
CyFuzz: A Differential Testing Framework for
Cyber-Physical Systems Development

Environments

Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

The University of Texas at Arlington, Texas, USA
shafiulazam.chowdhury@mavs.uta.edu

{taylor.johnson,csallner}@uta.edu

Abstract. Designing complex systems using graphical models in so-
phisticated development environments is becoming de-facto engineering
practice in the cyber-physical system (CPS) domain. Development envi-
ronments thrive to eliminate bugs or undefined behaviors in themselves.
Formal techniques, while promising, do not yet scale to verifying entire
industrial CPS tool chains. A practical alternative, automated random
testing, has recently found bugs in CPS tool chain components. In this
work we identify problematic components in the Simulink modeling en-
vironment, by studying publicly available bug reports. Our main contri-
bution is CyFuzz, the first differential testing framework to find bugs in
arbitrary CPS development environments. Our automated model gener-
ator does not require a formal specification of the modeling language.
We present prototype implementation for testing Simulink, which found
interesting issues and reproduced one bug which MathWorks fixed in sub-
sequent product releases. We are working on implementing a full-fledged
generator with sophisticated model-creation capabilities.

Keywords: Differential testing, cyber-physical systems, model-based
design, Simulink

1 Introduction

Widely used cyber-physical system (CPS) development tool chains are complex
software systems that typically consist of millions of lines of code [1]. For exam-
ple, the popular MathWorks Simulink tool chain contains model-based design
tools (in which models in various expressive modeling languages are used to
describe the overall system under control [2]), simulators, compilers, and auto-
mated code generators. Like any complex piece of code, CPS tool chains may
contain bugs and such bugs may lead to severe CPS defects.

The vast majority of resources in the CPS design and development phases are
devoted to ensure that systems meet their specifications [3, 4]. In spite of hav-
ing sophisticated design validation and verification approaches (model checking,
automated test case generation, hardware-in-the-loop and software-in-the-loop

2 Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

testing etc.), we see frequent safety recalls of products and systems among in-
dustries, due to CPS bugs [5–7].

Since many CPSs operate in safety-critical environments and have strict cor-
rectness and reliability requirements [8], it would be ideal for CPS development
tools to not have bugs or unintended behaviors. However, this is not generally
true as demonstrated by recent random testing projects finding bugs in a static
analysis tool (Frama-C) [9] and in popular C compilers (GCC and LLVM) [10],
which are widely used in CPS model-based design.

It would be extremely expensive or possibly even practically infeasible to
formally verify entire CPS tool chains. In addition to their sheer size in terms of
lines of code, a maybe more significant hurdle is the lack of a complete and up
to date formal specification of the CPS tool chain semantics, which may be due
to their complexity and rapid release cycles [1, 11].

Instead of formally verifying the absence of bugs in all CPS tool chain exe-
cution paths, we revert to showing the presence of bugs on individual paths (aka
testing), which can still be a major contributor to software quality [12]. Differen-
tial testing or fuzzing, a form of random testing, mechanically generates random
test inputs and presents them to comparable variations of a software [12]. The
results are then compared and any variation from the majority (if one exists)
likely indicates a bug [13]. This scheme has been effective at finding bugs in
compilers and interpreters of traditional programming languages. As an exam-
ple, various fuzzing schemes have collectively found over 1,000 bugs in widely
used compilation tools such as GCC [10, 11, 14].

While compiler testing is promising, when testing CPS tool chains we face
additional challenges beyond what is covered by testing compilers of traditional
programming languages (such as Csmith creating C programs), since CPS mod-
eling languages differ significantly from traditional programming languages. A
key difference is that the complete semantics of widely used commercial modeling
languages (e.g., MathWorks Simulink and Stateflow [15]) are not publicly avail-
able [1, 16, 17]. Moreover, modeling language semantics often depend on subtle
details, such as two-dimensional layout information, internal model component
settings, and the particular interpretation algorithm of simulators [1]. Finally,
random generation of test cases for CPS development environments has to ad-
dress a combination of programming paradigms (e.g., both graphical, data-flow
language and textual imperative programming language in the same model),
which is rare in traditional compiler testing.

Since existing testing and verification techniques are not sufficient for ensur-
ing the reliability of CPS tool chains, we propose CyFuzz: a novel conceptual
differential testing framework for testing arbitrary CPS development environ-
ments. We use the term system under test (SUT) to refer to the CPS tool chain
being tested. CyFuzz has a random model generator which automatically gener-
ates random CPS models the SUT may simulate or compile to embedded native
code. CyFuzz’s comparison framework component then detects dissimilarity (if
it exists) in the results obtained by executing (or, simulating) the generated
model, by varying components of the SUT.

