC converters. Conformance degree provides a measure of
closeness between the proposed hybrid automata models
and experimental data. Non-determinism due to variations
in circuit parameters is modeled using interval matrices.
In direct contrast to the unsound and computationally-
intensive Monte Carlo simulation, reachability analysis is
introduced to overapproximate the set of reachable states
and ensure stable operation of PWM DC-DC converters.
Using a 200 W experimental prototype of a buck conver-
ter, hybrid automata models of open-loop and hysteresis-
controlled converters are first validated against experimen-
tal data using their conformance degrees. Next, converter
stability is formally verified through reachability analysis
and informally validated using Monte Carlo simulations and
experimental results.

Index Terms—DC-DC converter, formal verification, hy-
brid automaton, model validation, reachability analysis.

I. INTRODUCTION

ABSTRACT models of PWM DC-DC converters should
reasonably match the experimental data obtained from

a hardware prototype despite parametric uncertainty. More-
efficient stochastic simulation techniques are based on po-
lynomial chaos, where parametric uncertainties are accoun-
ted for by a series of orthogonal polynomials that depends
upon their probability distributions [1]. Series coefficients are
computed using various intrusive (e.g., stochastic Galerkin
[1]) or non-intrusive (e.g., stochastic collocation [2]) methods.
Examples of such stochastic methods for electrical circuits
and power systems include Galerkin-based generalized poly-
nomial chaos [3], SPICE-compatible stochastic Galerkin [4],
Galerkin-based generalized decoupled polynomial chaos [5],
stochastic testing [6], and SPICE-compatible stochastic collo-
cation approach [7]. In general, polynomial chaos methods
suffer from the curse of dimensionality, slow convergence
with discontinuous solutions, and substantial computational
overhead [8]–[11].

Another conventional approach is the simulation-based
Monte Carlo paradigm [12], [13], wherein considering
all possible parameter variations and initial conditions is
computationally-prohibitive. Moreover, for a higher level of
confidence in results produced by the Monte Carlo analysis,
greater number of simulation runs are required. Generally,
the total number of Monte Carlo simulations, σ, has to be
increased by 100-fold to achieve additional decimal place
of precision, owing to the O( 1√

σ
) convergence rate [14].

Conceptually, to have a full confidence in Monte Carlo results,
one would require infinite number of simulation runs [15],
[16]. The level of required modeling fidelity depends on the
critical nature of the application domain. For example, the
root cause of the 2014 recall of around 700,000 Toyota Prius

rs rL

Vin

vc

vc

Vref

vc

Fig. 1. Closed-loop DC-DC buck converter with main parasitic elements.

cars was attributed to an error in the interaction between a
boost converter and its software controller [17]. Likewise,
more than 100,000 Toyota Prius cars were recalled due to
an inverter failure [18]. Therefore, this mission-critical domain
would require significant confidence in the modeling accuracy.
At the same time, the utilized model validation tool should be
conservative enough to overapproximate all possible sets of
states reachable by the model execution.

The formal verification community has been using reacha-
bility analysis-based model checking tools to have sufficient
confidence in the model. Therefore, we first use rigorous
model validation paradigms [19] to quantify the closeness
between the abstract model waveforms and experimental data
using the conformance degree [20]. Stable converter operation
is then formally verified on the model using reachability
analysis. The boundaries of state trajectories can be found
from average-value models [21], [22]. Reachability analysis
overapproximates the set of all possible reachable states (i.e.,
the reach sets) from a given set of initial states and parameter
values. One can then confidently ascertain a stable converter
operation if the reach sets remain within a desired region
of the state space for a given time span. Without loss of
generality, we have considered a DC-DC buck converter, with
main parasitic elements, as shown in Fig. 1.

General reachability analysis tools include, but are not
limited to, HyTech [23], PHAVer [24], UPPAAL [25], HSolver
[26], d/dt [27], Flow* [28], and SpaceEx [29]. To effectively
use such model checking tools, hybrid automata models of
DC-DC converters are required [30]. Hybrid automaton mo-
deling of DC-DC converters is presented in [31]–[36]. Ho-
wever, [33]–[35] do not consider component losses/variations
and the discontinuous conduction mode (DCM), and do not
perform the reachability analysis. PHAVer in [37] computes
the reach sets for an open-loop boost converter but does
not include DCM or component losses. MATLAB/Ellipsoidal
Toolbox is used in [38] for the reachability analysis of DC-DC
converters. However, Ellipsoidal-based set computations suffer



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

from the curse of dimensionality. SpaceEx (the successor of
PHAVer) scales quite efficiently and is used as the reachability
analysis tool in this paper.

