
Tutorial: Software Tools for Hybrid Systems Verification,
Transformation, and Synthesis: C2E2, HyST, and TuLiP

Parasara Sridhar Duggirala1,Chuchu Fan2, Matthew Potok2, Bolun Qi2, Sayan Mitra2,
Mahesh Viswanathan2, Stanley Bak3, Sergiy Bogomolov4, Taylor T. Johnson5, Luan Viet Nguyen5,

Christian Schilling6, Andrew Sogokon5, Hoang-Dung Tran5, Weiming Xiang5

Abstract—Hybrid systems have both continuous
and discrete dynamics and are useful for modeling
a variety of control systems, from air traffic control
protocols to robotic maneuvers and beyond. Recently,
numerous powerful and scalable tools for analyzing
hybrid systems have emerged. Several of these tools
implement automated formal methods for mathemat-
ically proving a system meets a specification. This tu-
torial session will present three recent hybrid systems
tools: C2E2, HyST, and TuLiP. C2E2 is a simulated-
based verification tool for hybrid systems, and uses
validated numerical solvers and bloating of simulation
traces to verify systems meet specifications. HyST is a
hybrid systems model transformation and translation
tool, and uses a canonical intermediate representation
to support most of the recent verification tools, as
well as automated sound abstractions that simplify
verification of a given hybrid system. TuLiP is a
controller synthesis tool for hybrid systems, where
given a temporal logic specification to be satisfied for
a system (plant) model, TuLiP will find a controller
that meets a given specification.

I. INTRODUCTION

Hybrid systems have both continuous and discrete
dynamics and are useful for modeling a variety of control
systems, from air traffic control protocols to robotic
maneuvers and beyond. Recently, numerous powerful
and scalable tools for analyzing hybrid systems have
emerged. Several of these tools implement automated
formal methods for mathematically proving a system
meets a specification. This tutorial session will present
three recent hybrid systems tools: C2E2, HyST, and
TuLiP and each tool as well as the tutorial plan is
discussed next. A very brief overview of TuLiP is given
and more technical details are given in a companion
paper [1].

For C2E2, 1 P.S. Duggirala is with University of Connecticut,
and 2 C. Fan, M. Potok, B. Qi, S. Mitra, and M. Viswanathan are
with the University of Illinois at Urbana-Champaign. For HyST, 3

S. Bak is with the Air Force Research Laboratory, 4 S. Bogomolov is
with IST Austria, 5 L.V. Nguyen, T.T. Johnson, A. Sogokon, H.D.
Tran, and W. Xiang are with the University of Texas at Arlington,
and 6 C. Schilling is with the University of Freiburg. For TuLiP,
see [1].

DISTRIBUTION A. Approved for public release; Distribution
unlimited. (Approval AFRL PA #88ABW-2016-0181, 28 JAN
2016)

II. C2E2: Simulation-Based Verification of
Hybrid Systems

Compare-Execute-Check-Engine (C2E2) is a tool that
implements a simulation-based verification algorithm for
hybrid systems. The input to C2E2 is a Stateflow model
(or a hybrid system in an XML format) with possibly
nonlinear ordinary differential equations (ODEs) and
a safety specification. For verification, C2E2 compiles
the ODEs using a validated numerical solver, generates
simulations, and computes an over-approximation of the
set of reachable states. If the over-approximation of
the reachable states satisfies (or violates) the safety
specification, then C2E2 terminates, otherwise it com-
putes a more precise over-approximation and repeats. We
would demonstrate the following features of C2E2 (a) the
graphical user interface, (b) specifying the safety proper-
ties, and (c) verifying the properties and visualizing the
reachable set, which helps in building intuition about the
behaviors of the hybrid system.