A Differential Testing Framework for CPS Development Environments 3

We also present an implementation for testing the Simulink environment,
which is widely used in CPS industries for model-based design of dynamic and
embedded systems [18, 19]. Although our current prototype implementation tar-
gets Simulink, the described conceptual framework is not tool specific and should
thus be applicable to related CPS tool chains, such as NI’s LabVIEW [20].

To the best of our knowledge, CyFuzz is the first differential testing frame-
work for fuzzing CPS tool chains. To address the problem of missing formal
semantics during model generation, we follow a simple, feedback-driven model
generation approach that iteratively fixes generated models according to the
SUT’s error descriptions. To summarize, this paper makes the following contri-
butions:

– To understand the types of Simulink bugs that affect users, we first analyze
a subset of the publicly available Simulink bug reports (Section 3).

– We present CyFuzz, a conceptual framework for (1) generating random but
valid models for a CPS modeling language, (2) simulating the generated
models on alternative CPS tool chain configurations, and (3) comparing the
simulation results (Section 4). We then describe interesting implementation
details and challenges of our prototype implementation for Simulink (Sec-
tion 5).

– We report on our experience of running our prototype tool on various Simulink
configurations (Section 6), identifying comparison errors and semi-independently
reproducing a confirmed bug in Simulink’s Rapid Accelerator mode.

2 Background: Model-based CPS Design and Simulink

This section provides necessary background information on model-based devel-
opment. We define the terms used for explaining a conceptual differential testing
framework and subsequently relate them with Simulink.

2.1 CPS Model Elements

The following concepts and terms are applicable to many CPS modeling lan-
guages (including Simulink). A model, also known as a block-diagram, is a math-
ematical representation of some CPS [18]. Designing a diagram starts with choos-
ing elementary elements called blocks. Each block represents a component of the
CPS and may have input and output ports. An input port accepts data on which
the block performs some operation. An output port passes data to other input
ports using connections. An output port can be connected to more than one in-
put port while the opposite is not true in general. A Block may have parameters,
which are configurable values that influence the block’s behavior. Somewhat sim-
ilar to a programming language’s standard libraries, a CPS tool chain typically
provides block libraries, where each library consists of a set of predefined blocks.

Since hierarchical models are commonly found in industry, CyFuzz supports
generating such models as well. This can be achieved by grouping some blocks

4 Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

of a model together and replacing them by a new block which We call a child,
whereas the original model is called parent.

When simulating, the SUT numerically solves the mathematical formulas
represented by the model [18]. Simulation is usually time bound and at each
step of the simulation, a solver calculates the blocks’ outputs. We use the term
signal to mean output of a block’s port at a particular simulation step.

The very first phase of the simulation process is compiling the model. This
stage also looks for incorrectly generated models and raises failures for syntactical
model errors, such as data type mismatches between connected output and input
ports. If an error is found in the compilation phase, the SUT does not attempt
simulating the model. After successful simulation, code generators can generate
native code, which may be deployed in target hardware [1].

2.2 Example CPS Development Environment: Simulink

While our conceptual framework uses the above terms, they also apply directly
in the context of Simulink [21]. Besides having a wide selection of built-in blocks,
Simulink allows integrating native code (e.g., Matlab or C code) in a model via
Simulink’s S-function interface, which lets users create custom blocks for use
in their models. Simulink’s Subsystem and Model referencing features enable
hierarchical models.

Simulink has three simulation modes. In Normal mode, Simulink does not
generate code for blocks, whereas it generates native code for certain blocks in
the Accelerator mode. Unlike in these two modes, the Rapid Accelerator

mode further creates for the model a standalone executable. To capture sim-
ulation results we use Simulink’s Signal Logging functionality as we found
implementing it quite feasible. However, for cases where the approach is not
applicable (see [21]), we use Simulink’s sim api to record simulation data.

3 Study of Existing Bugs: Incorrect Code Generation

To understand the types of bugs Simulink users have found and care about, we
performed a study on the publicly available bug reports from the MathWorks
website1. We identified commonalities in bug reports, which we call classifica-
tion factors. We limited our study to bug reports found via the search query
incorrect code generation, as earlier studies have identified code generation as
vulnerable [1, 22].