We have formally defined a precise hybrid automaton model
for PWM DC-DC converters, that accommodates main circuit
parasitics, DCM, and the non-determinism due to parameter
variations, that have not been considered altogether in any
past work. We also use the notion of conformance degree
to compare different model abstractions, using their output
trajectories, that has not been used in any of the work
cited above. Moreover, all the hybrid automata models are
automatically generated. Herein, the proposed approach is
shown to outperform the traditional Monte Carlo simulation
in computation time. In summary, the main contributions of
this paper are:

• Hybrid automata models for DC-DC converters are auto-
matically generated, validated against Simulink/Stateflow,
PLECS simulations, and hardware measurements, and
verified using reachability analysis in SpaceEx. These
models include component nonidealities and different
operational modes.

• The conformance degree of the hybrid automata models
validates these against the experimental data, by provi-
ding a proximity measure between executions/behaviors
of these two in both time and space.

• Non-determinism due to parametric variations is modeled
using interval matrices, which results in a set-valued
additive input term in the system dynamics.

• The reachability analysis achieves a fixed point where
there are no other reach sets (i.e., the model output will
remain within reach sets as t → ∞). It is impossible to
get such success through Monte Carlo analysis.

The remainder of this paper is organized as follows: Hybrid
automaton modeling is discussed in Section II. Application
of conformance degree for model validation is discussed
in Section III. Section IV uses interval analysis to mo-
del the non-determinism caused by the parameter variation.
SpaceEx-based reachability analysis is discussed in Section V.
Section VI validates the developed models against a 200 W
buck converter prototype using the conformance degree, for-
mally verifies the model properties using reachability analysis,
and presents comparison with the Monte Carlo simulation.
Section VII concludes the paper.

II. HYBRID AUTOMATON MODELING

A. Preliminaries

DC-DC converters exhibit both continuous and discrete be-
haviors due to the presence of passive elements and switching
components, respectively. Hybrid automaton modeling [39]
integrates resulting differential equations and finite state ma-
chines in a single formalism. The state of a hybrid automaton
model may change in two ways, i.e., through a continuous
flow trajectory within a given topology (Definition 2.2), and
through a discrete transition between two given topologies
(Definition 2.3). A topology is defined as the circuit confi-
guration in each switching sub-interval (Fig. 2). We define
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Fig. 2. Topologies, operational modes, and hybrid automaton modeling
of a DC-DC buck converter.

R
n as the set of n-dimensional reals, and 2X as the power set

of a given set X , i.e., the set of all the subsets of X .

B. Hybrid Automaton Model Syntax and Semantics

We first formally define the model components in mathema-
tical set representation, and then define the model execution
as these components interact.

Definition 2.1: A hybrid automaton model is defined by a
tuple H = 〈Q,X, init, U,E, g,G, inv, h, F 〉, which has the
following components:
• Topologies: Q = {q1, q2, ...., qN} is a finite set of

topologies.
• State Variables: X ⊆ R

n is set of continuous state
variables. A state is defined by (q, x) ∈ Q×X .

• Initial Conditions: init ⊆ Q0 × X0 is a set of initial
conditions, such that Q0 ⊆ Q and X0 ⊆ X .

• Inputs: U = {u1, u2, ...uN} is the set of inputs for each
topology.

• Discrete Transitions: E ⊂ Q × Q is a set of feasible
discrete transitions allowed among the topologies, such
that an element eij = (qi, qj) ∈ E implies that a discrete
transition from ith topology to jth topology is allowed. It
might not be possible to visit the entire set of topologies
from one particular topology (Definition 2.3).

• Guard Function: g : E → G is the guard function that
maps each element eij ∈ E to its corresponding guard
g(eij) ∈ G.

• Guards: G ⊆ 2X is the guard set such that ∃ g(eij) ∈ G
for each eij ∈ E. A guard is a property of the hybrid
automaton model that must be satisfied by a state to take
a discrete transition from a given topology to another
pre-defined topology. A state (qk, xk) ∈ Q×X satisfies
g(eij) (i.e, (qk, xk) � g(eij)) iff qk = qi and xk ∈ g(eij).
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Fig. 3. Execution of the hybrid automaton model of DC-DC converters.

• Invariants: inv : Q → 2X is a mapping that assigns
an invariant inv (q) ⊆ X for each topology q ∈ Q. An
invariant is a property of the hybrid automaton model that
must be satisfied by all the states for a given topology.
A state (q, x) � inv(q) iff x ∈ inv(q).

• Reset of Continuous State: h : E × X → X resets the
continuous state, i.e., if a discrete transition takes place
from ith topology to jth topology as defined by eij ∈ E
with x ∈ X , the continuous state is reset to a new value
x′ = h(eij , x) ∈ X , such that x′ ∈ inv(qj).

