
Static and Dynamic Analysis of Timed Distributed Traces

Parasara Sridhar Duggirala Taylor T. Johnson Adam Zimmerman Sayan Mitra
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: {duggira3,johnso99,zimmrmn3,mitras}@illinois.edu

Abstract—This paper presents an algorithm for checking global
predicates from distributed traces of cyber-physical systems. For
an individual agent, such as a mobile phone or a robot, a trace is a
finite sequence of state observations and message histories. Each
observation has a possibly inaccurate timestamp from the agent’s
local clock. The challenge is to symbolically overapproximate the
reachable states of the entire system from the unsynchronized
traces of the individual agents. The presented algorithm first
approximates the time of occurrence of each event, based on
the synchronization errors of the local clocks, and then overap-
proximates the reach sets of the continuous variables between
consecutive observations. The algorithm is shown to be sound; it
is also complete for a class of agents with restricted continuous
dynamics and when the traces have precise information about tim-
ing synchronization inaccuracies. The algorithm is implemented in
an SMT solver-based tool for analyzing distributed Android apps.
Experimental results illustrate that interesting properties like safe
separation, correct geocast delivery, and distributed deadlocks can
be checked for up-to twenty agents in minutes.

I. INTRODUCTION

Consider programming a group of mobile robots for col-
laborative construction. Each robot executes a program im-
plementing one or more distributed algorithms, moves and
manipulates its environment, and exchanges messages with
others. Numerous program parameters have to be configured
for this system to work. The system has to contend with
failures and asynchrony. This task is further complicated by
the lack of debugging tools that can deterministically replay
an execution and help identify the precise step where the
program goes awry, which then leads to a bad behavior.
Many other cyber-physical systems (CPS)—autonomous ve-
hicles, warehouse management systems, and process control
systems—all share these characteristics.

The core contribution of this paper is a procedure for
answering the following types of queries. Given a trace β—
a sequence of state recordings for each of the individual
agents—of the distributed system A and a global property
P , does there exist a real-time t when all possible (or at least
one) bounded executions ofA that correspond to the recording
β, satisfy the property P . The algorithm combines dynamic
analysis of the trace β with symbolic overapproximation
of bounded reach sets obtained through static analysis of
A. It is always sound, and it is complete when both the
static analysis and the dynamically generated information
are exact.

How does this procedure help with the programming
problem described earlier? Suppose P describes a bad state
(such as collision or deadlock) of the system and the algo-
rithm answers ‘yes’ with a witnessing time t. Then the devel-

oper can learn that all executions resolving the uncertainties
in a manner consistent with the recordings in β, demonstrate
the violation of P at time t. She can then focus on this
particular set of executions around time t to isolate the bug.

If the procedure returns that there is no time when any
execution satisfies P , then it establishes the complement of
P for the bounded time interval. In special cases where it
is guaranteed to be complete, when it returns a time t at
which P is violated, indeed we obtain an actual execution
that violates the property; such traces can then be used for
debugging and diagnosis. In general, if the overapproxima-
tion violates P , a definite conclusion cannot be reached and
we have to either record a trace with more information or
relax P .

Overview of the Procedure: A trace β of a distributed
system with a set I of agents is a collection of traces
{βi}i∈I , where each trace βi is a sequence of snapshots
or observations recorded locally by agent Ai. Our technique
should generalize to traces with quantized and partial state
observations, however, for simplifying the exposition we
assume that each observation is a recording of the complete
state of Ai. Since this is a distributed system, the agents do
not share any common knowledge about time. In fact, the
only timing information available about an observation is
the timestamp value from the agent’s local clock which may
not be synchronized with other agents or with any external
clock. Since this is a CPS, in between successive recordings,
the state of the agents continue to evolve continuously.

The first step in our algorithm is to infer from the trace
β, for each observation v ∈ β, a real-time interval (called
the observation interval) over which the observation could
have been recorded. This inference is based on the timing
information available about the local clocks and the time-
bounds induced by the causality of the messages exchanged
between agents.

From the observation intervals, we then compute the set of
states that could be reached by agent Ai between successive
observations. This step strongly relies on static analysis ap-
proaches available for individual agent models. In this paper,
we assume that behavior of the physical variables is modeled
using rectangular hybrid automata [1], and as a consequence,
we can symbolically compute expressions for forward and
backward reach sets (Pre (, ) and Post (, )) from a given set
of states. The final step combines the symbolic reachability
computations of the individual agents and checks if there
exists a time t when the complete distributed system violates
the given property.



For more general physical dynamics, the approach de-
scribed here can be used in two ways. First, complex dy-
namics can be approximated by rectangular dynamics and
then analyzed using the approach presented here. Secondly,
approximate symbolic reachability computations with more
complex dynamics can be performed directly using nonlinear
solvers, for example, those available in the Z3 SMT-solver [2].
These generalizations remain to be explored in the future.

There are two sources of imprecision in the procedure.
First, the Pre (, ) and Post (, ) expressions obtained through
static analysis may not be exact. This may be the case
either because the model of the system that is analyzed
is not exact (e.g., the program or the dynamics are not
known exactly), or because the model cannot be analyzed
exactly. There exists a rich body of literature addressing the
latter (see, for example, [1], [3], [4] and the recent HSCC
proceedings [5]). While reach sets for some classes of systems
can be computed exactly, these computations are necessarily
overapproximations for most classes.

The second source of imprecision is the inaccuracy of
the dynamic information recorded in the traces. Specifically,
these inaccuracy arises from the lack of exact information
about the timing of the recorded observations. For each
observation, we calculate an interval of real time in which
it may have occurred. If these intervals are larger than
what is actually possible, then the set of possible executions
computed from the given (inaccurate) trace may subsume
the actual set of possible executions. We show that the
procedure is complete, if both these types of inaccuracies
can be eliminated.

For rapidly developing distributed CPS applications, in
our lab we have built a programming platform on top of the
Android [6] operating system. We call this platform StarL [7]
and it provides various building blocks for communication
and control. Using StarL, we have implemented applications
such as peer-to-peer chat, geocasting, coordinated distributed
search with robots, and distributed traffic control [7]. In
fact, design bus encountered in developing these applications
partly motivated this work. We have implemented the pro-
cedure described in this paper in a prototype tool using Z3,
and have analyzed numerous traces from StarL applications.

The examples presented in this paper come from: way-
point following, geocasting, and a distributed traffic control
application. For these traces, our procedure automatically
establishes and finds counterexamples for interesting prop-
erties, such as: (a) no two robots come within a certain
distance of each other, (b) every message geocast to a region
was received by another agent iff the latter happened to be
in that region during a certain time interval, and (c) there
are no deadlocks at traffic intersections. The performance of
our analysis tool is promising. For example, analyzing a 10
second trace with 100 observations and for 12 agents takes
around 15 seconds. Scaling up to a 5 minute trace (with 12
agents and 4000 observations), the analysis completes in 4
minutes. Detailed results from our experiments are presented
in Section V.