We investigated bug reports affecting Matlab/Simulink version 2015a as we
were using it in our experiments. As of February 17, 2016, there were 50 such bug
reports, among which 47 have been fixed in subsequent releases of the products.
Table 1 summarizes the findings. Our complete study data are available at:
http://bit.ly/simstudy

Table 1 shows only those classification factors that affect at least 20% of
all the bug reports that we have studied. We use insights obtained from the

1 Available: http://www.mathworks.com/support/bugreports/

A Differential Testing Framework for CPS Development Environments 5

Table 1. Study of publicly available Simulink bug reports. The right column denotes
the percentage of bug reports affected by a the given classification factor. Each bug
report may be classified under multiple factors.

Classification factor Bugs [%]

Reproducing the bug requires a code generator to generate code 60
Reproducing the bug requires specific block parameter values and/or
port or function argument values and data-types

56

Reproducing the bug requires comparing simulation-result and gener-
ated code’s output

54

Reproducing the bug requires connecting the blocks in a particular way 36
Reproducing the bug requires specific model configuration settings 32
Reproducing the bug requires hierarchical models 24
Reproducing the bug requires built-in Matlab functions 20

study in our CyFuzz prototype implementation. For example, many of the bug
reports (54%) are related to simulation result and generated code execution out-
put mismatch. Thus, differential testing (e.g., by comparing simulation and code
execution) seems like a good fit for finding bugs in CPS tool chains. Further in-
sight that is reflected in our tool is that it is worth exploring the large space
of possible block connections (36% of bug reports) e.g., via random block and
connection generation. Other insights we want to use in the future are to incor-
porate random block parameter values and port data-types (56%) and model
configurations (32%).

4 Differential Testing of CPS Development Tool Chains

Fig. 1. Overview of the differential testing framework. The first three phases cor-
respond to the random model generator, while the rest belongs to the comparison
framework.

At a high level we can break our objective into two sub goals: creating a
random model generator and defining a comparison framework. We first present a
theory applicable to a conceptual CPS framework in this section. Fig. 1 provides
a schematic overview of CyFuzz’s processing phases. The first three phases belong

6 Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

to the random model generator, and the remaining two constitute the comparison
framework. The first two phases create a random model (which may violate
Simulink’s model construction rules). The third phase fixes many of these errors,
such that the model passes the SUT’s type checkers and the SUT can simulate
it. If it succeeds it passes the model to the fourth phase to simulate the model
in various SUT configurations and to record results. The final phase detects any
dissimilarities in the collected data, which we call comparison error bugs.

4.1 Conceptual Random Model Generator

Following are details on the generator’s three phases.

Listing 1.1. Select Blocks phase of the conceptual random model generator.

method select blocks (n, block libraries):
/∗ Choose n blocks from the given block libraries, place the blocks

in a new model, configure the blocks, and return the model. ∗/
m = create empty model() // New, empty model
blocks = choose blocks(n, block libraries) // N from block libraries
for each block b in blocks:

place block in model(m, b)
configure block(b, n, block libraries)

return m

Select Blocks. Listing 1.1 summarizes this phase, which selects, places, and
configures the model’s blocks. The generator has a list of block libraries and
for each library a predetermined weight. Using the weights, the choose blocks
method selects n random blocks. The value n can be fixed or randomly selected
from a range. On a newly created model the generator next places each of these
blocks using the place block in model method. For creating inputs, CyFuzz se-
lects various kinds of blocks, to, for example, provide random inputs to the
model.

The configure block method selects block parameter values and satisfies
some block constraints (e.g., by choosing blocks required for placing a certain
block). For creating hierarchical models, a child model is considered as a regular
block in the parent model and is passed as a parameter to configure block,
which calls select blocks to create a new child model. Here n is equal to the
parent model, but block libraries may not be the same (e.g., certain blocks are
not allowed in some Simulink child models).

Connect Ports. The second phase follows a simple approach to maximize the
number of ports connected. CyFuzz arbitrarily chooses an output and an input
port from the model’s blocks, prioritizing unconnected ports. It then connects
them and continues the process until all input ports are connected. Consequently,
some output ports may be left unconnected.

