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ABSTRACT
Finding bugs in commercial cyber-physical system development
tools (or “model-based design” tools) such as MathWorks’s Simulink
is important in practice, as these tools are widely used to generate
embedded code that gets deployed in safety-critical applications
such as cars and planes. Equivalence Modulo Input (EMI) based
mutation is a new twist on differential testing that promises lower
use of computational resources and has already been successful
at finding bugs in compilers for procedural languages. To provide
EMI-basedmutation for differential testing of cyber-physical system
(CPS) development tools, this paper develops several novel mutation
techniques. These techniques deal with CPS language features that
are not found in procedural languages, such as an explicit notion
of execution time and zombie code, which combines properties
of live and dead procedural code. In our experiments the most
closely related work (SLforge) found two bugs in the Simulink
tool. In comparison, SLEMI found a super-set of issues, including 9
confirmed as bugs by MathWorks Support.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Compilers; Model-driven software engineering; • General
and reference → Reliability; Verification; Performance.
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1 INTRODUCTION
Commercial cyber-physical system (CPS) development tools (or
“model-based design” tools) are complex software systems that may
contain bugs. Finding such bugs is hard as the CPS development
tools do not have complete formal specifications [5, 17, 24, 57] and
the tools’ source code is not available either. While state-of-the-art
CPS tool bug-finding approaches such as SLforge [13] have had
some initial success, they also have two key limitations, i.e., they
are (a) fundamentally slow and (b) limited to synthetic CPS models.

Finding bugs in commercial cyber-physical system development
tools efficiently is important however, as the correctness of CPS
development tools is crucial in practice. For example, MathWorks’s
CPS development tool Simulink [32] is a de-facto industry standard
in several safety-critical domains, including automotive, aerospace,
and health care [63]. Engineers widely use Simulink to design,
model, simulate, and generate embedded code from CPSmodels and
deploy the generated code in safety-critical applications [6, 23, 48].
So a Simulink tool bug may lead to compile errors or inject subtle
unexpected behaviors into safety-critical applications, e.g., in cars
or planes [8].

To side-step the lack of CPS tool specifications, state-of-the-art
CPS tool bug-finding approaches such as SLforge perform differen-
tial testing [43, 52, 62] on the CPS tool. By invoking two configura-
tions of the same CPS tool that are expected to produce the same
result on the same generated model, SLforge may trigger a CPS tool
bug if the two configurations yield different results. But generating
a valid synthetic CPS model turns out to be computationally expen-
sive. For example, due to incomplete CPS language rules SLforge
may require several “feedback-directed” iterations to automatically
fix remaining Simulink compile errors.

A recent differential testing twist promises to address these limi-
tations. Mutating a given program in a way that preserves its execu-
tion semantics on the given inputs has proven effective in finding
bugs in C compilers [28]. These Equivalence Modulo Input (EMI)
based mutation schemes perform a small program modification,
which may be computationally cheaper than generating a program
from scratch. Besides speeding up program generation and enabling
the use of existing models, EMI-based mutation also enables finding
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compiler bugs by comparing two identically configured compiler
executions (on equivalent input programs).

Recent work has laid the groundwork for evaluating CPS muta-
tion approaches. Evaluating such approaches requires input CPS
models and traditionally such models were not easy to obtain in
sufficient numbers. For example, in the case of Simulink, random
Simulink model generators and a corpus of public Simulink models
only became available recently [12, 13, 14].

While prior work has reported promising results on EMI-based
mutation for finding bugs in C compilers [28, 29, 59], it is not
straight-forward to apply the existing EMI-based mutation schemes
to CPS tools. As a case in point, the only existing approach de-
scribed as EMI-based mutation for CPS models (SLforge) does not
really follow the equivalence modulo input paradigm. Instead of
preserving behavior for a single given input, SLforge performs a
static mutation that preserves equivalence for all possible inputs
(by using the Simulink compiler to remove all dead code). While
the resulting mutation is also EMI (since maintaining equivalence
on all inputs implies maintaining equivalence on the given input),
it is a severely restricted approach and in the case of SLforge only
yields one mutant per input model.

Specifically, SLforge does not leverage model runtime data, does
not delete or modify any model elements the compiler does not
remove, and does not insert any model elements. Given these limi-
tations, it is perhaps not surprising that SLforge’s “EMI” component
has only found one bug.

The core challenge of EMI-based mutation of CPS models is
that CPS languages are quite different from procedural languages,
e.g., CPS languages have an explicit notion of execution time. CPS
languages also have a different notion of when code is dead, which
gives raise to zombie blocks (Section 2.2) in CPS models that do not
exist in procedural code.

To address these challenges, this paper reviews several key dif-
ferences between CPS models and procedural code. Specifically,
we describe novel techniques for mutating CPS models that use an
explicit notion of execution time and zombie code, i.e., code that has
properties of both dead and live procedural code. We implement
these techniques in the new SLEMI tool and empirically evaluate
their effectiveness for finding bugs in the Simulink tool. SLforge,
the state-of-the-art approach for finding bugs in the Simulink tool
via EMI has found one bug. In contrast, SLEMI has to date found 9
unique issues confirmed as bugs byMathWorks Support in Simulink
versions R2017a and R2018a. To summarize, this paper makes the
following major contributions.

• The paper describes novel techniques for EMI-based muta-
tion of CPS models, including techniques for dealing with
language features that do not exist in procedural languages.

• Via the novel SLEMI tool, these techniques found 9 confirmed
bugs in the widely used CPS development tool Simulink.

• Within set time and computational resources, SLEMI found
more Simulink bugs than its closest competitor SLforge.

• All SLEMI code and evaluation data are open source1.

1Available: https://github.com/shafiul/slemi

2 BACKGROUND
This section contains necessary background information on key
features of CPS modeling languages, “model-based design” (MBD)
tools such as Simulink, how their data propagation, control flow, and
“dead code” notions differ from those in procedural programming,
our resulting notion of zombie code, and state-of-the-art approaches
for finding bugs via EMI-based mutation and differential testing.

