
Safe and Stabilizing Distributed Cellular Flows

Taylor Johnson, Sayan Mitra, and Karthik Manamcheri
Department of Electrical and Computer Engineering

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
Email: {johnso99, mitras, manamch1}@illinois.edu

Abstract—Advances in wireless vehicular networks
present us with opportunities for developing new dis-
tributed traffic control algorithms that avoid phenomena
such as abrupt phase transitions. Towards this end, we
study the problem of distributed traffic control in a parti-
tioned plane where the movement of all entities (vehicles)
within each partition (cell) is tightly coupled. We present
a distributed traffic control protocol that guarantees mini-
mum separation between vehicles at all times, even when
some cells’ control software may fail. Once failures cease,
the protocol is guaranteed to stabilize and the vehicles with
feasible paths to a target cell make progress towards it.
The algorithm relies on two general principles: temporary
blocking for maintenance of safety and local geographical
routing for guaranteeing progress. Our proofs use mostly
assertional reasoning and may serve as a template for
analyzing other safe and stabilizing distributed traffic
control protocols. We also present simulation results which
provide estimates of throughput as a function of vehicle
velocity, safety separation, path complexity, and failure-
recovery rates.

I. INTRODUCTION

Highway and air traffic flows are nonlinear dy-
namical systems that give rise to complex phenomena
such as abrupt phase transitions from fast to sluggish
flow [1]–[3]. Our ability to monitor, predict, and avoid
such phenomena can have a significant impact on the
reliability and the capacity of traffic networks. Tradi-
tional traffic protocols, such as those implemented for
air-traffic control are centralized [4]—a coordinator peri-
odically collects information from the vehicles, decides
and disseminates the waypoints, and subsequently the
vehicles try to blindly follow a path to the waypoint.
The advent of wireless vehicular networks [5] presents
a new opportunity for distributed traffic monitoring [6]
and control. Distributed protocols should scale and
be less vulnerable to failures compared to their cen-
tralized counterparts. In this paper, we propose such
a distributed traffic control protocol and analyze its
behavior.

A traffic control protocol is a set of rules that deter-
mines the routing and movement of certain physical
entities, such as cars and packages, over an underlying

graph, such as a road network, air-traffic network,
or a warehouse conveyor system. Any traffic control
protocol should guarantee: (a) (safety) that the entities
maintain some minimum physical separation, and (b)
(progress) that the entities arrive at a given a destination
(or target) vertex. In a distributed traffic control pro-
tocol each entity determines its own next-waypoint,
or each vertex in the underlying graph determines
the next-waypoints for the entities in an appropriately
defined neighborhood. The idea of distributed traffic
control has been around for some time but most of
the work has focused on human-factors issues [7],
[8], collision avoidance [9]–[13], and platooning [14]–
[16]. A notable exception is [17], which presents a
distributed algorithm (executed by entities, vehicles
in this case) for controlling a highway intersection
without any stop signs.

In this paper, we study the problem of distributed
traffic control in a partitioned plane where the motions
of entities within a partition are coupled. The problem
can be described as follows (refer to Figure 1). The
geographical space of interest is partitioned into re-
gions or cells. There is a designated target cell which
consumes entities and some source cells that produce
new entities. The entities within a cell are coupled,
in the sense that they all either move identically or
they remain static (we discuss the motivation for this
below). If a cell moves such that some entities within
it touch the boundary of a neighboring cell, those get
transferred to the neighboring cell. Thus, the role of
the distributed traffic control protocol is to control the
motion of the cells so that the entities (a) always have
the required separation, and (b) they reach the target,
when feasible.

The coupling mentioned above which requires en-
tities within a cell to move identically may appear
surprising at first sight. After all, under low traffic
conditions, individual drivers control the movement
of their cars within a particular region of the high-
way, somewhat independently of the other drivers in
that region. However, on highways under high-traffic,

high-velocity conditions, it is known that coupling may
emerge spontaneously, whereby the vehicles form a
fixed lattice structure and move with zero relative
speed [2], [18]. In other scenarios coupling arises be-
cause passive entities are moved around by active cells,
for example, packages being routed on a grid of multi-
directional conveyors [19], and molecules moving on a
medium according to some controlled chemical gradi-
ent. Finally, even where the entities are active and cells
are not, the entities can cooperate to emulate a virtual
active cell expressly for the purposes of distributed
coordination. This idea has been explored for mobile
robot coordination in [20] using a cooperation strategy
called virtual stationary automata [21], [22].