A Differential Testing Framework for CPS Development Environments 7

Listing 1.2. fix errors tries to fix the model errors that the simulate method raises;
p is a SUT configuration; t denotes a timeout value.

method fix errors (m, p, attempt limit, t):
for i = 1 to attempt limit:

< rpstatus, r
p
data, errors > = simulate(m, p, t)

if rpstatus is error:
if fix model(m, errors) is false:

return < rpstatus, r
p
data, errors >

else:
return < rpstatus, r

p
data, errors >

return simulate(m, p, t)

Fix Errors. Because of their simplicity, CyFuzz’s first two phases may generate
invalid models that cannot be simulated successfully. The third phase tries to
fix these errors. Listing 1.2 outlines the approach. It uses method simulate to
simulate modelm up to time t ∈ IR+ (in milliseconds) using SUT configuration p.

The simulate output is a 3-tuple, where rpstatus is one of success, error,
or timed − out. Note that first step of simulation is compiling the model (see
Section 2). If m has errors, simulate will abort compilation, storing error-related
diagnostic information in errors. rpdata contains simulation results (time series
data of the model’s blocks’ outputs) if rpstatus = success.

At this point we assume that the error messages are informative enough
to drive the generator. For example, Simulink satisfies this assumption. Using
errors, fix model tries to fix the errors by changing the model. As it changes
the model this phase may introduce new errors. We try to address such sec-
ondary errors in subsequent loop iterations in Listing 1.2, up to a configurable
number attempt limit. While this approach is clearly an imperfect heuristic, it
has worked relatively well in our preliminary experience (as, e.g., is indicated by
the low error rate in Table 2).

4.2 Conceptual Comparison Framework

Here we explore simulating a randomly generated model varying SUT-specific
configuration options of a CPS tool chain, and thus testing it in two phases.

Log Signals. If simulation was successful in the Fix Errors phase, CyFuzz sim-
ulates the model varying configurations of the SUT in this phase; let P be such
a set of configurations. Using the simulate method introduced in Section 4.1, for
each p ∈ P we calculate < rpstatus, r

p
data, errors >= simulate(m, p, t) for a model

m and add rpdata to a set d only if rpstatus = success. We pass d to next phase
of the framework. rpdata should contain time series data of the output ports of
the model’s blocks at all available simulation steps. In the next phase, however,
we use only the values recorded at the last simulation step; we leave comparing
signal values at other simulation steps as future task.

8 Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

Compare. In its last phase, CyFuzz compares the recorded simulation results
d obtained in the previous phase using method compare (Listing 1.4). It uses
method retrieve, which returns the signal value of a particular block’s particular
port at a given time instance. If the value is not available (e.g., blocks that do
not have output ports do not participate in signal logging), it returns the special
value Nil . compare also uses method latest time which returns the time of the
last simulation step for a given block’s particular port. If no data is available, it
returns Nil .

Listing 1.3. Determining equivalence via tolerance limit ε.

method equiv (p, q):
if p and q are Nil: // Missing both data points

return true
if p or q is Nil: // Missing one data point

return false
return |p− q| < ε

Listing 1.4. This method compares two execution results (of model m) taken as first
two arguments and throws errors if it finds a dissimilarity.

method compare (rpdata, r
q
data, m):

for each block b of the model m:
for each output port y of the block b:

tp = latest time(rpdata, b, y)
tq = latest time(rqdata, b, y)
if equiv(tp, tq) is false:

throw ‘‘Time Mismatch’’ error
else if tp 6= Nil:

if equiv(retrieve(rpdata, b, y, tp), retrieve(rqdata, b, y, tq)) is false:
throw ‘‘Data Mismatch’’ error

Now, taking two elements from d at a time we form all possible pairs (rpdata, r
q
data)

where p 6= q and apply method compare on them. As comparing floating-point
numbers using straight equality checking is problematic [1, 23], eqiv (Listing 1.3)
method uses a tolerance limit to determine floating-point equivalence. If compare
reports an error, we mark m as a comparison error for p, q and submit it to
manual inspection.

5 CyFuzz Prototype Implementation for Simulink

We have developed a prototype implementation of CyFuzz mostly in Matlab.
The tool continuously generates one Simulink model at a time and then passes
it to the comparison framework. Source code, implementation and usage de-
tails, sample generated models, and detailed experiment results are available at:
https://github.com/verivital/slsf_randgen.

A Differential Testing Framework for CPS Development Environments 9

Selecting and Configuring Blocks. Simulink itself has over 15 built-in libraries.
MathWorks also offers toolboxes, which add to Simulink additional libraries.
To date we have included in our experiments blocks from only four of these
libraries, Sources, Sinks, Discrete, and Concrete. We use default parameter
values for configuring most blocks. However, some Simulink blocks do not allow
placing multiple instances of the same block with the same default value in a
model. For these blocks we randomly choose parameter values.