2.1 Block Diagrams and CPS Tool Chains
While in-depth descriptions of CPS languages are available else-
where [13, 41, 44, 48, 49], the following are the key concepts. In a
cyber-physical system (CPS) development tool (e.g., Simulink), a
user designs a modelm of the CPS as a diagram that consists of
blocks and their connections. A block may accept data through its
input ports, typically performs on the data some operation defined
by a discrete or continuous function, and may pass output through
its output ports to other blocks, along (directed) connection edges.
More formally, each connection c ∈ m.C is a tuple ⟨bs ,ps ,bt ,pt ⟩
of source block bs , its output port ps , target block bt , and its input
port pt [13].

Since a typical CPS tool supports a wide range of modelling styles
we do not further detail the connection semantics here. For example,
in a tool’s dataflow semantics a connection c1 takes its source
block’s output data d1 and eventually delivers d1 to c1’s target
block. However a CPS tool may at the same time support other
semantics, in which, for example, a source block may overwrite
data d2 on a connection c2 before c2’s target block can read d2.

A model m typically acquires its inputs from sensors, whose
values it samples at a user-defined frequency (e.g., 10 times per sec-
ond). Each sample yields a new input vector i (containing one value
per sensor) that the model processes in the execution order defined
by the model’s connection edges [44]. To affect its environment,
a model typically has a set of output blocks (or sinks)mout such
as Figure 1’s Out1 and Out2 blocks, which can emit model output
values to a display, another model, or a hardware actuator.

Figure 1: Example valid Simulink model: While Action1 is
on a false-branch when b1 receives non-zero positive input,
Action1’s values can still affect the outside world, making
Action1 a zombie block.

Commercial CPS tools specify the datatypes each port of each
block supports (e.g., “either double or uint32”). If the user does
not explicitly configure a port’s datatype, then the CPS tool infers
and assigns a concrete datatype (e.g., “double”). If the user has
under-constrained the blocks’ datatypes, the tool may heuristically
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break “best datatype match” ties. We define the Tdt (b,p) function
to retrieve the resulting datatype of a given block b’s port p.

Tools such as Simulink are also known as model-based design
(MBD) tools and have become popular in several domains, includ-
ing automotive and aerospace engineering. A key reason for their
wide use is that these tools allow non-software engineers to design
complex software systems and compile them to low-level code.

When creating a model, users can re-use and customize standard
blocks from built-in libraries supplied by the tool chain. Most blocks
have user-configured parameters that may affect the block’s output
values. The user may also create new custom blocks from scratch
via segments of procedural code (e.g., in C or MATLAB).

Commercial CPS tool chains such as Simulink and LabVIEW
do not have a publicly available specification that is complete, for-
mal, and up to date. Besides partial informal descriptions, certain
tool chain semantics are often defined in their code base [57]. Let
validL(m) indicate if tool chain L accepts modelm, i.e., compiles
m without error. As an example, for a model to be valid, Simulink
must be able to infer consistent datatypes for each port left unspec-
ified by the user. Simulink uses several heuristic rules to infer and
propagate datatypes, e.g., forward, backward, and block-internal
propagation [20, 33].

After compilation users simulate models, where the tool chain
uses configurable solvers to iteratively solve the model’s network
of mathematical relations via numerical methods, yielding for each
output block a sequence of outputs. Commercial tool chains typi-
cally offer different simulation modes. For example, Simulink Nor-
mal mode “only” simulates blocks, Accelerator mode speeds up
simulation by emitting native code, and Rapid Accelerator mode
produces a standalone executable for simulation2.

Besides flat models, CPS development tools offer hierarchical
models (e.g., via Simulink’s Subsystem andModel Referencing), where
the parent to child model relation is acyclic. A tool chain may per-
mit a loop in the model’s connection relation (such as a feedback
loop) if it can numerically solve it.

2.2 Zombies: Output Data From a False Branch
How to best deal with conditional execution in block diagrams has
been an open research question for decades, e.g., in the dataflow
literature [26]. While well-understood in procedural programming,
conditional execution differs significantly in block diagrams, which
complicates the dead vs. live code distinction and therefore EMI.

For example, while impossible in procedural code, the (valid)
Simulink model of Figure 1 simultaneously returns values from
both its true and false if-then-else branches. Specifically, assume
that in the current model execution the user provides via block
b1 a constant value of 5 as input to the model and thus to the
control-flow conditional If. Given this input, in all simulation steps
of this execution the conditional will thus selectAction1 as the false-
branch. Unlike in procedural programming, such a false-branch
still has a user-configured default output value (for Action1 this
default value is zero). The subsequent increment modeled by the
Add1 block causes Out1 to constantly emit 1, which can affect the
outside world.

2Simulink’s embedded code generation worfklow for deployment on target platforms
is distinct from these simulation modes and is outside the scope of this paper.

In a procedural setting Action1 would be dynamically dead code
and we could delete it for this execution trace. But in our block
diagram setting Action1 is not dead. Instead, a block b is dead and
can be removed only if there is no path from b to any output block
(and neither b nor its successor blocks can produce other side-
effects). Simulink has built-in tools to remove such dead blocks.
Unlike in procedural programming, this “no path exists” notion
does not depend on runtime data, so for block diagrams we do not
distinguish between statically and dynamically dead.

A block may never be activated, e.g., because it is on an always-
false branch such as Action1. We call such a block a zombie (as in
live-dead hybrid), as it has properties of both procedural live code
(it has program values) and procedural dead code (no computations
take place). A static zombie is a zombie in all possible model execu-
tions. A dynamic zombie is a zombie in the current model execution
(e.g., Action1).

Action1 is a top-level zombie, its (default) value can reach the
outside world. In contrast, a nested zombie such as Figure 1’sGain1
block is nested inside a top-level zombie. A nested zombie cannot
influence the outside world, as its top-level zombie never processes
the nested zombie’s (default) value. A nested zombie is thus con-
ceptually similar to procedural dead code.

Finally, a block is live if it has both a path to an output block (or
another side-effect) and gets activated. A dynamically live block is
live in the current model execution. It may be a zombie (but not
dead) during other executions. A statically live block is live in all
possible executions.

2.3 Differential Testing, EMI, and SLforge
Differential compiler (or CPS tool chain) testing compares two exe-
cution traces that compile and execute a program (or model). By
design these two traces are supposed to be equivalent, i.e., are ex-
pected to produce the same result values. If the results differ we
have likely found a compiler bug. More formally, for programsm
and n, and program parameters p and q, based on our understand-
ing of the programming language semantics J·K, we expect equal
execution results, i.e., Jm(p)K = Jn(q)K. We expect to have found
a bug if two compiler configurations C and D for this language
instead produce different results, i.e., C(m)(p) , D(n)(q).