In this paper, we present such a distributed traffic
control protocol that guarantees safety at all times, even
when some cells fail permanently by crashing. The
protocol also guarantees eventual progress of entities
towards the target, provided that there exists a path
through non-faulty cells to the target. Specifically, the
protocol is self-stabilizing [23], in that after failures stop
occurring, the composed system automatically returns
to a state from which progress can be made. The algo-
rithm relies on two mechanisms: (a) a rule to maintain
local routing tables at each non-faulty cell, and (b) a
(more interesting) rule for signaling amongst neighbors
which guarantees safety while preventing deadlocks.
Roughly speaking, the signaling mechanism at some
cell fairly chooses amongst its neighboring cells which
contain entities, indicating if it is safe for one of these
cells to apply a movement in the direction of the
signaling cell. This permission-to-move policy turns
out to be necessary, because movement of neighboring
cells may otherwise result in a violation of safety in
the signaling cell, if entity transfers occur.

We establish these safety and progress properties
through systematic assertional reasoning. We believe
that these proofs may serve as a template for the
analysis of other distributed traffic control protocols
and also can be mechanized using automated theorem
proving tools, for example [24].

The throughput analysis of this algorithm, and in
fact any distributed traffic control algorithm, remains a
challenge. We present simulation results that illustrate
the influence (or the lack thereof) of several factors
on throughput: (a) path length, (b) path complexity
measured in number of turns along a path, (c) required
safety separation and cell velocity, and (d) failure-
recovery rates, under a model where crash failures are
not permanent and cells may recover from crashing.

The rest of the paper is organized as follows. First,
Section II introduces the system model and protocol.
Next in Section III, we define the safety and progress
properties to be analyzed and analyze them. Subsec-

tion III-A shows that the safety property is invariant
and is satisfied in any reachable state. Progress is
established by showing two properties. First in Sub-
section III-B, it is shown that the routing protocol to
find the target from any cell with a physical path
through non-faulty cells to the target is self-stabilizing.
Secondly, in Subsection III-C, it is shown that entities
on any cell with a feasible physical path to the target
eventually reach the target. Simulation results and
interpretation are presented in Section IV, followed by
a brief discussion and conclusion in Section V.

II. SYSTEM MODEL

For a set K, let K⊥
∆
= K ∪ {⊥} and K∞

∆
= K ∪ {∞}.

For N ∈ N, let [N]
∆
= {0, . . . , N}. For a variable x, its

type is denoted by type(x) and it is the set of values
that it can take. A valuation for a set of variables X ,
denoted by x, is a function that maps each x ∈ X
to a point in type(x). Given a valuation x for X , the
valuation for a variable v ∈ X , denoted by x.v, is the
restriction of x to {v}. The set of all possible valuations
of X is denoted by val(X).

A discrete transition system A is a tuple 〈X,Q0, A,→〉,
where (i) X is a set of variables and val(X) is called
the set of states, (ii) Q0 ⊆ val(X) is the set of start states,
(iii) A is a set of transition names, and (iv)→⊆ val(X)×
A × val(X) is a set of discrete transitions. An execution
fragment of A is a (possibly infinite) sequence of states
α = x0,x1, . . ., such that for each index appearing in
α, (xk, a,xk+1) ∈→ for some a ∈ A. An execution is an
execution fragment with x0 ∈ Q0. A state x is said to
be reachable if there exists a finite execution that ends in
x. A is said to be safe with respect to a set S ⊆ val(X)
if all reachable states are contained in S. A set S is said
to be stable if for each (x, a,x′) ∈→, x ∈ S implies that
x′ ∈ S. A is said to stabilize to S if S is stable and every
execution fragment has a suffix ending in S.

A. Overview of distributed cellular traffic control

The system consists of N2 cells arranged in an N×N
grid. Each cell physically occupies a unit square region
in the plane and may contain a number of entities,
each of which occupies a smaller square region. All
the entities on a given cell move identically: either
they remain static or they move with some constant
velocity either horizontally or vertically. This move-
ment is determined by the software controlling each
cell. The software relies on communication amongst
adjacent cells. When a moving entity touches an edge
of a cell, it is instantaneously transferred to the next
neighboring cell. The software of a cell implements
the distributed traffic control protocol. In this paper,
we consider synchronous protocols which operate in
rounds. At each round, every cell exchanges messages

5

4

<3,3>

3

tid
dist=0

2

<2,1>
dist=∞

dist 0

1

<0,0>
<1,0>

0

0 1 2 3 4 5

<1,0>

Figure 1. Example System with 4×4 unit-length square cells where
tid = 〈2, 2〉 (in very light gray), SID = {〈1, 0〉} (in light gray), and
failed2,1 = true (in black). The gray arrows represent next variables.
The smaller squares are entities with safety region specified by rs
represented by the gray border and length region specified by l
represented by the white interior.

bearing state information with their neighbors. Based
on this, the cells update their software state and decide
their (possibly zero) velocities. Until the beginning of
the next round, the cells continue to operate according
to this velocity—this may lead to entity transfers.

