
Zero-Shot Policy Transfer in Autonomous Racing:
Reinforcement Learning vs Imitation Learning

Nathaniel Hamilton†
Department of Electrical and Computer Engineering

Vanderbilt University
Nashville, TN, USA

nathaniel.p.hamilton@vanderbilt.edu

Patrick Musau†
Department of Electrical and Computer Engineering

Vanderbilt University
Nashville, TN, USA

patrick.musau@vanderbilt.edu

Diego Manzanas Lopez
Department of Electrical and Computer Engineering

Vanderbilt University
Nashville, TN, USA

diego.manzanas.lopez@vanderbilt.edu

Taylor T. Johnson
Department of Computer Science

Vanderbilt University
Nashville, TN, USA

taylor.johnson@vanderbilt.edu

Abstract—There are few technologies that hold as much
promise in achieving safe, accessible, and convenient transporta-
tion as autonomous vehicles. However, as recent years have
demonstrated, safety and reliability remain the most obstinate
challenges, especially in complex domains. Autonomous racing
has demonstrated unique benefits in that researchers can conduct
research in controlled environments, allowing for experimentation
with approaches that are too risky to evaluate on public roads.
In this work, we compare two leading methods for training
neural network controllers, Reinforcement Learning and Imi-
tation Learning, for the autonomous racing task. We compare
their viability by analyzing their performance and safety when
deployed in novel scenarios outside their training via zero-
shot policy transfer. Our evaluation is made up of a large
number of experiments in simulation and on our real-world
hardware platform that analyze whether these algorithms remain
effective when transferred to the real-world. Our results show
reinforcement learning outperforms imitation learning in most
scenarios. However, the increased performance comes at the
cost of reduced safety. Thus, both methods are effective under
different criteria.

Index Terms—imitation learning, deep reinforcement learning,
sim2real, autonomous racing, zero-shot policy transfer

I. INTRODUCTION
Autonomous Racing is a growing topic of interest, ranging

from small-scale academic competitions (e.g. F1/10 [1]) to
full-scale competitions (e.g. Roborace, AWS DeepRacer [2]
and the Indy Autonomous Challenge [3]). These racing compe-
titions are integral to the development of Autonomous Vehicles
(AVs) as they help promote general confidence and societal
acceptance of a novel emerging technology. Moreover, they
allow researchers to conduct explorations of possible solutions
to difficult scenarios such as high-speed obstacle avoidance and
other risky maneuvers that may be too dangerous to consider
in urban settings [4].

Within this realm, one classical approach of constructing
these systems involves a decomposition of tasks into four main

† These authors contributed equally

areas: perception, planning, control, and system supervision
[5]. Confining our focus to the control of these vehicles, many
platforms favor classical or model predictive control techniques
for their predictably safe performance. However, in recent
years, many researchers have proposed the use of machine
learning for control tasks, as these methods have shown
significant potential in solving optimal control problems for
highly nonlinear systems with varying degrees of uncertainty
[5]. This prowess has made these types of regimes particularly
attractive for autonomous vehicle development.

One of the most successful frameworks for solving machine
learning control problems has been Reinforcement Learning
(RL). RL is a branch of machine learning that focuses on soft-
ware agents learning to maximize rewards in an environment
through experience. The general idea is similar to training
a dog to do tricks by giving it treats when it performs the
desired task. Thus, an optimal controller can be synthesized
using data evaluated by key performance criteria through trial
and error [6]. Many RL approaches leverage neural networks
due to their advantages in dealing with complex data. These
approaches can be referred to as Deep Reinforcement Learning
(also referred to as RL) techniques, and recent successes such
as OpenAI’s OpenAI Five outperforming pro-level players at
Dota 2 [7], and Microsoft’s MuZero [8] mastering Atari, Go,
Chess and Shogi have helped bring RL to the forefront of AI
discussion.

Despite their success in numerous realms, RL approaches,
can be costly to train, especially as systems become more
complex and dynamic. Additionally, RL allows agents to learn
via trial and error, exploring any behavior during the learning
process. In many realistic domains, this level of freedom is
unacceptable, thus training in simulation is standard. There-
fore, the challenge becomes how to minimize the inherent
mismatches between real-world settings, and the simulation
environments used to train RL agents [9].

1

Training agents in simulation and then deploying them on
real-world hardware platforms, known as a sim2real transfer,
is a challenging problem. In many cases, the agents do not
perform as expected in the real world, sometimes resulting in
unsafe or catastrophic behavior [10], [11]. Their performance
can be improved with further training in the new environment,
but that is only possible if the behavior policy is safe from the
outset. Transferring a learned policy and evaluating before any
additional training is done is referred to as a zero-shot policy
transfer.

In this work we focus on zero-shot policy transfer since ac-
tive learning, i.e. learning during evaluation, is impractical for
real-time systems because updates to the neural network con-
trol policy are computationally expensive and time-consuming.
Instead, we evaluate trained policy networks as they are. This
is standard practice in industry, to deploy a trained model and
release updates intermittently.1

One way to achieve high performance with a zero-shot
policy transfer is by leveraging external or expert knowledge.
Imitation Learning (IL) utilizes expert demonstrations to train
an agent to mimic the behavior. Using IL, an agent can be
trained to mimic a human or a complicated array of com-
putationally intensive classical control methods that perform
optimally in different scenarios. In this way, complicated
algorithms and/or human experience can be boiled down to
one neural network capable of replicating their behaviors.

