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Abstract. Hybrid systems represent an important and
powerful formalism for modeling real-world applica-
tions such as embedded systems. A verification tool like
SpaceEx is based on the exploration of a symbolic search
space (the region space). As a verification tool, it is typ-
ically optimized towards proving the absence of errors.
In some settings, e.g., when the verification tool is em-
ployed in a feedback-directed design cycle, one would
like to have the option to call a version that is optimized
towards finding an error trajectory in the region space.
A recent approach in this direction is based on guided
search. Guided search relies on a cost function that in-
dicates which states are promising to be explored, and
preferably explores more promising states first. In this
paper, we propose an abstraction-based cost function
based on coarse-grained space abstractions for guiding
the reachability analysis. For this purpose, a suitable ab-
straction technique that exploits the flexible granularity
of modern reachability analysis algorithms is introduced.
The new cost function is an effective extension of pattern
database approaches that have been successfully applied
in other areas. The approach has been implemented in
the SpaceEx model checker. The evaluation shows its
practical potential.

1 Introduction

Hybrid systems are extended finite automata whose dis-
crete states correspond to the various modes of con-

tinuous dynamics a system may exhibit, and whose
transitions express the switching logic between these
modes [1]. Hybrid systems have been used to model and
to analyze various types of embedded systems [34,41,
19,9,20,5,35]. A hybrid system is considered safe if a
given set of bad states cannot be reached from the ini-
tial states. Hence, reachability analysis is a main con-
cern for hybrid systems. Since the reachability analysis
of hybrid systems is in general undecidable [1], modern
reachability-analysis tools such as SpaceEx [23] resort to
semi-decision procedures based on over-approximation
techniques [16,23]. In this paper, we explore the utility
of guided search in order to improve the efficiency of
such techniques.

Guided search is an approach that has recently found
much attention for finding errors in large systems [30,
14]. As suggested by the name, guided search performs
a search in the state space of a given system. In con-
trast to standard search methods like breadth-first or
depth-first search, the search is guided by a cost function
that estimates the search effort to reach an error state
from the current state. This information is exploited by
preferably exploring states with lower estimated costs. If
accurate cost functions are applied, the search effort can
significantly be reduced compared to uninformed search.
Obviously, the cost function therefore plays a key role
within the setting of guided search, as it should be as
accurate as possible on the one hand, and as cheap to
compute as possible on the other. Cost functions that
have been proposed in the literature are mostly based on
abstractions of the original system. An important class
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Fig. 1. A motivating example

of abstraction-based cost functions is based on pattern
databases (PDBs). PDBs have originally been proposed
in the area of Artificial Intelligence [17] and also have
successfully been applied to model checking discrete and
timed systems [37,29,30,42]. Roughly speaking, a PDB
is a data structure that contains abstract states together
with abstract cost values based on an abstraction of the
original system. During the concrete search, concrete
states s are mapped to corresponding abstract states
in the PDB, and the corresponding abstract cost values
are used to estimate the costs of s. Overall, PDBs have
demonstrated to be powerful for finding errors in differ-
ent formalisms. The open question is if guided search
can be applied equally successfully to finding errors in
hybrid systems.

A first approach in this direction [14] is to estimate
the cost of a symbolic state based on the Euclidean dis-
tance from its continuous part to a given set of error
states. This approach appears to be best suited for sys-
tems whose behavior is strongly influenced by the (con-
tinuous) differential equations. However, it suffers from
the fact that discrete information like mode switches is
completely ignored, which can lead to arbitrary degen-
eration of the search. To see this, consider the exam-
ple presented in Fig. 1. It shows a simple hybrid system
with one continuous variable which obeys the differential
equation ẋ = 1 in every location (differential equations
are omitted in the figure). The error states are given by
the locations le1, . . . , len and invariants 0 ≤ x ≤ 8. In
this example, the box-based distance heuristic wrongly
explores the whole lower branch first (where no error
state is reachable) because it only relies on the continu-
ous information given by the invariants. More precisely,
for the box-based distance heuristic, the invariants sug-
gest that the costs of the “lower” states are equal to 0,
whereas the costs of the “upper” states are estimated to
be equal to 4 (i. e., equal to the distance of the centers
of the bounding boxes of the invariants).

To overcome these limitations, we introduce an
abstraction-based cost function for hybrid systems which
is motivated by PDBs. In contrast to the box-based ap-
proach based on Euclidean distances, this cost function
is able to properly reflect the discrete part of the system.
Compared to the “classical” discrete setting, the inves-
tigation of PDBs for hybrid systems becomes more dif-
ficult for several reasons. First, hybrid systems typically
feature both discrete and continuous variables with com-

plex dependencies and interactions. Therefore, the ques-
tion arises how to compute a suitable (accurate) abstrac-
tion of the original system. Second, computations for
symbolic successors and inclusion checks become more
expensive than for discrete or timed systems – can these
computations be performed or approximated efficiently
to get an overall efficient PDB approach as well? In this
paper, we provide answers to these questions, leading
to an efficient guided search approach for hybrid sys-
tems. In particular, we introduce an abstraction tech-
nique leveraging properties of the set representations
used in modern reachability algorithms. By simply using
coarser parameters for the explicit representation, we ob-
tain suitable and cheap coarse-grained space abstractions
for the behaviors of a given hybrid system. Furthermore,
we adapt the idea of partial PDBs, which has been origi-
nally proposed for solving discrete search problems [7], to
the setting of hybrid systems in order to reduce the size
and computation time of “classical” PDBs. Our imple-
mentation in the SpaceEx tool [23] shows the practical
potential.

The remainder of the paper is organized as follows.
After introducing the necessary background for this work
in Sec. 2, we present our PDB approach for hybrid sys-
tems in Sec. 3. This is followed by a discussion about
related work in Sec. 4. Afterwards, we present our ex-
perimental evaluation in Sec. 5. Finally, we conclude the
paper in Sec. 6.

2 Preliminaries

In this section, we introduce the preliminaries that are
needed for this work.

2.1 Notations

We consider models that can be represented by hybrid
systems. A hybrid system is formally defined as follows.

Definition 1 (Hybrid System) A hybrid system is a
tuple H = (Loc,Var , Init ,Flow ,Trans, Inv) defining

– the finite set of locations Loc,
– the set of continuous variables Var = {x1, . . . , xn}

from Rn,
– the initial condition, given by the constraint Init(`) ⊂

Rn for each location `,
– for each location `, a relation called Flow(`) over the

variables and their derivatives. We assume Flow(`)
to be of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n×n matrix and
U ⊆ Rn is a closed and bounded convex set,

– the discrete transition relation, given by a set Trans
of discrete transitions; a discrete transition is for-
mally defined as a tuple (`, g, ξ, `′) defining
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– the source location ` and the target location `′,
– the guard, given by a linear constraint g,
– the update, given by an affine mapping ξ, and

– the invariant Inv(`) ⊂ Rn for each location `.

The semantics of a hybrid system H is defined as
follows. A state of H is a tuple (`,x), which consists of
a location ` ∈ Loc and a point x ∈ Rn. More formally,
x is a valuation of the continuous variables in Var . For
the following definitions, let T = [0, ∆] be an interval
for some ∆ ≥ 0. A trajectory of H from state s = (`,x)
to state s′ = (`′,x′) is defined by a tuple ρ = (L,X),
where L : T → Loc and X : T → Rn are functions that
define for each time point in T the location and values of
the continuous variables, respectively. Furthermore, we
will use the following terminology for a given trajectory
ρ. A sequence of time points where location switches
happen in ρ is denoted by (τi)i=0...k ∈ T k+1. In this
case, we define the length of ρ as |τ | = k. Trajectories
ρ = (L,X) (and the corresponding sequence (τi)i=0...k)
have to satisfy the following conditions:

• τ0 = 0, τi < τi+1, and τk = ∆ – the sequence of
switching points increases, starts with 0 and ends
with ∆

• L(0) = `, X(0) = x, L(∆) = `′, X(∆) = x′ – the
trajectory starts in s = (`,x) and ends in s′ = (`′,x′)

• ∀i ∀t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not
changed during the continuous evolution

• ∀i ∀t ∈ [τi, τi+1) : (X(t), Ẋ(t)) ∈ Flow(L(τi)), i.e.
Ẋ(t) = AX(t) + u(t) holds and thus the continuous
evolution is consistent with the differential equations
of the corresponding location

• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the contin-
uous evolution is consistent with the corresponding
invariants

• ∀i ∃(L(τi), g, ξ, L(τi+1)) ∈ Trans : Xend(i) =
limτ→τ−

i+1
X(τ)∧Xend(i) ∈ g∧X(τi+1) = ξ(Xend(i))

– every continuous transition is followed by a discrete
one, Xend(i) defines the values of continuous vari-
ables right before the discrete transition at the time
moment τi+1 whereas Xstart(i) = X(τi) denotes the
values of continuous variables right after the switch
at the time moment τi.