A. Overview
Hybrid systems are proposed as a new framework

for modeling Cyber-Physical Systems where environment
evolves according to nonlinear ODE and software is given
as a finite state machine. One of the common ways to
check whether a given hybrid system satisfies a func-
tional specification, is to perform sample simulations.
Further, when the environment is given as a nonlinear
ODE, since the closed form solution for the initial value
problem might not exist, simulations are the only known
scalable way for checking specification. However, these
simulations do not provide any formal guarantees. Simu-
lation based verification technique is hence an attractive
framework as it leverages the existing testing procedures
and provides formal guarantees. We present C2E2, a tool
that leverages the scalability of numerical simulations
to either prove safety specification of CPS descried as
Stateflow models or as hybrid systems.

C2E2 can be used for verifying bounded time safety
specification. Given a hybrid system H, the set of initial
states Θ, set of unsafe states U , and time bound T , C2E2
can verify whether any behavior of the system starting
from the initial set Θ reaches an unsafe state in U
within T time units. The main algorithm implemented in
C2E2 [2] performs the following 4 steps iteratively: sim-
ulate, bloat, check, refine. C2E2 first partitions the initial

set Θ into a collection of neighborhoods. Then, it selects a
state from each neighborhood and simulates the behavior
of hybrid system H from the state. A new procedure,
called on-the-fly discrepancy computation computes the
value ε, an upper bound on the distace between the
trajectories in the neighborhood selected. Then a safety
check is performed to infer whether the trajectories from
the neighborhood are safe, or a counterexample that vi-
olates the safety is discovered. If neither can be inferred,
then C2E2 computes a finer partitioning of the initial
set and repeats the process. C2E2 was able to verify
realistic case studies of aircraft landing protocols [3] and
automotive control systems [4].

B. Features of C2E2
The algorithm implemented in C2E2 has several fea-

tures that will be demonstrated. These features are
provided below.

Discrepancy function computation: For verifica-
tion of hybrid models using simulations, one of the most
important steps is to compute the bloating factor, i.e.,
the amount by which a sample simulation should be
bloated in order to compute an overapproximation of
the reachable set of states. In C2E2, this bloating factor
is compted using what we call a discrepancy function.
When the nonlinear dynamics satisfies special proper-
ties such as contraction behavior [5] or is incrementally
stable [6], this discrepancy function can be provided by
the user. For verifying general nonlinear systems, C2E2
implements a new technique that computes a local dis-
crepancy function automatically. To compute these local
discrepancy functions on-the-fly [7], the upper bound of
the eigenvalues of (the symmetric part of) Jacobian ma-
trices and the upper bound of the matrix perturbations
are obtained along the simulation traces using Python
linear algebra library1. The local discrepancy function
module takes as input a given simulation traces and
neighborhood, and returns local discrepancy function
specially for the given simulation trace. In C2E2, we use
the guaranteed simulator CAPD [8] to produce validated
simulation traces.

Symbolic Jacobian computation: Computing the
discrepancy function automatically requires computing
numerical values of the Jacobian matrix of the differential
equation. C2E2 therefore implements a new procedure
for computing symbolically the Jacobian matrix. For an
ODE dx

dt = f(x), where f is a vector valued function, the
Jacobian matrix J(x) is the matrix of partial derivatives
Jij(x) = ∂fi

∂xj
. We use the Python Sympy 2 library for

computing derivatives of f symbolically. This library
handles a general class of functions and as a result our
implementation of symbolic Jacobian computation works
for all standard polynomial, trigonometric, exponential
and logarithmic functions. It worked for complicated

1http://docs.scipy.org/doc/numpy/reference/routines.
linalg.html

2http://www.sympy.org/en/index.html

models like the powertrain benchmark [9], [10] which has
more than 30 nonlinear terms in f . C2E2 compiles the
symbolic Jacobian matrices into a Python module, which
is then used to evaluate their numerical values.

Global discrepancy for linear ODEs: For linear
time invariant hybrid models, the entries in the symbolic
Jacobian matrix are constants. Thus, the local discrep-
ancy function will be the same as the global one. C2E2
takes advantage of this fact and evaluates the Jacobian
matrix just once and computes a global exponential
discrepancy function to be used throughout, instead of
on-the-fly local discrepancy. For example, analysis of a
28-dimensional linear model of the helicopter with this
approach completes in seconds.