II. RELATED WORK

The problem of detecting a global predicate from traces
of purely asynchronous agents has been well-studied in the
distributed computing literature [8], [9]. In these systems,
the events (observations) are in no way associated with real-
time and are related by Lamport’s happens-before relation [10]
alone. This relation induces a partial ordering on the events.
The algorithms for detection of general global predicates
rely on traversing the lattice of all possible interleavings of
the asynchronous events (observations), and therefore, are
exponential in the size of the trace [11], [12]. Thus, much of
the research in this area has focused on identifying subclasses
of predicates admitting efficient detection, such as conjunc-
tions of local predicates [13], [14], linear predicates [15], and
regular predicates [16]. For example, in [17], Chandy and
Lamport present an algorithm for detecting stable predicates
by taking global snapshots. For reducing the space of global
states, techniques such as symbolic methods [18], computa-
tional slicing [19], [20] and partial order methods [21] have
been investigated.

Though the same problem is studied in this paper, our
assumptions on agent behavior is motivated by the capabil-
ities of current devices used for embedded and distributed
computation, and these assumptions translate to solutions
that use different strategies from those studied earlier. For
example, our procedure uses static analysis for computing
overapproximations of the reach sets between the observa-
tions (or events). This leads to a combination of static and
dynamic analysis that has not been used earlier in the context
of distributed systems.

Despite the challenges, in all of these cases, we would
ideally like to design CPS that guarantee certain safety and
real-time properties. While there is a large body of work
on performing verification for distributed CPS [22], [23],
[24], [25], these works generally focus on model verification
or static analysis. In contrast, in this paper, we develop
a method that can be used to help programmers debug
during the designing phase for such distributed systems,
and also that can be used for runtime verification. Since
traces correspond to actual executions, properties are veri-
fied in spite of non-idealities, such as imperfect local clock
synchronization. Such non-idealities are essential to consider
in realistic systems, and are not usually considered in model
verification studies.

III. PRELIMINARIES

In this paper, we will use a special type of timed input/out-
put automaton (TIOA) [26], [27] for modeling the agents and
the communication channel. A standard TIOA is a state
machine with states that can evolve both instantaneously
through discrete state transitions and over an interval of
time by following trajectories. Here, input/output transitions
model receiving and sending of messages.

Communication Model: The agents communicate through
messages sent over an unreliable asynchronous channel. That
is, messages can be arbitrarily delayed and dropped. It is
standard to formally model this communication as a single
automaton, Channel, which stores the set of all in-flight



messages that have been sent, but are yet to be delivered.
An agent sends a message m by invoking a send(m) action
(more on this below). This action adds m to the in-flight set.
At any arbitrary time, an in-flight message m is chosen by the
Channel, which either delivers it to its recipient or removes it
from the set. Let M be the set of all possible messages ever
sent or received. We assume that all messages are unique and
each message identifies its sender and recipient. We denote
the set of messages sent and received by agent i by Mi,∗ and
M∗,i, respectively.

Agent Model: The state of an automaton is defined by
the valuations of a collection of discrete and continuous vari-
ables. Typically, continuous variables model physical state
or physical sensor readings available at an agent, such as
its position and its local clock, and discrete variables model
program variables.

Let V be a set of variables. Each variable is associated
with a type. A valuation for v ∈ V maps v to its type.
The set of all possible valuations of V is denoted by val(V ),
and its elements are denoted by v, v′, etc. The valuation
of a particular variable v ∈ V at v is denoted by v.v. A
trajectory for V is a function that maps an interval of time
[0, t] for t ≥ 0, to val(V ). The right end-point of the interval
t is the duration of a trajectory τ and is denoted by τ.dur.
For a continuous variable, every trajectory is a continuous
function. For a discrete variable, all trajectories are constant
functions (and therefore also continuous).

Definition 1. The ith agent automaton is the structure Ai =
〈Vi, Ai,Di, Ti〉 where

(a) Vi is a set of variables consisting of the following: (i) a set
of continuous variables Xi including a special variable clki
which records local time, and (ii) a set of discrete variables Yi
including the special variable msghisti that records all sent
and received messages. The set Qi

∆
= val(Vi) is called the set

of states.
(b) Ai is a set of actions consisting of the following subsets:

(i) a set {sendi(m) | m ∈ Mi,∗} of send actions, (ii) a set
{receivei(m) | m ∈ M∗,i} of receive actions, and (iii) a set
Hi of ordinary actions.

(c) Di ⊆ val(Vi)×Ai × val(Vi) is called the set of transitions.
For a transition (vi, ai,v

′
i) ∈ Di, we write vi

ai→ v′i in short.
(i) If ai = sendi(m) or receivei(m), then all the components
of vi and v′i are identical except that m is added to msghist
in v′i. Furthermore, for every state vi and every receive action
ai, there must exist a v′i such that vi

ai→ v′i, i.e., the automaton
must have well-defined behavior for receiving any message in
any state. (ii) If ai ∈ Hi, then vi.msghist = v′i.msghist.

(d) Ti is a collection of trajectories for Vi that is closed under
prefix, suffix, and concatenation (see [26] for details).

System Model: Let I be the set of unique identifiers for
all the agents in the system. The complete system model
is a TIOA called System = 〈V,A,D, T 〉 that is obtained as
the parallel composition of {Ai}i∈I with Channel. Owing
to shortage of space, we refer the reader to [26] for the
formal definition of the composition operator. Informally,
each Ai synchronizes with Channel through the sendi(m)

and the receivei(m) actions. For a message m ∈ Mi,j sent
by Ai for Aj , the sendi(m) is triggered by Ai and puts
m in Channel, then some time after that, receivej(m) is
(nondeterministically) triggered by Channel, and causes m
to be delivered at Aj .

Semantics: An execution of System models a particular
run. Formally, an execution α is an alternating sequence
τ0a1τ1 . . . τk, where each τj in the sequence is a trajectory, and
each aj is an action of System. The duration of an execution
is defined as α.dur =

∑k
j=1 τj .dur. For any t ∈ [0, α.dur],

α(t) denotes state of System at the end of in the longest
prefix of α with duration t. For a set of variables S, α(t).S
is the valuation of the variables in S at the state α(t). A
global predicate for System is a set P ⊆

∏
i∈I Qi. Often we will

define P using a formula involving the variables in
⋃
i∈I Vi.