A state s′ is reachable from state s if there exists a
trajectory from s to s′.

In the following, we mostly refer to symbolic states.
A symbolic state s = (`,R) is defined as a tuple, where
` ∈ Loc, and R is a convex and bounded set consisting
of points x ∈ Rn. The continuous part R of a symbolic
state is also called region. The symbolic state space of H
is called the region space. The initial set of states Sinit of
H is defined as

⋃
`(`, Init(`)). The reachable state space

Reach(H) of H is defined as the set of symbolic states
that are reachable from an initial state in Sinit , where
the definition of reachability is extended accordingly for
symbolic states.

In this paper, we assume there is a given set of sym-
bolic bad states Sbad that violate a given property. Our
goal is to find a sequence of symbolic states which con-
tains a trajectory from Sinit to a symbolic error state,
where a symbolic error state se has the property that
there is a symbolic bad state in Sbad that agrees with se
on the discrete part, and that has a non-empty intersec-
tion with se on the continuous part. A trajectory that
starts in a symbolic state s and leads to a symbolic error
state is called an error trajectory ρe(s).

2.2 Symbolic States Representation

The representation of symbolic states plays a crucial
role for the reachability analysis of hybrid systems. As
outlined in the previous section, a symbolic state con-
sists of a discrete location and a continuous region. The
handling of continuous regions within the reachability
analysis poses a special challenge as a number of op-
erations on polyhedra (such as linear maps, Minkowski
sum, and convex hull computation) need to be performed
efficiently in practice. The LGG scenario [33] which is
implemented in SpaceEx [23] relies on two main ingre-
dients for this purpose: support functions [10] and tem-
plate polyhedra. In the following, we will describe them
in more detail.

The support function ρR(`) of a region R with re-
spect to the direction ` ∈ Rn is defined as follows:

ρR(`) = max
x∈R

` · x

We can represent an arbitrary convex closed set R
by using support functions in the following way:

R =
⋂
`∈Rn

{x | ` · x ≤ ρR(`)}

The representation based on support functions allows
for efficiently computing all the above mentioned poly-
hedra operations, hence reachability algorithms in turn
benefit from this representation.

As the consideration of an infinite number of direc-
tions is clearly infeasible from the computational point
of view, SpaceEx also makes use of a continuous set rep-
resentation derived from the support functions: template
polyhedra. In this setting, we predefine from the very be-
ginning a set of directions taken into account in course
of the reachability analysis. In other words, a user pro-
vides a set of directions D = {`1, . . . , `m} used for the
reachability analysis. Based on D, the region R can be
over-approximated by the following polyhedron:

RD = {x ∈ Rn |
∧
`i∈D

`i · x ≤ ρR(`i)}

SpaceEx supports a number of predefined direction
sets such as, e.g., box directions (directions parallel to
axes; see Fig. 2) and octagonal directions (the union of
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Fig. 2. Region representation using box directions. Fig. 3. Region representation using octagonal directions.

directions parallel to axes and diagonal ones; see Fig. 3).
Obviously, by increasing the number of considered direc-
tions, we can improve the approximation precision.

In the rest of this section, we briefly recapitulate the
computation of continuous successors for a given sym-
bolic state, i.e. the states which are reachable according
to the continuous dynamics. As the continuous post op-
erator does not change the discrete part of a symbolic
state, we consider only the continuous region of a sym-
bolic state.

The LGG scenario computes the continuous suc-
cessors only for a finite time horizon. Therefore, we
use a time bounded version of the reachable region
Reacht1,t2(R) for a given starting region R ⊆ Rn, dy-
namics ẋ(t) = Ax(t) + u(t), u(t) ∈ U (*) and a time
interval [t1, t2] ⊆ R≥0:

Reacht1,t2(R) = {x(τ) | t1 ≤ τ ≤ t2, x(0) ∈ R,
x(τ) is the solution of (*)}

SpaceEx performs an over-approximating time-
bounded reachability analysis of Reach0,T (R), where
T ∈ R≥0 is a user-provided time horizon. In more detail,
as the reachability analysis of hybrid systems is generally
undecidable, SpaceEx over-approximates the successor
regions by iteratively computing over-approximations
based on discretizing the time up to the time horizon:
First, the time interval [0, T ] is partitioned in a num-
ber of small time intervals [δi, δi+1], where δi = i · Tδ
(i = 0, . . . , N − 1) and Tδ = T/N (N ∈ N) is a user
provided sampling time. Second, given this partitioning,
SpaceEx covers the exact reachability set with the se-
quence Ωi ⊆ Rn, i = 0, . . . , N − 1 where Ωi defines
the over-approximation of the states reachable within
the time interval [δi, δi+1]. In other words, the following
inclusion holds:

Reach0,T (Init) ⊆
N−1⋃
i=0

Ωi

The set Ωi+1 can be expressed in terms of the “pre-
decessor set” Ωi by using a linear map and Minkowski
sum. Therefore, we only need to provide a routine to
compute Ω0 which in turn can be done in two steps.

First, we compute the convex hull of the union of the
region R and its image at the moment Tδ. Second, we
observe that the continuous dynamics non-linearities can
lead to some reachable states being outside of the com-
puted convex hull. In order to account for this phenom-
ena, we bloat the resulting convex hull to ensure the
over-approximation. Clearly, a larger sampling time Tδ
makes a possibly larger bloating necessary, which wors-
ens the approximation precision (see Fig. 4 and Fig. 5
for a comparison).

To summarize, we observe that the adjustment of the
template directions used in the support function repre-
sentation and the sampling time in the continuous post
operator crucially impacts the precision, i.e. the abstrac-
tion level, of the symbolic state representation. Clearly,
an improved precision leads to an increased analysis time
on the downside. Based on this representation, we will
present an algorithm which leverages different abstrac-
tion levels to efficiently explore the region space.

2.3 Guided Search

In this section, we introduce a guided search algorithm
(Algorithm 1) along the lines of the reachability algo-
rithm used by the current version of SpaceEx [23]. It
works on the region space of a given hybrid system. The
algorithm checks if a symbolic error state is reachable
from a given set of initial symbolic states Sinit . As out-
lined above, we define a symbolic state se in the region
space of H to be a symbolic error state if there is a sym-
bolic state s ∈ Sbad such that s and se agree on their
discrete part, and the intersection of the regions of s and
se is not empty (in other words, the error states are de-
fined with respect to the given set of bad states). Start-
ing with the set of initial symbolic states from Sinit , the
algorithm explores the region space of a given hybrid sys-
tem by iteratively computing symbolic successor states
until an error state is found, no more states remain to be
considered, or a (given) maximum number of iterations
imax is reached. The exploration of the region space is
guided by the cost function such that symbolic states
with lower cost values are considered first.
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Fig. 4. Region representation using a large sampling time. Fig. 5. Region representation using a small sampling time.

Algorithm 1 A guided symbolic reachability algorithm

Input: Set of initial symbolic states Sinit , set of symbolic
bad states Sbad , cost function cost

Output: Can a symbolic error state be reached from a sym-
bolic state in Sinit ?