While the last several years have witnessed a significant
number of approaches for addressing these challenges, there
have been few in-depth empirical studies comparing the effi-
cacy of different learning frameworks for learning robust agent
behavior [12]. In [12], Gros et al. note that RL approaches
generally outperform IL. However, this performance comes at
a cost of significant reward shaping. While this work provides
an enlightening discussion, the authors consider only discrete
environments and do not address sim2real challenges.

In light of the lack of empirical comparisons of IL and RL,
in this work, we experiment with and compare Neural Network
Controllers (NNCs) trained using these approaches for the
control of a 1/10 scale autonomous vehicle. The performance
of these trained NNCs are compared through a number of
experiments, testing their ability to handle scenarios outside
their training environment via zero-shot policy transfer. These
experiments include changing the vehicle’s constant speed,
adding unknown obstacles to the track, and evaluating on
different tracks. These experiments culminate in a sim2real
transfer and evaluation of the controllers on our hardware
platform.

In summary, the contributions of this paper are:
1) We train a NNC using IL to imitate a path following

algorithm that effectively balances efficiency and safety.
2) We train 2 NNCs using state-of-the-art RL algorithms,

DDPG and SAC.
3) We compare their performance in a series of zero-shot

policy transfer experiments in simulation.

1The rate at which these updates occur depends highly on the application.

4) We compare their performance in a sim2real zero-shot
policy transfer experiment.

II. BACKGROUND

A. Imitation Learning

Imitation learning seeks to replicate the behavior of a human
or other expert on a given task [13], [14]. These approaches
fall within the field of Expert Systems in Artificial Intelligence,
and in recent years the demand for these approaches has
increased substantially. The surge in interest is spurred on
by two main motivations. (1) The number of possible actions
needed to execute a complex task is too large to cover by
explicit programming. (2) Demonstrations show that having
prior knowledge provided by an expert is more efficient than
learning from scratch [13].

In this work, we employ one of the most common methods
of IL, Behavior Cloning, which was first introduced to train a
modified van to navigate paths at speeds up to 20 miles per
hour [15], [16]. The work was later replicated with an updated
convolutional neural network architecture in [17] with great
success.

B. Reinforcement Learning

Reinforcement learning seeks to find the optimal behavior
function for completing a given task through experimental
trials. An agent converges on this optimal behavior function,
or learned policy a = π(s), by learning what results from
executing action a when in state s. The result is the next state,
s′, and a reward, r, determined by a given reward function.
This information is stored as a tuple, {s, a, r, s′}, often re-
ferred to as an experience. In this work we utilize two well-
known, state-of-the-art off-policy deep reinforcement learning
algorithms Soft Actor-Critic (SAC) [18], and its predecessor
Deep Deterministic Policy Gradient (DDPG) [19].

C. F1/10

For our experiments, we utilize the F1/10 simulation and
hardware platform [1]. The platform was designed to replicate
the hardware and software capabilities of full scale autonomous
vehicles. The hardware platform is equipped with a standard
suite of sensors including stereo cameras, LiDAR (light detec-
tion and ranging), and inertial measurement units (IMU). The
car is controlled by an NVIDIA Jetson TX2, and its software
stack is built on the Robot Operating System (ROS) [20]. In the
Gazebo simulation environment, all the sensors are replicated
so the transition from simulation to the real-world and back is
straightforward without hours worth of re-configuring.

III. EXPERIMENTAL SETUP

In order to make the comparisons as fair as possible,
all the controllers we trained have the same neural network
architecture and are trained on the Porto track shown in Fig. 2
unless otherwise specified. The trained NNCs selected for
our experimental evaluations are the best performing of at
least 3 NNCs trained the same way using different random

2

Fig. 1. Visualization of our experimental F1/10 hardware platform. This
platform is a one-tenth scale RC car that has been altered to operate
autonomously with the support of a sensor and compute architecture for
autonomous decision-making [4].

Fig. 2. The different tracks and the corresponding starting positions we used
in our simulation experiments. The bright green rectangle is the simulated car,
and the blue region around it represents the full set of range values collected
by the LiDAR sensor.

seeds2. Additionally, the control output has been limited to
only steering and the car travels at a constant speed of 1m/s
during training.

A. Neural Network Architecture

In this work, we utilize a common architecture found in RL
work. The simple multi-layer perceptron network consists of
an input layer, 2 fully connected hidden layers of 64 nodes with
ReLU activation functions, and a fully connected output layer
with a hyperbolic tangent, tanh, activation function. The input
layer accepts nine range values collected from the LiDAR at
−90◦, −60◦, −45◦, −30◦, 0◦, 30◦, 45◦, 60◦, and 90◦ from
forward. The range values are clipped between [0m, 10m]. The
output layer provides a single value between [−1, 1], which
is scaled up linearly for the desired steering angle between
[−34◦, 34◦].

B. Training the Agents

1) Imitation Learning: We trained the imitation learning
agent using a procedure that is a simplification of the seminal
work by Dean Pomerleau, in which a neural network was
trained to control an autonomous vehicle [16]. The agent in
this work was trained on sensor-action pairs collected during
experiments where the vehicle was controlled using a path
following algorithm on the racetrack. The path we used for
training lead around the middle of the track, ensuring safe
operation. The path following algorithm we utilized, Pure
Pursuit [23], does a quick search for a waypoint that it can
safely reach governed by a specified look-ahead horizon, it
then steers the car towards that waypoint. The pure pursuit
algorithm has been used in numerous contexts and has been
shown to be a robust method for efficiently and accurately
following a path. This was our main motivation in using this
controller.

The first imitation learning agent, IL, was trained only on
data collected from the Porto track. This makes the training
process more like what the RL agents will see, since they are
also only trained on the Porto track. The second agent, IL-3,
was trained using data collected from the Porto track as well
as the two other tracks, Walker and Barca shown in Fig. 2. We
include IL-3 to highlight one of the main advantages of using
IL to train NNCs: any recorded data of the expert can be used
for training.