One way to instantiate this framework is to fix a program plus
parameter combination (m = n, p = q) and only differ the tool
configuration (C , D). Indeed, well-known differential testing
approaches such as Csmith have found many compiler bugs by
running randomly3 generated programs under varying compiler
configurations (i.e., C(m)(p) , D(m)(p)). In the CPS world, exist-
ing approaches for Simulink similarly have varied compiler op-
timization levels, numerical solvers, simulation modes, and code
generators [12, 13, 15].

Equivalence modulo input (EMI)-based differential testing has
typically instantiated this framework by fixing a tool configuration
plus program parameter combination (C = D,p = q). In otherwords,
EMI-based approaches use a programm and one of its mutants n
that is expected to be functionally equivalent to m on the given
input p, i.e., m , n and Jm(p)K = Jn(p)K. Again, different results
suggest a compiler bug (i.e., C(m)(p) , C(n)(p)). While there has

3As common in the literature, in this paper by “random” we mean “pseudo-random”.
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been recent interest in EMI for testing C compilers [28, 29, 58, 59],
besides SLforge we are not aware of EMI-based testing work for
block diagram or CPS model languages.

Random program generators have significantly improved the
bug-finding capability of both types of differential testing instan-
tiations [8, 28, 62]. Existing random Simulink model generators
include CyFuzz [12] and its successor SLforge [13]. Besides compar-
ing traces of different tool configurations, SLforge also performs
a very restricted form of EMI-based mutation and is thus the ap-
proach most closely related to SLEMI. Specifically, after generating
a random valid Simulink model, SLforge optionally runs Simulink’s
static block reduction tool to delete all dead blocks.

3 SLEMI: CPS TOOL CHAIN TESTING VIA EMI
Existing EMI-based compiler testing approaches focus on proce-
dural programs [28, 29, 59]. CPS models are different in several
ways, e.g., they may emit output from several parts of the model at
the same time. They are also typically simulated over a finite num-
ber of simulation steps, where at each step s the model consumes a
separate input vector i , amounting to a sequence I of input vectors.

We adapt the framework of Section 2.3 to CPS models. To keep
our definition simple, we represent blockb of modelm at simulation
step s (after m has processed s input vectors from input vector
sequence I ) asm(I )s .b. Since commercial CPS tool chains support
floating-point datatypes, we compare block outputs via a tolerance.

In other words, we consider x and y equivalent (i.e., x ≈ y) if
|x −y | < ϵ , where ϵ is configurable (10−16 by default) [12]. We thus
consider two CPS modelsm and n (n obtained by mutatingm, i.e.,
n =m′) equivalent modulo a common sequence I of input vectors,
i.e.,m ≡I n, if both models are valid, have the same output blocks,
and the CPS tool chain semantics J·K at all time steps s prescribes
equivalent values for all blocks b that are common to both models,
as follows.

m ≡I n ⇐⇒ valid(m) ∧valid(n) ∧ (mout = nout )∧

∀⟨b ∈ (m ∩ n), s⟩ : Jm(I )s .bK ≈ Jn(I )s .bK

Figure 2 outlines our approach. SLEMI takes as input real-world
and randomly generated CPS models together with their input
values. We first filter out invalid models (as they are not suitable for
differential testing) and then execute each seed model on its inputs
to collect block-level coverage information (on all model hierarchy
levels, via Simulink Coverage [28, 38]). Then SLEMI performs several
one-time base mutations (Listing 1) and stores data in a persistent
cache. We then mutate a model by removing and adding blocks.

Given the lack of a full formal specification of Simulink, we had
to revert to an iterative approach for developing mutation opera-
tions that maintain equivalence modulo input. In other words, we
expect that each of our mutations converts a modelm intom′ such
thatm ≡I m

′ holds. If via differential testing SLEMI determines
thatm ≡I m

′ did not hold, we report the issue to MathWorks. Math-
Works confirming a bug increases our confidence in the mutation’s
EMI property. A feedback of “false positive” tells us our mutation
was not EMI, gives us a better understanding of the tool’s (other-
wise undocumented) semantics, and we have to adapt (or abandon)
the mutation operation accordingly.

Compared to model simplifications performed by optimizing
compilers (including profile-guided optimizers, trace compilers,
etc.) our below model mutation strategies are more general. Opti-
mizing compilers rewrite programs toward a concrete goal (such as
increasing execution speed or minimizing power consumption). For
example, while optimizing compilers would not consider adding
complex extra execution logic into live or dead code, we are in-
terested in all EMI mutations, in our bid to find additional CPS
tool-chain bugs.

3.1 Base Mutations: Annotate Seed Models
SLEMI’s base mutations deal with two challenges that did not occur
in earlier work on EMI-based differential testing [28, 29, 59], i.e.,
datatype inference and sample time inference.

3.1.1 Annotating Seed Models With Port Datatypes. The first chal-
lenge is introduced due to datatype inference. Instead of enforcing
datatypes to be fully specified on every single port on each block,
which can get cumbersome on large-scale models, Simulink infers
unspecified datatypes based on data dependencies and optional par-
tial specifications. For models with under-constrained datatypes,
even a small SLEMI-induced mutation that may intuitively seem
like it should be EMI can trigger vastly different inferred datatypes,
which could create false warnings during differential testing.

Good examples of this problem are model regions that are dy-
namically zombie. Simulink’s datatype propagation rules may rely
on these zombie regions and mutating them may severely affect
the datatypes Simulink infers in the surrounding regions. To give
SLEMI more EMI mutation choices, we therefore first want to anno-
tate the seed model with the datatypes Simulink infers. The seed’s
types thus remain available for compilation even after extensive
mutations that may otherwise alter Simulink’s datatype inference
results.

As a concrete instance of this challenge, in the Figure 3a child
model excerpt of a larger seed model (omitted for brevity) Simulink
propagates type double from block b2 to blocks b3, and b1. When
we replace the nested zombie b2 with a TypeCast block (Data Type
Conversion in Simulink) yielding Figure 3b, then Simulink counter-
intuitively propagates int to b3 and b1, which is not compatible
with b1, yielding a compile error.