1: compute cost(s) for all s ∈ Sinit

2: Push (Lwaiting , {(s, cost(s)) | s ∈ Sinit})
3: i := 0
4: while (Lwaiting 6= ∅ ∧ i < imax ) do
5: scurr := GetNext (Lwaiting)
6: i := i + 1
7: s′curr := continuousSuccessor(scurr )
8: if s′curr is a symbolic error state then
9: return “Error state reached”

10: end if
11: Push (Lpassed , s

′
curr )

12: S′ := discreteSuccessors(s′curr )
13: for all s′ ∈ S′ do
14: if s′ /∈ Lpassed then
15: compute cost(s′)
16: Push (Lwaiting , (s

′, cost(s′)))
17: end if
18: end for
19: end while
20: if i = imax then
21: return “Maximal number of iterations reached”
22: else
23: return “Error state not reachable”
24: end if

In the following, we provide a conceptual descrip-
tion of the algorithm using the following terminology. A
symbolic state s′ is called a symbolic successor state of a
symbolic state s if s′ is obtained from s by first comput-
ing the continuous successor of s (according to iteratively
over-approximating the successor regions of s with sets
Ωi as described in the previous section), and then by
computing a discrete successor state of the resulting (in-
termediate) state. Therefore, for a given symbolic state
scurr , the function continuousSuccessor (line 7) re-
turns a symbolic state which is an over-approximation of
the symbolic state reachable from scurr within the given
time horizon according to the continuous evolution. Ac-
cordingly, the function discreteSuccessors (line 12)
returns the symbolic states that are reachable due to the
outgoing discrete transitions.

A symbolic state s is called explored if its symbolic
successor states have been computed. A symbolic state s
is called visited if s has been computed but not yet neces-
sarily explored. To handle encountered states, the algo-
rithm maintains the data structures Lpassed and Lwaiting .
Lpassed is a list containing symbolic states that are al-
ready explored; this list is used to avoid exploring cy-
cles in the region space. Lwaiting is a priority queue that
contains visited symbolic states together with their cost
values that are candidates to be explored next. The al-
gorithm is initialized by computing the cost values for
the initial symbolic states and pushing them accordingly
into Lwaiting (lines 1 – 2). The main loop iteratively con-
siders a best symbolic state scurr from Lwaiting accord-
ing to the cost function (line 5), computes its symbolic
continuous successor state s′curr (line 7), and checks if
s′curr is a symbolic error state (lines 8 – 10). (Recall
that s′curr is defined as a symbolic error state if there
is a symbolic bad state s ∈ Sbad such that s and s′curr

agree on their discrete part, and the intersection of the
regions of s and s′curr is not empty.) If this is the case,
the algorithm terminates. If this is not the case, then
s′curr is pushed into Lpassed (line 11). Finally, for the
resulting symbolic state s′curr , the symbolic discrete suc-
cessor states are computed, prioritized and pushed into
Lwaiting if they have not been considered before (lines 12
– 18). As a side remark, if a successor state s′ = 〈l,R〉 is
not contained in Lpassed (line 14), but instead there is a
symbolic state s′′ = 〈l,R′〉 ∈ Lpassed with R ⊂ R′, then
s′ is discarded as well because all transitions enabled in
s′ have already been enabled in s′′ which is already ex-
plored. Finally, the check if the given maximal number of
iterations has been reached (line 4 and line 20) ensures
termination, which would not be generally guaranteed
otherwise (e. g., because of Zeno behavior).

Obviously, the search behavior of Algorithm 1 is cru-
cially determined by the cost function that is applied. In
the next section, we give a generic description of pattern
database cost functions.

2.4 General Framework of Pattern Databases

For a given system S, a pattern database (PDB) in the
classical sense (i. e., in the sense PDBs have been con-
sidered for discrete and timed systems) is represented as
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a table-like data structure that contains abstract states
together with abstract cost values. The PDB is used as a
cost estimation function by mapping concrete states s to
corresponding abstract states s# in the PDB, and using
the abstract cost value of s# as an estimation of the cost
value of s. The computation of a classical PDB is per-
formed in three steps. First, a subset P of variables and
automata of the original system S is selected. Such sub-
sets P are called pattern. Second, based on P, an abstrac-
tion S# is computed that only keeps the variables occur-
ring in P. Third, the entire state space of S# is computed
and stored in the PDB. More precisely, all reachable ab-
stract states together with their abstract cost values are
enumerated and stored. The abstract cost value for an
abstract state is defined as the shortest length of a tra-
jectory from that state to an abstract error state. The
resulting PDB of these three steps is used as the cost
function during the execution of Algorithm 1; in other
words, the PDB is computed prior to the actual model
checking process, where the resulting PDB is used as an
input for Algorithm 1.

A straight-forward adaptation of such classical PDBs
to the area of hybrid systems is the following. For a given
hybrid system H, compute an abstract system H# as
the basis for the PDB, where H# is obtained from H by
removing some of the variables in H (the pattern corre-
sponds to the remaining variables in H#). Based on H#,
the PDB is represented by a data structure that contains
abstract states together with corresponding cost values.
The abstract states and cost values are obtained by a re-
gion space exploration of H#. The abstract cost value of
an abstract state s# is defined as the length of a short-
est found trajectory in H# from s# to an abstract error
state. The PDB computes the cost function

costP (s) := cost#(s#),

where s is a symbolic state, s# is a corresponding ab-
stract state to s in the PDB, and cost# is the length
of the corresponding trajectory from s# to an abstract
error state as defined above.

3 Pattern Databases for Hybrid Systems

In Sec. 2.4, we have described the general approach for
computing and using a PDB for guiding the search. How-
ever, for hybrid systems, there are several challenges us-
ing the classical PDB approach. First, it is not clear
how to effectively design and compute suitable abstrac-
tions H# for hybrid systems H with complex variable
dependencies. Second, in Sec. 3.2, we address the gen-
eral problem that the precomputation of a PDB is often
quite expensive, where in many cases, only a small frac-
tion of the PDB is actually needed for the search [24].
This is undesirable in general, and specifically becomes
problematic in the context of hybrid systems because
the reachability analysis in hybrid systems is typically

much more expensive than, e. g., for discrete systems.
In Sec. 3.2, we introduce a variant of partial PDBs for
hybrid systems to address these problems.

3.1 Coarse-Grained Space Abstractions

A general question in the context of PDBs is how to com-
pute suitable abstractions of a given system. In particu-
lar, for hybrid systems where variables often have rather
complex dependencies, projection abstractions based on
removing variables (as done for classical PDBs) can be
too coarse to achieve accurate heuristics. In this pa-
per, we propose a simple, yet elegant alternative to the
classical PDB approach to obtain a coarse grained and
fast analysis: As described in Sec. 2.2, the LeGuernic-
Girard (LGG) algorithm implemented in SpaceEx [23]
uses support function representation (based on the cho-
sen set of template directions) to compute and store
over-approximations of the reachable states. Therefore, a
reduced number of template directions and an increased
sampling time results in an abstraction of the original
region space in the sense that the dependency graph of
the reachable abstract symbolic states is a discrete ab-
straction of the system.

The granularity of the resulting abstraction is di-
rectly correlated with the parameter selection: Choos-
ing coarser parameters (fewer template directions, larger
sampling time) in the reachability algorithm makes this
abstraction coarser, whereas finer parameters lead to
finer abstractions as well. In more detail, for a given set
of template directions D and sampling time N , a sub-
set D′ ⊂ D and a larger sampling time N ′ > N induce
coarse-grained space abstractions with respect to the ab-
stractions obtained by D and N : the over-approximation
of regions based on D′ and N ′ are coarser than for D
and N . As an example for template directions, consider
again Fig. 2 and Fig. 3: the set of box directions in Fig. 2
is a coarse-grained space abstraction of the set of octag-
onal directions in Fig. 3. Similarly, as an example for the
sampling time, consider again Fig. 4 and Fig. 5, where
Fig. 4 shows a coarse-grained space abstraction based on
increased sampling time of the regions in Fig. 5.

In the following, we apply coarse-grained space ab-
stractions to obtain abstractions as the basis for pattern
databases. This is a significant difference compared to
classical PDB approaches (see Sec. 2.4): Instead of com-
puting an explicit (projection) abstraction H# based on
a subset of all variables, we keep all variables (and hence,
the original system H), and instead choose a coarser ex-
ploration of the abstract region space of H to obtain
the abstraction used for the PDB. (In practice, we ap-
ply unguided search provided by SpaceEx to compute
this coarser abstraction.) As an additional difference to
classical PDBs, we will apply a variant of partial PDBs,
which are introduced in the next section.
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3.2 Partial Pattern Databases

As already outlined, a general drawback of classical
PDBs is the fact that their precomputation might be-
come quite expensive. Even worse, in many cases, most
of this precomputation time is often unnecessary because
only a small fraction of the PDB is actually needed dur-
ing the symbolic search in the region space [24]. One
way that has been proposed in the literature to over-
come this problem is to compute the PDB on demand:
So-called switchback search maintains a family of ab-
stractions with increasing granularity; these abstractions
are used to compute the PDB to guide the search in the
next-finer level [32].