• Set of ODEs: F is the set of ordinary differential equa-
tions (ODEs) that are defined for each topology q ∈ Q
over the continuous variables x ∈ X . The continuous
dynamics for each q ∈ Q is defined by F (q, x, u) over
a given time horizon t ∈ [τ1, τ2] that assigns a Lipschitz
continuous vector space in Rn.

Remarks: Here, x′ ∈ X symbolizes the new value of a
continuous state x ∈ X after a continuous flow or a discrete
transition. If a state (q, x) does not satisfy an invariant inv(q),
then real time τ is stopped, forcing the continuous state
x to stop evolving within a topology. The guard function
ensures discrete transition to an appropriate topology, once the
corresponding guard is satisfied. Here, invariants and guards
are defined in the form of bounds over continuous state
variables in Fig. 3.

Definition 2.2: The continuous flow trajectory T for a
hybrid automaton model H is defined by the valuations of
x ∈ X . For a given initial state (q, x0) ∈ Q×X and u ∈ U ,
∃ f(q, x, u) ∈ F that results in a final continuous state x′ ∈ X ,
whereas q remains unchanged with given invariant inv(q), iff
(q, x) � inv(q). ∀ t ∈ [τ1 τ2], T is given by

T (q, x′) = x0 +

τ2∫
τ1

f(q, x, u)dt. (1)

and denoted by (q, x0)
f−−→ (q, x′).

At each topology, converter dynamics can be modeled
by ODEs; e.g., system matrices Aq and Bq describe the
continuous flow trajectories in topology q ∈ {1, 2, 3} of Fig. 2.

Definition 2.3: The discrete transition for a hybrid automa-
ton model H is defined as: for a given state (qi, x) ∈ Q×X

and u ∈ U , there is a function h(eij , x) that resets the
continuous state to x′ ∈ X , and the topology to qj , iff
(qi, x) � inv(qi) and (qi, x) � g(eij) ∈ G, and ∃ eij ∈ E.
The discrete transition is denoted by (qi, x)

h−−→ (qj , x
′).

Definition 2.4: An execution of a hybrid automaton model
H is an alternating sequence of continuous flow trajectories
and discrete transitions.
The example of an execution is shown in Fig. 3.

The switching instance can be determined either externally
(e.g., by a duty cycle command for the MOSFET) or internally
(e.g., by meeting appropriate threshold conditions for the
diode). The sequence of topologies, observed periodically in
the steady state, defines an operational mode. Example of three
topologies and two operational modes for a buck converter are
shown in Fig. 2.

C. Model Instantiation for DC-DC Converters
We may now implement the syntax and semantics of the

hybrid automaton model developed above for DC-DC conver-
ters. We define D as the duty cycle, Tsw as the switching
period, and Vin as the DC input voltage. We can represent the
continuous dynamics for a given topology as a standard set of
state-space equations

dx

dt
= Aqx+Bqu (2)

where, x ∈ R
n is a vector of continuous states, Q is a

finite set of topologies, u ⊆ U such that U ⊆ R
m is a

set of input vectors, and Aq ∈ Rn×n and Bq ∈ Rn×m
are system matrices. Such formation can be readily created
for the buck converter in Fig. 2. The instantiation of the
hybrid automation model for an open-loop DC-DC converter,
as per Definition 2.1, is:
• Three topologies are denoted by Q = {q1, q2, q3}.
• The continuous state vector is x = [iL vC τ ]′, where τ

represents real time such that dτ
dt = 1.

• U = {[Vin, 0, 0]′, [0, 0, 0]′, [0, 0, 0]′} forms the input
vector set.

• E = {(q1, q2) , (q2, q1) , (q2, q3) , (q3, q1)} defines the
feasible discrete transitions, e.g., (q2, q3) means a discrete
transition from topology 2 to 3 is allowed.

• Guard set, for the corresponding elements of E, is defined
by G = {(τ ≥ DTsw) , (τ ≥ (1−D)Tsw) , (iL ≤ 0) ,
(τ ≥ (1−D)Tsw)}.

• The continuous flow trajectory is defined by (2), with
the corresponding state matrices for each topology. For
topology 1, this can be denoted by (q1, x0)

f−−→ (q1, x
′),

as shown in Fig. 3. Here, (q1, x0) is the initial state and
(q1, x

′) is the final state as the automaton continuously
evolves with the continuous flow dynamics f1(x).

• The reset function h defines a new continuous state x′′ for
the new topology. For example, if a transition is to take
place from topology 1 to topology 2 with some final state
x′ ∈ X ′ ⊂ X in topology 1, h assigns the new state x′′ ∈
X ′′ ⊂ X in topology 2. For topology 1 to topology 2, a
discrete transition is denoted by (q1, x

′)
h−−→ (q2, x

′′), as
shown in Fig. 3.
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Fig. 4. Output trajectories of capacitor voltage for the closed-loop
controlled buck converter - local mismatch for interval τc and ε.