A predicate is satisfied by an execution α at time t if α(t) ∈ P .
In this paper, we are concerned with inferring global

properties of sets of executions that correspond to recorded
observations. First, we define recorded observations or traces.
A trace for Ai is a finite sequence βi = vi[1], . . . ,vi[k], where
each vi[j] ∈ Qi is the jth observed state of Ai. We define
length(β) to be k. Also, we assume that for every agent Ai,
we know its initial state, denoted as vi,0. A trace for System
is a collection β = {βi}i∈I , where each βi is a trace for Ai. We
define [[β]] as the set of observations in β. Next, we formalize
the notion of correspondence between traces and executions.

Definition 2. Given a trace β = {βi}i∈I , an execution α of
System corresponds to β if ∀ i ∈ I, ∃ t1 ≤ t2 . . . ≤ tlength(βi),
∀j ∈ {1, . . . , length(βi)}, α(tj).Vi = βi[j]∧α(0).Vi = vi,0. The
set of executions corresponding to trace β is denoted by TraceInvβ .

Recall that multiple executions may correspond to the
same trace because the system model can be nondeterminis-
tic and there is loss of information in the trace observations.

Finally, we state the two types of analysis we study in this
paper. Given the specification of System A, global predicate
P , and a trace β, decide if
(a) there exists a time t ∈ [0, α.dur] such that for all α ∈

TraceInvβ , α satisfies P at t, that is α(t) ∈ P , and
(b) for all time t ∈ [0, α.dur] and all α ∈ TraceInvβ , α satisfies

P at t, that is α(t) ∈ P .
We conclude this section by recalling the definition of Lam-
port’s happens before relation on state observations [10]. For
two state observations vi[j] and v′i[j

′] in a given trace β, vi[j]
is said to happen before v′i[j

′], denoted by vi[j] ; v′i[j
′], iff

one of the following holds: (i) i = i′ and j < j′, or (ii) i 6= i′,
vi[j] is the post state of a sendi(m) transition for some
m ∈ Mi,i′ , and vi′ [j

′] is the post-state of the corresponding
receivei′(m) transition. We identify the relation ; with its
transitive closure. For an observation v in β, we define
before(v) as the set {u | u ; v} and after(v) as the set
{u | v ; u} .

IV. FROM DISTRIBUTED TRACES TO GLOBAL PROPERTIES

A. Observation Intervals

Each recorded state vi[j] in a trace βi is associated with a
local clock value vi[j].clk, but thus far we have not made



any assumptions about clk apart from it being continu-
ous. In distributed computing systems, the impossibility of
constructing globally synchronized clocks is a fundamental
limitation [28]. Therefore, it is unrealistic to assume that all
the vi[j].clk values equal the real-time of the execution α at
which vi[j] is recorded. At the same time, many embedded
devices have local clocks that are synchronized up to some
accuracy using distributed clock synchronization algorithms.
The next definition specifies when an observation is synchro-
nized to some accuracy.

Definition 3. For a recorded state vi[j] ∈ Qi in a trace β of
System and a positive constant σ ∈ R≥0 ∪ {∞}, vi[j] is said
to be σ-synchronized if for every execution α ∈ TraceInvβ ,
(1) there exists t in the real-time interval J ∆

= [max(vi.clk −
σ, 0),vi.clk+σ] such that, α(t).Vi = vi[j] and (2) for all t /∈ J ,
α(t).Vi 6= vi[j]. βi is σ-synchronized if every observation in βi
is σ-synchronized.

In other words, for any execution that corresponds to β, the
state observation vi[j] occurs within the interval J and only
within that interval. If the agents implement a clock synchro-
nization algorithm that guarantees that the local clocks are
synchronized to the real-time with an accuracy of σ, then it
is guaranteed that each βi in the trace β is σ-synchronized.
This definition is more general, in that, it allows different
agents’ clocks to be synchronized to real-time with different
accuracy, and even different states within the same trace can
be associated with local clocks that have different accuracy.
Note that an ∞-synchronized recorded state provides no
information about the real-time of the recording. Also, if vi[j]
is σ-synchronized in β, then it is also σ′-synchronized for any
larger σ′ ≥ σ.

For a given trace β, the observation interval [L(v), U(v)]
for a σ-synchronized observation v is defined inductively
along the happens-before (happens-after) chain as follows:

L(v) =max

(
0,v.clk − σ, max

u∈before(v)
L(u)

)
, and (1)

U(v) =min

(
v.clk + σ, min

u∈after(v)
U(u)

)
. (2)

We define the duration of a trace β, dur(β), as maxv∈[[β]] U(v).
The following lemma can be proved by induction on the

length of the happens-before (and happens-after) chain of an
observation.

Lemma 1. For every execution α ∈ TraceInvβ , for every ob-
servation v in β of some agent i, (1) there exists t in the real-
time interval [L(v), U(v)], such that α(t).Vi = v, and (2) for all
t /∈ [L(v), U(v)], α(t).Vi 6= v.

B. Filling in the Gaps

In this section, we fix an automaton Ai and a trace
βi = vi[1], . . . ,vi[k] of Ai. We drop the suffix i from the
observations vi[j] and initial state vi,0. The trace βi records
the state of Ai at certain time instants. The exact real-time of
an observation v in βi is unknown, but we compute the ob-
servation interval [L(v), U(v)] satisfying Lemma 1. In what
follows, we present a symbolic approximation algorithm

clk x ẋ ∈ [a, b] σl σu

1.03 3.20 [−1.6,−0.9] 0.100 0.100

1.67 2.39 [−1.6,−0.9] 0.126 0.108

2.42 1.47 [−1, 1] 0.100 0.144

3.45 1.59 [0.5, 0.5] 0.144 0.100

4.08 1.86 [−1.6,−0.9] 0.126 0.100

Table I
EXAMPLE TRACE FOR ROBOT 2 CORRESPONDING TO FIGURE 2.

taking three inputs: (a) the specification of Ai, (b) a trace of
Ai with length k and duration T , βi = v[1], . . . ,v[k], v0 and
(c) the observation intervals for the observations in βi. The
algorithm computes a symbolic expression reachβi(t), such
that for each t ∈ [0, dur(βi)], reachβi(t) overapproximates the
states reached by Ai through the executions in TraceInvβi .

Example 1 Our running example consists of three mo-
bile robots in the plane, each attempting to move their x-
coordinate to equal their numeric identifiers (e.g., eventually
x1 = 1, x2 = 2, and x3 = 3), without caring about
the values of their y-coordinates. To accomplish this goal,
each robot has several modes, each with different dynamics
corresponding to a different controller. We assume (a) the
observation intervals are disjoint for each robot, (b) that
mode switches may only occur at the time an observation is
recorded, and (c) that the robots have rectangular dynamics
(that is, ẋi ∈ [am, bm] for some constants am ≤ bm in each
mode m).