Automatic handling of constant dynamics: Often
hybrid models have timers, and other variables that
evolve at a constant rate with time. The ODEs for such
a system have the form:{

dx
dt = f(x)
dy
dt = k

where k is a constant and y changes at that constant rate
with time. Although the simple dynamics of y should
make it easier to compute its reach set—at any time
t, y(t) = y(0)+kt—our discrepancy-based algorithm has
problems dealing with such systems. These constant-rate
variables introduce all 0 rows and all 0 columns in the
Jacobian matrix. This not only increases the dimension
of the system, but also introduces extra conservatism in
the estimation of the eigenvalues. For example, the Jaco-
bian matrix of such systems has 0 eigenvalue even when
the rest of the system is stable. The algorithm in C2E2
mitigates this problem by automatically decomposing the
system by handling the constant-rate part independently.

For example, the Cardiac cell model in [11] uses a timer
d(timer)

dt = 1 to transit between the location where stim-
ulate is on and the location where it is off. Systems with
such constant dynamics are detected and decomposed
automatically. That is, C2E2 will first compute the reach
set of dx

dt = f(x) using our standard technique, then bloat
y(t) by δykt for dy

dt = k, where δy is the size of initial set
for variable y.

Coordinate transformation: Coordinate trans-
formation can help produce less conservative over-
approximations of the discrepancy functions. Coordinate
transformations are done automatically in C2E2 in the
following manner: first, Jacobian matrix is transformed
to the real Jordan form by a similarity transformation,
and then the similarity transformation matrix is used
to perform the linear coordinate transformation. Such
transformation decreases the conservatism of exponential
bound, but comes with the price of a constant multi-
plicative factor in β(t). C2E2 allows the users to set a
parameter that helps explore this trade off.

Usability and Visualization Features: C2E2 has
both GUI and a command line interface. The GUI aids in
reducing the learning curve associated with using formal

http://docs.scipy.org/doc/numpy/reference/routines.linalg.html
http://docs.scipy.org/doc/numpy/reference/routines.linalg.html
http://www.sympy.org/en/index.html

Fig. 1: Left to right: figures showing a snippet of partial adaptive cruise control model in C2E2 front end and
StateflowTM, property dialog, plots of reachable set for adaptive cruise control model.

verification tools and the command line interface can be
used by advanced users to invoke C2E2 from other tools
and develop new verification techniques. To improve the
usability and ease of installation, C2E2 comes with an
installation script and a set of testing scripts. The tests
check the reach sets computed on a new installation
against the corresponding reference versions computed in
our lab machine. C2E2 also has an in-house visualization
feature (built using gnuplot) that helps in visualizing the
set of reachable states of the system and also provide
intuition about the system behaviors. The visualizer also
shows the unsafe regions and counter-example segments.
Examples inputs and outputs are documented in the
website3.

C. Tutorial Plan
The tutorial in C2E2 would illustrate the following

features: 1) syntax and semantics of input hybrid systems
models, 2) semantics and verification of the safety speci-
fication, and 3) using the grapical user interface and the
terminal interface for verifying safety properties of hybrid
models with various configurations. Additioanlly, new
experimental features such as falsification using sample
simulations would be demonstrated.

III. HyST: A Hybrid Source Transformation
and Translation Tool

Algorithmically analyzing hybrid systems models is
challenging in theory and in practice [12], [13]. Numer-
ous sound (and sometimes complete) transformations
for simplifying the analysis of hybrid systems models
have been developed, and are used to show both the-
oretical results such as reductions to finite-state au-
tomata for certain classes [14] and practical results to
ease reachability analysis [15]–[17]. HyST is a software
framework for implementing transformation passes for
hybrid automata, and supports various transformation

3http://publish.illinois.edu/c2e2-tool/example/

passes, including hybridization (which simplifies contin-
uous dynamics), continuization (which simplifies discrete
dynamics), pseudo-invariants (which adds auxiliary in-
variants that do not change the reachable states, but
ease reachability analysis computations), order-reduction
(which reduces the number of state variables [dimension-
ality]), among others. This tutorial will illustrate these
transformations in HyST on canonical hybrid systems
examples, and show analysis results with a number of
state-of-the-art hybrid systems verification tools such as
SpaceEx, Flow*, dReach, and HyComp.