2) Deep Reinforcement Learning: Both RL controllers,
DDPG and SAC, were trained using common hyperparameters,
which are provided in the Appendix. The agents optimize
performance according to a dense reward function that assigns
a positive reward for counterclockwise progress around the
track. The reward is calculated using a reference path that
runs through the middle of the track. The value of the reward
is the positive arc length between the previous and current
closest point along the path. This reward function encourages
the agent to complete as many laps as possible as quickly as
possible.

2The random seed used for training has a large impact on the training
process and resulting policy, as demonstrated in [21], [22]

3

We trained the agents according to their respective algo-
rithms. We halted the training process to evaluate performance
after every 500 training steps. The performance is measured
by how many laps the agent can complete within 100 seconds.
This is more than enough time to complete 2 laps in the
training track (Porto). We chose 2 laps because completing
1 lap is not enough to show the controller is capable of
completing multiple laps. The car always starts in the same
position, but may not return to the same position at the end of
the first lap. However, the starting position of laps 2+ will be
about the same. Thus, if the controller is able to complete 2
laps, it is likely capable of completing any number of laps.

The evaluation is repeated up to 10 times, and training stops
when the agent is able to complete at least 2 laps 10 times in
a row. Once the agent is able to complete at least 2 laps 10
times, the training process is halted and control policy is saved
for our experiments.

C. Evaluating Performance

We evaluate the controllers through a variety of scenarios
that test their ability to maintain optimal performance in
scenarios outside their training environment. These scenarios
include changing the constant speed value, adding obstacles
to the track, evaluating on a different track, and a real-
world evaluation on our hardware platform. We compare the
performance of the controllers according to three metrics we
refer to as track distance, efficiency, and safety.

Efficiency is calculated as the distance the car travels around
the track divided by the amount of time it took to get there.
Each test runs for a maximum of 60 seconds and cuts off
sooner if the car collides with a wall or obstacle. We refer
to this as a measure of efficiency because the distance is not
measured by the direct distance the car traveled. Instead, the
distance is measured in relation to the arc length of a path
going through the center of the track, which we refer to as the
track distance. The closer the car stays to following the center
path, the closer the efficiency value will match the constant
speed. However, if the car takes sharp turns around the corners,
the efficiency will increase since the car covers the same track
distance in less time.

Safety is a measure of how prone to collisions the controller
is at a specific track. The safety value corresponds to the
percentage of runs that ended with no collision regardless of
the time or distance traveled, i.e. if safety = 100%, there were
no collisions encountered in the experiments.

IV. EXPERIMENTS AND RESULTS

Our experiments were designed to test the performance
of both the RL and IL controllers in challenging scenarios.
The first experiment demonstrates the ideal test conditions,
evaluating in the same environment the controllers were trained
in. The following three experiments introduce changes to the
environment that test the robustness of the learned control

policies, building up towards the final experiment, deploying
on the real-world hardware platform.3

All simulation experiments test each controller 30 times in
the designated scenario. Each test lasts for a maximum of 60
seconds, stopping early in the event of a collision.4

A. Training Environment (Porto)

Our first experiment evaluates the performance of the con-
trollers in the environment they were trained in. This provides a
baseline that we can compare to as we test these controllers in
scenarios outside their training. The results in Table I show all
the controllers operate safely without any recorded collisions.
Additionally, the results show both RL controllers operate
more efficiently and travel further than the IL controllers.

B. Varying Speed

In our second experiment, we explore how changing the
constant speed of the car impacts performance. This subtle
change tests the robustness of the controllers with respect to
a change in speed. The control policies were trained with
the assumption the car moves at 1.0m/s. Moving at different
speeds, especially faster than expected, might reveal unsafe
behaviors. Additionally, this experiment provides some insight
into how well the controllers will handle a sim2real transfer.
Unlike in simulation, the hardware platform can experience
fluctuations in speed caused by a poorly-tuned speed regulator,
wheel slippage, etc.

We tested the controllers on the Porto track with constant
speeds 0.5m/s and 1.5m/s. We expected the efficiency and
track distance of the controllers to be cut in half when run at
half speed. We also expected the controllers would remain safe
at half speed. For the tests at a faster speed, we expected the
efficiency to increase by a factor of 1.5, but experience more
collisions.

The results in Table II show that cutting the speed in half
leads the efficiency and track distance to be reduced by about
half for every controller. Since the efficiencies and recorded
track distances of the controllers at 0.5m/s are slightly above
the expected half, the controller’s efficient behaviors are more
impactful at slower speeds. Every controller except for SAC
maintained their safe performance. In the one trial that the
SAC controller collided with the wall, it was during the first
left turn. The controller turned too early while driving close
to the wall, resulting in a collision.