Generating Hierarchical Models. Since hierarchical models are very popular
among Simulink users, our prototype can generate them. Currently, the generator
uses Model referencing and For each subsystems blocks to create hierarchi-
cal models. CyFuzz generates model hierarchies up to a configurable depth. In
doing so it places and configures related blocks. For example, CyFuzz automati-
cally puts input (output) related blocks in a new child model which are used to
accept (return) data from (to) the parent model. The number of blocks for the
top-level and child models are chosen randomly from user-provided ranges.

Fix Errors Phase. We utilize Matlab’s exception handling mechanism to learn
what prevented successful compilation of the model. Some information (e.g.,
the error type) can be directly collected from the exception. Collecting other
important information, such as the actual problematic block, can be nontrivial.
For example, for algebraic loop errors sometimes CyFuzz has to identify other
blocks (e.g., a parent block) to fix the problem. As another example, the current
CyFuzz version does not attempt to know the data types of the ports in the
Connect Ports phase. Rather, it collects such information when compiling the
model using diagnostic information returned by the SUT.

Models with Random Native Code. To facilitate blocks with custom behavior,
Simulink allows placing native code (C, Matlab etc.) directly in models. To gen-
erate such blocks we leverage Csmith, which generates random C programs [10].
We designed simple Simulink blocks using Matlab’s S-function interface that
use random code generated by a customized version of Csmith. Our customized
version is capable of generating many different C functions that can be called
from various simulation steps. We looked for both crash errors and “wrong code
errors” (similar to our comparison error). However, this is not fully integrated
with CyFuzz yet.

The Comparison Framework. CyFuzz starts with varying simulation modes (see
Section 2.2). and compiler optimization levels. For instance, “Normal mode”,
“Accelerator mode; optimization on”, and “Rapid Accelerator; optimization
off” are options to vary. Varying compilers, code generators, solver-specific set-
tings, and other possible SUT configuration options are future work.

6 Experience with CyFuzz

Here we analyze our prototype implementation based on experimental results.

10 Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

6.1 Research Questions (RQ), Experimental Setup, and Results

Throughout this work we explore the following research questions.

RQ1 Is the random model generator effective? Which portion of the generated
models can the SUT compile and simulate within a given time bound?

RQ2 Using the generated models, can the comparison framework effectively
find bugs (comparison errors or crashes) in the SUT ?

RQ3 What is the runtime of each of CyFuzz’s stages? Does the generator scale
with the generated model’s number of blocks?

To answer these questions we conducted experiments using Matlab 2015a on
Ubuntu 14.10 and varied simulation mode (Normal vs. Accelerator) and opti-
mizer (on vs. off) for the later mode. For the fix errors method (Listing 1.2)
we chose attempt limit 10 and timeout 12. For choosing blocks we used a tra-
ditional O(n) implementation of the fitness proportion selection algorithm [24].
We have not included in these experiments hierarchical models or custom blocks.

Table 2. Each row represents a separate experiment. Columns 3–6 is the percentage
of blocks selected per library (e.g., experiment A chose 80% of the blocks from the
Discrete library). Error denotes the number of models that failed to simulate. Timed-
out denotes the models that did not complete simulation within the time bound.

Exp. Total Discrete Concrete Source Sink error timed-out Confirmed

Label Models [%] [%] [%] [%] [%] [%] Bugs [%]

A 1172 80 0 10 10 9.73 0.60 0

B 1095 43 37 10 10 1.74 7.03 0

C 1449 0 80 10 10 12.01 8.63 0

Table 3. More information on experiments from Table 2. Columns 3-7 denotes the
time taken by the five phases of CyFuzz. Runtime denotes the average time CyFuzz
spent for a model.

Exp. Blocks/ Select Connect Fix Log Compare Runtime

Label Model Blocks [%] ports [%] Errors [%] Signals [%] [%] [sec]

A 35.00 7.85 0.64 16.00 74.55 0.96 40.37

B 34.96 6.06 0.39 16.06 76.86 0.63 51.87

C 35.05 8.09 0.51 11.02 79.58 0.80 42.51

Effectively Creating Random Models (RQ 1). As the experimental results in Ta-
ble 2 suggest, our tool can generate many models that Simulink can successfully

A Differential Testing Framework for CPS Development Environments 11

simulate. For each row in the table we have a low error and timed-out rate. This
high success rate is crucial for the framework as it only uses such valid models in
the tool’s later comparison framework phases. We also observed that the number
of errors and timed-out models varied with the selected block libraries, but we
have not yet analyzed the reasons of these variations.