A trace consisting of five valuations of a robot is shown
in Table I, and this corresponds to the middle robot 2 (in
light green) in Figure 2. In the trace, clk is the local time
recorded in the trace, x is the robot’s x-coordinate in the
corresponding interval [clk − σl, clk + σu], and ẋ ∈ [a, b]
indicates the dynamics with which x is evolving.

Before introducing the algorithm, we define several
building-block expressions that are computed from static
analysis of Ai’s specification. For an expression S involving
the variables of Ai, [[S]] ⊆ Qi denotes the subset of states that
satisfy S. PostAi(S, t) is an expression involving V ∪ {t},
such that for any execution α of Ai with α.fstate ∈ [[S]],
α(t) ∈ [[PostAi(S, t)]]. The PostAi(S, t) expression is said
to be exact if, for every s ∈ [[PostAi(S, t)]], there exists an
execution α with α(0) ∈ S and α(t) = s. PreAi(S, t) is an
expression involving V ∪ {t} such that for any execution
α of Ai with α(t) ∈ [[S]], α.fstate ∈ [[PreAi(S, t)]]. Exact
PreAi(S, t) expressions are defined analogously.

For any time t ∈ [0, dur(βi)], before(t) returns the v ∈ [[βi]]
with the the largest U(v) < t, or v0 if no such v exists, and
after(t) returns the v ∈ [[βi]] with the the smallest L(v) ≥ t,
or it returns a special symbol > indicating that there is no
such observation.

In Line 5, obs([l, u)) is the sequence of observations, such
that for each v in the sequence [L(v), U(v)] ∩ [l, u) 6=
∅. Seq prepends before(l) to this sequence and appends
after(u) only if it is not >. The predicate Pred(Seq, [l, u))
takes as input such a sequence and the time interval



1: input : βi = 〈v[1], . . . ,v[k]〉, v0

2: output : reachβi(t)
3: TSeq ← Sort({L(v), U(v) | v ∈ [[βi]]})
4: (l, u) ← (tj , tj+1) {% such that t ∈ [l, u) and tj , tj+1 ∈
TSeq}

5: Seq ← 〈before(l), obs([l, u)), after(u)〉
6: reachβi(t)← Pred(Seq, [l, u))

Figure 1. Algorithm for computing the predicate for the set of states
reached in the interval tj , tj+1.

[l, u), and computes the symbolic expression for the set of
states reached in the interval [l, u). If after(u) 6= >, then
Pred(〈s1, . . . , sm〉, [l, u), t) is defined as (l ≤ t < u) ∧
∃ts1 < ts1 < . . . < tsm ,

m∧
j=1

(L(sj) ≤ tsj ≤ U(sj)) ∧
m−1∧
j=1

(tsj ≤ t ≤ tsj+1 ⇒

(Post (sj , t− tsj ) ∧ Pre (sj+1, tsj+1 − t))). (3)

If after(u) = >, then it is defined as (l ≤ t < u) ∧ ∃ts1 <
ts1 < . . . < tsm

m∧
j=1

(L(sj) ≤ tsj ≤ U(sj)) ∧
m−1∧
j=1

(tsj ≤ t ≤ tsj+1 ⇒

(Post (sj , t− tsj ) ∧ Pre (sj+1, tsj+1 − t))) ∧
(t ≥ tsm ⇒ (Post (sm, t− tsm))). (4)

The next lemma states that reachβi(t) contains all states that
are reachable at time t through any execution in TraceInvβi .

Lemma 2. For any execution α ∈ TraceInvβi of Ai and any
t ∈ [0, dur(βi)), α(t) ∈ [[reachβi(t)]].

Proof: Let us fix an execution α of Ai in TraceInvβi and
an instant of time t ∈ [0, dur(βi)). Let TSeq be the sorted
sequence of unique observation interval endpoints for the
observations in β as computed in Line 3. In Line 4, t uniquely
defines the interval [l, u) such that t ∈ [ti, ti+1). Let Seq =
〈s1, s2, . . . , sm〉 be the sequence of observations computed in
Line 5. We will show that α(t) ∈ [[Pred(Seq, [l, u))]].

First we consider the case where sm = after(u) 6= > and
Pred is defined by Equation (3). From Lemma 1 (1), it follows
that for each j ∈ {1, . . . ,m}, there exists

∃ tsj ∈ [L(si), U(si)], α(tsj ) = sj . (5)

From Definition 2, it also follows that for each j ∈ {1, . . . ,m−
1}, tsj ≤ tsj+1 . From the construction of Seq, we have that
s1 happened before l, sm happened after u, and s2, . . . , sm−1

happened (in that order) within the time interval [l, u).
Therefore, t must be within the [tsj , tsj+1) for exactly one
j ∈ {1, . . . ,m}. We fix the j such that t ∈ [tsj , tsj+1).
Using Equation (5), we have α(tsj ) = sj and α(tsj+1) = sj+1.
Thus, α(t) ∈ [[Post (sj , t− tsj )]] and α(t) ∈ [[Pre (sj+1, tsj+1 −
t)]].

For the case where after(u) = > sm 6= after(u) and Pred is
defined by Equation (4). The proof is identical to the previous
case with the exception of the situation where t ≥ tsm . In this
case, there is no observation after t in α, but there is only an
observation sm before t. Thus, α(t) ∈ Post (sm, t− tsm).

0 1 2 3 4
-2

-1

0

1

2

3

4

time

x i
(t)

Figure 2. Example timeline and reach set computation between
observations for the x-coordinates of three mobile robots in the
plane.

Example 2 In this part of the running example, we illustrate
how the set of Pre (, ) and Post (, ) can be used for computing
the reachable states between two consecutive observations.
These sets of reachable states between observations are
shown for the x-coordinate of the three robots plotted against
real-time in Figure 2. The observations (x values) and the cor-
responding observation intervals are visualized as the black
lines. From observation 3, the Post (, ) (the points between
the purple lines) is computed up to the last time observation
4 could have occurred. Likewise, from observation 4, the
Pre (, ) (the points between the orange lines) is computed
up to the earliest time observation 3 could have occurred.
Instantiating (Equation (3)) for this case, we have:

∃t0 < tm.v[3].clk − v[3].σl ≤ t0 ≤ v[3].clk + v[3].σu∧
v[4].clk − v[4].σl ≤ tm ≤ v[4].clk + v[4].σu ⇒
Post(v[3].x, t− t0) ∧ Pre(v[4].x, tm − t).

Under the assumption that the robots’ positions evolve with
rectangular dynamics, the Post (v[3].x, t− t0) expression for
robot 1 starting from observation 3 is:

∃t.v[3].x+ v[3].a(t− t0) ≤ x(t) ≤ v[3].x+ v[3].b(t− t0).