Furthermore, the results in Table II show that increasing the
speed reduces the safety of all the controllers. In our experi-
ments, none of the controllers were safe for all evaluated runs.
In particular, DDPG was unable to complete any runs without
colliding after the first curve. However, despite the increase
in collisions, all the controllers operated more efficiently. IL,
IL-3, DDPG, and SAC saw a 1.5x, 1.45, 1.12x, and 1.39x
increase respectively. The IL controller was the only one able

3The hardware experiments are summarized at:
https://youtu.be/rgVb46RMMvE

4A video summarizing the simulation experiments can be
found at: https://tinyurl.com/2bjwpcxs

4

TABLE I
PERFORMANCE ON PORTO WITH AND WITHOUT OBSTACLES

No Obstacles Obstacles
Algorithm Track Distance Efficiency Safety Track Distance Efficiency Safety
IL 121.44 ± 14.41 1.94 ± 0.25 100% 41.80 ± 0.88 1.93 ± 0.02 0%
IL-3 125.23 ± 0.31 2.01 ± 0.00 100% 40.79 ± 0.26 1.92 ± 0.02 0%
DDPG 142.74 ± 10.52 2.29 ± 0.16 100% 40.33 ± 0.37 2.23 ± 0.03 0%
SAC 144.04 ± 0.47 2.31 ± 0.01 100% 182.98 ± 2.92 2.94 ± 0.01 96.66%

TABLE II
PERFORMANCE ON PORTO VARYING CONSTANT SPEED

0.5 m/s 1.0 m/s 1.5 m/s
Algorithm Track Distance Efficiency Safety Track Distance Efficiency Safety Track Distance Efficiency Safety
IL 64.73 ± 0.36 1.04 ± 0.01 100% 121.44 ± 14.41 1.94 ± 0.25 100% 171.24 ± 41.24 2.90 ± 0.06 93.33%
IL-3 64.60 ± 0.09 1.04 ± 0.00 100% 125.23 ± 0.31 2.01 ± 0.00 100% 178.54 ± 20.94 2.92 ± 0.03 96.67%
DDPG 73.60 ± 0.22 1.18 ± 0.00 100% 142.74 ± 10.52 2.29 ± 0.16 100% 18.09 ± 0.29 2.57 ± 0.08 0%
SAC 72.97 ± 10.05 1.20 ± 0.03 93.33% 144.04 ± 0.47 2.31 ± 0.01 100% 174.11 ± 62.58 3.21 ± 0.15 80.0%

Fig. 3. Difficult sharp turn on Barca track.

to meet the 1.5x increase we expected to match the speed
increase.

C. Obstacles

Our third experiment introduces unknown obstacles, orange
traffic cones, to the Porto track as shown in Fig. 2. This
experiment tests the controllers beyond what they were trained
to do. Not only does the controller have to steer the car
along the optimal path while avoiding the walls, there are now
additional obstacles to avoid. Thus, it provides a measure of
each controller’s ability to mimic the driving task, rather than
robust pattern matching. The IL controllers failed to generalize
to this scenario, and failed to complete a single lap without
a collision failing around the last cone. DDPG was similar in
nature, however, it maintained its higher level of efficiency over
the IL controllers. SAC was the only controller able to handle
obstacles and successfully navigated the cones in 96.66% of
our evaluations. Interestingly, the obstacles improved SAC’s
performance. The last cone on the track was positioned just
right to direct the controller to steer sooner, finding a more
optimal path.

D. Alternate Race Tracks (Walker and Barca)

In our fourth experiment, we examined how well the con-
trollers perform when used on two different, more complicated
tracks, Walker and Barca shown in Fig. 2. Walker introduces
a choice between two paths, which we anticipated would
cause issues because none of the controllers, except IL-3,

Fig. 4. Our real-world track with the reference path used for measuring
the distance traveled marked in blue.

have experience with that scenario. We also anticipated that
Barca’s long straightaways and sharp turns would cause more
collisions for controllers trying to cut corners. The results for
this experiment, and the lengths of the tracks for comparison,
are shown in Table III

On the Walker track, both the IL and SAC controllers were
unable to consistently navigate the junction. Instead of picking
a direction to pursue, the IL controller drove the car directly
into the corner of the junction in every test while the SAC
controller managed to avoid that fatal mistake in some cases,
but rarely passed it in the second lap. In contrast, the DDPG
controller was able to successfully navigate the divergent track
without prior experience. Additionally, both RL controllers
navigated the track more efficiently than the IL-3 controller,
which had prior experience on the track.

On the Barca track, only the IL controllers were able to
safely navigate the sharp turn highlighted in Fig. 3. Both
DDPG and SAC collide with the track wall at the sharp turn
by either turning too soon or not turning at all.

E. Real-World, Hardware Platform

In our final experiment, we test how well these controllers
handle an actual sim2real transfer on our hardware platform.
The experiments were conducted on our track, shown in
Fig. 4, which has a middle-of-the-track path length of 13.08m.
Because we could not reliably record the time for runs that
resulted in a collision, we do not compare the controllers’
efficiency. Instead, we compare the distance traveled around

5

TABLE III
PERFORMANCE ACROSS DIFFERENT RACETRACKS

Porto (57.5m) Walker (73.25m) Barca (221.14m)
Algorithm Track Distance Efficiency Safety Track Distance Efficiency Safety Track Distance Efficiency Safety
IL 121.44 ± 14.41 1.94 ± 0.25 100% 33.50 ± 1.55 1.89 ± 0.02 0% 108.54 ± 33.26 1.96 ± 0.03 83.33%
IL-3 125.23 ± 0.31 2.01 ± 0.00 100% 123.38 ± 0.33 1.98 ± 0.01 100% 124 ± 0.29 2.00 ± 0.00 100%
DDPG 142.74 ± 10.52 2.29 ± 0.16 100% 130.08 ± 0.34 2.09 ± 0.00 100% 31.54 ± 0.03 1.80 ± 0.01 0%
SAC 144.04 ± 0.47 2.31 ± 0.01 100% 62.64 ± 38.31 2.11 ± 0.25 0% 24.27 ± 4.09 1.76 ± 0.02 0%

TABLE IV
PERFORMANCE ON HARDWARE PLATFORM

Algorithm Track Distance Bumps Collisions
IL 53.86 ± 0.47 0 0
IL-3 5.81 ± 0.00 0 10
DDPG 2.00 ± 0.00 0 10
SAC 61.83 ± 0.37 4.7 ± 0.67 0

the track in 60 seconds. We averaged the results across 10
runs and kept a count of how often the controllers drove the
car along the side of the track, bumping into it (Bump), as
well as how many times it drove directly into the side of the
track (Collision). We halted the run in the event of a collision
and recorded the final position as the total distance traveled.
While bumps in our simulated results counted as collisions, we
decided to allow them in the hardware experiments because
they did not harm the track and would have been allowed in
the F1/10 competition.