The evolution of the hybrid automaton model starts with
initial conditions from set init, e.g., (q1, x0) ∈ init for a
given input u1 = [Vin, 0, 0]′ and, subsequently, the continuous
state evolves according to the set of ODEs defined by (2)
(i.e., F in Definition 2.1). The topology remains the same, i.e.,
q (t) = q1, as x0 evolves inside the invariant inv (q1), such
that it attains a final value x′ ∈ inv (q1). Once the continuous
state x′ satisfies the guard g (eq1q2) corresponding to the edge
eq1q2 ∈ E, the topology may transition from q1 to q2, and
the continuous state is reset with a new value x′′ in the new
invariant set inv (q2) ⊂ X with a new input u2 = [0, 0, 0]′.

This hybrid automaton model can be extended to closed-
loop DC-DC converters, e.g., hysteresis-controlled converters.
The tuple remains the same except that the guards are defined
in terms of switching boundaries. The hysteresis band is
formed by defining an upper switching boundary, Vref + δ,
and a lower switching boundary, Vref − δ, where Vref is
the desired output voltage, and δ is the tolerance level.
Thus, G = {(vC ≥ Vref + δ) , (vC ≤ Vref − δ) , (iL ≤ 0) ,
(vC ≤ Vref − δ)}.

It should be noted that time τ does not appear in the
guard expressions. Therefore, we have developed two hybrid
automata models for the closed-loop buck DC-DC converter,
i.e., one with variable τ (called the time-dependent hybrid
automaton model), and another without variable τ (called
the time-independent hybrid automaton model). For the time-
independent hybrid automaton model, we perform the reacha-
bility analysis for an unbounded time, i.e., compute the reach
sets as t→∞.

III. VALIDATION THROUGH CONFORMANCE DEGREE

Model validation of DC-DC converters requires comparing
output trajectory as defined by (1) for a given hybrid auto-
maton model H with the measured data from an experimental
prototype referred to as I.

Our goal is to find an appropriate measure of distance for
output trajectories of hybrid automata models. One can consi-
der the output trajectories of the capacitor voltage (vC) for a
closed-loop buck converter shown in Fig. 4. The experimental
data obtained from a prototype and output trajectory of the
hybrid automaton model in Simulink/Stateflow are overlaid.

Intuitively, the two output trajectories look similar; however,
the sup norm would give a large value to the distance between
them. This is, partly, because I and H might transition
among various topologies at slightly different moments in
time. Therefore, our distance measure should allow some
wiggle room in time. Rather than comparing only the states
that are exactly time-aligned, it should allow comparison of
states that are within some τc > 0 time units of each other.

Moreover, it is not appropriate to compare outputs when
two systems have executed different numbers of discrete
transitions. Thus, our distance measure must only compare
states after an equal number of discrete transitions between
topologies of the two systems. Note that within the time
window τc in Fig. 4, both the hardware prototype as well
as the Stateflow model exhibit two discrete transitions. To
this end, we introduce the parameter j ∈ N, that counts the
number of discrete transitions each system makes, where N is
the set of natural numbers. It is reasonable to require that the
transition times of the two systems be close to consider that
the systems themselves are close: the value τc will also bound
the difference in transition times. The distance measure will
account for the distance between output trajectories, captured
by the value ε > 0. Thus, we have a 2-value distance measure,
with values τc and ε capturing the time and space distance
between the two output trajectories as illustrated in Fig. 4.

The output trajectories of hybrid automata models are
parameterized with t and j. The time spent in a given converter
topology is t ∈ R>0, and j ∈ N counts the number of discrete
transitions between different topologies (where R>0 is the
set of positive real numbers). We write y(t, j) for the output
trajectory at the hybrid time (t, j) ∈ R>0 × N, i.e., at time
t and after j transitions. Let domy ⊂ R>0 × N denote the
domain of output trajectory y, i.e., the set of all (t, j), so that
(T, J, τc, ε)-closeness [20] can be formally defined.

