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Abstract—The strong coupling of software and physical
processes in the emerging field of cyber-physical systems
(CPS) motivates the development of new methods to
respond to failures in both the cyber and physical domains.
To this end, we propose a study of existing work on
handling failures from various disciplines. If these models
and methods are applicable to CPS, appropriate extensions
should be made to apply them. However, if they are
not, then we should head off into uncharted territory,
developing new methods, which we suggest to be drawn
from fields such as formal methods and verification.

I. RESEARCH PROBLEM

The interdisciplinary research problem we propose is
to develop failure detection and mitigation strategies
that can apply to broad classes of novel CPS, build-
ing upon the vast existing literature. Failure detection
has been widely studied in a variety of engineer-
ing and computer science disciplines, such as con-
trol theory [1], reliability [2], artificial intelligence [3],
distributed systems [4], among many others. Upon
analyzing these models and results, their applicability
to CPS can be determined, leading to extensions of
previous results or novel methods.

Classes of failures: Since these systems are com-
posed of software interacting with the physical world,
many classes of faults exist. On the cyber side, there
are timing failures of real-time programs and operat-
ing systems, in addition to crash failures, and sim-
ply software bugs. On the physical side, there are
actuator, control surface, and sensor failures, aside
from of course necessary robustness given the potential
operating environments of a system. Between these
two worlds is the potential for communication failures,
such as message drops and omissions, or worse, adver-
sarial man-in-the-middle attacks perhaps culminating
in Byzantine failures.

Graceful degradation: Any of these failures can re-
sult in a degradation of physical state, and thus poten-
tial violation of safety or liveness, which in the context
of safety-critical systems must be handled appropri-
ately to prevent catastrophic failures. To avoid over-
engineering these systems and as more systems begin

to utilize commercial, off-the-self (COTS) components,
we must realize that we cannot design systems that
do not fail, but instead should direct our attention
to designing systems that fail gracefully. Gracefully
failing could abstractly be described as maintaining
critical safety properties while allowing progress to
slow or stop until the system has been able to recover
by some autonomous or directed mitigation response,
and then proceeding onwards.

Ideally this response would also guarantee some re-
duced operation for liveness. In decreasing the impact
of a fault, the main constraint is to realize there exists a
fault and apply a mitigating action before degradation
of safety and liveness. If detection can occur faster, then
mitigation can begin sooner. Perhaps however, some
systems do not need mitigation, and can continue to
operate at some level before automatically recovering,
such as in self-stabilizing algorithms. Might such con-
cepts be useful in systems that have both physical and
software components?

II. PAST WORK AND POTENTIAL DIRECTIONS

The most applicable methods in the controls litera-
ture to CPS are probably model-based techniques. The
recent research on invertibility [5] and observability [6]
could lead to new methods for fault detection, in addi-
tion to classical methods such as residual and signature
generation [1]. Distributed systems failure detectors
give processes information about failures of other pro-
cesses in the system [4]. They provide algorithms for
solving canonical problems such as consensus, leader
election, and clock synchronization in the presence
of certain types of failures, and also establish lower
bounds about impossibility of solving those problems
with certain resource constraints.

Given that effectively all CPS must maintain some
notion of the current state of the system with regards
to time to be able to interact with the physical world,
the real-time systems community has analyzed faults.
Giotto [7] and its extensions allow for analysis of pro-
grams to ensure no timing failures (missing deadlines)
can occur in the virtual machine these programs are



executed on. Etherware [8] utilizes a middleware layer
and shows the ability of a distributed real-time control
system to maintain liveness and safety in spite of
communications link failures. The Simplex-architecture
supervisory control allows for the automatic mitigation
of certain faults by concurrently executing several con-
trollers, one of which is thoroughly tested, and then
choosing the control output from the safe controllers if
the other controllers issue commands that would take
the system to an unsafe set of states [9].

Formal methods and verification will provide useful
tools for solving these problems. Sha motivated in [10]
the need for formal methods in detecting and miti-
gating faults in what are now termed CPS, and more
recently again in [11] as there are countless further
directions to explore. While thus far we have primarily
considered mitigating faults to avoid violation of safety
properties, we propose also a study of optimizing
liveness properties in addition to maintaining safety.

III. INSPIRATION FROM APPLICATIONS

Consider the seemingly disjoint problems of colli-
sion avoidance between platoons of cars or among
uninhabited aerial vehicles (UAVs) where the state
variables of concern are positions, and in avoiding
cascading failures in today’s electrical or tomorrow’s
smart grid where the concern is to prevent failures
from spreading due to overloading. While these are
clearly different problems at a low level, at a higher
level, in each case the faster detection occurs, the
faster a mitigation response can be performed, such as
stopping the vehicle or disconnecting from the grid.
This fast response time could prevent the fault from
causing a degradation of system properties that leads
to catastrophic failure. The mobility allowed in the
collision avoidance example gives much freedom for
how to respond to such failures and perhaps simi-
lar degrees of freedom can be found in more con-
strained systems such as the power grid. Particularly
as distributed power generation grows in popularity,
compositional methods for handling cascading failures
must be investigated. In some systems, a degradation
of state, such as moving from very safe states to less
safe states, could potentially be used to detect faults–
this is similar to how the Simplex architecture switches
between controllers.

In the context of a flock of agents, one agent could
broadcast that it has a failed actuator or other local
problem, and nearby agents could respond accordingly
by moving away. An alternative approach would come
from distributed systems, relying on a heartbeat to
detect whether some agent has failed–if we have not
received a response for a long time, we can suspect
the agent with higher probability. However, relying

on failure advertisement or heartbeats are not always
good responses, as in the case of adversarial faults.

IV. CONCLUSIONS

The complexity of this problem, solely in the classes
of faults, is great. In addition to exploring the applica-
bility of the existing literature and the new proposed
methods to CPS, we must also utilize first princi-
ples such as abstraction to deal with this complexity,
as otherwise we will wind up over designing these
new systems. Some interesting questions are, given
a system and a model, (a) When is it possible to
detect failures? (b) Can we bound time to detection?
(c) How do we minimize time to detection? (d) Can we
utilize physical state to more easily or quickly identify
failures?
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