The results in Table IV show DDPG and IL-3 were unable
to complete a lap, instead colliding with the side of the track
before completing the first turn. However, both IL and SAC
were able to complete over 4 laps in the allotted 60 seconds.

V. DISCUSSION

Our experiments highlight two main challenges to the
sim2real problem, model mismatch and domain mismatch.
Model mismatch centers around the output not having the
expected outcome. We highlight this challenge in our exper-
iments with varying speed. Domain mismatch centers around
the input being out of scope, or not what is expected. In other
words, the real inputs do not match the training inputs. We
highlight this challenge in our experiments with the obstacles
and alternate racetracks. In this section, we discuss which
controllers handled each type of mismatch best and theorize
why that might be the case.

A. Model Mismatch

Model mismatch is a result of the output not having the
expected outcome. This could be the result of noisy actuators,
inaccurate model dynamics, etc. In our experiments, we high-
light this challenge by testing the controllers at varying speeds
in Table II.

Our results show the IL controllers handled this challenge
better than the RL controllers. We attribute this result to how
the controllers were trained. The IL controllers were trained
to imitate the behavior of our expert control that balanced
safety and efficiency by trending towards the middle of the

track. In contrast, the RL controllers were trained solely to
optimize efficiency. As a result, the RL controllers cut corners
sharply and drove close to the walls. Because of this, changes
to the speed had a larger impact on safety. Turning close to
the walls has a smaller margin for error than turning in the
middle of the track. Despite this greater challenge, the SAC
controller was almost as safe as the IL controllers, with much
better performance. If we compare the track distance of only
safe trials, the SAC controller traveled an average of 201.25m
and the IL controllers traveled an average of 182.3m. The
difference between the two is about 1/3 of a lap.

B. Domain Mismatch

Domain mismatch is a result of the input data not matching
the training input. This could be the result of noisy sensors,
unexpected obstacles, or a change in environment. In our
experiments, we highlight this challenge in or experiments
by introducing obstacles (Table I) and testing on alternate
racetracks (Table III).

For this challenge, there is not a clear victor since the results
were more varied. The IL-3 controller performed well across
all the racetracks, but failed at obstacle avoidance. The SAC
controller, on the other hand, successfully avoided colliding
with obstacles in almost all our tests, but struggled when
evaluated on alternate racetracks.

C. sim2real

The experiments on our hardware platform help emphasize
why sim2real is such a challenging problem. While the IL-3
controller maintained performance across all three racetracks
and was the safest controller when we varied the speed, it
failed to complete a single lap in the real world. Meanwhile,
the IL controller, which had similar results with varied speed
but struggled more on the different racetracks, successfully
navigated our real world track. Because the IL-3 controller
failed despite the IL controller’s success, we theorize IL-3’s
failure was a result of overfitting. Overfitting occurs when the
learned policy too closely or exactly matches the training data,
and fails to generalize well to new data reliably. Training the
IL-3 controller across multiple racetracks helped it perform
well on all three tracks and improved its performance on Porto.
However, all the extra training data in simulation, across varied
racetracks, caused the controller to overfit to the simulation
domain where the car can safely maintain a 1m distance from
the left wall without colliding.

The varied training data that negatively impacted the IL-3
controller is likely what caused the SAC controller to succeed.

6

While DDPG and SAC are similar RL approaches, they differ
greatly in how they collect training data. In DDPG, new data is
collected by adding random noise to the output of the learned
policy. As the learned policy improves, the data collected starts
to repeat. This repetition can cause undesirable effects on the
learned policy, like catastrophic forgetting [24]. In contrast,
SAC collects new data using an entropy maximizing function.
This means that throughout the training process, new, unique,
and varied data is prioritized. The result is a more robust
learned policy with optimal performance.

D. Lessons Learned

1) Reinforcement Learning vs Imitation Learning: From the
data and observations we collected throughout the training and
evaluation processes, we found that reinforcement learning has
a greater potential to learn robust and optimal control policies.
However, the potential is lost without a well-defined reward
function. Since RL focuses solely on optimizing performance,
when we changed the track, many of the optimal performance
strategies backfired and lead the car into collisions. We expect
that this problem could be mitigated if we defined a reward
function that incorporated an additional aspect, like a punish-
ment for moving away from the center of the track. The result
would be a more robust control policy that avoids colliding
with walls, even in new tracks.

On the other hand, IL is still a valuable method, particularly
when creating a well-defined reward function is not possible.
However, one of the main challenges with imitation learning
lies in synthesizing a dataset that allows the agent to truly
mimic the expert behavior. Although the training regime
for these approaches resembles standard supervised learning
regimes, the i.i.d assumption may no longer be valid [25].
Often, the current state of the system prompts the next state.
Thus, if the agent makes a mistake in carrying out an action,
it may eventually reach a state that the agent has never been
trained on. For example, if the training data only contained
state-action pairs where the agent was following a path in the
center of the track, any deviation from this path could result in
states outside the training data and suboptimal actions that lead
the car straight into a wall. Therefore, while imitation learning
is extremely effective in numerous applications, it can also fail
spectacularly, like shown in our sim2real experiments.