A. Overview

A hybrid automaton [18] is an expressive mathematical
model useful for describing complex dynamic processes
involving both continuous and discrete states and their
evolution. Software tools for algorithmically analyzing
various classes of hybrid automata have been developed,
and recent tools include SpaceEx for affine dynam-
ics [19]–[22], Flow* for nonlinear dynamics [23], dReach
for nonlinear dynamics [24], and HyComp [25] for poly-
nomial dynamics. HyST is a source transformation and
translation tool for hybrid automaton models [26]. HyST
supports source-to-source model transformation passes
in an intermediate representation, which is represented
as networks of hybrid automata. The input to HyST is
a network of hybrid automata in the SpaceEx format,
and the output is a new network of hybrid automata in
the various input formats supported by different tools
(currently SpaceEx, Flow*, dReach, and HyComp).

In addition to syntactic conversions, several recent
transformation passes in HyST are useful for simplifying
analyses, and its architecture makes these transforma-
tions applicable across numerous tools. Compared to the
original version presented as a tool paper [26], HyST now
includes support for additional model transformation
passes, networks of hybrid automata, and additional
output formats (HyComp). This tutorial will illustrate

http://publish.illinois.edu/c2e2-tool/example/

1 <?xml version ="1.0" encoding ="iso -8859 -1"? >
2 <sspaceex xmlns =" http :// www - verimag .imag.fr/xml - namespaces / sspaceex "

version ="0.2" math =" SpaceEx ">
3 <component id =" main">
4 <param name ="x" type =" real" local =" false " d1 ="1" d2 ="1" dynamics

=" any" />
5 <param name ="y" type =" real" local =" false " d1 ="1" d2 ="1" dynamics

=" any" />
6 <location id ="1" name =" running " x ="164.0" y ="194.0" width ="146.0"

height ="140.0" >
7 <flow >
8 x’ == y &
9 y’ == (1-x*x)*y-x

10 </flow >
11 </location >
12 </component >
13 <component id =" sys">
14 <param name ="x" type =" real" local =" false " d1 ="1" d2 ="1" dynamics

=" any" controlled =" true" />
15 <param name ="y" type =" real" local =" false " d1 ="1" d2 ="1" dynamics

=" any" controlled =" true" />
16 <bind component =" main" as =" main_1 " x ="228.0" y="118.0" >
17 <map key ="x">x </map >
18 <map key ="y">y </map >
19 </bind >
20 </component >
21 </sspaceex >

Fig. 2: Van der Pol oscillator in SpaceEx format.

HyST
Intermediate
Representation

SpaceEx XML SpaceEx

Flow*

dReach

HyComp

N N̂S

N̂F

N̂D

N̂HSource-to-Source
Transformation Passes

N̂ = αi(N)

Fig. 3: HyST overview: a network of hybrid automata
in the SpaceEx format N is parsed into the intermediate
representation, on to which model transformation passes
αi are applied. Various syntactic transformations are also
applied before exporting to the supported tools.

HyST’s usage to interface tools and the recent transfor-
mation passes.

B. Demonstrating Transformation Passes with HyST

This demonstration of HyST will illustrate its cur-
rently supported use cases, with a particular focus on
the recently added transformation passes.4 We note that
all of the model transformations are sound or overap-
proximative, in the sense that the resulting transformed
automaton’s reachable states contain those of the original
automaton. Figure 3 shows the high-level architecture of
HyST. The tutorial will consist of showing how to apply
passes to hybrid automata, modify examples, and use
scripts to automatically execute the supported tools.