As we have assumed every time a mode switch occurs a state
observation is added to the trace, these Pre (, ) and Post (, )
expressions are exact. The final expression for reachβi(t) for
t between observations 3 and 4 computed by eliminating
quantifiers. For a general automaton Ai, these expressions
are computed from the static analysis of the specification Ai.

Under the additional assumption that the observation
intervals in βi are exact and disjoint and that the Pre (, ) and
Post (, ) computations are exact, we show that every state in
[[reachβi(t)]] is reachable by some execution in TraceInvβi at
time t.

Lemma 3. Suppose Ai permits exact computation of Post (, ) and
Pre (, ) expressions and for the given trace β, all the observation
intervals are exact and disjoint. For any t ∈ [0, dur(β)) and any
state s ∈ [[reachβ(t)]], there exists an execution α ∈ TraceInvβ
with α(t) = s.



Proof: Let us fix t ∈ [0, dur(βi)), and a state s ∈
[[reachβi(t)]]. Let TSeq and Seq be the time and observation
sequences computed in Lines 3 and 5 in Algorithm IV-B.
Let [l, u) be the interval in Tseq which contains t. Let
before(l) = v1 and after(u) = v2. Note that since the
observation intervals are disjoint, for all but the last interval
after(u) 6= >. Based on the disjointedness of the observation
intervals, there are two possible cases to consider:

Case 1: There is no observation with the observation
interval is [l, u]. Therefore, [l, u] cannot be the last interval
and after(u) 6= >. Since s ∈ [[reachβ(t)]], from Equation (3),
it follows that there exists t1 ∈ [L(v1), U(v1)] and t2 ∈
[L(v2), U(v2)], such that s ∈ [[Post (v1, t − t1)]] and s ∈
[[Pre (v2, t2− t)]]. Since the Pre (, ) and Post (, ) computations
are exact, it follows that there exists an execution fragment
α′ with α′(0) = v1, α′(t − t1) = s and α′(t2 − t1) = v2.
Furthermore, since [L(v1), U(v1)] is an exact observation
interval, there exists an execution α1 ∈ TraceInvβ′

i
, where

β′i is the prefix of βi up to v1, such that α1.ltime = t1 and
α1.lstate = v1. For the same reason, there exists another ex-
ecution α2 ∈ TraceInvβ′′

i
, where β′′i is the suffix of βi starting

from v2. Concatenating we define α ∆
= α1α

′α2 ∈ TraceInvβi
and satisfies the requirement α(t) = s.

Case 2: There exists a single observation v ∈ [[βi]] for which
L(v) = l and U(v) = u. Since s ∈ [[reachβi(t)]], from Equa-
tion (3), we know that there exists t1 ∈ [L(v1), U(v1)], tv ∈
[l, u], and t2 ∈ [L(v2), U(v2)], such that one of the following
two conditions hold: (1) t1 ≤ t ≤ tv , s ∈ [[Post (v1, t − t1)]],
and s ∈ [[Pre (v, tv − t)]], or (2) tv ≤ t ≤ t2, s ∈ [[Post (v, t −
tv)]], and s ∈ [[Pre (v2, t2 − t)]]. For the first subcase, since
the Pre (, ) and Post (, ) computations are exact, it follows
that there exists an execution fragment α′ with α′(0) = v1,
α′(t − t1) = s and α′(tv − t1) = v. Furthermore, since
[L(v1), U(v1)] is an exact observation interval, there exists
an execution α1 ∈ TraceInvβ′

i
, where β′i is the prefix of βi

up to v1, such that α1.ltime = t1 and α1.lstate = v1. For the
same reason, there exists another execution α2 ∈ TraceInvβ′′

i
,

where β′′i is the suffix of βi starting from v. Concatenating,
we define α = α1α

′α2 ∈ TraceInvβ , which satisfies the
requirement α(t) = s.

For the second subcase, the reasoning is similar, except we
have to consider the possibility that after(u) is >, that is, v2

is undefined. In this case, the execution prefix to v (at time tv)
is concatenated with any execution fragment starting from v
and hitting s after t− tv time.

Summary of Sections IV-A and IV-B: We have presented
a procedure for computing observation intervals for each
observation in a trace β = {βi} of a distributed system
A = ‖iAi. Furthermore, from these observation intervals
and static analysis of each individual automaton Ai, we can
symbolically compute an expression reachβi(t) that overap-
proximates the set of states of Ai that can be reached at a
given time t ∈ [0, dur(βi)). Under additional assumptions
about the accuracy of the observation intervals and the static
analysis, reachβi(t) is the exact set of states reached at time
t by executions of Ai that correspond to the trace βi.

C. Global Predicate Detection
A global property (or predicate) is an expression P involv-

ing the variables V = ∪i∈IVi of all the automata in the
distributed system. Given a system A = ‖i∈IAi, a trace
β = {βi}i∈I , and a global predicate P , we can make the
following two types of queries to an SMT-solver:

(eventually) ∃t ∈ [0, dur(β)) : (∧i∈Ireachβi(t))⇒ P (6)

(always) ∀t ∈ [0, dur(β)) : (∧i∈Ireachβi(t))⇒ P. (7)

If the eventuality-query has a satisfying t, then from
Lemma 2 it follows that all executions of the system A
corresponding to TraceInvβ , satisfy P at time t. For example,
if P captures an unsafe state of A, then this implies that all
the executions corresponding to β become unsafe at t, and
therefore, points to a bug in A. The negation of the always-
query can be posed as an existential problem:

(always) ∃t ∈ [0, dur(β)) : (∧i∈Ireachβi(t)) ∧ ¬P. (8)

If this query is unsatisfiable, then from Lemma 2 it fol-
lows that all executions of the system A corresponding to
TraceInvβ satisfy P at all times in the interval [0, dur(β)).
For example, if P captures a safety invariant, then this
implies that all the executions corresponding to β are safe
over this interval, and therefore, gives a proof of bounded
safety. On the other hand, if Equation (8) has a satisfying
solution t, and if β andA satisfy the requirements of Lemma 3
(completeness), then we can infer that there exists an actual
execution corresponding to β that violates P at time t.

These queries involve real-arithmetic and their decidability
and tractability depend on the Pre (, ), Post (, ) sub-formulas
and the predicate P . For example, if the Ai’s are hybrid
automata with trajectories described by polynomial functions
of time, and P is a polynomial in the state variables, then
this problem is decidable. Currently, we solve these queries
with Z3 [2].

Example 3 For global predicate detection in the running ex-
ample, Figure 2 allows us to conclude that the x-coordinates
of robots 2 (light green) and 3 (red) never come closer
together than about 0.25 units from one another. However,
we cannot reach the same conclusion for robots 1 (blue) and
2 (light green). In fact, since we assumed in the example
that message delivery intervals are disjoint and the robots’
dynamics are rectangular, then the assumptions of Lemma 3
are satisfied, so we can conclude there is a real execution
where the x-coordinates of robots 1 and 2 coincide.