Listing 1: Base mutations to preprocess seed m using
set(b,p, t), which fixes output port p’s datatype to t . Besides
changing to a fixed-step solver (Section 3.1.2), base muta-
tions are EMI.
preprocess(m, I) // returns m

change to fixed−step solver // not EMI
execute m using input I
for each block b ∈m : // collect inferred properties

collect execution coverage
collect inferred datatype and sample time
annotate sample time if b is a Source block

for each connection c ∈m : // add types
set(c .bs , c .ps , Tdt (c .bs , c .ps )) // source output−port
d := new TypeCast block // for target input−port
set(d, 0, Tdt (c .bt , c .pt )) // d's only output−port (0)
connect c .bs → d and d → c .bt // rewire
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Figure 2: Overview: SLEMI first obtains seed model s with input vector I from a real-world corpus or a random generator (e.g.,
SLforge), performs one-time base mutations to yield modelm, and collectsm’s coverage c (on I ). An EMI-based mutation then
yields a valid equivalent (on I ) modelm′ for finding tool chain bugs via differential testing.

(a) (b)

Figure 3: Example seed model excerpt without explicit type
specifications (a) where Simulink propagates double via b2.
Replacing nested zombie b2 with a Convert Data Type Con-
version block (b) may yield different type inference results.

Inferring the datatypes of all seed model blocks and explicitly
specifying these types in themodel is an EMImutation, as it does not
change the outcome of model compilation or subsequent simulation.
Simulink offers two options for specifying types and SLEMI uses
both. First, some (but not all4) blocks have a parameter that sets
the block’s output port datatypes. Second, TypeCast blocks (such
as Data Type Conversion) have a defined output type. Placing one
of them before a block b lets one define b’s input port datatype.

The lower half of the Listing 1 pseudo code summarizes these
type annotation steps. First, for each block bs that has this option,
SLEMI sets the block’s output type to the Simulink inferred type.
Second, SLEMI adds a fresh TypeCast block d before each block bt ,
to annotate bt ’s input type.

Even combining both annotation strategies does not fully specify
all types, as the output-port parameters do not cover all blocks and
TypeCast leaves its input-port unspecified. However, this combina-
tion has been sufficient and did not create any false warnings in
our experiments.

3.1.2 Dealing With Sample Time Inference. The second challenge
not found in earlier EMI-based testing for procedural languages is
that in a CPS model each block has a sample time. At a high level,
this challenge is similar to the previous datatype inference issue.
As a concrete example, commercial CPS tool Simulink encourages
the user to specify the sample time only for a subset of the blocks
and then let the tool infer the sample time for the remaining blocks
(using forward and backward propagation [37]). Again, a small
mutation that at first glance seems like it may be EMI can trigger the
CPS tool to infer vastly different sampling times for large portions
of the model, which in turn yields different model outputs, yielding
a false bug warning.

4For example, Simulink’s Discrete Transfer Function block does not support specifying
double datatype at its output port via block parameters. One can achieve this effect
only by controlling the block’s input port datatype.

As an extreme example, some blocks directly expose their block-
specific sampling frequency, such as Counter Free-Running, which
plainly returns as its output the number of times it has been sam-
pled [41]. The tool chain inferring different sample times for such
a block in a seed and a mutant model yields different results.

Similar to datatype inference, before we mutate the seed model
we want to preserve the sample time inference results from the
seed model, to give SLEMI more options for EMI mutations. How-
ever, different from the datatype issue, attempting to annotate each
block proved to be a dead end. The Simulink documentation en-
courages users to only annotate either the source blocks or the
sink blocks [35] and our initial bug reports that contained blanket
sample time annotations for all blocks were rejected for that reason.
Based on this feedback, SLEMI now only adds inferred sample time
annotations to the seed model’s source blocks.

A key feature of CPS development tools is their support for
simulation of continuous-time models via variable-step numerical
integration [36]. In other words, at each simulation step the tool’s
output includes the next simulation step’s length (aka the next
simulated execution time point). By varying time steps, the tool
may thereby vary simulation efficiency and simulation precision.
From SLEMI’s perspective, this again may cause a seemingly small
mutation to trigger non-EMI model changes.

To side-step this and related continuous-time issue, SLEMI cur-
rently performs one base mutation that is not EMI. In the Listing 1
pseudo code this mutation appears as the first step of switching
the seed model from a variable-step to a fixed-step solver, the lat-
ter being widely used in practice [14, 36]. For such models SLEMI
also disables the related zero-crossing detection feature. While it
restricts SLEMI’s bug search space, this non-EMI base mutation
does not impact the correctness of the overall workflow, since for
differential testing SLEMI only uses preprocessed models.

3.2 Mutating Nested Zombie Regions
At a high level thismutation is similar tomutating dead code regions
in procedural languages [28]. SLforge-generated models do not use
Simulink’s default-value inheritance option [40]. In such a model
a top-level zombie ignores any values (including defaults) coming
from its nested zombie region. For such models this mutation hence
changes the nested zombie region freely, without being observable
from the outside world.

Due to preprocessing, this mutation is easy to implement, as
during preprocessing SLEMI has added extensive TypeCast nodes
throughout the model. This means that even removing a random
block within a nested zombie region only has a relatively small
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chance of introducing a compile error. This contrasts with pro-
cedural languages, where, for example, removing a local variable
definition likely causes a compile error in subsequent variable use.
So while existing EMI tools tend to remove an entire dead region,
SLEMI removes individual blocks from nested zombie regions.

Listing 2: Create EMI mutant from preprocessedm.
mutate(m, I)

if randomly chosen block b ∈m is nested zombie:
delete b
randomly wire all of b's successors to b's predecessors

else if b is top−level zombie:
replace b by d such that d mimicks b's output
ensure d has b's sample time

else: mutate live hierarchy or fork new connection

With the per-block coverage from preprocessing SLEMI identi-
fies nested dynamic zombies. For example, in Figure 1 blockGain1 is
a nested zombie, as it is nested inside the top-level zombie Action1.
After deleting a nested zombie block, SLEMI randomly reconnects
its predecessor blocks to its successor blocks (top of Listing 2).
This may leave some of the deleted zombie’s predecessor blocks
unconnected, when the number of incoming connections (from pre-
decessors) to the deleted zombie block is greater than the number
of outgoing connections (to successors). By default SLEMI ensures
that such unconnected predecessor blocks do not get treated as
dead code, as Simulink may otherwise remove them.