Assume messages are delivered within bounded
time, computations are instantaneous, all the entities
have the same size, and if moving, any cell does
so with the same constant velocity. The latter two
assumptions are for simplicity of presentation only.
Under these assumptions, the system can be modeled
as a collection of discrete transition systems which
interact through shared variables. In what follows, we
present the discrete transition system that is obtained
by composing the models for the individual cells.

B. Formal system model

Let ID ∆
= [N−1]× [N−1] be the set of identifiers for

all cells in the system. Each cell has a unique identifier
〈i, j〉 ∈ ID. Cell 〈i, j〉 occupies a unit square whose
bottom-left corner is the point (i, j) in the Euclidean
plane. Cell 〈m,n〉 is said to be neighbor of cell 〈i, j〉
if |i−m| + |j − n| = 1. The set of identifiers of all
neighbors of 〈i, j〉 is denoted by Nbrsi,j . For this paper,
we will consider a system with a unique target cell with
identifier tid and a set of source cells, with identifiers

SID ⊂ ID. All other cells are ordinary cells. Every
entity that may ever be in the system has a unique
identifier drawn from a set P . For any entity p ∈ P
that is actually present in the system, we denote the
coordinates of its center by (px, py) ∈ R2. Entity p
occupies an l× l square area, with its center at (px, py).

The specification of the system uses the following
three parameters: (i) l: length of an entity, (ii) rs:
minimum required inter-entity gap along each axis,
and (iii) v: cell velocity, or distance by which an entity
may move over one round. It is required that v < l < 1
and rs + l < 1. The former is required to ensure cells
do not violate the gap requirement from one round to
the next when new entities enter a cell. The latter is
required so that entities cover at most the same area
of the Euclidean plane as the cell in which they are
contained, since cells are squares of unit length. Define
the total center spacing requirement as d ∆

= rs + l.
Next, we describe the discrete transition system

(state machine) Celli,j that specifies the behavior of
an individual cell. We specify the variables associated
with each Celli,j ; initial values of the variables are
shown in Figure 2 using the ‘:=’ notation:

(i) Membersi,j : set of entities located in cell 〈i, j〉,
(ii) next i,j : neighbor towards which 〈i, j〉 attempts to

move,
(iii) NEPrev i,j : nonempty neighbors for which 〈i, j〉 is

equal to next ,
(iv) dist i,j : estimated Manhattan distance to tid,
(v) tokeni,j : a token used for mutual exclusion to

indicate which neighbor may move,
(vi) signal i,j : indicates whether a physical region in

Celli,j is empty, and
(vii) failed i,j : indicates whether or not 〈i, j〉 has failed.

When clear from context, the subscripts in the names
of the variables are dropped. A state of Celli,j refers to
a valuation of all these variables, i.e., a function that
maps each variable to a value of the corresponding
type. The complete system is an automaton, called
System, consisting of the ensemble of all the cells. A
state of System is a valuation of all the variables for all
the cells. We refer to states of System with bold letters
x, x′, etc.

As we shall see shortly, variables tokeni,j ,
failed i,j , and NEPrev i,j are private to Celli,j , while
Membersi,j , dist i,j ,next i,j , and signal i,j can be read by
neighboring cells of Celli,j . See Figure 3. This has the
following interpretation for an actual message-passing
implementation. At the beginning of each round,
Celli,j broadcasts messages containing the values
of these variables and receives similar values from
its neighbors. Then, the computation of this round
updates the local variables for each cell based on

1variables
Membersi,j : Set[P] := {}

3NEPrevi,j : Set[ID⊥] := {}
nexti,j , signali,j , tokeni,j : ID⊥ := ⊥

5disti,j : N∞ := ∞
failedi,j : B := false

7
transitions

9fail(〈i, j〉)
eff failedi,j := true; disti,j := ∞; nexti,j := ⊥

11
update

13eff Route; Signal; Move

Figure 2. Specification of Celli,j .

the values collected from its neighbors. Variable
Membersi,j is a special variable, in that it can also
be written to by the neighbors of Celli,j . This is how
we capture transferal of entities amongst cells. An
entity p is quantified to be in x.Membersi,j for a state
x and 〈i, j〉 ∈ ID, so we denote p′ where p′ = p,
such that p′ ∈ x′.Membersm,n where x

a→ x′ for some
a ∈ A and 〈m,n〉 ∈ ID. If a transfer does not occur,
then 〈m,n〉 = 〈i, j〉, but if a transfer occurs, then
〈m,n〉 ∈ Nbrsi,j .