V. EXPERIMENTAL EVALUATION

In this section, we describe the platform used for devel-
oping distributed CPS along with the type of applications
used to evaluate our approach for checking global predicates
and deadlocks. We also demonstrate the sensitivity of the
algorithm with respect to the different parameters computed
both statically and dynamically.

A. Distributed Applications on StarL Android Platform
All the traces used in experimental evaluation of our

technique are generated from distributed programs written



for Android devices [6] controlling mobile robots. In our
laboratory, we have implemented a Java-based framework,
called StarL [7], on top of the Android operating system.
StarL has implementations of unicast and multicast pro-
tocols, a library of high-level functions for accomplishing
common distributed tasks (for example, mutual exclusion,
leader election, synchronization, etc.), functions for access-
ing hardware sensors on the Android device (such as GPS
sensors, accelerometers, and cameras), and motion-control
functions (used in applications where each Android device is
paired via Bluetooth with a mobile robot, such as an iRobot
Create).

StarL provides a convenient abstraction for programming a
swarm of mobile robots with many sensors, in Java, and over
a standard operating system. Over the past year, we have
used StarL to implement several applications such as peer-to-
peer chat, geocasting, coordinated distributed search, flock-
ing, and distributed traffic control [7]. In almost all cases,
our initial implementations violated some of the expected
safety and progress properties of the application. Often the
violations were not reproducible, which made it difficult and
time consuming to find their root cause. This experience
partially motivated the work reported in this paper.

We evaluate traces generated from three StarL apps:

1) Waypoint tracking (WT): Each robot is assigned a se-
quence of waypoints in the plane and they traverse
these waypoints. The robots do not employ any collision
avoidance and do not exchange messages. This simple
building block is used in several other applications.
The two global predicates of interest are Separation and
Collinear . A set of robots satisfy Separation(d) at a given
time if the minimum distance between all pairs is at least
d. They satisfy Collinear(ε) if there exists a straight line
passing within ε distance of their positions.

2) Geocasting (GC): Each robot follows a sequence of way-
points as in WT and some of the robots geocast a
message m to a circular area C in the plane. The key
property of interest is that a robot receives this mes-
sage iff it is located within C during the time interval
[t + a, t + b], where t is the time at which the message
was sent. We call this property Georeceive(a, b, C).

3) Distributed Traffic Control (DTC). Each robot has to tra-
verse a specified sequence of segments as in WT, how-
ever, when two robots attempt to traverse intersecting
segments simultaneously (representing traffic intersec-
tions), then one of them has to acquire a lock on that
intersection. The robot succeeding in obtaining the lock
traverses its segment, while the others wait. Each in-
tersection lock is managed by the robots executing a
distributed mutual exclusion algorithm. The important
properties here are separation and deadlock freedom.

StarL has a trace writer to record observations. Observa-
tions after each message send and receive are recorded by
default. The frequency of other observations and the amount
of state information that is recorded at each observation
are controlled by the observation recording functions. Since
StarL is written in Java for Android, real-time issues re-

lated to memory management and garbage collection are a
potential issue. However, recall that for soundness of our
analysis (Lemma 2), the only real-time requirement (from
Definition 3) is the following. If an observation vi[j].clk
appears in the trace β with synchronization accuracy σ > 0,
then the state vi must have been visited within the real time
interval [ts − σ, ts + σ]. Here ts is the timestamp derived
from the (possibly inaccurate) local clock clki. The same
assumptions are made for trace observations about messages
sent and received.

When a trace writer instruction is executed in the Java pro-
gram it first (1) creates the vi[j] entry in memory (based on
the current values of the program variables and local clock)
and then (2) issues an instruction to write this observation
to the trace stored on disk. Nondeterministic delays (such
as the garbage collector starting, disk write delays, etc.) may
indeed appear between steps (1) and (2), but these delays
only affect when the vi[j] observation is written to the disk,
and does violate the above assumption (Definition 3).

In our experiments, we use two types of traces. First, for
systems with four or fewer agents, the traces are recorded
from Android devices executing application code. In these
experiments, the position of each agent (wherever applicable)
is obtained from a vision-based indoor positioning system.
Secondly, for generating traces for systems with more than
four agents, we have created a StarL discrete event simulator
that can execute many instances of an application. Specifi-
cally, the simulator executes the actual StarL application code
combined with harness functions that substitute Android’s
hardware specific functions, such as the WiFi interface, the
local clock, and the location sensors. For example, to generate
traces for 20 robots, each robot is simulated on a PC by
a process (with several threads). Each process obtains the
location of the simulated robot from a harness function
that mimics the motion of the actual robot (in our case,
the iRobot Create) in the simulated environment. Simulated
robots can turn in place, move in straight lines, and travel
in circular arcs. Other harness functions provide the agent
process access to simulated communication channels over
which messages may be delayed and dropped.

For this paper, we also record the “true execution” that
generates each trace. For the traces from the deployed sys-
tem, the true execution is obtained from a log of the actual
positions and states of all the robots that is recorded at a
high sampling rate (higher than the observation frequency)
by a centralized PC with an accurate real-time clock. For the
simulation traces, the simulator itself records snapshots of
the entire system as a record of the true execution.

B. Scalability

The first set of experimental results roughly illustrate the
scalability of the proposed approach. We have collected a
large number of traces from three StarL applications with 4-
20 participating agents. The automaton model of the appli-
cation is obtained from the Java code, and includes details
of the physical motion model. Since the robots have simple
turn-and-move dynamics, their motion is modeled using
simple rectangular differential inclusions (e.g., a ≤ ẋ ≤ b).



Property Num. Trace Result Time Mem. Formula

Agents Len. (sec) (Mb) Size (Kb)

Always 4 100 Yes 1.6 3.07 3.9

Separation 12 100 Yes 14.1 8.66 14.9

(d = 25) 20 100 Yes 81.1 18.6 31.6

Always 4 100 Yes 1.6 3.07 3.9

Separation 12 100 No 14.1 8.66 14.9

(d = 10) 20 100 No 81.1 18.6 31.6

Always Not 4 10 No 4.66 5.83 3.7

Collinear 12 10 No 12.21 12.91 10.9

(ε = 100) 20 10 No 25.68 25.66 18.4

Always 4 100 Yes 1.28 1.24 3.2

Georeceive 12 100 Yes 1.77 3.67 9.5

20 100 Yes 1.91 8.35 16

Table II
RUNNING TIME AND MEMORY REQUIREMENTS OF DISTRIBUTED

TRACE ANALYSIS.