Definition 3.1: Take an output trajectory for time T ∈ R>0,
a maximum number of discrete transitions J ∈ N, and
parameters τc, ε > 0. Two output trajectories y1 and y2 are
(T, J, τc, ε)-close, shown as y1 ≈(τc,ε) y2, if (a) for all (t, j) ∈
domy1 such that t ≤ T, j ≤ J , there exists (s, j) ∈ domy2
where |t− s| ≤ τc, and ‖y1(t, j)− y2(s, j)‖ ≤ ε, and (b) for
all (s, j) ∈ domy2 such that s ≤ T, j ≤ J , there exists (t, j) ∈
domy1 where |t− s| ≤ τc, and ‖y2(s, j)− y1(t, j)‖ ≤ ε.
(T, J, τc, ε)-closeness gives a proximity measure between the
two output trajectories in both time and space. It shows that for
every point y1(t, j), y2 has a point y2(s, j) which is ε-close to
it, and may occur anywhere in the window [t−τc, t+τc] (and
vice versa). Allowing this wiggle room in time is important
when comparing the output trajectories, because the discrete
transitions could occur at different times. The two values T
and J limit our testing horizon. (T, J, τc, ε)-closeness can be
lifted from output trajectories to systems. One can validate
the model through the conformance degree between its output
trajectory and measured data.

Definition 3.2: Let H1 and H2 be two hybrid automata
models. The conformance degree of H1 to H2, given τc, is
defined as the smallest ε such that for every trajectory y1 of
H1, there exists a trajectory y2 of H2, where y1 ≈(τc,ε) y2.
We denote this conformance degree by CDτ (H1,H2).
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We will use this definition intuitively for model validation
of DC-DC converters. We compute the conformance degree
CDτ (H1,H2) for some τc > 0 in different case studies of
Section VI, and effectively say that some local mismatch is
permissible within a window τc for the output trajectories of
the models and the hardware prototype.

IV. MODELING NON-DETERMINISM USING INTERVAL
ANALYSIS

The system matrices in the hybrid automata models of DC-
DC converters depend on component values. The variations
due to manufacturing tolerance, aging, and temperature result
in non-determinism of component values. Analysis of electri-
cal circuits with such variations has been reported in literature
using interval arithmetic-based genetic optimization [40] and
affine arithmetic [41]. We use the interval arithmetic [42] to
incorporate the parameter variations within the reachability
analysis framework. The range of component values are re-
presented in terms of intervals. A real interval v is a set of
real numbers given by

[v, v] = {v ∈ R : v ≤ v ≤ v}, (3)

where v is the infimum and v is the supremum. Given two
intervals, [u, u] and [v, v], their product is another interval
given by

[u, u] ∗ [v, v] = [min(uv, uv, uv, uv),max(uv, uv, uv, uv)].
(4)

The quotient of two intervals, with a non-zero divisor, is

[u, u]

[v, v]
= [u, u] ∗

(
1

[v, v]

)
, (5)

where (
1

[v, v]

)
=

[
1

v
,

1

v

]
. (6)

If [v, v] has both bounds negative, then(
1

[v, v]

)
=

[
1

v
,

1

v

]
. (7)

These intervals may also be defined by the midpoint-radius
representation

mid(v) =
1

2
(v + v), (8)

rad(v) =
1

2
(v − v). (9)

The interval matrix for the system matrix is A = [A,A].
System stability can be deferred by examining matrix extrema,
i.e., A and A [43]. Therefore, it is sufficient to consider
every combination of matrix extrema to overapproximate the
reach set. The overapproximation of an interval matrix A is
given by splitting it into two parts, i.e., a nominal part and a
symmetric part [44]. Consider a linear dynamic system with

n state variables having single deterministic input Vin, with
the following state-space representation
ẋ1
ẋ2
...
ẋn

 =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n

...
...

...
. . .

...
an1 an2 an3 . . . ann



x1
x2
...
xn

+


b1
b2
...
bn

Vin.
(10)

We use SpaceEx reachability analysis tool (discussed in
Section V) to compute the reach sets for non-deterministic
hybrid automaton model, with linear dynamics defined by (10)
for a given topology. It may be mentioned that SpaceEx, in
its present version, does not fully handle the matrix algebra
operations. Hence, we need to define the state dynamics as
scalar combination of other state variables. For example, for
the ith state variable in (10), one has

ẋi = ai1x1 + ai2x2 + ...+ aijxj + ...+ ainxn + biVin. (11)

To incorporate parameter variation, one can replace the above
coefficients with intervals, and write the expression as a
differential inclusion

ẋi ∈ [ai1, ai1]x1+ ...[aij , aij ]xi...+[ain, ain]xn+[bi, bi]Vin.
(12)

Since SpaceEx, in its present version, does not support
the interval arithmetic, the intervals [aij , aij ] of (12) are
computed outside the SpaceEx environment using (4), (5),
(6), and (7). Subsequently, these intervals are transformed
into the midpoint-radius representation to include the state
and parametric intervals before implementing in the SpaceEx
environment. Using (8) and (9), one can write (12) in a
midpoint-radius representation as

ẋi ∈ {mid(ai1)± rad(ai1)}x1 + ...+ {mid(aij)±
rad(aij)}xj + ...+ {mid(ain)± rad(ain)}xn
+ {mid(bi)± rad(bi)}Vin. (13)