3.3 Mutating Zombie and Live Regions
Since prior work has found mutating live code more effective than
mutating dead code [59], we adapt livemutations to CPSmodels and
generalize them to also cover top-level zombie blocks. Compared
to the earlier work’s mutation based on program synthesis [29, 59],
SLEMI currently focuses on the mutations of the lower part of
Listing 2.

First, SLEMI’s live-hierarchy extraction mutation extracts a live
region and promotes it to its own child model (Section 2.1). SLEMI
then applies standard Simulink constructs (Model Reference) to
reference the new model from the original model [41], following
modeling rules to preserve equivalence. While Simulink does not
propagate datatypes and other block attributes across such model-
reference boundaries, SLEMI again leverages its datatype inference
and annotation database from preprocessing.

Second, SLEMI’s live fork mutation forks an existing live con-
nection, to feed the same data to a new signal path. The new path
is live as it terminates in a new sink. However, this path is gener-
ated to be not observable, as the sink is an assertion block that is
designed to be always true. Concretely, before the new assertion
block SLEMI currently adds a sequence of Simulink Math Opera-
tions blocks. These additions are EMI and have no effect on the
produced traces.

Finally, SLEMI’s live-path mutation currently focuses on the
special case of replacing a top-level zombie block within a live
path with another block that is expected to constantly produce
the top-level zombie’s default value. For example, in the Figure 4a

(a)

(b) = (a)’

Figure 4: Example live-path mutation (b) that replaces a top-
level zombie block (Action) in the b1 to b2 live path with a
live Saturation block that mimics the default behavior of
the replaced top-level zombie block.

example model5, SLEMI replaces the top-level zombie Action block
with a live Saturation block, yielding Figure 4b. The Saturation
block constantly feeds the replaced block’s default value to its live
successor block b2.

3.4 Keeping Mutations EMI-preserving
Beyond designing individual mutation operations to preserve EMI,
SLEMI applies additional rules across mutations. Besides mutations
maintaining standard type rules, the following focuses on rules
specific to CPS models.

3.4.1 Avoid Algebraic Loops. A SLEMI mutation should not intro-
duce an algebraic loop, i.e., a circular data dependence path onwhich
all blocks are direct feed-through [34]. On such a loop Simulink
would need a block b’s output value to compute b’s input value.
While Simulink can solve some algebraic loops, doing so is compu-
tationally expensive, so SLEMI avoids algebraic loops.

Specifically, SLEMI avoids replacing blocks that are not direct
feed-through with direct feed-through blocks, to not turn a benign
data dependence loop into an algebraic loop. For example, the
Figure 5a model contains a benign loop between Add and Delay,
where the latter delays returning its input as an output to the next
sample time. Since Delay is not direct feed-through, SLEMI will not
replace it with a direct feed-through block such as another Add.

(a) (b) (c) = (b)’

Figure 5: Example benign data dependence loop (a). Adding
b4 to (b) yields an invalid execution order priority in (c).

5For brevity Figure 4 and subsequent figures omit the TypeCast blocks added by
preprocessing.
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3.4.2 Avoid Invalid Execution Order Priority. During compilation,
CPS tool chains determine the order in which to compute block
outputs according to the model’s data-dependencies, optional user-
requested block execution priorities, and language semantics. For
example, Simulink orders all block output computations within
one block priority level before the blocks of the next level. For
example, an If block’s action subsystems (branches) receive the
same exclusive priority. Since the If block explicitly controls the
execution of all of its action subsytems, they all execute together
as an atomic unit whenever the If block executes.

This rule disallows placing a block in a path between If block’s
action subsystems. In the valid Figure 5b example model, the b2
and b3 action subsystems receive the same execution order as that
of the If block. Adding the b4 block outside these subsystems in
Figure 5c results in a compile error. Whereas the data dependencies
call for b4 being computed after b2 and before b3, blocks b2 and b3
must execute at the same time as the If block, so there is no way
to order the execution between b2 and b3, resulting in an expected
compile-time error.

4 EVALUATION
To evaluate our EMI-based mutation strategies in terms of their
runtime and bug-finding capabilities, we explore the following
research questions.

RQ1 How does SLEMI’s runtime compare to SLforge?
RQ2 Can SLEMI find new CPS tool chain bugs?
RQ3 Does SLEMI find bugs that SLforge misses?

4.1 Seed Models and Their Input Values
The first potential source of seed models is a large corpus of some
1k user-created, publicly available Simulink models [14]. Of these
1k models, given our toolbox licenses, we could run 545 models
with our Simulink installation. 18 of these models are interactive
(i.e., they halt to wait for user input through a terminal or GUI) and
thus we discarded them. If a (non-interactive) corpus model accepts
inputs we used default 0 values.

Other corpus models have a long simulation duration (including
infinity), which is also not desirable, so we limited their simulation
duration to 10 seconds (since most of the models have this default
duration [14]). Only 16 of the corpus models we were able to run
had top-level zombie or nested zombie blocks.

In contrast, SLforge-generated models had more top-level zom-
bie and nested zombie blocks. SLforge generates model plus corre-
sponding inputs, which can be readily used together. In a sample
of some 150 models that is representative of the SLforge-generated
models we used in our experiments, each model (except three) had
at least one top-level zombie or nested zombie block (median value:
26.4% of the blocks in a model are such blocks). Besides enabling a
variety of SLEMI mutations, SLforge-generated models are attrac-
tive for differential testing, as they have deterministic outputs by
construction.

As a result, all of our experiments “only” used SLforge-generated
(i.e., synthetic) models as seeds for evaluating the research questions.
In some sense this is a strength, as using SLforge-generated models
enables a fair comparison with SLforge. (Recall that the research
questions all revolve around comparing this paper’s techniques

with SLforge.) Beyond the research questions in the paper, it is
too early to tell how this paper’s techniques will scale beyond
SLforge-generated models.