2) Low Error is Not Necessarily a Good Indicator of Suc-
cess: One commonly held principle within machine learning is
that accuracy alone is generally a poor measure of evaluating
a model’s performance. In classification tasks, this can be
addressed by using a metric such as an F1-Score, which
balances the precision and recall of a model. However, it
is not as straightforward for imitation learning tasks. In our
experiments, we utilized mean-squared error to measure the
effectiveness of our controllers. Curiously, some of the models
that had very low error-rates, both on the test and validation
set, could not complete a single lap. While other models,
with a lower measured performance, did better on the driving
task. This illustrates the need for better metrics for evaluating

imitation learning tasks. There has been a large body of work
towards this end over the last several years [26].

3) General Recommendations: We recognize that it is diffi-
cult to issue broad recommendations on a limited set of exper-
iments. However, we believe the observations we made will
translate to other platforms. Thus, we propose the following
suggestions for those who wish to apply these techniques to
other platforms:
• In general, we believe that RL approaches will fare better

at sim2real tasks, since their inspiration is more conducive
to exploring a wide range of state-action pairs than
those considered in behavior cloning paradigms. However,
reward shaping for these approaches is still extremely
challenging. Therefore, one needs to weigh the cost of
reward shaping against synthesizing expansive datasets
for imitation learning models.

• Our experiments did not evaluate training or fine-tuning
models in the real world. This choice was motivated by a
desire to ensure fairness in the evaluation process between
the two approaches. While it is straightforward to train
imitation learning models on real-world data, training RL
approaches in the real world remains a challenge within
the machine learning literature [27]. Our future work
would like to consider an analysis of training and/or fine-
tuning RL- and IL-trained models in the real world.

While imitation learning and reinforcement learning ap-
proaches are not widely used within production-ready, state-
of-the-art autonomous vehicles, they have enjoyed signifi-
cant success within industrial robotics applications. One such
example of this success, is the rise of robotics companies
leveraging these approaches, such as Alphabet’s Intrinsic AI,
Veo Robotics, Symbio, and Covariant. Still, there are few
works comparing the success of imitation learning versus
reinforcement learning approaches within these contexts. This
work serves to motivate these types of studies in the commu-
nity at large.

VI. RELATED WORK
There is a large body of work developing methods to

improve reinforcement learning and overcome its shortcom-
ings. These methods include ways to cut back on costly data
collection and training time, reduce over-specialization, and
improve the safety of the system during and after training
is over. In this section, we highlight some of the promising
methods we found in the literature. For an in-depth overview of
how RL is being used in autonomous driving, we recommend
Kiran et al.’s 2021 survey [28].

A. Offline Reinforcement Learning and Inverse Reinforcement
Learning

Offline Reinforcement Learning, which is best described in
[29], and Inverse Reinforcement Learning [30], are both sim-
ilar to a combination of imitation learning and reinforcement
learning.

Like IL, the training data is collected once and goes unal-
tered during the training process. Additionally, the agent does

7

not interact with the environment at all during the training
process until it is deployed after training is complete. This
method is very beneficial to settings where data collection is
slow, expensive, and/or dangerous like in robotics, autonomous
driving, or healthcare.

The key aspect that allows both of these approaches to
perform better than the policy used to collect the data is the use
of a reward function. The reward function allows the agent to
better infer what should be done in unexplored states, guiding
the agent to perform optimally. In Offline RL, the reward
function is known, but in Inverse RL, the reward function is
inferred from observing expert behavior.

B. Meta Reinforcement Learning

Meta Reinforcement Learning (Meta-RL), best represented
by model-agnostic meta-learning [31] and RL2 [32], seeks to
reduce over-specialization by training across multiple environ-
ments. In addition to making the agent more robust, the agent
is able to learn to solve new tasks quickly. Some promising
works in the area include Joint PPO [33] and POET [34].

C. Safe Reinforcement Learning

Safe Reinforcement Learning is grouped into two main
styles of approach, (1) modification of the optimality criterion
and (2) modification of the exploration process [35].

The first, often referred to under the broader term reward
shaping, uses cleverly designed reward functions that incorpo-
rate risk in order to discourage unsafe behavior during training
and ensure they avoid those unsafe behaviors when deployed
[36].

The second style, often referred to simply as safe explo-
ration, leverages external knowledge in the form of a safety
monitor, a shield, control barrier functions (CBF), or some
other form of runtime assurance (RTA) to ensure the agent
remains safe while training [37]–[41].

D. Runtime Assurance

The most effective way to ensure safety after training,
no matter the learning algorithm, is with Runtime Assurance
(RTA). Especially in safety critical settings like autonomous
driving, it is imperative that system designers prevent catas-
trophic failures that can result from biased or limited training
data [42]. In recent years, numerous RTA approaches have
been proposed, ranging from approaches that are statistical
in nature [43]–[47], to more rigorous formal proof regimes
[48]–[54]. Formally demonstrating the correctness of modern
machine learning models is a difficult task that often suffers
from the well-known state explosion problem [55]. While there
has been a recent influx of formal methods capable of being
run in real-time, statistical methods are the current leaders
at circumventing scalability issues, though without the formal
guarantees.

VII. FUTURE WORK AND CONCLUSIONS

In this work, we experimented with neural network con-
trollers trained using imitation and reinforcement learning to

compete in autonomous racing. We compared how the trained
networks performed in new scenarios via zero-shot policy
transfers. These scenarios tested the controllers’ performance
despite changes made to the operation of the vehicle and the
track it was racing on. These changes were then combined by
testing the controllers on our hardware platform.