C. Hybridization

Hybridization is a technique whereby one seeks to ap-
proximate a continuous system with non-linear dynamics
by a hybrid system in which the continuous dynamics
is in some sense simpler [27], [28]. HyST implements
a hybridization source-to-source transformation, which
creates a simpler hybrid automaton from a more complex
one, for example, by overapproximating nonlinear dif-
ferential equations as linear differential inclusions (more
details may be found in [29]). Most modern hybridization
techniques rely on dynamic (or on-the-fly) hybridiza-
tion which helps to avoid the costly partitioning of the
state-space as convex cells, which if done statically by
creating a new hybrid automaton to analyze frequently
leads to an exponential blow-up in the dimensionality
of the system. However, HyST’s source-to-source (i.e.,
static) hybridization methods exploit benefits of dynamic
hybridization methods by guiding the static partitioning
through offline simulations, and additionally using time-

4HyST is available online: http://verivital.com/hyst/

triggered transitions in addition to state-dependent tran-
sitions between partitions of the state-space [29].5

D. Continuization

A challenge in analyzing hybrid automata with time-
dependent switching is that frequently occurring transi-
tions can cause a blow-up in the number of intersection
operations needed, which may lead to a blow-up in
the overapproximation error for such systems. For some
classes of periodically-switched hybrid automata that
are reasonable models of popular real-time schedulers
(such as rate monotonic scheduling [RMS] and earliest-
deadline first [EDF]), HyST implements continuization
to avoid these explosions of numbers of transitions and
intersection operations [30]. Somewhat as the converse
of hybridization, which may take a purely continuous
nonlinear system and from it create a hybrid automaton
with simpler (e.g., linear) dynamics, continuization takes
a hybrid automaton and overapproximates its behavior
with a purely continuous system by overapproximat-
ing the switching behavior as nondeterministic additive
terms.

E. Pseudo-Invariants

The pseudo-invariants transformation passes intro-
duces auxiliary invariants in modes of the hybrid automa-
ton, such that these pseudo-invariants do not change the
set of reachable states after the transformation. While
the reachable states do not change, the reason for adding
such pseudo-invariants is for reducing overapproximation
error in the reachability algorithms, which often can
exploit such additional invariants to reduce the set of
computed reachable states [31].

5http://verivital.com/hyst/pass-hybridization/

http://verivital.com/hyst/
http://verivital.com/hyst/pass-hybridization/

F. Order-Reduction
Order-reduction is a common approach in systems and

control to simplifying the analysis of systems. Roughly
speaking, it creates a reduced-order system with fewer
state variables (decreased dimensionality) such that the
reduced-order system exhibits behaviors similar to those
of the original, or full-order, system [32]. To be used
as a sound abstraction for verification, key arguments
must be made with respect to the similarity of be-
haviors between the original and reduced-order system,
and approaches relying on approximate bisimulation re-
lations [33] and deriving error bounds from numerical
simulations [34] have been explored. HyST implements
order-reduction methods for linear systems based on
balanced-truncation, which have allowed us to verify
safety of systems with up to a thousand state variables
(dimensions) [32]. The implementation of these order-
reduction methods relies on a bridge between HyST and
Matlab, and allows us to use built-in order-reduction
methods in Matlab, as well as derive error bound over-
approximations.6

G. Benchmarks
HyST has been evaluated and comes with a wide

range of benchmarks of various classes of hybrid au-
tomata, including: timed automata, rectangular hybrid
automata, hybrid automata with linear/affine differen-
tial equations, and nonlinear hybrid automata. Several
benchmark packages in part leveraging HyST have
been released, and all the models are in the SpaceEx
XML format. The benchmarks released include: DC-
to-DC power electronics converters [35], phase-locked
loop (PLL) and full-wave rectifier (FWR) circuits [36],
nonlinear systems frequently used as benchmarks in the
numerical analysis community [37], purely continuous
nonlinear systems that have been verified to be safe [38],
larger-scale linear systems frequently used in controls and
order-reduction [32], [39].

H. Tutorial Plan
Overall, the tutorial on HyST will illustrate the cur-

rent features already implemented in HyST, from model
transformation passes to integration with state-of-the-art
hybrid systems verification tools. In the future, we hope
to continue to engage with the community and integrate
additional tools and new transformation passes in HyST.