The mid-points correspond to the nominal parameter values
that are constant terms, which can be separated as

ẋi ∈ (ai1x1 + ri1) + ...+ (aijxj + rij) + ...+

(ainxn + rin) + (biVin + rbi). (14)

This defines the continuous dynamics in the hybrid
automaton model for the state variable xi. The radii
ri1, ri2, ..., rij , ..., rin, and rbi are expressed as product of the
state and parametric intervals, such that rij is given by

rij ∈ [−rad(aij), rad(aij)] ∗ [xj , xj ], (15)

where, xj varies between xj and xj . For example, for the
hysteresis-controlled DC-DC buck converter considered here,
vC = 0 V and vC = 20 V in (15). Thus the coupling
between the state variables is accommodated in the amended
SpaceEx model by formulating rij in terms of [xj , xj ], and
incorporating it in the dynamics in (14). The product of the
two intervals in (15) is yet another interval, obtained using
(4). The intervals thus computed are used in the model to
define the lower and upper bounds for respective radii. Since
this treatment of the state variables as intervals is not catered
in Monte Carlo simulations, SpaceEx provides more reliable
results.
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V. REACHABILITY ANALYSIS FOR HYBRID AUTOMATA

Reachability analysis has been used by the formal verifica-
tion community, and we have implemented it in its entirety
for PWM DC-DC converters modeled as hybrid automata. In
general, reachability analysis has been documented to produce
more reliable results than Monte Carlo simulations:

1. The reachability analysis is more efficient. Monte Carlo
analysis becomes computationally less tractable with in-
creased size and complexity of a given system [38].

2. Reachability analysis is conclusive. In contrast, infinitely
many Monte Carlo simulations are required to span the
entire design parameter space and operational conditions
and have full confidence in the final results [15], [16].

3. SpaceEx-based reachability analysis considers the entire
state space [45], while Monte Carlo simulations only
sample the parameter space. Generally, reachability ana-
lysis is theoretically superior and more sound [46].

We formally verify the stability properties of non-
deterministic hybrid automata models of PWM DC-DC con-
verters through the reachability analysis. We define the sta-
bility in the sense of Lyapunov, i.e., ẋ = f(x(t)) is stable
if ∀ θ > 0 ,∃ β > 0 such that if ‖x(0)‖ ≤ β ⇒ ‖x(t)‖ ≤
θ ∀ t ≥ 0. We may define a bounded region and verify that the
output of the hybrid automaton model eventually reaches, and
always remains, in this stable region, as seen in Fig. 5. We
define the stability specification such that from the settling
time ts, the output voltage VC(t) should remain bounded
within a tolerance γ of the reference voltage Vref (t), i.e., for
t ≥ ts ⇒ VC(t) = Vref (t)± γ.

Definition 5.1: State x is reachable iff ∃ an execution α
such that x ∈ α.

Definition 5.2: The set of reachable states contains all the
states that are reachable from a given set of initial conditions
for a given time.

Consider an example of an autonomous system ẋ = Ax.
The set of reachable states from initial time t0 to final time
tf , from a given initial set X0, is

Rtft0 (X0) =
⋃

t∈[t0,tf ]

eAtX0. (16)
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Fig. 6. Reach sets in different topologies with transitions imposed by
guards.

However, (16) does not cater to the discrete transitions asso-
ciated with the hybrid dynamical systems. Additionally, the
exact set of all reachable states is undecidable [29].

In practice, overapproximations of the reachable states are
computed using geometrical data structures (e.g, boxes, po-
lytopes, ellipsoids, or zonotopes [47]), and denoted by R.
For simplicity, we call these overapproximations as the reach
sets in this paper. This framework can be extended to hybrid
dynamical systems by including invariants and guard sets (Fig.
6), and implemented in various reachability analysis tools by
software research community as mentioned in Section I. The
reach sets for continuous dynamics can be computed using
continuous post-operators so long as the continuous dynamics
of DC-DC converter are contained within the invariant set
defined for the corresponding topology or do not enter the
guard set. Once the guard condition is satisfied within an
invariant, a transition takes place from topology 1 to topology
2 such that the next reach set is computed using discrete post-
operator. This process goes on until either the final time in a
local time horizon, or a fixed point, is reached. A fixed point
signifies that the reachability algorithm cannot find any new
reach set during the current iteration other than those computed
in the previous iteration. SpaceEx reachability tool computes
the reach sets of a hybrid dynamical system. It is a classical
fixed point algorithm based on computation of symbolic states
[29].

Definition 5.3: A symbolic state is defined as a pair (q,Θ),
where q is a topological instance, and Θ is the corresponding
convex continuous set.