Effectiveness of Comparison Framework (RQ 2). We have not found new bugs
yet, however, our framework reproduced an existing bug and found interesting
cases (see Section 6.2).

Runtime Analysis (RQ 3). The Select Blocks algorithm of Listing 1.1 has run-
time O(n), n being the number of blocks in the model and using an O(1) block
selection algorithm. The random model generator scales linearly with the number
of blocks. But as the number of blocks grows, the number of timed-out models
and errors also grow. A preliminary analysis suggests that there are relatively
few distinct error causes. We group errors by their causes and fixing one cause
dramatically increased the overall number of successfully executed models.

Table 3 indicates that the Log Signals phase uses most of the runtime. This
result is not surprising, as in this phase the SUT simulates the model, generates
and executes code, and logs the data, all of which are time consuming tasks.

Using Native Code/Custom Blocks. In separate experiments we used a
fixed Simulink model with a custom block created using S-Function. We re-
peatedly generated random C code using a customized version of Csmith and
plugged this code in the S-function, which effectively ran the code once we sim-
ulated the model. We used different optimizer settings for GCC when compiling
and were able to reproduce crash and “wrong code” bugs of GCC 4.4.3. This
shows that incorporating Csmith in our framework is promising. However, more
work is needed to fully utilize Csmith-generated programs and create sophisti-
cated Simulink blocks using them. One limitation is that floating-point support
in Csmith is currently still basic and can only be used for detecting crash-bugs.

6.2 Interesting Comparison Framework Findings

Following are two interesting findings of our experiments, including one inde-
pendently rediscovered confirmed Simulink bug.

Comparison Error for Models with Algebraic Loops. In our experiments
we noticed comparison errors for some models where Simulink solved algebraic
loops. Investigating further we noticed that when Simulink solves an algebraic
loop it is not confident of its correctness [21]. For this, we did not classify this case
as a bug. CyFuzz now eliminates algebraic loops altogether rather than relying
on Simulink to solve them. We note that one can use our tool to opportunistically
discover such inaccuracies for models with algebraic loops and decide whether
to accept Simulink’s solution for solving the loops.

12 Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

Fig. 2. Screen-shot of generated top-level Simulink model which reproduced a bug

Bug in Simulink’s Rapid Accelerator Mode. In separate experiments with
hierarchical models, we noticed that for a model (see Fig. 2) values of a Simulink
Outport block are significantly different in Normal and Rapid Accelerator

mode. This was detected automatically by our comparison framework. After
submitting a bug report MathWorks confirmed that the case was already iden-
tified as a bug and they fixed it for later versions.

7 Future Work and Discussion

Our ultimate goal is to provide a full-fledged fuzz-testing framework for Simulink.
Our work on CyFuzz and our prototype implementation for Simulink are thus
both ongoing. Following is a sample of the opportunities for improvement.

The current prototype implementation has several limitations. Currently, the
tool chooses blocks from only four built-in libraries. Incorporating additional li-
braries will increase the expressiveness of generated models and thus its potential
for finding bugs. Also, we plan on integrating custom blocks developed using na-
tive code and perform experiments we were not able to conduct yet.

The comparison framework implementation is also not free from shortcom-
ings. So far, we have only used various simulation modes and compiler opti-
mization levels. However, we are interested in adding more variations (e.g. those
listed in Section 5). Finally, CyFuzz should compare signals in multiple simula-
tion steps, since it was also found effective in previous work [25].

8 Related Work

The following focuses on the most closely related work not covered by the intro-
duction section. Existing approaches for CPS testing mostly aim at generating
test cases for existing models (e.g., [26, 18]) and do not target testing of CPS tool
chains. Code generator testing ([1, 27]) only target a relatively small component
of the CPS tool chain but not an entire CPS tool chain.

Most of the compiler fuzzers perform random walks over a context-free gram-
mar, thus mainly focusing on generating syntactically valid [14] and well typed
programs in imperative languages [28, 10, 11, 29]. None of the works target data-
flow languages like Simulink. We find Csmith most related to our work, which is
state-of-the-art C compiler fuzzer. Csmith leverages the well-published C99 stan-
dard and can be used to test only a component of entire CPS tool chain [10]. Our

A Differential Testing Framework for CPS Development Environments 13

test generation and comparison techniques differ fundamentally from Csmith.
Conceptually, CPS tool chain fuzzing is a super-set of the schemes presented in
Csmith. CPS tool chains typically contain a C compiler; thus CyFuzz leverages
Csmith as a component.