IV. Control Design for Hybrid Systems with
TuLiP: The Temporal Logic Planning Toolbox
This tutorial describes TuLiP, the Temporal Logic

Planning toolbox. The companion tutorial paper [1]
describes TuLiP in more technical detail. TuLiP is a
collection of tools for designing controllers for hybrid
systems from specifications in temporal logic. The tools
support a workflow that starts from a description of de-
sired behavior in temporal logic, and a description of the

6http://verivital.com/hyst/pass-order-reduction/

system to be controlled. The system can be represented
as a discrete transition system, or a hybrid dynamical
system with a mixed discrete and continuous state space.
The system description can include both discrete and
continuous uncontrollable variables that represent distur-
bances, communication signals, and other environmental
factors that affect the system dynamics and controller
decisions.

For solving the control design problem, the logic
specification is refined, by conjoining it with a discrete
description of system dynamics in logic, which is an ab-
straction of the underlying continuous dynamics, in the
case of hybrid systems. For piecewise affine dynamical
systems, this abstraction is constructed automatically,
guided by the geometry of the dynamics and under
logical constraints from the specification. The resulting
logic formulae describe admissible discrete behaviors that
capture both controlled and environment variables. To
find a controller, the toolbox solves a game of infinite
duration. Existence of a discrete (winning) strategy for
the controlled variables in this game is a proof certifi-
cate for the existence of a controller for the original
problem that guarantees the satisfaction of the specifi-
cation. This discrete strategy, refined with continuous
controllers when needed, yields a feedback controller
for the original hybrid system. The toolbox frontend is
written in Python, with backends in C, Python and other
languages.

The tutorial starts with an overview of the theory
behind TuLiP, and of its software architecture, organized
into specification frontends and backends that imple-
ment algorithms for abstraction, solving games, and
interfaces to other tools. Then, the main elements for
writing a specification for input to TuLiP are introduced.
These include logic formulae, labeled transition systems,
and hybrid dynamical systems, with linear or piecewise
affine continuous dynamics. The working principles of
the algorithms for predicate abstraction and discrete
game solving using nested fixpoints will be explained, by
showing an input specification through the various trans-
formations that compile it to a symbolic representation
that scales well to large games. The tutorial concludes
with design examples that demonstrate the toolbox’s
capabilities.

V. Summary
Overall, this tutorial session will feature three recent

hybrid systems tools for specifying, verifying, and syn-
thesizing controller software interacting with physical
plants. This paper presented some details on two of the
tools, C2E2 and HyST, and the companion paper [1]
describes TuLiP in detail.

References
[1] S. Dathathri, I. Filippidis, S. C. Livingston, R. M. Murray, and

N. Ozay, “Control design for hybrid systems with tulip: The
temporal logic planning toolbox (tutorial paper),” in Multi-
conference on systems and control, 2016.

http://verivital.com/hyst/pass-order-reduction/

[2] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification
of annotated models from executions,” in EMSOFT, 2013.

[3] P. S. Duggirala, L. Wang, S. Mitra, M. Viswanathan, and
C. Muñoz, “Temporal precedence checking for switched mod-
els and its application to a parallel landing protocol,” in
FM 2014: Formal Methods - 19th International Symposium,
Proceedings, 2014, pp. 215–229.

[4] P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan,
“Meeting a powertrain verification challenge,” in Computer
Aided Verification. Springer, 2015, pp. 536–543.

[5] W. Lohmiller and J. J. E. Slotine, “On contraction analysis
for non-linear systems,” Automatica, 1998.

[6] D. Angeli, “A lyapunov approach to incremental stability
properties,” IEEE Trans. Automat. Contr., 2000.

[7] C. Fan and S. Mitra, “Bounded verification with on-the-fly
discrepancy computation,” 13th International Symposium on
Automated Technology for Verification and Analysis, 2015.

[8] Computer Assisted Proofs in Dynamic Groups (CAPD), http:
//capd.ii.uj.edu.pl/index.php.