In the following, we apply a variant of partial PDBs
[7] based on coarse-grained space abstractions to address
this problem: Instead of computing the whole abstract
region space for a given abstraction, we restrict the ab-
stract search to explore only a fraction of the abstract
region space while focusing on those abstract states that
are likely to be sufficient for the concrete search. In the
following definition, we call an abstract state s# corre-
sponding to state s if s and s# agree on their discrete
part, the region of s is included in region of s#, and
s# is an abstract state with minimal abstract costs that
satisfies these requirements.

Definition 2 (Partial Pattern Database) Let H be
a hybrid system. A partial pattern database for H is
a pattern database for H that contains only abstract
state/cost value pairs for abstract states that are part of
some trajectory of shortest length (in terms of number of
location switches) from an initial state to some abstract
error state. The partial pattern database computes the
function

costPP (s) :=

{
cost#(s#) if ex. corresponding s# to s
+∞ otherwise

where s, s#, and cost# are defined as above, and +∞ is
a default value indicating that no corresponding abstract
state to s exists.

Informally, a partial PDB for a hybrid system H ex-
actly contains those abstract states that are explored
on some shortest trajectory (instead of containing all
abstract states of a complete abstract region space ex-
ploration to all abstract error states as it would be the
case for a classical PDB). In other words, partial PDBs
are incomplete in the sense that there might exist con-
crete states, but the corresponding abstract states are
not contained the PDB. In such cases, the default value
+∞ is returned with the intention that corresponding
concrete states are only explored if no other states are
available. Obviously, this might worsen the overall search
guidance compared to the fully computed PDB. How-
ever, in special cases, a partial PDB is already sufficient
to obtain the same cost function as obtained with the

original PDB or even obtained with a perfect cost func-
tion (that allows for exploring the region space without
backtracking to find an error state). For example, this
is the case when only abstract states are excluded from
which no abstract error state is reachable anyway. More
generally, under the idealized assumption that the ab-
straction is fine enough such that no spurious behavior
occurs on shortest possible error trajectories, the par-
tial PDB already delivers the same search behavior as
a perfect search algorithm that finds an error trajectory
without backtracking.

Proposition 1. Let H be a hybrid system. Let n ∈ N0

be the length of a shortest concrete error trajectory. If
all shortest abstract error trajectories in H (obtained
by a coarse-grained space abstraction to build a pattern
database) correspond to concrete error trajectories of the
same length, then guided search with Algorithm 1 and
costPP finds an error trajectory after n steps.

Proof. By construction, the partial PDB contains ex-
actly those symbolic abstract states that are part of
shortest possible error trajectories. By assumption, these
abstract states correspond to concrete states on concrete
error trajectories of the same length. Hence, for every
concrete state s on a shortest error trajectory, there is a
corresponding entry in the partial PDB for all concrete
successor states s′ of s that are part of a shortest concrete
error trajectory, and costPP (s′) = costPP (s)−1. In addi-
tion, for all concrete successor states s′′ that are not part
of a shortest concrete error trajectory, costPP (s′′) =∞.
Overall, the claim follows by an inductive argument: Let
s0 be an initial state such that costPP (s0) = n is minimal
among the costs of all initial states, i. e., n is the length
of a shortest concrete error trajectory. Furthermore, all
concrete states on a shortest concrete error trajectory
have a concrete successor state with a cost value de-
creased by one, whereas all other successor states have a
cost value of infinity. Hence, Algorithm 1 with the costPP

function finds a concrete error trajectory within n steps.

Under the idealized assumptions of Prop. 1, it follows
immediately that guided search applying the full PDB
cannot improve over the partial PDB.

Corollary 1. Under the assumptions of Prop. 1, guided
search with Algorithm 1 and costP explores at least as
many states as with costPP .

Proposition 1 and Corollary 1 show that partial
PDBs can provide effective search guidance in an ide-
alized setting where the applied abstraction only intro-
duces spurious behavior on non-relevant parts of the re-
gion space. Clearly, in practice, these assumptions will
mostly not be satisfied for abstractions that are effi-
ciently computable. However, we rather consider Prop. 1
as a proof of concept showing that the basic concept of
partial PDBs is meaningful in our setting. (In our experi-
mental analysis, we will show that partial PDBs yield an
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effective and efficient approach for a number of practical
and challenging problems as well – we will come back to
this point in Sec. 5.) Overall, we will see that although in
case the requirements of Prop. 1 are not fulfilled, partial
PDBs can still be a good heuristic choice that lead to
cost functions that are efficiently computable and accu-
rately guide the concrete search.

3.3 Discussion

Our pattern database approach for finding error states
exploits abstractions in a different way than in common
approaches for verification (see Sec. 4 for a discussion
on related work). Most notably, the main focus of our
abstraction is to provide the basis for the cost function
to guide the search, rather than to prove correctness (al-
though, under certain circumstances, it can be efficiently
used for verification as well – we will come back to this
point in the experiments section). As a short summary
of the overall approach, we first compute a symbolic ab-
stract region space (as described in Sec. 3.1), where the
encountered symbolic abstract states s# are stored in
a table together with the corresponding abstract cost
values of s#. To avoid the (possibly costly) computa-
tion of an entire PDB, we only compute the PDB par-
tially (as described in Sec. 3.2). This partial PDB is then
used as the cost function of our guided reachability al-
gorithm. As in many other approaches that apply ab-
straction techniques to reason about hybrid systems, the
abstraction that is used for the PDB is supposed to ac-
curately reflect the “important” behavior of the system,
which results in accurate search guidance of the result-
ing cost function and hence, of our guided reachability
algorithm.

An essential feature of the PDB-based cost func-
tion is the ability to reflect the continuous and the dis-
crete part of the system. To make this more clear, con-
sider again the motivating example from the introduc-
tion (Fig. 1). As we have discussed already, the box-
based distance function first wrongly explores the whole
lower branch of this system because no discrete infor-
mation is used to guide the search. In contrast, a par-
tial PDB is also able to reflect the discrete behavior of
the system. In this example, the partial PDB consists of
an abstract trajectory to the first reachable error state,
which is already sufficient to guide the (concrete) region
space exploration towards to first reachable error state as
well. In particular, this example shows the advantage of
partial PDBs compared to fully computed PDBs (recall
that fully computed PDBs would include all error states,
whereas the partial PDB only contains the trajectory to
a shortest one). In general, our PDB-approach is partic-
ularly well suited for hybrid systems with a non-trivial
amount of discrete behavior. However, the continuous
behavior is still considered according to our abstrac-
tion technique as introduced in Sec. 3.1. Overall, par-
tial PDBs appear to be an accurate approach for guided

search because they accurately balance the computation
time for the cost function on the one hand, and lead to
efficient and still accurately informed cost functions on
the other hand.

4 Related Work

Abstraction techniques for hybrid systems have been
mostly considered in a verification setting, i. e., in a set-
ting where the focus is on proving that a given set of
bad states cannot be reached. For this purpose, abstrac-
tions have been applied in different ways. On the one
hand, a number of approaches to abstract the regions
of symbolic states within the reachability analysis have
been suggested, including constraint polyhedra [22], el-
lipsoids [31] and orthogonal polyhedra [15]. In our paper,
we use the support function representation [33]. These
approaches have in common that the structure of the
considered hybrid system is left intact. On the other
hand, it also possible to abstract a hybrid automata
structure. Alur et al. [2] suggest to use predicate ab-
straction for the hybrid systems analysis. In addition,
Tiwari et al. [40] introduce a method based on the quan-
tifier elimination decision procedure for real closed fields.
Furthermore, Tiwari [39] investigates Lie derivatives and
their application to the abstraction generation. Jha et
al. [25] computes abstractions by removing some of the
continuous variables. Finally, Bogomolov et al. [13] ab-
stract hybrid systems by merging locations. The abstract
dynamics is computed by eliminating the state variables
and computing a convex hull. Our pattern database ap-
proach belongs to the first group outlined above as we
exploit the parametrization of the symbolic region rep-
resentation.