Earlier work includes a differential testing based runtime verification frame-
work, leveraging a random hybrid automata generator [30, 25]. Other works at-
tack code generators used in CPS tool chain. Stürmer et al. generate model tak-
ing specification of a code generator’s optimization rules in graph grammar [1].
But such specifications for code generators might not be available and white-
box testing in parts is undesirable [31]. Sampath et al. propose testing model-
processing tools taking semantic meta-model of Stateflow (a Simulink compo-
nent) [31]. But the approach does not scale and the complete specifications it
needs are not available. In contrast, we propose the first fuzz-testing framework
to test arbitrary CPS tool chains based on feasible model generation.

Many CPS model verification and safety checking approaches have been pro-
posed [8, 32]. Recent work verifies existing SL/Stateflow (SL/SF) models by gen-
erating test inputs for these models [18, 19]. Alur et al. analyze generated sym-
bolic traces of a SL/SF model, and combine simulation and symbolic analysis
for improving coverage of given SL/SF models [33]. The Simulink Code Inspector
compares generated code for a given model based on structural equivalence and
traceability [21]. However none of these approaches describe random generation
of Simulink models for fuzzing the CPS tool chain.

9 Conclusions

This work addresses the CPS tool chain quality problem using a differential test-
ing scheme. Existing work either does not test CPS development tool chains or
only tests small subsets. As CPS tool chains are actively developed and released,
formal specification based test generation schemes are not suitable for fuzzing
CPS tool chains. Rather, our approach follows a simple model generation strat-
egy applicable to arbitrary CPS modeling languages. Starting with a random
and possibly erroneous model, our generator fixes various errors in the model
using diagnostic information returned by the system under test. In our experi-
ments a high portion of the generated models could thus be executed without
errors.

We also define techniques to find bugs in CPS tool chains based on simulation
result comparison. The approach is effective as our prototype implementation
for Simulink found interesting cases and one bug. Although our model generator
is scalable and fully automatic, more work is needed to systematically search
the huge space of possible data-flow models and generate those models that are
likely to find bugs in modern CPS development environments.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grants No. 1117369, 1464311, and 1527398, by Air
Force Office of Scientific Research (AFOSR) contract numbers FA9550-15-1-0258

14 Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

and FA9550-16-1-0246, and by Air Force Research Lab (AFRL) contract number
FA8750-15-1-0105. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the views of AFRL, AFOSR, or NSF.

References

1. Stürmer, I., Conrad, M., Dörr, H., Pepper, P.: Systematic testing of model-
based code generators. IEEE Transactions on Software Engineering (TSE) 33(9)
(September 2007) 622–634

2. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-physical
Systems Approach. First edn. http://LeeSeshia.org (2011)

3. Beizer, B.: Software testing techniques. Second edn. Van Nostrand Reinhold (June
1990)

4. U.S. National Institute of Standards and Technology (NIST): The economic im-
pacts of inadequate infrastructure for software testing: Planning report 02-3 (May
2002)

5. U.S. Consumer Product Safety Commission (CPSC): Recall 11-702:
Fire alarm control panels recalled by fire-lite alarms due to alert fail-
ure. http://www.cpsc.gov/en/Recalls/2011/Fire-Alarm-Control-Panels-Recalled-
by-Fire-Lite-Alarms-Due-to-Alert-Failure (October 2010)

6. U.S. National Highway Traffic Safety Administration (NHTSA): Defect In-
formation Report 14V-053. http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/

download/doc/UCM450071/RCDNN-14V053-0945.pdf (February 2014)

7. Alemzadeh, H., Iyer, R.K., Kalbarczyk, Z., Raman, J.: Analysis of safety-critical
computer failures in medical devices. IEEE Security Privacy 11(4) (July 2013)
14–26

8. Johnson, T.T., Bak, S., Drager, S.: Cyber-physical specification mismatch identifi-
cation with dynamic analysis. In: Proc. ACM/IEEE Sixth International Conference
on Cyber-Physical Systems (ICCPS), ACM (April 2015) 208–217