4.2 Evaluation Setup
The SLEMI prototype tool for finding bugs in Simulink is imple-
mented inMATLAB on top of the Parallel Computing Toolbox. While
in production mode the model mutation (and caching) jobs run
in parallel, for debugging one can also configure SLEMI to mu-
tate models sequentially in an interactive mode—pausing after de-
sired mutation operations and highlighting the changes. SLEMI
and all experimentation data are open source and freely available
at GitHub [11].

For our experiments we used the latest SLforge version (in its
default configuration) and MATLAB releases R2017a, R2018a, and
R2018b [10]. To evaluate SLforge and SLEMI side-by-side, we ran
them separately in two otherwise idle machines (each with four
Intel i74790 CPUs at 3.60 GHz, 64-bit Ubuntu 16.04, and 12 GB RAM).

To isolate EMI’s impact from differential testing, for SLEMI we
only compared mutant with seed on a single configuration (Normal
mode with Optimization off). In contrast, since SLforge emphasizes
differential testing, for SLforge we used all four of its differential
testing configurations on each model (Normal + Optimization off,
Accelerator + Optimization off, Normal + Optimization on, Accelera-
tor + Optimization on).

4.3 Issue Reporting and MathWorks Feedback
We reported SLEMI-identified issues via MathWorks’s Bug Reports
website6 (which required a free MathWorks account). While this
website listed earlier bug reports, this list was not comprehensive
and did not mention the corresponding technical support case (TSC)
numbers. In contrast, open source projects often list all bug reports
a project has received, regardless of issue classification and severity.
For each report (except one) we eventually received email from
MathWorks Support that classified the issue into new/known/non-
bug/pending. MathWorks Support usually responded within one
business day and interacted further to understand our issue reports.
We did not get further feedback from MathWorks Support on their
assessment of issue significance or severity.

4.4 Mutating is Faster than Generating (RQ1)
To explore SLEMI’s runtime characteristics, we measured both how
SLEMI’s runtime scales with model size (measured as number of
model blocks [47]) and how long each SLEMI phase takes. For this
experiment, we used our 150 valid representative generated seed
models of various sizes (from 100 to some 3k blocks, average 989).
Based on earlier work these 150 models are similar to the non-
toy models in the largest public corpus of open source Simulink
models [13].

From these seed models we then generated 500 mutants by sam-
pling uniformly from the seeds, creating some 3.5 mutants per seed
on average. When reporting mutant creation results, we report the
mean of all mutants generated for a seed.

During initial experiments we realized that individual Simulink
tool chain phases may produce conflicting results. For example,
6https://www.mathworks.com/support/bugreports/
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Figure 6: Cumulative runtime of SLEMI’s three seed preprocessing and three per-mutant phases; data point = single seed and
its mutants; * = average mutation operations that led to a seed’s mutants; X-axis = blocks per seed model; data points/bars
ordered by x-value and into correct 100-block seed bin, but beyond that not shown on precise X-axis location to improve
readability; stacked bar shows SLEMI phases from running seed (bottom) to differential testing (top).

a model that failed Simulink compilation when collecting block
attributes successfully compiled for simulation. One such issue led
to a confirmed bug report (Case 03213776). To catch such bugs the
SLEMI implementation performs several tasks separately that could
conceptually be combined into one phase, such as compilation to
infer datatypes and execution for coverage collection.

Figure 6 shows the number of mutation operations per model
which is a (user configurable) fraction of the number of model
blocks available for mutation (less blocks not mutated to keep the
mutant EMI-preserving) along with SLEMI phases’ runtime. The
average phase runtimes (in seconds) were running the seed (51.7),
collecting coverage (93.2), addressing datatype and sample time
inference (94.5), generating (on average) 3.5 mutants (19.7), average
mutant runtime (26.4), and average differential testing the seed
with one of its mutants (169.7).

Overall, differential testing was the longest-running phase (aver-
age 41% of total runtime) in each experiment, while mutant genera-
tion on average consumed only 2.4%. While the last three phases
(mutant generation to differential testing) run once per mutant, all
mutants of a seed share the first three phases (up to inferring the
seed’s datatypes and sample times).

In contrast, the state-of-the-art random Simulink model gener-
ator SLforge on average took about 470 seconds just to generate
a single valid model. For this experiment, SLforge generated 167
models that were very similar to the models used as seeds in the
SLEMI experiment. In other words, mutating an existing model in
SLEMI was much faster than generating a fresh model with SLforge.

4.5 SLEMI Found New Bugs in Simulink (RQ2)
Table 1 summarizes our reports. To date we have reported 13 unique
issues to MathWorks Support, who confirmed 9 as a bug, of which
3 were already known to MathWorks (we re-discovered them in-
dependently). Similarly, MathWorks Support told us when they
considered a report a non-bug. The corresponding false positive
rate was between 2/13 and 4/13 (since 2 cases are still pending).

The mutations that contributed to finding the 9 new/known bugs
were the data-type annotation base-mutation (3 bugs), sample-time
annotation base-mutation (3), nested-zombie removal (3), top-level
zombie removal (1), live fork mutation (1), and live hierarchy muta-
tion (2). (A bug may be impacted by several mutations.) Following
are details of some reports.

Case 03580171: Live-hierarchy extraction→ Compile Error (New
Bug). After mutating a seed by moving one of its blocks to a sepa-
rate model file and then referencing the new model from the seed,
Simulink inherited a different sample time for the block, resulting
in an error. However, this is not expected since the block supports
sample time inheritance for model referencing per documentation.

Case 03568445: Live Mutation → Block Output Mismatch (Known
Bug). Having independently re-discovered a known issue in the
Simulink Unary Minus block (where its output diverges for very
small floating point inputs between Normal and Accelerator mode),
we implemented mutation by adding such math operation blocks in
live signal paths followed by assertion logic, to validate the added
blocks’ characteristics. This EMI-based mutation also reproduced
the bug without entailing differential testing varying tool chain
configurations (i.e., simulation modes). R2019a fixes this bug.

Case 03205823: Nested Zombie Mutation → Compile Error (Likely
New Bug). Figure 7 shows condensed versions of the seed model
(left) and the mutant model (right). This mutation replaced the
nested zombie blocks Inport and Transfer1 with a Ground block
that supports the output datatype double. However after adding
it Simulink back-propagated uint32 to its predecessor, a DiscreteS-
tateSpace block that does not accept this type, consequently yielding
a compile error. MathWorks considers addressing this issue in a
future release.