Our tool attempts to automatically check the relevant prop-
erties by first constructing appropriate formulas and then
making the always or eventually queries to Z3.

Table II shows the total time and memory usage for check-
ing global properties for typical traces. Owing to limited
space, for each property we report the performance numbers
for 4, 12, and 20 robots participating in the application. The
size of the formula used to verifying the global predicate
(i.e., the formula for global predicate detection) is given in
the last column. In these traces, one observation is recorded
roughly every 100 ms, so a trace of length 100 approximately
corresponds to 10 seconds in real-time. For all these traces
with up to 20 robots, the properties are checked within a
couple of minutes, and in most cases within a few seconds.

For the Separation property, we check that all the partic-
ipating robots always maintain a minimum separation of d
centimeters. This requires a pair-wise comparison of dis-
tances. Note that for the same trace with 12 (and 20) robots,
Separation(d = 2.5) holds, whereas Separation(d = 10) does
not. We examined the true execution for these traces (the
fine-grained simulation log), and observed that, indeed, for
a duration of about 200ms robots 6 and 11 came within 10cm
of each other.

For the Collinear property, we check that all the robots
never form a line (within ε distance of an ideal line).
This property is violated by the robots, which implies that
there exists a time, when, in some execution corresponding
to the recorded trace, all the robots roughly form a line.
The Collinear property has more nonlinear terms than the
Separation property and hence takes more time to verify
(note, these traces have only 10 observations).

For the Georeceive property, we check that for any time
t if a message m is geocast at t, then a robot receives
m if and only it is located within a specified circle C
during the interval [t, t + 100ms]. Checking whether the
position of a robot is within the circle C at a given time
involves checking satisfiability of formulas involving real-
valued polynomials. In theory, this problem is decidable, but
Z3 does not guarantee completeness. For some of the traces,
Z3 returns “Unknown” even when the predicate actually

Sampling Period Ts

Num. Agents. 75 ms 150 ms 250 ms 500 ms

4 42.38 sec 24.56 sec 10.41 sec 4.87 sec

8 92.57 sec 48.26 sec 22.07 sec 9.58 sec

12 4 min 6 sec 114.23 sec 34.16 sec 16.43 sec

16 9 min 58 sec 3 min 52 sec 49.36 sec 24.18 sec

20 20 min 26 sec 8 min 24 sec 67.82 sec 34.94 sec

Table III
RUNTIME FOR VERIFICATION OF THE SEPARATION PROPERTY

FOR FIVE-MINUTE DURATION TRACES.

holds. Checking Georeceive is much faster than Separation
because it only involves checking the position of individual
robots over short time intervals, as opposed to the distance
between all pairs over the entire duration.

Table III shows the influence of sampling period Ts (i.e., the
time between two consecutive observations of a robot) and
trace duration on the scalability of our method. The table
reports the time taken to verify the Separation(d = 10) prop-
erty for distributed traces of 5 minute duration with varying
sampling periods. The verification times with Ts = 500ms
are always less than a minute for these traces, even with 20
robots. For the applications discussed here, 5 minute trace
duration and 500ms sampling period are reasonable choices.
For example, the duration of our experiments range from 4-8
minutes. Both the number of robots and the sampling period
increase the number of observation intervals to be checked,
and inversely affect the running time. Because the analysis is
sound, the results with different Ts were always consistent.
Hence, one could adaptively change Ts in order to improve
scalability while maintaining the benefits of sound analysis.

C. Precision of Analysis

The precision of our analysis algorithm depends both on
the precision of the static analysis (i.e., Pre (, ) and Post (, )
computations) and the accuracy of the dynamic information,
namely the observation intervals inferred from the trace
and bounds on variation of velocity. In this section, we
discuss how different levels of precision about the static
and the dynamic analysis can result in different answers.
We consider traces for WT and the GC with 4 robots.
Table IV consists of three parts. The first part shows the
outcome of the analysis for Separation with d = 10cm. When
the uncertainty in the dynamically computed observation
interval (OI) increases from local clock ±10ms to ±20ms,
Separation gets violated. With increased uncertainty in the
dynamically calculated values of the observation intervals,
we get a more conservative overapproximation of the set
of executions which violates Separation. Analogously, when
the velocity bound (VB) increases from ±20 to ±50cm/s, for
the same observation interval, the property gets violated. Of
course, whether there exists a real execution that violates the
property depends on the tightness of the observation interval
and the velocity bounds.

The second part of Table IV shows the outcome of analysis
for Georeceive with varying the minimum message delays
(i.e. a) from 0ms to 50ms in Georeceive(a, 100ms,C ) while
keeping the observation intervals constant at ±5ms. The



Separation VB = ±0 VB = ±20 VB = ±50

OI = ±5ms yes yes no

OI = ±10ms yes no no

OI = ±20ms no no no

Georeceive VB = ±0 VB = ±20 VB = ±50

delay = 0ms yes yes yes

delay = 20ms yes yes no

delay = 50ms no no no

Georeceive VB = ±0 VB = ±20 VB = ±50

OI = ±5ms yes yes yes

OI = ±10ms yes yes no

OI = ±20ms yes no no

Table IV
THE SAME TRACE WITH DIFFERENT LEVELS OF PRECISION IN

STATIC AND DYNAMIC ANALYSES MAY YIELD DIFFERENT
CONCLUSIONS. VELOCITY BOUNDS VB ARE IN cm/s.

final part of the table varies the observation interval from
±5ms to ±20ms while keeping the minimum message delay
fixed at 0. The key observation here is that increasing either
the static (model) or the dynamical (execution) uncertainties
gives more conservative overapproximations.

D. Experience with Deadlock Detection

As described earlier, the DTC application traverses seg-
ments as in WT, however when two robots attempt to
traverse intersecting segments simultaneously, then one of
them acquires a lock on the intersection. It is not hard to
imagine that a deadlock might occur when a cycle is formed
with each robot holding the lock on one intersection and
waiting for the lock on the next. We used our procedure
to check for the global predicate always (no-deadlock). If the
property is violated, then there is a potential execution that
deadlocks1.

Our tool was able to automatically detect distributed
deadlocks in two traces with 4 robots. In the first trace,
the algorithm detected that the property is violated because
robot 1 had obtained the token on all the intersections and it
had halted because of its proximity to robot 2. Since all the
tokens were taken by robot 1, all the other robots (i.e., robots
2, 3, and 4) were all waiting for robot 1. Examination of the
true execution revealed that this was indeed the case. In a
second trace, the tool detected a deadlock between robots 3
and 4. In this case, robot 3 had finished its traversal of way-
points and robot 4 could not reach its intended intersection
waypoint because it was occupied by 3. These automatically
discovered counterexamples illustrate that the procedure can
be useful for finding corner cases that are commonly missed
by programmers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a procedure for analyzing traces
of distributed CPS to infer global properties. The procedure
combines static analysis of programs and analysis of traces
generated at runtime. We showed that the procedure is

1The feasibility of this execution depends on the analysis being
complete.

sound, and presented additional conditions that ensure it is
also complete. We have implemented the procedure in an
automated software tool using the Z3 SMT solver for satis-
fiability checks. Our tool can verify interesting properties—
such as correct geographic delivery in geocast and minimum
separation—for 20 robots, often in seconds.