9. Cuoq, P., Monate, B., Pacalet, A., Prevosto, V., Regehr, J., Yakobowski, B., Yang,
X.: Testing static analyzers with randomly generated programs. In: Proc. 4th
NASA Formal Methods Symposium (NFM), Springer (April 2012) 120–125

10. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proc. 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), ACM (June 2011) 283–294

11. Dewey, K., Roesch, J., Hardekopf, B.: Fuzzing the Rust typechecker using CLP
(T). In: Proc. 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE (2015) 482–493

12. McKeeman, W.M.: Differential testing for software. Digital Technical Journal
10(1) (1998) 100–107

13. Lidbury, C., Lascu, A., Chong, N., Donaldson, A.F.: Many-core compiler fuzzing.
In: Proc. 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), ACM (June 2015) 65–76

14. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: Proc. 21th
USENIX Security Symposium, USENIX Association (August 2012) 445–458

15. The MathWorks Inc.: Products and services. http://www.mathworks.com/

products/ (2016)

A Differential Testing Framework for CPS Development Environments 15

16. Hamon, G., Rushby, J.: An operational semantics for Stateflow. International
Journal on Software Tools for Technology Transfer 9(5) (2007) 447–456

17. Bouissou, O., Chapoutot, A.: An operational semantics for Simulink’s simulation
engine. In: Proc. 13th ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, Tools and Theory for Embedded Systems (LCTES), ACM
(June 2012) 129–138

18. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: SimCoTest: A test suite
generation tool for Simulink/Stateflow controllers. In: Proc. 38th International
Conference on Software Engineering, (ICSE), ACM (May 2016) 585–588

19. Sridhar, A., Srinivasulu, D., Mohapatra, D.P.: Model-based test-case generation
for Simulink/Stateflow using dependency graph approach. In: Proc. 3rd IEEE
International Advance Computing Conference (IACC). (February 2013) 1414–1419

20. National Instruments: Labview system design software. http://www.ni.com/

labview/ (2016)
21. The MathWorks Inc.: Simulation documentation. http://www.mathworks.com/

help/simulink/ (2016)
22. Rajeev, A.C., Sampath, P., Shashidhar, K.C., Ramesh, S.: CoGenTe: A tool for

code generator testing. In: Proc. 25th IEEE/ACM International Conference on
Automated Software Engineering (ASE), ACM (September 2010) 349–350

23. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1) (1991) 5–48

24. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning.
First edn. Addison-Wesley (1989)

25. Nguyen, L.V., Schilling, C., Bogomolov, S., Johnson, T.T.: Runtime verification of
model-based development environments. In: Proc. 15th International Conference
on Runtime Verification (RV). (September 2015)

26. Girard, A., Julius, A.A., Pappas, G.J.: Approximate simulation relations for hybrid
systems. Discrete Event Dynamic Systems 18(2) (2008) 163–179

27. Stürmer, I., Conrad, M.: Test suite design for code generation tools. In: Proc.
18th IEEE International Conference on Automated Software Engineering (ASE).
(October 2003) 286–290

28. Csallner, C., Smaragdakis, Y.: JCrasher: An automatic robustness tester for Java.
Software—Practice & Experience 34(11) (September 2004) 1025–1050

29. Hussain, I., Csallner, C., Grechanik, M., Xie, Q., Park, S., Taneja, K., Hossain,
B.M.: Rugrat: Evaluating program analysis and testing tools and compilers with
large generated random benchmark applications. Software—Practice & Experience
46(3) (March 2016) 405–431

30. Nguyen, L.V., Schilling, C., Bogomolov, S., Johnson, T.T.: HyRG: A random
generation tool for affine hybrid automata. In: Proc. 18th International Conference
on Hybrid Systems: Computation and Control (HSCC), ACM (April 2015) 289–290

31. Sampath, P., Rajeev, A.C., Ramesh, S., Shashidhar, K.C.: Testing model-
processing tools for embedded systems. In: Proc. 13th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, IEEE (April 2007) 203–214

32. Mohaqeqi, M., Mousavi, M.R.: Sound test-suites for cyber-physical systems. In:
10th International Symposium on Theoretical Aspects of Software Engineering
(TASE). (July 2016) 42–48

33. Kanade, A., Alur, R., Ivancic, F., Ramesh, S., Sankaranarayanan, S., Shashidhar,
K.C.: Generating and analyzing symbolic traces of Simulink/Stateflow models.
In: Proc. 21st International Conference on Computer Aided Verification (CAV),
Springer (June 2009) 430–445