A prominent model checking approach for hybrid sys-
tems is based on counterexample-guided abstraction re-
finement (CEGAR) [4,3]. In a nutshell, CEGAR iter-
atively refines the considered abstraction until the ab-
straction is fine enough to prove or refute the property.
Our PDB approach shares with CEGAR the general idea
of using an abstraction to analyze a concrete system.
However, in contrast to CEGAR, where abstract coun-
terexamples have to be validated and possibly used in
further abstraction refinement, abstractions for PDBs
are never refined and only used as a heuristic to guide the
search within the concrete automaton. In other words,
in contrast to CEGAR, the accuracy of the abstraction
influences the order in which concrete states are ex-
plored, and hence, the accuracy in turn influences the
performance of the resulting model checking algorithm.
Therefore, a crucial difference lies in the fact that CE-
GAR does the search in the abstract space, replays the
counterexample in the concrete space, and stops if the
error trajectory cannot be followed. In contrast, our ap-
proach does the search in the concrete space and uses
the PDBs for guidance, only. If an abstract trajectory
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cannot be followed, the search does not stop, but tries
other branches until either a counterexample is found,
or all trajectories have been exhausted. Due to this rea-
son, our framework provides the same level of precision
as the default SpaceEx reachability algorithm. The con-
cretization of a symbolic path is known to be a highly
nontrivial computational problem. A symbolic bad path
found with our approach can be further concretized to
the trajectory level using techniques from optimal con-
trol (see, e.g., the work by Zutshi et al. [43] for more
details).

Considering more specialized techniques to find er-
ror states in faulty hybrid systems, Bhatia and Fraz-
zoli [11] propose using rapidly exploring random trees
(RRTs). In the context of hybrid systems, the objec-
tive of a basic RRTs approach is to efficiently cover
the region space in an “equidistant” way in order to
avoid getting stuck in some part of the region space.
Recently, RRTs were extended by adding guidance of
the input stimulus generation [18]. However, in contrast
to our approach, RRTs approaches are based on numeric
simulations, rather than symbolic executions. Applying
PDBs to RRTs would be an interesting direction for fu-
ture work. In a further approach, Plaku, Kavraki and
Vardi [36] propose to combine motion planning with
discrete search for falsification of hybrid systems. The
discrete search and continuous search components are
intertwined in such a way that the discrete search ex-
tracts a high-level plan that is then used to guide the mo-
tion planning component. In a slightly different setting,
Ratschan and Smaus [38] apply search to finding error
states in hybrid systems that are deterministic. Hence,
the search reduces to the problem of finding an accurate
initial state.

SpaceEx [23] is a recently developed, yet already
prominent model checking tool for hybrid systems. As
suggested by the name, it explores the region space by
applying (symbolic) search. The most related approach
to this paper has recently been presented by Bogomolov
et al. [14], who propose a cost function based on Eu-
clidean distances of the regions of the current state
and error states. The resulting guided search algorithm
is implemented in SpaceEx and has demonstrated to
achieve significant guidance and performance improve-
ments compared to the uninformed search of SpaceEx.
In contrast to the presented PDB approach of this paper,
the Euclidean distances are solely based on the continu-
ous part of the system, whereas PDBs are able to reflect
both discrete and continuous parts.

Moreover, guided search has been applied to finding
error states in a subclass of hybrid systems, namely to
timed systems. In particular, PDBs have been investi-
gated in this context [29,30,42]. In contrast to this pa-
per, the PDB approaches for timed systems are “clas-
sical” PDB approaches, i. e., a subset of the available
automata and variables are selected to compute a pro-
jection abstraction. To select this subset, Kupferschmid

et al. [29] compute an abstract error trace and select the
automata and variables that occur in transitions in this
abstract trace. In contrast, Kupferschmid and Wehrle
[30,42] start with the set of all automata and variables
(i. e., with the complete system), and iteratively remove
variables as long as the resulting projection abstraction
is “precise enough” according to a certain quality mea-
sure. In both approaches, the entire PDB is computed,
which is more expensive than the partial PDB approach
proposed in this paper.

5 Evaluation

We have implemented costPP in the SpaceEx tool [23]
and evaluated it on a number of challenging benchmarks.
The implementation and the benchmarks are available
at http://pub.ist.ac.at/~sbogomol/sttt2015.

The experiments have been performed on a machine
running with AMD Opteron 6174 processors. We set a
time limit of 30 minutes per run. In the following, we
report results for our PDB implementation of costPP in
SpaceEx. We compared costPP with uninformed depth-
first search as implemented in SpaceEx, and with the
recently proposed box-based distance function [14] on
several challenging benchmark problems. We compare
the number of iterations of SpaceEx, the length of the
error trajectory found as well as the overall search time
(including the computation of the PDB for costPP ) in
seconds. In the following, we will shortly denote partial
PDBs with PDBs.

5.1 Results for Navigation Benchmarks

As a first set of benchmarks, we consider a variant of
the well-known navigation benchmark [21]. This bench-
mark models an object moving on the plane which is
divided into a grid of cells. The dynamics of the object’s
planar position in each cell is governed by the differen-
tial equations ẋ = v, v̇ = A(v − vd) where vd stands
for the targeted velocity in this location. Compared to
the originally proposed navigation benchmark problem,
we address a slightly more complex version with the fol-
lowing additional constraints. First, we add inputs al-
lowing perturbation of object coordinates, i. e., the sys-
tem of differential equations is extended to: ẋ = v + u,
v̇ = A(v − vd), umin ≤ u ≤ umax. Second, to make the
search task even harder, the benchmark problems also
feature obstacles between certain grid elements. This is
particularly challenging because, in contrast to the origi-
nal benchmark system, one can get stuck in a cell where
no further transitions can be taken, and consequently,
backtracking might become necessary. The size of the
problem instances varies from 400 to 900 locations, and
all instances feature 4 variables.

The results for the navigation benchmark problem
class are provided in Table 1, where the best results are
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Table 1. Results for the navigation benchmarks. Abbreviations: Uninformed DFS: Uninformed depth-first search, Box-heuristic: box-
based distance heuristic, PDB: our PDB cost function costPP , #loc: number of locations, #it: number of iterations, length: length of
the found error trajectory, time: total time in seconds including any preprocessing. For our PDB approach, the fraction of the total time
that is needed for the PDB computation is additionally reported in parenthesis.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 400 122 15 206.1 62 15 99.883 16 15 28.325 (2.714)
2 400 183 33 262.565 86 33 168.815 34 33 75.626 (10.153)
3 625 75 33 99.758 34 33 52.222 34 33 62.283 (10.234)
4 625 268 158 368.545 231 158 296.89 159 158 178.705 (13.992)
5 625 85 79 167.502 26 25 53.164 26 25 58.417 (5.002)
6 625 96 53 155.458 101 53 148.448 54 53 106.283 (13.267)
7 625 227 34 280.406 105 34 137.363 35 34 66.315 (12.682)
8 625 178 25 371.8 86 25 192.71 26 25 60.639 (9.609)
9 625 297 17 502.049 102 17 187.003 18 17 42.785 (10.232)
10 625 440 30 753.488 136 30 282.914 31 30 84.031 (18.114)
11 900 234 72 378.906 129 21 208.789 22 21 45.085 (10.973)
12 900 317 43 473.785 174 61 277.467 44 43 86.936 (21.097)
13 900 367 37 596.671 148 37 266.718 38 37 97.456 (26.926)
14 900 411 32 608.962 278 32 419.827 33 32 79.987 (14.934)
15 900 379 44 625.685 107 44 194.535 45 44 97.138 (12.302)
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Fig. 6. Navigation benchmark: unin-
formed search error trajectory for in-
stance 1.
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Fig. 7. Navigation benchmark: box-based
heuristic search error trajectory for in-
stance 1.
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Fig. 8. Navigation benchmark: PDB
search error trajectories for instance 1 (ab-
stract: light gray, concrete: dark gray).

given in bold fonts with respect to the total runtime. The
fraction of the total time to compute the PDB is given in
parenthesis. As a general picture, they show that the pre-
computation time for the PDB mostly pays off in terms
of guidance accuracy and overall runtime. Specifically,
the overall runtime could (sometimes significantly) be
reduced compared to uninformed search and also com-
pared to the box-based heuristic. For example, in navi-
gation instance 1, the precomputation for the PDB only
needs around 3 seconds, leading to an overall runtime
of around 28 seconds, compared to around 99 seconds
with the box-based heuristic and about 206 seconds with
uninformed search. This search behavior for instance 1
is also visualized in Fig. 6, Fig. 7, and Fig. 8, show-
ing the trajectories (i. e., the parts of the covered region
space) with the different search approaches. We observe
the following: While uninformed depth-first search ex-
plores quite a large number of unnecessary trajectories,
the box-based heuristic already guides the search more
accurately and finds an error state with much fewer de-
tours. Considering the PDB approach, we observe that
PDBs can guide the search even more accurately in the

sense that no detours are explored at all, and hence, no
backtracking is needed either. Furthermore, the covered
parts of the region space is again much lower than both
with uninformed search and the box-based heuristic. In
addition, we observe that even the abstract run (shown
in light gray) is already rather accurate, covering only
little more of the region space than the concrete run.
Overall, the PDB approach finds an accurate balance
between the computation time and the accuracy of the
resulting cost function.

