
Software Solutions for Real-Software Solutions for Real-
Time SystemsTime Systems

 • Control software written using periodic tasks
 • Simple model, fairly straightforward to reason about
 • Guarantees from programming models and
 runtime environments
 • e.g.: Giotto [1] and Hierarchical Timing Language 
 (HTL) [2] use logical execution time (LET)
 • Assuming tasks can be scheduled on a given 
 hardware platform and RTOS, implementation 
 conforms to LET model
 • Otherwise, problem detected at runtime

Intrusion Detection ProblemIntrusion Detection Problem
 • Guard detects if an intruder has entered a certain 
 area by measuring light from laser LED detected via 
 light sensor
 • Randomly generated event sequence of intrusions
 • 100 events of two types: duration 300ms and 2.5s
 • Events are whether 
 light is striking sensor
 • Events generated 
 by another Lego 
 unit moving an 
 actuator to block 
 and unblock light
 source

Experimental SetupExperimental Setup
 • Hardware: Lego Mindstorms NXT
 — 32-bit ARM7 processor and 8-bit Atmel microcontroller
 — Powered by DC bench supply with shunt resistor 
  inserted on low-side output for current measurement
 • Software
 — OS: nxtOSEK, an OSEK-compliant RTOS for Lego
 — Time-triggered: Giotto [1] for OSEK ported to nxtOSEK
 — Event-triggered: FIFO queue of events
 — Equivalent programs trigger an alarm if intrusion occurs

Typical Experimental ResultsTypical Experimental Results
 • Event Features and Issues
 — Potentially rare and narrow, e.g. intrusions in this case
 — Event detection capability is a function of power usage
 — TT needs high sampling rate for detection and must 
  move data every cycle to maintain LET assumptions
 — ET can sleep most of the time while waiting and detect
 — Displays clear power savings (Displays clear power savings (20%20%) for ET versus TT) for ET versus TT
 — Flexibility in event handling if using ET and TT

 • Interrupts vs. Polling
 — Power savings obvious at this low level
 — Not previously established at level of abstraction 
  software solutions mandate
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Future WorkFuture Work
 • Working towards bridging the formal gap between
 controls and embedded software
 • New programming language and execution
 environment for distributed embedded systems
 • Language will support both ET & TT computation
 • Semantics defi ned in terms of Hybrid Input/Output
 Automata (HIOA) [3]
 • New classes of faults, e.g., OS-level, actuator,
 sensor, etc. in addition to crash and Byzantine
 — Create new types of behavior 
 — Detected more easily than crash and Byzantine
 — e.g.: node with an actuator failure could just announce it
 • Middleware and runtime environment will guarantee
 degraded safety and liveness in the face of faults
 — Will deploy on 25-node wireless Linux cluster at Illinois [4]
 — Guarantees at the software level of abstraction
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ParadigmParadigm ETET TT TT 
150ms150ms

TT TT 
300ms300ms

TT TT 
450ms450ms

TT TT 
1000ms1000ms

Average 
Power (W) 0.87 1.10 1.10 1.11 1.08

Missed 
Events (#) 0 0 0 5 44

Error (%) 0.08 0.08 0.08 0.20 1.10