[9] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts,
“Powertrain control verification benchmark,” in Proceedings of
the 17th international conference on Hybrid systems: compu-
tation and control. ACM, 2014, pp. 253–262.

[10] ——, “Benchmarks for model transformations and confor-
mance checking,” in 1st International Workshop on Applied
Verification for Continuous and Hybrid Systems (ARCH),
2014.

[11] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok,
“C2e2: A verification tool for stateflow models,” in Tools and
Algorithms for the Construction and Analysis of Systems.
Springer, 2015, pp. 68–82.

[12] A. Fehnker and B. H. Krogh, “Hybrid system verification is
not a sinecure,” in Automated Technology for Verification and
Analysis. Springer, 2004, pp. 263–277.

[13] H. Guéguen and J. Zaytoon, “On the formal verification of
hybrid systems,” Control Engineering Practice, vol. 12, no. 10,
pp. 1253 – 1267, 2004, analysis and Design of Hybrid Systems.

[14] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas,
“Discrete abstractions of hybrid systems,” Proceedings of the
IEEE, vol. 88, no. 7, pp. 971–984, 2000.

[15] A. Tiwari, “Abstractions for hybrid systems,” Formal Methods
in System Design, vol. 32, no. 1, pp. 57–83, 2008.

[16] ——, “Hybridsal relational abstracter,” in Computer Aided
Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings, 2012, pp.
725–731.

[17] S. Sankaranarayanan, T. Dang, and F. Ivančić, “Symbolic
model checking of hybrid systems using template polyhedra,”
in Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, 2008, pp. 188–202.

[18] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The
algorithmic analysis of hybrid systems,” Theoretical Computer
Science, vol. 138, no. 1, pp. 3–34, 1995.

[19] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler,
“SpaceEx: Scalable verification of hybrid systems,” in Com-
puter Aided Verification (CAV), ser. LNCS. Springer, 2011.

[20] S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T.
Johnson, H. Ladan, A. Podelski, and M. Wehrle, “Guided
search for hybrid systems based on coarse-grained space
abstractions,” International Journal on Software Tools for
Technology Transfer, pp. 1–19, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10009-015-0393-y

[21] S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. S.
Pasareanu, A. Podelski, and T. Strump, “Assume-guarantee
abstraction refinement meets hybrid systems,” in 10th In-
ternational Haifa Verification Conference (HVC 2014), ser.
LNCS, vol. 8855. Springer, 2014, pp. 116–131.

[22] S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T. Johnson,
H. Ladan, A. Podelski, and M. Wehrle, “Abstraction-based
guided search for hybrid systems,” in International SPIN

Symposium on Model Checking of Software 2013, ser. LNCS.
Springer, 2013.

[23] X. Chen, E. Abraham, and S. Sankaranarayanan, “Flow*:
An analyzer for non-linear hybrid systems,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science,
N. Sharygina and H. Veith, Eds. Springer Berlin Heidelberg,
2013, vol. 8044, pp. 258–263.

[24] S. Gao, S. Kong, and E. Clarke, “Satisfiability modulo ODEs,”
in International Conference on Formal Methods in Computer-
Aided Design (FMCAD), Oct. 2013.

[25] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “HyComp:
An SMT-based model checker for hybrid systems,” in Tools
and Algorithms for the Construction and Analysis of Sys-
tems, ser. Lecture Notes in Computer Science, C. Baier and
C. Tinelli, Eds. Springer Berlin Heidelberg, 2015, vol. 9035,
pp. 52–67.

[26] S. Bak, S. Bogomolov, and T. T. Johnson, “HyST: A source
transformation and translation tool for hybrid automaton
models,” in Proc. of the 18th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC). ACM, 2015.

[27] E. Asarin, T. Dang, and A. Girard, “Hybridization methods
for the analysis of nonlinear systems,” Acta Inf., vol. 43, no. 7,
pp. 451–476, 2007.