5.1.1 Results for Navigation Benchmarks with
Additive Vanishing Perturbation

We consider another variant of the navigation bench-
mark with an additive vanishing perturbation (see,
e.g., [28]). We use this variation for evaluating the scal-
ability of our approach with respect to increased contin-
uous complexity given a constant discrete complexity.
For this, the benchmark is modified to model a vanish-
ing perturbation w ∈ Rp with increasing model order
(i. e., p = 1, p = 2, etc.). In more detail, we extend
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Table 2. Results for the navigation benchmarks with two additional continuous variables modeling an additive vanishing perturbation.
Abbreviations: OOT: out of time (max 30 minutes). Other abbreviations as in Table 1.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 400 122 15 661.373 62 15 343.611 16 15 109.264 (4.467)
2 400 153 33 723.719 86 33 592.531 34 33 254.383 (17.427)
3 625 75 33 349.476 34 33 199.073 34 33 216.528 (17.998)
4 625 268 158 1053.63 231 158 868.593 177 158 627.206 (25.12)
5 625 85 79 525.811 26 25 201.759 26 25 211.146 (8.392)
6 625 96 53 500.29 101 53 485.165 54 53 337.038 (23.205)
7 625 227 34 1040.75 105 34 535.871 35 34 251.452 (24.724)
8 625 201 25 1311.04 88 25 697.649 26 25 206.585 (15.822)
9 625 298 17 1640.59 102 17 658.379 18 17 142.197 (17.881)
10 625 n/a n/a OOT 163 30 1212.59 31 30 281.356 (31.616)
11 900 201 72 1013.24 129 21 710.073 22 21 146.15 (19.058)
12 900 316 43 1530.46 174 61 928.734 44 43 272.088 (35.26)
13 900 n/a n/a OOT 148 37 858.674 38 37 293.259 (45.617)
14 900 n/a n/a OOT 278 32 1403.78 33 32 260.377 (25.744)
15 900 n/a n/a OOT 163 52 988.228 100 52 649.809 (20.265)
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Fig. 9. Navigation benchmark with ad-
ditive vanishing perturbation for p = 2:
uninformed search error trajectory for in-
stance 2.
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Fig. 10. Navigation benchmark with ad-
ditive vanishing perturbation for p = 2:
box-based heuristic search error trajectory
for instance 2.
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Fig. 11. Navigation benchmark with addi-
tive vanishing perturbation for p = 2: PDB
search error trajectories for instance 2 (ab-
stract: light gray, concrete: dark gray).

the system of differential equations to ẋ = v + u, v̇ =
A(v−vd)+

∑p
i=1 wi, ẇ = Aww, where umin ≤ u ≤ umax

as before and Aw ∈ Rp×p is Hurwitz to ensure it is a van-
ishing perturbation.
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Fig. 12. Navigation benchmark with additive vanishing perturba-
tion for 1 ≤ p ≤ 8 with the same discrete structure as instance 1
(i. e., all else constant except the number of additive perturbation
terms). The total number of continuous variables is n = 4 + p.

Table 2 presents results of the same scenarios evalu-
ated in the earlier navigation benchmark for p = 2 addi-
tional vanishing perturbation variables (i. e., 2 additional
state variables compared to the earlier navigation bench-
mark, yielding n = 6 continuous variables overall). We
observe a similar picture as for the previous results: the
PDB approach outperforms uninformed DFS and also
the box-based heuristic in the majority of the problems.
This is also reflected in Figs. 9, 10, and 11, which re-
spectively show the corresponding reachable states in the
second instance for the three approaches, respectively.

In addition, Fig. 12 presents the navigation bench-
mark instance 1 scaling the number of additional state
variables from p = 1 through p = 8 (for a total of n = 5
through n = 12 continuous variables), while keeping all
else constant, using a timeout of 30 minutes, and runs
that exceeded the 30 minute timeout are not plotted. We
observe that also with increasing number of additional
continuous variables, the runtime scalability of our PDB
approach is considerably better compared to the box-
based heuristic and uninformed DFS—even for p = 8
additional variables, PDBs is able to find an error state
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in less than 30 minutes. In contrast, both the uninformed
DFS and box-based heuristic methods cannot find the
error states in less than 30 minutes beyond p = 3 and
p = 5 additional variables, respectively.

5.2 Results for Satellite Benchmarks

In this section, we consider benchmarks that result from
hybridization. For a hybrid system H with nonlinear
continuous dynamics, hybridization is a technique for
generating a hybridized hybrid automaton from H. The
hybridized automaton has simpler continuous dynam-
ics (usually affine or rectangular) that over-approximate
the behavior of H [8], and can be analyzed by SpaceEx.
For our evaluation, we consider benchmarks from this
hybridization technique applied to nonlinear satellite
orbital dynamics [27], where two satellites orbit the
earth with nonlinear dynamics described by Kepler’s
laws. The orbits in three-dimensional space lie in a two-
dimensional plane and may in general be any conic
section, but we assume the orbits are periodic, and
hence circular or elliptical. Fixing some orbital parame-
ters (e.g., the orientations of the orbits in three-space),
the states of the satellites in three-dimensional space
x1, x2 ∈ R3 can be completely described in terms of
their true anomalies (angular positions). Likewise, one
can transform between the three-dimensional state de-
scription and the angular position state description.
The nonlinear dynamics for the angular position are
ν̇i =

√
µ/p3i (1 + ei cos νi)

2 for each satellite i ∈ {1, 2},
where µ is a gravitational parameter, pi = ai(1 − e2i ) is
the semi-latus rectum of the ellipse, ai is the length of
the semi-major axis of the ellipse, and 0 ≤ ei < 1 is the
eccentricity of the ellipse (if ei = 0, then the orbit is cir-
cular and pi simplifies to the radius of the circle). These
dynamics are periodic with a period of 2π, so we con-
sider the bounded subset [0, 2π]2 of the state-space R2,
and add invariants and transitions to create a hybrid au-
tomaton ensuring νi ∈ [0, 2π]. For the benchmark cases
evaluated, we fixed µ = 1 and varied pi and ei for several
scenarios. For more details, we refer to the work of John-
son et al. [27]. The size of the problem instances varies
from 36 to 1296 locations, and all instances feature 4
variables.

The verification problem is conjunction avoidance,
i. e., to determine whether there exists a trajectory where
the satellites come too close to one another and may
collide. Some of the benchmark instances considered
are particularly challenging because they feature sev-
eral sources of non-determinism, including several initial
states and several bad states. As an additional source of
non-determinism, some benchmarks model thrusting. A
change in a satellite’s orbit is usually accomplished by
firing thrusters. This is usually modeled as an instanta-
neous change in the orbital parameters ei and ai. How-
ever, the angular position νi in this new orbit does not,

in general, equal the angular position in the original or-
bit, and a change of variables is necessary, which can be
modeled by a reset of the νi values when the thrusters
are fired. The transitions introduced for thrusting add
additional discrete non-determinism to the system.