Case 03210493: Disconnecting block → Compile Error (Known
Bug). In this mutation we disconnected a nested zombie Action
Subsystem from its predecessors, successors, and its driving If block.
Simulink did not remove the block, resulting in a compilation error
in version R2017a. This error was unexpected since (1) no If block
was connected to the subsystem meaning the block would never
get executed and (2) the block was also dead so the Dead Block
Reduction optimizer should have eliminated the subsystem.

Upon further investigation, MathWorks Support identified not
explicitly specifying the block datatypes of the blocks in the Action
subsystem as the root cause and suggested explicitly specifying
the types as a workaround for the datatype inference limitations.
Accordingly, to minimize datatype inference we now preprocess
the models and annotate datatypes for all of the blocks in a seed
(Section 3.1). We independently re-discovered this bug. Simulink
R2018a fixed it.
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Table 1: SLEMI-discovered issues: TSC = Technical Support Case number from MathWorks; MW = feedback from MathWorks
on bug report (N = new confirmed bug, K = known bug, F = false positive, ? = under investigation); C = bug reported when com-
piling mutant; R = bug reported at mutant runtime; E = EMI independently discovers, T = differential testing independently
discovers, S = missing or hard to find specification (e.g., if only specified in a block-configuration GUI wizard). All bugs exist
in R2018a except 03210493 (R2017a).

TSC Summary MW Kind
03205823 Incorrect type inference after replacing block with type-compatible Ground block N E, T, C
03210493 After mutation Simulink does not eliminate dead Action Subsystem K E, C
03213776 Valid model stops compiling when collecting inferred properties N E, T, C
03259942 Invalid data-dependency loop for Action subsystem after mutation; undocumented specification ? E, S, C
03404633 Output discrepancy for Discrete Integrator block due to using different datatype in the mutant ? E, R
03416784 Output discrepancy for Sin block after zero-crossing detection F E, R
03475044 Datatype inconsistency after enabling signal logging, due to complex type inference heuristics N E, T, C
03486057 When annotating sample time getSampleTime API does not return correct sample time N E, C
03486114 During type annotation Discrete Transfer Function does not accept a valid type. Only way to specify type is

through controlling its input signal. The rule is specified in a GUI wizard.
F E, S, C

03489578 Block does not respect sample time inference diagnostic command InheritedTsInSrcMsg K E, C
03489586 Signal Editor block errors-out due to unrelated configuration when specifying sample time N E, C
03568445 Behavior difference for Unary Minus operator when feeding small floating-point number K E, T, R
03580171 Incorrect sample time inference after live mutation by moving blocks via model-referencing N E, C

Figure 7: Case #03205823 (condensed) removes dead blocks Inport and Transfer1 in the seed model (left) and replaces them
with the type-compatible (double) Ground (right) where Simulink failed to infer correct datatypes for all of the blocks, i.e., it
inferred uint32 at Delay’s input and propagated it back to the output port of StateSpace which does not accept it.

Figure 8: Case #03213776 (condensed): Simulink infers dif-
ferent output types for FIR FIlter across different tool chain
settings: double in Normal mode vs. uint32 when compiling
to collect the inferred block properties.

Case 03213776: Nested Zombie Mutation → Mismatch in Different
Tool Chain Configurations (Likely New Bug). The excerpted model in
Figure 8 compiled and ran without errors using Simulink’s Normal
mode. But it produced a compilation error when we attempted
collecting block properties after nested zombie block mutation,
which is unexpected as models that simulate without errors should
not raise errors when compiling for collecting these properties.
MathWorks Support confirmed that these two different workflows
use two different heuristics for datatype propagation and would
consider making the results consistent in future releases.

4.6 SLEMI Finds Bugs Missed by SLforge (RQ3)
To compare the EMI-based mutation in SLEMI to plain differential
testing in SLforge on bug finding efficiency, we also ran SLforge
with similar resources. Specifically, while our SLEMI experiments
used under 200 CPU hours, we gave SLforge’s default configuration
over 300 CPU hours to find bugs. Of these, SLforge spent 80% on
model generation and 20% on differential testing.

Compared to SLEMI’s 9 unique bugs, in this experiment SLforge
found two unique new bugs, which are a subset of the bugs SLEMI
found with fewer resources. In addition to the two bugs SLforge
found, upon manual inspection we observed that SLforge could
have hypothetically found an additional two bugs SLEMI initially
identified via EMI, if given additional time.

Based on our experience with the SLforge implementation and
its differential testing options, the remaining 5 bugs seemed out of
reach for SLforge. Specifically, given the Simulink options SLforge
uses and the Simulink language constructs it uses in the models
it generates, it seems unlikely that SLforge can find these 5 bugs.
For example, using sample time analysis and annotation SLEMI
discovered a bug (TSC 03489586). SLforge does not perform similar
analysis and annotation, so it missed this bug.

4.7 Threats to Validity
Both SLforge and SLEMI are prototype tools that only support a
subset of the Simulink language and libraries. From a bug-finding
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perspective it is encouraging that these tools were still able to find
several confirmed bugs in a widely used (and tested) commercial
CPS tool chain.

A key threat to the validity of our tool comparisons is that the
results just represent a particular implementation of the underlying
bug-finding techniques for one particular CPS language, evaluated
with models produced by a single seed model generator. Different
implementation and evaluation choices could influence the tools’
bug-finding abilities significantly. So without more tool implemen-
tations and experiments it would be premature to rule one tool
chain testing technique superior to the other. In any case, the com-
mon best practice in software validation applies also to finding CPS
tool chain bugs, i.e., to use all available bug-finding tools.

Since complete specifications for commercial CPS tools are not
publicly available and our experiments only involved SLforge-
generated models that cover a subset of the Simulink functionalities,
the EMI approaches may not generalize to other CPS models. Al-
though our approach has already found bugs covering widely-used
Simulink libraries (from [13]), we consider experimenting with
other libraries, user-created models and other CPS tools future
work.

5 RELATEDWORK
Following is related work on mutating CPS models, EMI-based
mutation for finding bugs in compilers for procedural languages
(i.e., C and OpenCL), finding CPS development tool bugs without
using model mutation, and finding bugs in CPS models.

