
Software Solutions for Real-Software Solutions for Real-
Time SystemsTime Systems

 • Control software written using periodic tasks
 • Simple model, fairly straightforward to reason about
 • Guarantees from programming models and
 runtime environments
 • e.g.: Giotto [1] and Hierarchical Timing Language
 (HTL) [2] use logical execution time (LET)
 • Assuming tasks can be scheduled on a given
 hardware platform and RTOS, implementation
 conforms to LET model
 • Otherwise, problem detected at runtime

Intrusion Detection ProblemIntrusion Detection Problem
 • Guard detects if an intruder has entered a certain
 area by measuring light from laser LED detected via
 light sensor
 • Randomly generated event sequence of intrusions
 • 100 events of two types: duration 300ms and 2.5s
 • Events are whether
 light is striking sensor
 • Events generated
 by another Lego
 unit moving an
 actuator to block
 and unblock light
 source

Experimental SetupExperimental Setup
 • Hardware: Lego Mindstorms NXT
 — 32-bit ARM7 processor and 8-bit Atmel microcontroller
 — Powered by DC bench supply with shunt resistor
 inserted on low-side output for current measurement
 • Software
 — OS: nxtOSEK, an OSEK-compliant RTOS for Lego
 — Time-triggered: Giotto [1] for OSEK ported to nxtOSEK
 — Event-triggered: FIFO queue of events
 — Equivalent programs trigger an alarm if intrusion occurs

Typical Experimental ResultsTypical Experimental Results
 • Event Features and Issues
 — Potentially rare and narrow, e.g. intrusions in this case
 — Event detection capability is a function of power usage
 — TT needs high sampling rate for detection and must
 move data every cycle to maintain LET assumptions
 — ET can sleep most of the time while waiting and detect
 — Displays clear power savings (Displays clear power savings (20%20%) for ET versus TT) for ET versus TT
 — Flexibility in event handling if using ET and TT

 • Interrupts vs. Polling
 — Power savings obvious at this low level
 — Not previously established at level of abstraction
 software solutions mandate

Power Comparison of Time and Event-Triggered Paradigms:Power Comparison of Time and Event-Triggered Paradigms:
A Case StudyA Case Study

Taylor Johnson and Sayan MitraTaylor Johnson and Sayan Mitra

Future WorkFuture Work
 • Working towards bridging the formal gap between
 controls and embedded software
 • New programming language and execution
 environment for distributed embedded systems
 • Language will support both ET & TT computation
 • Semantics defi ned in terms of Hybrid Input/Output
 Automata (HIOA) [3]
 • New classes of faults, e.g., OS-level, actuator,
 sensor, etc. in addition to crash and Byzantine
 — Create new types of behavior
 — Detected more easily than crash and Byzantine
 — e.g.: node with an actuator failure could just announce it
 • Middleware and runtime environment will guarantee
 degraded safety and liveness in the face of faults
 — Will deploy on 25-node wireless Linux cluster at Illinois [4]
 — Guarantees at the software level of abstraction

ReferencesReferences
 [1] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
 triggered language for embedded programming,” in Proceedings of
 the IEEE. Springer-Verlag, 2001, pp. 166–184.
 [2] A. Ghosal, T. A. Henzinger, D. Iercan, C. Kirsch, and A. L.
 Sangiovanni-Vincentelli, “Hierarchical timing language,” EECS Dept.,
 University of California, Berkeley, Tech. Rep. UCB/EECS-2006-79,
 May 2006.
 [3] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O Automata,” Inf.
 Comput., vol. 185, no. 1, pp. 105–157, 2003.
 [4] P. Kyasanur, C. Chereddi, and N. Vaidya, “Net-X: System eXtensions
 for Supporting Multiple Channels, Multiple Interfaces, and Other
 Interface Capabilities,” ECE Dept., UIUC, Tech. Rep., August 2006.

ParadigmParadigm ETET TT TT
150ms150ms

TT TT
300ms300ms

TT TT
450ms450ms

TT TT
1000ms1000ms

Average
Power (W) 0.87 1.10 1.10 1.11 1.08

Missed
Events (#) 0 0 0 5 44

Error (%) 0.08 0.08 0.08 0.20 1.10