The results for the satellite benchmark class are pro-
vided in Table 3. In general, we observe a similar search
behavior to what we have observed in the navigation
problems: The precomputation of the PDB pays off
in the sense that much better search behavior can be
achieved, leading to a fewer number of iterations and a
lower overall runtime. For example, in instance 5, the
precomputation time for the PDB amounts to roughly
5 seconds, leading to an overall time of around 92 sec-
onds for the concrete run. In contrast, uninformed search
and the box-based heuristic need around 426 and 272
seconds, respectively. The search behavior of the con-
crete and abstract run in instance 5 is also visualized
in Fig. 13, Fig. 14, and Fig. 15. We observe that the
part of the covered search space with our PDB approach
is again lower compared to the box-based heuristic and
uninformed search. Fig. 15 again particularly shows the
part of the search space that is covered by the abstract
run (which can be performed efficiently due to our ab-
straction described in Sec. 3.1), showing that our PDB
approach finds an accurate balance between the compu-
tation time and the accuracy of the resulting cost func-
tion.

Furthermore, we have also been able to effectively
and efficiently prove the absence of errors in the in-
stances 6 and 14, where the abstract run already re-
vealed that no concrete error trajectory exists. As our
abstraction is an over-approximation, we can safely con-
clude that no reachable error state in the concrete sys-
tem exists either, and do not need to start the concrete
search at all. Being able to efficiently verify hybrid sys-
tems with PDBs is a significant advantage compared to
the box-based heuristic.

5.3 Results for Water-Tank Benchmarks

This benchmark consists of variants of the tank bench-
mark [6,26]. The tank benchmark (see Fig. 16) consists
of some N ∈ N tanks, where each tank i ∈ {1, . . . , N}
loses volume xi at some constant flow rate vi, so tank
i has dynamics ẋi = −vi, for a real constant vi ≥ 0.
One of the tanks is filled from an external inlet at some
constant flow rate w, so it has dynamics ẋi = w − vi,
for a real constant w ≥ 0. In our variant, the volume
lost by each tank simply vanishes and does not move
from one tank to another. This benchmark class is qual-
itatively different than either the navigation or satellite
benchmarks, as the discrete state space may be small.

The two variations we consider are complete and lin-
ear topologies with regard to the inlet tank choice. The
inlet pipe w may be moved to some tank j with volume
xi ≤ ri from some tank i, where: (a) j 6= i is any other
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Table 3. Results for the satellite benchmarks. Abbreviations: OOT: out of time (max 30 minutes). Other abbreviations as in Table 1.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 36 116 32 37.501 75 10 18.393 16 10 14.03 (10.05)
2 36 464 49 138.149 473 19 162.666 30 13 21.882 (16.427)
3 64 719 87 42.198 281 91 14.897 264 121 27.067 (12.591)
4 100 111 106 51.705 45 15 30.602 23 14 20.461 (8.106)
5 100 109 104 426.37 45 15 272.133 23 14 92.393 (8.082)
6 159 2170 ∞ 107.68 1354 ∞ 68.107 0 ∞ 21.051 (21.051)
7 324 580 135 251.016 1289 144 649.345 25 24 42.316 (11.921)
8 557 1637 42 61.754 936 42 35.523 156 42 60.027 (54.115)
9 574 7113 41 298.601 561 10 23.977 14 10 8.811 (8.309)
10 575 9092 4 376.935 387 5 16.467 15 4 3.182 (2.651)
11 576 1485 775 273.265 253 13 50.172 15 13 13.385 (7.899)
12 576 1005 775 172.192 796 13 160.342 15 13 13.324 (7.841)
13 576 1317 1147 1410.17 484 54 775.325 52 51 217.534 (104.304)
14 1293 13691 ∞ 526.483 7790 ∞ 312.288 0 ∞ 170.428 (170.428)
15 1296 n/a n/a OOT n/a n/a OOT 206 139 784.986 (526.336)
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Fig. 13. Satellite benchmark: uninformed
search error trajectory for instance 5.
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Fig. 14. Satellite benchmark: box-based
heuristic search error trajectory for in-
stance 5.
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Fig. 15. Satellite benchmark: PDB search
error trajectories for instance 5 (abstract:
light gray, concrete: dark gray).
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Fig. 16. Water tank benchmark with N tanks.

tank for the complete topology, or (b) j ∈ {i+1, i−1} is
an adjacent tank for the linear topology. The invariants
in our variant of the benchmark are that the volumes
of all tanks are non-negative: ∀i ∈ {1, . . . , N} : xi ≥ 0.
We consider variants where the aggregate out flow rate
equals the in flow rate, so the sum of the flow rates out of
all tanks equals the inlet flow rate: w =

∑N
i=1 vi. Hence,

the total volume is constant, so for all t ≥ 0:

N∑
i=1

xi(t) =

N∑
i=1

xi(0).

In these instances, the purpose of the inlet is to effec-
tively move net volume between tanks, and the search

problem is to find an appropriate order of such moves to
reach a specific volume level in all of the N tanks.

The results for the water tank problem class are pro-
vided in Table 4. Again, the results are similar to the
results in the navigation and the satellite benchmark
classes: We observe that PDBs can help significantly
in guiding the search towards error states. For exam-
ple, comparing Fig. 17, Fig. 18, and Fig. 19, which each
respectively show an execution of uninformed search,
the box-based heuristic, and PDBs, we observe that our
PDB-based approach is able to exploit the abstract run
to more quickly find the correct sequence of tanks to
fill to reach a certain region of the state-space (again,
the light gray regions are covered in the abstract run
only and can be computed efficiently). Generally, PDBs
can particularly help for the water-tank problems be-
cause of the non-determinism that occurs in this problem
class (which is important to be resolved accurately, cor-
responding to the choice of which tanks to fill in which
order). However, we also observe that in 4 cases, the
overall runtime is higher than the runtime with the box-
based heuristic. In these cases, the precomputation of
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Table 4. Results for the tank benchmarks. Abbreviations: N : number of tanks (numbers of locations #loc and continuous variables),
Top: topology (C=complete, L=linear), OOT: out of time (max 30 minutes). Other abbreviations as in Table 1.

Inst. N Top. Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 3 C 4 3 254.032 4 3 305.309 4 3 166.516 (6.285)
2 3 C 4 3 237.33 4 3 238.311 4 3 124.195 (4.71)
3 3 C 4 3 483.083 4 3 479.847 4 3 524.132 (41.855)
4 3 C n/a n/a OOT 5 2 828.846 2 1 190.139 (7.856)
5 3 C 6 5 508.693 8 2 76.68 3 2 32.141 (11.351)
6 3 C n/a n/a OOT 5 2 312.54 3 2 220.108 (9.272)
7 3 L 6 5 506.076 5 2 281.351 3 2 218.484 (7.791)
8 3 L 3 2 280.473 3 2 276.498 3 2 289.545 (6.156)
9 4 L n/a n/a OOT 5 4 6.171 13 5 24.972 (8.688)
10 3 L 6 5 270.648 5 2 144.673 2 1 41.345 (0.84)
11 4 L 18 6 30.95 11 6 23.81 4 3 8.696 (3.199)
12 5 L 10 7 23.949 14 7 63.518 4 3 18.138 (9.289)
13 6 L 39 27 64.091 28 21 51.595 4 2 21.208 (6.283)
14 7 L 53 34 130.636 44 22 117.732 9 5 117.763 (9.536)
15 8 L 37 29 108.7 46 21 164.349 33 29 140.968 (30.271)
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Fig. 17. Water tank benchmark: Un-
informed search error trajectory for in-
stance 10.
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Fig. 18. Water tank benchmark: box-
based heuristic search error trajectory in-
stance 10.
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Fig. 19. Water tank benchmark: PDB
search error trajectories instance 10 (ab-
stract: light gray, concrete: dark gray).

the PDB does not pay off – we will discuss such cases in
more detail below.

5.4 Results for Heater Benchmarks

This benchmark consists of variants of the heater bench-
mark [21]. In our variation, we consider three rooms
with one heater. The automaton is modeled with four
locations, consisting of no heaters on in any room, or
the heater is on in one of the three rooms. The size
of the problem instances have 4 locations, and all in-
stances feature 3 temperature variables, 1 time vari-
able, and 16 real constants. The temperature dynam-
ics are linear and there is coupling between tempera-
tures in different rooms. If the heater is on in a room,
its temperature rate of change has a positive additive
term ci, but otherwise does not, so the temperature
may decrease (subject to the temperatures in differ-
ent rooms). Specifically, for room 1 (and symmetrically
rooms 2 and 3), if the heater is on, the dynamics are:
ẋ1 = b1(u − x1) + a1,2(x2 − x1) + a1,3(x3 − x1) + c1,
but if the heater is off, the dynamics are the same ex-
cept without the c1 term. In our variant, the invariants
specify only that the temperatures are all non-negative
and bounded. The heater may be turned on in room
i ∈ {1, 2, 3} if xi ≤ Ton for some real threshold Ton,
and turned off if xi ≥ Toff for some real threshold Toff .