For future research, it is important to understand the trade-
offs between analysis cost and accuracy. More expensive
static analysis will yield tighter reach set computations, and
more expensive dynamic analysis will yield more frequent
sampling and better bounds on the timing uncertainty of
recorded observations. When do these measures actually
qualitatively improve analysis? Do these more expensive
analyses enable us to check properties the current method
fails to establish? Answering the converse question is also
useful—what is the least expensive (coarsest) analysis that
can be complete for establishing some class of systems and
predicates? Answering these questions may provide effective
extensions of the method proposed in this paper to near real-
time verification of distributed CPS.

ACKNOWLEDGMENT

The idea of trace analysis algorithms for distributed CPS
came about through discussions with Vijay Garg. We are
grateful to the National Science Foundation and the Air
Force Office of Scientific Research for supporting the authors
through research Grant CNS 1016791, an NSF CAREER
award 10-54247, and AFOSR’s Young Investigator Award.

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The
algorithmic analysis of hybrid systems,” Theoretical Computer
Science, vol. 138, no. 1, pp. 3–34, 1995.

[2] L. De Moura and N. Bjørner, “Z3: an efficient smt solver,”
in Proc. of 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, ser.
TACAS’08/ETAPS’08. Springer-Verlag, 2008, pp. 337–340.

[3] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” in ACM Symposium on
Theory of Computing, 1995, pp. 373–382. [Online]. Available:
citeseer.nj.nec.com/henzinger95whats.html

[4] G. Lafferriere, G. J. Pappas, and S. Yovine, “A new class of
decidable hybrid systems,” in In Hybrid Systems : Computation
and Control. Springer, 1999, pp. 137–151.

[5] O. Maler and A. Pnueli, Eds., Hybrid Systems: Computation and
Control, 6th International Workshop, HSCC 2003 Prague, Czech
Republic, April 3-5, 2003, Proceedings, ser. Lecture Notes in
Computer Science, vol. 2623. Springer, 2003.

[6] “Android developer’s guide,” http://developer.android.com/
guide/index.html.

[7] A. Zimmerman and S. Mitra, “A programming environment
for ad hoc wifi applications over android,” 2012, https://wiki.
cites.uiuc.edu/wiki/display/MitraResearch/StarL.

[8] O. Babaoglu and M. Raynal, “Consistent Global States of Dis-
tributed Systems: Fundamental Concepts and Mechanisms,” in
Distributed Systems, S. Mullender, Ed. Addison-Wesley, 1993,
ch. 5, pp. 97–145.

[9] V. K. Garg, “Observation of global properties in distributed
systems,” in Proceedings of International Conference on Distributed
Computing, 1996, pp. 418–425.

[10] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–565,
1978.



[11] R. Cooper and K. Marzullo, “Consistent Detection of Global
Predicates,” in Proceedings of the Workshop on Parallel and Dis-
tributed Debugging, 1991, pp. 163–173.

[12] K. Marzullo and G. Neiger, “Detection of Global State Predi-
cates,” in Proceedings of the Workshop on Distributed Algorithms,
1991, pp. 254–272.

[13] V. K. Garg and B. Waldecker, “Detection of Weak Unstable
Predicates in Distributed Programs,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 5, no. 3, pp. 299–307, 1994.

[14] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal, “Eficient
Detection of Conjunctions of Local Predictaes,” IEEE Transac-
tions of Software Engineering, vol. 24, no. 8, pp. 664–677, 1998.

[15] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell, “Efficient
Detection of Channel Predicates,” Journal of Parallel and Dis-
tributed Computing, vol. 45, no. 2, pp. 134–147, 1997.

[16] V. K. Garg and N. Mittal, “On Slicing a Distributed Computa-
tion,” in Proceedings of the International Conference on Distributed
Computing Systems, 2001, pp. 322–329.

[17] K. M. Chandy and L. Lamport, “Distributed snapshots: Deter-
mining global states of distributed systems,” ACM Transactions
on on Computer Systems, vol. 3, no. 1, pp. 63–75, 1985.

[18] S. D. Stoller and Y. A. Liu, “Efficient Symbolic Detection of
Global Predicates,” 1998, pp. 357–368.

[19] N. Mittal and V. K. Garg, “Techniques and applications of
computation slicing,” Distributed Computing, vol. 17, no. 3, pp.
251–277, 2005.

[20] A. Sen and V. K. Garg, “Formal verification of simulation traces
using computation slicing,” IEEE Trans. Computers, vol. 56,
no. 4, pp. 511–527, 2007.

[21] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu, “Efficient Detection
of Global Properies in Distributed Systems Using Partial-Order
Methods,” 2000, pp. 284–279.

[22] C. Muñoz, V. Carreño, and G. Dowek, “Formal analysis of
the operational concept for the small aircraft transportation
system,” in Rigorous Development of Complex Fault-Tolerant Sys-
tems, ser. LNCS, M. Butler, C. Jones, A. Romanovsky, and
E. Troubitsyna, Eds. Springer Berlin / Heidelberg, 2006, vol.
4157, pp. 306–325.

[23] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control:
Hybrid, distributed, and now formally verified,” in Formal
Methods, ser. LNCS, M. Butler and W. Schulte, Eds. Springer,
2011.

[24] T. T. Johnson and S. Mitra, “Parameterized verification of
distributed cyber-physical systems: An aircraft landing protocol
case study,” in ACM/IEEE 3rd International Conference on Cyber-
Physical Systems, Apr. 2012.

[25] ——, “A small model theorem for rectangular hybrid automata
networks,” in IFIP International Conference on Formal Techniques
for Distributed Systems joint international conference: 32nd Formal
Techniques for Networked and Distributed Systems (FORTE), ser.
LNCS, vol. 7273, 2012, pp. 18–34.

[26] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory
of Timed I/O Automata, ser. Synthesis Lectures on Computer
Science. Morgan Claypool, November 2005, also available as
Technical Report MIT-LCS-TR-917.

[27] S. Mitra, “A verification framework for hybrid systems,” Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge,
MA 02139, September 2007.

[28] J. L. Welch and N. Lynch, “A new fault-tolerant algorithm for
clock synchronization,” Inf. Comput., vol. 77, no. 1, pp. 1–36,
Apr. 1988.