The results show the RL controllers had more efficient
performance even in new environments. SAC in particular
was robust to the introduced static obstacles as well as the
sim2real transfer. However, the RL controllers’ more efficient
performance led to more collisions. Therefore, unless work is
done to train the RL controller to account for safety constraints,
IL should be considered a competitive option for scenarios like
this.

In future work, we would like to explore how the input space
impacts performance by conducting the same experiments
in this work with a new neural network architecture that
utilizes convolutional layers. Cameras are a standard sensor
on most autonomous vehicles due to their ability to sense
color and other fine-grained details in the environment. This
makes them particularly useful for tasks such as traffic light
recognition, and identifying possible road work. Moreover,
there are numerous, remarkable machine learning algorithms
within the computer vision community that can deal with
images at high levels of accuracy.

ACKNOWLEDGMENT
This material is based upon work supported by the Air Force

Office of Scientific Research (AFOSR) under award number
FA9550-22-1-0019, the National Science Foundation (NSF)
under grant numbers 1918450, 1910017, and 2028001, the
Department of Defense (DoD) through the National Defense
Science & Engineering Graduate (NDSEG) Fellowship Pro-
gram, and the Defense Advanced Research Projects Agency
(DARPA) Assured Autonomy program through contract num-
ber FA8750-18-C-0089. Any opinions, finding, and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
United States Air Force, DARPA, nor NSF.

APPENDIX
IL and IL-3 Hyperparameters:
• Network Architecture : (64, relu, 64, relu, tanh)
• Optimizer: Stochastic Gradient Descent, Nesterov Mo-

mentum
• Learning Rate (LR): 0.01
• Decay: 0.002
• Epochs: 100
• Loss: Mean Average Error

DDPG Hyperparameters:
• Policy Network (Actor): (64, relu, 64, relu, tanh)
• Q Network (Critic): (64, relu, 64, relu, linear)
• Actor LR: 0.0001
• Critic LR: 0.001
• Noise type: Ornstein-Uhlenbeck Process Noise σ = 0.3,
θ = 0.15

8

• Soft target update: τ = 0.001
• γ = 0.99
• Critic L2 reg: 0.01
• buffer size: 106

• batch size: B = 64
• episode length: T = 500
• maximum number of steps: 45000

SAC Hyperparameters:
• Policy Network (Actor): (64, relu, 64, relu, tanh)
• Q Networks (Critics): (64, relu, 64, relu, relu)
• learning rate: 0.0001
• Soft target update: τ = 0.001
• γ = 0.99
• α = 0.01
• buffer size: 106

• batch size: B = 64
• episode length: T = 500
• maximum number of steps: 45000

REFERENCES

[1] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna,
“F1/10: an open-source autonomous cyber-physical platform,” CoRR,
vol. abs/1901.08567, 2019.

[2] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac,
V. Khare, G. Roy, T. Sun, Y. Tao, B. Townsend, E. Calleja,
S. Muralidhara, and D. Karuppasamy, “Deepracer: Educational
autonomous racing platform for experimentation with sim2real
reinforcement learning,” CoRR, vol. abs/1911.01562, 2019. [Online].
Available: http://arxiv.org/abs/1911.01562

[3] D. Murphy, “Tum autonomous motorsport wins the indy
autonomous challenge powered by cisco at the indianapolis motor
speedway and the $1 million grand prize,” Oct 2021. [Online].
Available: https://www.indyautonomouschallenge.com/tum-autonomous-
motorsport-wins-the-indy-autonomous-challenge-powered-by-cisco-at-
the-indianapolis-motor-speedway-and-the-1-million-grand-prize

[4] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” in Post Proceedings of the NeurIPS 2019
Demonstration and Competition Track, ser. Proceedings of Machine
Learning Research, H. J. Escalante and R. Hadsell, Eds. PMLR, 2020.

[5] G. Velasco-Hernandez, D. J. Yeong, J. Barry, and J. Walsh, “Autonomous
driving architectures, perception and data fusion: A review,” in 2020
IEEE 16th International Conference on Intelligent Computer Communi-
cation and Processing (ICCP), 2020, pp. 315–321.

[6] M. Han, Y. Tian, L. Zhang, J. Wang, and W. Pan,
“Reinforcement learning control of constrained dynamic systems
with uniformly ultimate boundedness stability guarantee,”
Automatica, vol. 129, p. 109689, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0005109821002090

[7] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale
deep reinforcement learning,” arXiv preprint arXiv:1912.06680, 2019.

[8] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[9] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), 2020, pp. 737–744.

[10] K. Jang, E. Vinitsky, B. Chalaki, B. Remer, L. Beaver, A. A. Ma-
likopoulos, and A. M. Bayen, “Simulation to scaled city: zero-shot policy
transfer for traffic control via autonomous vehicles,” in Proceedings
of the 10th ACM/IEEE International Conference on Cyber-Physical
Systems, ICCPS 2019, Montreal, QC, Canada, April 16-18, 2019, 2019,
pp. 291–300.

[11] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee,
M. Savva, S. Chernova, and D. Batra, “Are we making real progress
in simulated environments? measuring the sim2real gap in embodied
visual navigation,” arXiv preprint arXiv:1912.06321, 2019.

[12] T. P. Gros, D. Höller, J. Hoffmann, and V. Wolf, “Tracking the
race between deep reinforcement learning and imitation learning
- extended version,” CoRR, vol. abs/2008.00766, 2020. [Online].
Available: https://arxiv.org/abs/2008.00766

[13] A. Hussein, M. Gaber, E. Elyan, and C. Jayne, “Imitation learning,”
ACM Computing Surveys (CSUR), vol. 50, pp. 1 – 35, 2017.