[28] T. Dang, O. Maler, and R. Testylier, “Accurate hybridization
of nonlinear systems,” in Proceedings of the 13th ACM In-
ternational Conference on Hybrid Systems: Computation and
Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010,
2010, pp. 11–20.

[29] S. Bak, S. Bogomolov, T. A. Henzinger, T. T. Johnson, and
P. Prakash, “Scalable static hybridization methods for analysis
of nonlinear systems,” in Proc. of the 19th Intl. Conf. on
Hybrid Systems: Computation and Control (HSCC). ACM,
Apr. 2016.

[30] S. Bak and T. T. Johnson, “Periodically-scheduled controller
analysis using hybrid systems reachability and continuiza-
tion,” in 36th IEEE Real-Time Systems Symposium (RTSS).
San Antonio, Texas: IEEE Computer Society, Dec. 2015.

[31] S. Bak, “Reducing the wrapping effect in flowpipe construc-
tion using pseudo-invariants,” in Proceedings of the 4th ACM
SIGBED International Workshop on Design, Modeling, and
Evaluation of Cyber-Physical Systems, ser. CyPhy ’14. New
York, NY, USA: ACM, 2014, pp. 40–43.

[32] H.-D. Tran, L. Viet Nguyen, W. Xiang, and T. T. John-
son, “Order-Reduction Abstractions for Safety Verification of
High-Dimensional Linear Systems,” ArXiv e-prints, Feb. 2016.

[33] A. Girard and G. J. Pappas, “Approximate bisimulation re-
lations for constrained linear systems,” Automatica, vol. 43,
no. 8, pp. 1307 – 1317, 2007.

[34] Z. Han and B. Krogh, “Reachability analysis of hybrid control
systems using reduced-order models,” in American Control
Conference, 2004. Proceedings of the 2004, vol. 2, June 2004,
pp. 1183–1189.

[35] L. V. Nguyen and T. T. Johnson, “Benchmark: Dc-to-dc
switched-mode power converters (buck converters, boost con-
verters, and buck-boost converters),” in Applied Verification
for Continuous and Hybrid Systems Workshop (ARCH 2014),
Berlin, Germany, Apr. 2014.

[36] O. A. Beg, A. Davoudi, and T. T. Johnson, “Charge pump
phase-locked loops and full wave rectifiers for reachability
analysis (benchmark proposal),” in Applied Verification for
Continuous and Hybrid Systems Workshop (ARCH), Vienna,
Austria, Apr. 2016.

[37] H.-D. Tran, L. V. Nguyen, and T. T. Johnson, “Benchmark:
A nonlinear reachability analysis test set from numerical
analysis,” in Applied Verification for Continuous and Hybrid
Systems Workshop (ARCH), Seattle, Washington, Apr. 2015.

[38] A. Sogokon, K. Ghorbal, and T. T. Johnson, “Non-linear con-
tinuous systems for safety verification (benchmark proposal),”
in Applied Verification for Continuous and Hybrid Systems
Workshop (ARCH), Vienna, Austria, Apr. 2016.

[39] H.-D. Tran, L. V. Nguyen, and T. T. Johnson, “Large-scale
linear systems from order-reduction (benchmark proposal),”
in Applied Verification for Continuous and Hybrid Systems

Workshop (ARCH), Vienna, Austria, Apr. 2016.

http://capd.ii.uj.edu.pl/index.php
http://capd.ii.uj.edu.pl/index.php
http://dx.doi.org/10.1007/s10009-015-0393-y

	I INTRODUCTION
	II C2E2: Simulation-Based Verification of Hybrid Systems
	II-A Overview
	II-B Features of C2E2
	II-C Tutorial Plan

	III HyST: A Hybrid Source Transformation and Translation Tool
	III-A Overview
	III-B Demonstrating Transformation Passes with HyST
	III-C Hybridization
	III-D Continuization
	III-E Pseudo-Invariants
	III-F Order-Reduction
	III-G Benchmarks
	III-H Tutorial Plan

	IV Control Design for Hybrid Systems with TuLiP: The Temporal Logic Planning Toolbox
	V Summary
	References