There is non-determinism in choosing to turn off or on
the heater once the threshold condition is met, and there
is a potential delay in changing the state of the heater
from off to on and vice-versa.

The results for the heater benchmark are provided
in Table 5. We observe that, unlike the results for the
other benchmarks, the results for the heater are more
diverse. While the PDB approach overall performs best
in 7 out of 15 problem instances, it is somewhat slower
than uninformed depth-first search (DFS) in other 7 in-
stances. Having a closer look, we observe that the error
trajectories with DFS are found with equally many it-
erations by SpaceEx, and additionally, their length is
the same compared to those found with the PDB ap-
proach. In such cases where the PDB cannot improve
over the search behavior of DFS, DFS is naturally more
efficient because of the PDB’s computational overhead
(in fact, the difference in search time is almost exactly
due to this overhead). However, obtaining such an in-
formed search behavior with DFS is rather based on
having good luck, whereas PDBs provide a more princi-
pled approach to achieve this. Furthermore, despite the
sometimes higher runtimes in this benchmark class, we
observe that our PDB approach is able to solve one more
problem than DFS, and three more problems than the
box-based heuristic within our time limit of 30 minutes.
In addition, similar to the satellite benchmarks, we have
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Table 5. Results for the heater benchmarks. Abbreviations: OOT: out of time (max 30 minutes). Other abbreviations as in Table 1.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 4 7 6 148.4 12 6 212.651 7 6 149.117 (0.625)
2 4 9 8 305.21 5 0 146.311 1 0 10.506 (7.982)
3 4 4 ∞ 27.476 4 ∞ 27.579 4 ∞ 27.467 (0.042)
4 4 7 ∞ 178.781 7 ∞ 177.748 7 ∞ 176.566 (1.1)
5 4 21 20 84.779 n/a n/a OOT 21 20 98.173 (12.303)
6 4 4 1 1.284 n/a n/a OOT 4 1 1.705 (0.4)
7 4 4 2 34.493 4 2 34.525 3 1 32.07 (3.148)
8 4 7 6 89.724 49 48 907.52 7 6 90.778 (0.475)
9 4 4 2 8.772 3 2 8.183 3 1 8.28 (4.687)
10 4 5 4 27.164 15 8 65.249 5 4 27.851 (0.635)
11 4 13 8 25.771 25 14 48.844 12 8 23.708 (0.435)
12 4 3 0 10.603 3 0 10.601 2 0 8.212 (0.544)
13 4 n/a n/a OOT n/a n/a OOT 10 6 640.441 (240.583)
14 4 7 6 58.533 36 22 284.592 7 6 59.157 (0.55)
15 4 9 8 38.06 42 24 150.263 9 8 41.948 (3.752)
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Fig. 20. Heater benchmark: Unin-
formed search error trajectory for
for instance 2.
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Fig. 21. Heater benchmark: box-
based heuristic search error trajec-
tory for instance 2.
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Fig. 22. Heater benchmark: PDB
search error trajectories for in-
stance 2 (abstract: light gray, con-
crete: dark gray).

been able to effectively prove the absence of errors in
two cases (heater instance 3 and instance 4).

Finally, for the last time, let us have a look at the
covered region space by DFS, by the box-based heuristic
and by PDBs in Fig. 20, Fig. 21, and Fig. 22, respec-
tively. We observe that the concrete run with PDBs (in-
dicated in dark grey) boils down to a small curve in this
instance, whereas the other approaches cover a (much)
larger fraction.

5.5 Runtimes of Partial PDBs vs. Full PDBs

Considering the runtime to build the partial PDBs com-
pared to computing full PDBs, we observed that strong
reductions of several orders of magnitude can indeed be
obtained. In particular, the computation of the full ab-
stract state space sometimes exceeds our time bound of
30 minutes, whereas the partial PDBs can still be com-
puted efficiently. This happens in the water tank prob-
lem class, where full PDBs could not be computed within
30 minutes in any instance, whereas partial PDBs could
be computed within less than a minute in all of the 15
instances (less than 10 seconds in 9 of these instances).

In this respect, we conclude that the notion of partial
PDBs particularly makes the overall approach tractable
on a larger class of problems. In cases where full PDBs
can be computed within 30 minutes, the runtime can be
significantly higher than with partial PDBs: For exam-
ple, in the satellite domain instance 10, computing the
full PDB needs around 175 seconds, compared to roughly
3 seconds for computing the partial PDB.

5.6 Discussion

We have observed that PDBs can provide more informed
search behavior than uninformed search or than the box-
based heuristic. A potential problem is the computa-
tional overhead due to its precomputation time. We will
discuss advantages and drawbacks of our PDB approach
in this section.

As a general picture, we first observe that the number
of iterations of SpaceEx and also the length of the found
error trajectories are mostly at most as high with PDBs
as with uninformed search and the box-based heuris-
tic. In particular, our PDB approach could solve sev-
eral problem instances where uninformed search and the
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box-based heuristic ran out of time. In some cases, the
precomputation of the PDB does not pay off compared
to DFS and the box-based heuristic – however, in such
cases, the pure concrete search time with PDBs is still
mostly similar to the pure search time of DFS and the
box-based approach.

We further observe that the length of the trajectories
found by the box-based heuristic and the PDB heuristic
is often similar or equal, while the number of iterations
is mostly decreased. This again shows that the search
with the PDB approach is more focused than with the
box-based heuristic in such cases, and less backtrack-
ing is needed. In particular, the box-based heuristic al-
ways tries to find a “direct” trajectory to an error state,
while ignoring possible obstacles. Therefore, the search
can get stuck in a dead-end state if there is an obstacle,
and as a consequence, backtracking becomes necessary.
Furthermore, the box-based heuristic can perform worse
than the PDB if several bad states are present. In such
cases, the box-based heuristic might “switch” between
several bad states, whereas the better accuracy of the
PDB heuristic better focuses the search towards one par-
ticular bad state. In problems that are structured more
easily (e. g., where no “obstacles” exist and error states
are reachable “straight ahead”), the box-based heuristic
might yield better performance because the precompu-
tation of the PDB does not pay off.

Finally, a general advantage of PDBs compared to
the box-based heuristic which we did not discuss in detail
so far is the broader applicability of PDBs. By definition,
the box-based heuristic estimates distances by comput-
ing Euclidean distances between the region of the current
and the error state. However, in problems where error
states are defined solely by (discrete) locations, there is
no such error region, and the box-based distance heuris-
tic is not effectively applicable. In contrast, PDBs are
more general, and applicable for all kinds of error states.

6 Conclusion

We have explored the application of coarse-grained space
abstractions to compute pattern databases (PDBs) for
hybrid systems. For a given safety property and hy-
brid system with linear dynamics in each location,
we compute an abstraction by coarsening the over-
approximation SpaceEx computes in its reachability
analysis. The abstraction is used to construct a PDB,
which contains abstract symbolic states together with
their abstract error distances. These distances are used
in guiding SpaceEx in the concrete search. Given a con-
crete symbolic state, the guiding heuristics returns the
smallest distance to the error state of an enclosing ab-
stract symbolic state. This distance is used to choose the
most promising concrete symbolic successor. In our im-
plementation, we have taken advantage of the SpaceEx
parametrization support, and were able to report a sig-

nificant speedup in counterexample detection and even
for verification. Our new PDB support for SpaceEx can
be seen as a nontrivial extension of our previous work on
guided reachability analysis for hybrid systems where the
discrete system structure was ignored completely [14].
For the future, it will be interesting to further refine and
extend our approach by, e. g., considering even more fine
grained abstraction techniques, or by combinations of
several abstraction techniques and therefore, by combin-
ing several PDBs. We expect that this will lead to even
more accurate cost functions and better model checking
performance.
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