[14] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A.
Theodorou, and B. Boots, “Imitation learning for agile autonomous
driving,” The International Journal of Robotics Research,
vol. 39, no. 2-3, pp. 286–302, 2020. [Online]. Available:
https://doi.org/10.1177/0278364919880273

[15] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural computation, vol. 3, no. 1, pp. 88–97,
1991.

[16] ——, “Alvinn: An autonomous land vehicle in a neural network,”
Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Tech. Rep., 1989.

[17] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning. PMLR, 2018,
pp. 1861–1870.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[20] J. Kerr and K. Nickels, “Robot operating systems: Bridging the gap
between human and robot,” in Proceedings of the 2012 44th Southeastern
Symposium on System Theory (SSST), 2012, pp. 99–104.

[21] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[22] H. Mania, A. Guy, and B. Recht, “Simple random search provides
a competitive approach to reinforcement learning,” arXiv preprint
arXiv:1803.07055, 2018.

[23] R. C. Coulter, “Implementation of the pure pursuit path tracking al-
gorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Tech.
Rep., 1992.

[24] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[25] K. Judah, A. P. Fern, T. G. Dietterich, and P. Tadepalli, “Active imitation
learning: Formal and practical reductions to i.i.d. learning,” Journal of
Machine Learning Research, vol. 15, no. 120, pp. 4105–4143, 2014.
[Online]. Available: http://jmlr.org/papers/v15/judah14a.html

[26] R. Memmesheimer, I. Kramer, V. Seib, and D. Paulus, “Simitate: A
hybrid imitation learning benchmark,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5243–
5249.

[27] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” arXiv preprint arXiv:1904.12901, 2019.

[28] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab,
S. Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[29] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” 2020.

[30] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[31] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1126–1135.

[32] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel,
“Rl2: Fast reinforcement learning via slow reinforcement learning,”
arXiv preprint arXiv:1611.02779, 2016.

[33] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta learn
fast: A new benchmark for generalization in rl,” 2018.

[34] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired open-
ended trailblazer (poet): Endlessly generating increasingly complex

9

and diverse learning environments and their solutions,” arXiv preprint
arXiv:1901.01753, 2019.

[35] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[36] K. Jothimurugan, R. Alur, and O. Bastani, “A composable speci-
fication language for reinforcement learning tasks,” arXiv preprint
arXiv:2008.09293, 2020.

[37] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. H. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based control
in uncertain robotic systems,” IEEE Transactions on Automatic Control,
2018.

[38] N. Fulton and A. Platzer, “Safe reinforcement learning via formal
methods,” in AAAI Conference on Artificial Intelligence, 2018.

[39] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[40] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 3387–3395.

[41] H. Zhao, X. Zeng, T. Chen, Z. Liu, and J. Woodcock, “Learning safe
neural network controllers with barrier certificates,” in International
Symposium on Dependable Software Engineering: Theories, Tools, and
Applications. Springer, 2020, pp. 177–185.

[42] “Variational autoencoder for end-to-end control of autonomous driving
with novelty detection and training de-biasing,” 2018.

[43] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics
and Autonomous Systems, vol. 53, no. 2, pp. 73 – 88, 2005.

[44] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking and
runtime verification for safe robotics,” in Runtime Verification, S. Lahiri
and G. Reger, Eds. Cham: Springer International Publishing, 2017, pp.
172–189.

[45] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger,
and C. J. Tomlin, “Reachability-based safe learning with gaussian
processes,” in 53rd IEEE Conference on Decision and Control, 2014,
pp. 1424–1431.

[46] S. Mitsch and A. Platzer, “Modelplex: verified runtime validation of
verified cyber-physical system models,” Formal Methods in System
Design, vol. 49, no. 1, pp. 33–74, 2016.

[47] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and S. D.
Stoller, “Neural simplex architecture,” in NASA Formal Methods, R. Lee,
S. Jha, and A. Mavridou, Eds. Cham: Springer International Publishing,
2020, pp. 97–114.

[48] S. L. Herbert, S. Bansal, S. Ghosh, and C. J. Tomlin, “Reachability-
based safety guarantees using efficient initializations,” in 2019 IEEE
58th Conference on Decision and Control (CDC). IEEE, 2019, pp.
4810–4816.

[49] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An
efficient reachability-based framework for provably safe autonomous
navigation in unknown environments,” in 2019 IEEE 58th Conference
on Decision and Control (CDC). IEEE, 2019, pp. 1758–1765.

[50] S. Bansal, A. Bajcsy, E. Ratner, A. D. Dragan, and C. J. Tomlin,
“A hamilton-jacobi reachability-based framework for predicting and
analyzing human motion for safe planning,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 7149–
7155.

[51] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin, “Combining op-
timal control and learning for visual navigation in novel environments,”
in Conference on Robot Learning. PMLR, 2020, pp. 420–429.

[52] A. Gattami, A. Al Alam, K. H. Johansson, and C. J. Tomlin, “Estab-
lishing safety for heavy duty vehicle platooning: A game theoretical
approach,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 3818 – 3823,
2011, 18th IFAC World Congress.

[53] M. Chen, Q. Hu, J. F. Fisac, K. Akametalu, C. Mackin, and C. J. Tomlin,
“Guaranteeing safety and liveness of unmanned aerial vehicle platoons
on air highways,” CoRR, vol. abs/1602.08150, 2016.

[54] A. Dhinakaran, M. Chen, G. Chou, J. C. Shih, and C. J. Tomlin, “A
hybrid framework for multi-vehicle collision avoidance,” 2017.

[55] A. Valmari, The state explosion problem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 429–528.

10