The reach set R is obtained by computing the set of
symbolic states. This reach set is the fixed point of the
sequence Ro = postc (Init), and the successors are

Rk+1 := Rk
⋃
postc

(
postd

(
Rk
))

(17)

where, postd is the discrete post-operator that defines the
reach sets after a discrete transition fromRk. This corresponds
to the h function defined in Definition 2.1. The continuous
post-operator, postc, defines the reach sets for the continuous
states from Rk after an arbitrary amount of time is elapsed.
This corresponds to F in Definition 2.1.
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Fig. 7. Buck converter prototype controlled with dSPACE DS1103.

An approximated computation of Θk is given in [29] for
the kth time step. Hence, a sequence of convex continuous
sets Θ0,Θ1, ....ΘN−1 is computed to form a flowpipe that
covers the reach sets up to a pre-defined time such that N
represents the number of time steps. This flowpipe is then
used to compute the transition successors. Only those states
can take the transition that satisfy the guard associated with
the present topology and the invariant of the target topology.
This process is continued until a fixed point is reached, i.e.,
if all the reach sets that are computed in the present iteration,
are contained in reach sets computed in the previous iteration,
i.e., Rk+1 ⊆ Rk. This signifies that no new reach sets could
be found and the computation process may be terminated.

VI. CASE STUDIES

An experimental setup of a buck converter, controlled with
a dSpace DS1103 unit, has been prototyped, as shown in Fig.
7. The experimental results are used for benchmarking purpo-
ses against MATLAB/PLECS [48], Simulink/Stateflow [49],
Monte Carlo simulations, and SpaceEx reachability analysis.
Circuit parameters L = 2.65 mH, C = 2.2 mF, and R = 10
Ω are used throughout this study. The non-determinism due
to the parameter variations is modeled using the interval
matrices in SpaceEx model. For a coherent comparison in
terms of parameter variations in R, L, and C, we have
used 15% tolerance for Monte Carlo simulations and Spa-
ceEx reachability analysis. We have used the Hybrid Source
Transformer (HyST) which is a source-to-source conversion
tool for hybrid automata models [50]. The hybrid automaton
model is developed using the java interface in MATLAB, and
transformed into a SpaceEx compatible model using HyST
data structures. We use the conformance degree to validate
the hybrid automaton model against the experimental data.
Then, the reachability analysis results are provided for formal
verification of an open-loop and a hysteresis-controlled buck
converter.

A. Model Validation Using Conformance Degree Testing

We use notations IO and IC for hardware prototypes
in open-loop and closed-loop configurations, respectively.
PLECS and Stateflow models are denoted by HOP , HCP and

TABLE I
CONFORMANCE DEGREE ANALYSIS

Config. Type of Output Trajectories τc Value (s) ε Value ∆ Value

iL - PLECS vs Experiment 3 × 10−4 5.1515A 4.5570A

O
pe

n
L

oo
p iL - Stateflow vs Experiment 3 × 10−4 5.0008A 4.5570A

iL - Stateflow vs PLECS 3 × 10−4 0.1785A 0A

vC - PLECS vs Experiment 3 × 10−4 1.8945 V 1.7202 V

vC - Stateflow vs Experiment 3 × 10−4 2.3201 V 1.7202 V

vC - Stateflow vs PLECS 3 × 10−4 0.6666 V 0 V

iL - PLECS vs Experiment 8 × 10−4 3.6667A 3.0590A

C
lo

se
d

L
oo

p iL - Stateflow vs Experiment 8 × 10−4 3.6643A 3.0590A

iL - Stateflow vs PLECS 8 × 10−4 0.0878A 0A

vC - PLECS vs Experiment 8 × 10−4 2.8014 V 1.5905 V

vC - Stateflow vs Experiment 8 × 10−4 2.7677 V 1.5905 V

vC - Stateflow vs PLECS 8 × 10−4 0.0580 V 0 V

HOS , HCS , respectively, where subscript O denotes an open-
loop and C denotes a closed-loop configuration. The computed
ε values against τc (as defined in Section III) are tabulated
in Table I for the corresponding output trajectories. It is evident
from Table I that the ε values of HOP and HOS as well as
HCP and HCS are close enough (also, as seen in Fig. 8).
We have computed conformance degrees for the prototype
buck converters, i.e., IO and IC , in comparison with other
models, i.e., HOP , HOS and HCP , HCS . We also define the
absolute value of the maximum difference measured between
the two given output trajectories as ∆ for a given time duration
τc. The measured ∆ values are tabulated in Table I. The ε
values depicted in Table I provide enough wiggle room in
comparison with the corresponding ∆ to validate that HOP
and HOS are reasonable abstractions for IO, whereas HCP
and HCS are reasonable abstractions for IC . Consider, for
example, the case of a closed-loop buck converter. The 1st

row under closed-loop configuration in Table I provides the ε
value (i.e., ε = 3.6667 A) and ∆ value (i.e., ∆ = 3.0590 A),
as we compare the inductor current (iL) output trajectories
for PLECS and experimental prototype. ∆ of the two output
trajectories remain within ε (as also depicted in Fig. 9 (a)).
This is also true for the corresponding output trajectories
of capacitor voltage (vC). Accordingly, the hybrid automata
models are validated in conformance with both the open-loop
and the closed-loop converter prototypes.