5.1 Mutating CPS Models
As discussed throughout the paper, the most closely related work
is SLforge. While it mostly focuses on how to create random valid
Simulink models for differential testing, SLforge also contains a
very restricted version of Simulink model mutation. Specifically, for
a given seed model, SLforge performs a single mutation operation,
which (statically) deletes all dead blocks. In contrast, SLEMI takes
into account model profiling data and performs several novel EMI-
based mutation techniques that address CPS modeling challenges
not found in procedural code, including zombie regions and sample
time inference. Overall SLEMI’s was more effective and efficient
than SLforge.

Besides SLforge we are not aware of other work performing
EMI-based mutation in CPS. However, the more restricted class of
static equivalence-maintaining mutation has been of interest for
several CPS-related tasks. For example, partial evaluation tries to
minimize model size or simulation runtime while maintaining the
model’s execution behavior [46].

While partial evaluation produces a class of EMI-mutants, we
consider them less promising for finding bugs in CPS tool chains,
since modern tool chains likely already perform some forms of
partial evaluation and thus resulting bugs are likely already known
to the tool chain developers. A concrete example is MathWorks’s
Simulink Design Verifier [39], which, among others, has an option
to detect and remove “dead logic”, aka static nested zombie blocks.

Static equivalence-maintaining mutation is further interesting
for model refactoring. For example, Tran et al. present an approach
for composing elementary Simulink mutation operators into larger

refactorings [61]. Users have to take care to ensure that a composed
refactoring preserves model behavior. Also available are more spe-
cialized tools that are designed to preserve model behavior while
improving a model’s layout. For example, the Auto Layout Tool can
flatten a hierarchical model, by “inlining” a child model directly into
its parent [48]. Other recent work transforms Simulink models [16]
with the goal that the mutant approximates the seed model’s be-
havior. These mutations are often more restrictive as they are done
statically and they have not yet been applied for differential testing
or finding tool bugs.

Model clones can have the same (or different) behavior as their
seed. A recent taxonomy of Simulink model mutations for evaluat-
ing clone detection techniques was found to capture the manual
edits performed on three Simulink projects [55].

Mutation testing aims at introducing small semantic changes
to check if an existing test suite can detect the mutant’s different
execution behavior. In some sense mutation testing is the inverse
of EMI-based mutation. For example, Zhan and Clark trace all
paths from a change to outputs, to ensure that a change can be
observed [64]. To select mutants efficiently, He et al. define an
equivalence relation on models [25]. This equivalence notion is
much coarser than ours, as it will consider equivalent two mutants
whose execution behaviors differ widely, as long as both mutants
are killed (detected) by the same test case.

5.2 EMI-based Mutation for Procedural Code
To complement existing schemes for differential compiler test-
ing, recent work has developed EMI-based mutation for C pro-
grams [28, 29, 59, 60] and OpenCL programs [30]. Overall these
approaches have found in production-level compilers hundreds of
previously unknown bugs, many of which the compiler develop-
ers have already fixed [58]. While early EMI-based mutation work
focused on mutating dynamically dead program regions through
both dead element removal [28] and addition [29], recent work also
mutates live program paths [59].

These previous approaches have in common that their mutations
target procedural languages (C and OpenCL) that have a complete
specification. In contrast, this paper targets a flexible block diagram
language that is widely used in CPS development, which (a) does
not have a publicly available full formal specification and (b) has
several key features not found in C or OpenCL, such as explicit
notions of time, datatype inference, and zombie code.

5.3 Finding CPS Development Tool Bugs
Earlier work has explored several avenues for finding bugs in CPS
development tools. Most closely related is randommodel generation
with “plain” differential testing (without EMI-based mutation), as
implemented in CyFuzz [12] and SLforge [13]. Closely related to
SLforge is a randommodel and differential testing tool by Nguyen et
al. [45]. The tool first generates random hybrid automaton models
and then HyST [4] translates the automaton models to a variety of
CPS modeling languages including Simulink.

Other testing [20, 51, 56, 57] and analysis [20] schemes target
selected parts of a CPS development tool. For example, Stürmer
et al. test optimization rules of code generators utilizing graph
grammars [56, 57]. Fehér et al. model the data-type inferencing logic
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of Simulink blocks [20]. In subsequent work, we have implemented
one more novel EMI-based mutation technique finding one more
Simulink bug (in version R2018a), which is available in Shafiul
Azam Chowdhury’s doctoral dissertation [9].

5.4 Finding Bugs in CPS Models
Finally, while this paper looks for compiler bugs in CPS tools, a
complementary line of work analyzes and looks for bugs in CPS
models [2, 3, 7, 22, 27, 31, 39, 53, 65]. For example, MathWorks’s
Simulink Design Verifier [39] uses static analysis to identify design
errors in Simulink models, such as array access violations, division
by zero static, integer overflow, and static nested zombie blocks.
Similarly, DSVerifier [7] applies symbolic model checking based on
SAT and SMT solvers to find design errors in digital systems.

Related work generates or evaluates the quality of test cases for
CPS models [6, 18, 21, 42, 54], e.g., via mutation testing of Simulink
models [6]. Other related work synthesizes controllers that are
correct by design [1, 50]. While these directions are important, they
are distinct from our work, which focuses on finding compiler bugs
in CPS development tools rather than analyzing and testing the
CPS models.

6 CONCLUSIONS
Finding bugs in commercial cyber-physical system development
tools (or “model-based design” tools) such as MathWorks’s Simulink
is important in practice, as these tools are widely used to generate
embedded code that gets deployed in safety-critical applications
such as cars and planes. Equivalence Modulo Input (EMI) based
mutation is a new twist on differential testing that promises lower
use of computational resources and has already been successful
at finding bugs in compilers for procedural languages. To provide
EMI-basedmutation for differential testing of cyber-physical system
(CPS) development tools, this paper has developed several novel
mutation techniques. These techniques deal with CPS language
features that are not found in procedural languages, such as an
explicit notion of execution time and zombie code, which combines
properties of live and dead procedural code. In our experiments the
most closely related work SLforge found two bugs in the Simulink
tool. In comparison, SLEMI found a super-set of issues, including 9
confirmed as bugs by MathWorks Support.

Future work includes adopting SLEMI to closely related CPS
modelling languages, including Stateflow [24] and the Simulink/S-
tateflow subset TargetLink [19].
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