B. Formal Verification of the Open-loop Buck Converter
We consider the voltage stability specification to perform

formal verification. For example, for ts = 0.025 s, and
Vref = 48 V, we define γ = 6 V. This results in an
upper voltage bound of 54 V, and lower voltage bound of
42 V, as shown in Fig. 8(b) by dotted lines. The input
parameters are Vin = 100 V, and fs = 60 kHz. The
output trajectories and phase-plane responses are considered
for the startup transients of the open-loop buck converter.
The parameters’ variations have been modeled using interval
analysis in SpaceEx model, and also included in the Monte
Carlo simulation. The reachability analysis results, obtained
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Fig. 8. Startup transients for an open-loop buck converter using interval matrices including Stateflow, PLECS, experiment, Monte Carlo, and
SpaceEx; (a) current vs. time, (b) voltage vs. time, and (c) phase portrait.

using SpaceEx, are plotted in Fig. 8. It can be seen that the
steady-state inductor current and capacitor voltage waveforms
lie within the reachability analysis results, i.e., the simulations
and measurement data are contained within the reach sets.
Moreover, we verify that vC(t) ∈ [42, 54] for t ≥ ts for
Stateflow, PLECS, measurement data, Monte Carlo analysis,
and SpaceEx analysis results.

C. Verification of the Hysteresis-controlled Converter

We define the voltage stability specification for the closed-
loop buck converter to perform formal verification. For ts =
0.012 s, and Vref = 12 V, we define γ = 1 V. This
leads to upper and lower voltage bounds of 13 and 11 V,
respectively, as shown by dotted lines in Fig. 9(b). In this case
study, the time-dependent and the time-independent models
(as mentioned in Section II) are considered. First, SpaceEx
reachability analysis is performed for the time-dependent
model. The new parameters are Vin = 24 V, Vref = 12 V,
and fs = 50 kHz. The trajectories are shown in Fig. 9 for
Stateflow, PLECS, and experimental data along with reach sets
computed using SpaceEx. The Stateflow, PLECS, and SpaceEx
results match right from the start until the steady state is
reached. Experimental results match that of Stateflow, PLECS,
and SpaceEx in the steady state. It can be observed in Fig. 9
that Stateflow, PLECS, and measured results remain within the
reach sets computed using SpaceEx, verifying vC(t) ∈ [11, 13]
for t ≥ ts.

We can formally verify the time-independent SpaceEx mo-
del for an unbounded time, i.e., t→∞, by excluding τ . This
would not be possible through Monte Carlo analysis as, even
for a limited time span, one has to take into account infi-
nite number of possible combinations. We have successfully
achieved a fixed point using SpaceEx, with unbounded time,
and with all possible parameter variations. The phase-plane
plots are given for the start-up transients in Fig. 10. As seen,
all results remain within the computed reach sets as t → ∞,
verifying vC(t) ∈ [11, 13] as t→∞.

A comparison of Monte Carlo analysis and SpaceEx re-
achability analysis, in term of computation times, is shown
in Table II. Both are run on a Windows 7 SP1 (64 bit)
platform, with Intel (R) core i7-2600 CPU with 3.40 GHz, 16.0
GB RAM, MATLAB version 8.5.0.197613 (R2015a), PLECS

version 3.7.3, and SpaceEx version 0.9.8d. While infinite ite-
rations are required to have full confidence in model validation
through Monte Carlo analysis, we have only used finite (i.e.,
2000) iterations as would be done in practice. Even then, it is
evident that the SpaceEx reachability outperforms the Monte
Carlo analysis in computation time, as seen in Table II.

VII. CONCLUSION

A hybrid automaton modeling approach for PWM DC-
DC converters is developed. We have used the conformance
testing for model validation when compared with a hardware
prototype of DC-DC converters. The interval matrices analysis
accommodates the model non-determinism caused by variati-
ons in component values. Reachability analysis frameworks
are developed for formal verification of the resulting hybrid
automata models. It is shown that the proposed reachability
analysis outperforms the brute force Monte Carlo analysis in
computation time and confidence level.
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