Cellm,nCelli,j m,n

Members

i,j

Membersi j Membersm,n

dist

Membersi,j

dist distm,n
nextm,n
i l

disti,j
nexti,j
i l signalm,nsignali,j

tokenm,n
NEPrevm n

tokeni,j
NEPrevi j m,n

failedm,n
i,j

failedi,j

Figure 3. The interaction between a pair of neighboring cells is
modeled with shared variables Members , dist , next , and signal .

System has two types of state transitions: fails and
updates. A fail(〈i, j〉) transition models the crash failure
of the 〈i, j〉th cell and sets failed i,j to true , disti,j to
∞, and nexti,j to ⊥. A cell 〈i, j〉 is called failed if
failed i,j is true , otherwise it is called non-faulty. The
set of identifiers of all failed and non-faulty cells at a
state x is denoted by F (x) and NF (x), respectively. A
failed cell does nothing; it never moves and it never
communicates1.

An update transition models the evolution of all non-
faulty cells over one synchronous round. For readabil-
ity, we describe the state-change owing to an update
transition as a sequence of three functions (subrou-
tines), which for each non-faulty 〈i, j〉, (i) Route com-

1disti,j = ∞ can be interpreted as its neighbors not receiving a
timely response from 〈i, j〉.

putes the variables dist i,j and next i,j , (ii) Signal com-
putes (primarily) the variable signal i,j , and (iii) Move
computes the new positions of entities. Note that the
entire update transition is atomic, so there is no possi-
bility to interleave fail transitions between the subrou-
tines of update. To reiterate, in this discrete automaton
model, all the changes in the state of System are
captured by a single atomic transition brought about
by update. Thus, the state of System at (the beginning
of) round k + 1 is obtained by applying these three
functions to the state at round k. Now we proceed to
describe the distributed traffic control algorithm which
is implemented through these functions.

The Route function (Figure 4) is responsible for
constructing stable routes in the face of failures. Specif-
ically, it constructs a distance-based routing table for
each cell that relies only on neighbors’ estimates of
distance to the target. Recall that failed cells have dist
set to ∞. From a state x, for each 〈i, j〉 ∈ NF (x), the
variable dist i,j is updated as 1 plus the minimum value
of dist amongst the neighbors of 〈i, j〉. If this results in
dist i,j being infinity, then next i,j is set to ⊥, otherwise
it is set to be the identifier with the minimum dist with
ties broken with neighbor identifiers.

1if ¬failedi,j ∧ 〈i, j〉 6= tid then

disti,j :=

(
min

〈m,n〉∈Nbrsi,j

distm,n

)
+ 1

3if disti,j = ∞ then nexti,j := ⊥
else nexti,j := argmin

〈m,n〉∈Nbrsi,j

(distm,n, 〈m,n〉)

Figure 4. Route function.

The Signal function (Figure 5) executes after Route
and is the key part of the protocol for both maintain-
ing safe entity separations and ensuring progress of
entities to the target. Roughly, each cell implements
this by following two policies: (a) accept new entities
from a neighbor only when this is safe, and (b) pro-
vide opportunities infinitely often for each nonempty
neighbor to make progress. First 〈i, j〉 sets NEPrev i,j

to be the subset of Nbrsi,j for which next has been
set to 〈i, j〉 and Members is nonempty. If tokeni,j is ⊥,
then it is set to some arbitrary value in NEPrev i,j ; it
continues to be ⊥ if NEPrev i,j is empty. Otherwise,
tokeni,j = 〈m,n〉, which is a neighbor of 〈i, j〉 with
nonempty Members . It is checked if there is a gap
of length d on Celli,j in the direction of 〈m,n〉. This
is accomplished through the conditional in Lines 5—
8 as a step in guarantying fairness. If there is not
enough gap, then signal i,j is set to ⊥, which blocks
〈m,n〉 from moving its entities in the direction of 〈i, j〉,
thus preventing entity transfers. On the other hand, if
there is sufficient gap, then signal i,j is set to tokeni,j

which enables 〈m,n〉 to move its entities towards 〈i, j〉.
Finally, tokeni,j is updated to a value in NEPrev i,j that
is different from its previous value, if that is possible
according to the rules just described (Lines 11-13).

if ¬failedi,j then
2 NEPrevi,j :=

{〈m,n〉 ∈ Nbrsi,j : nextm,n = 〈i, j〉 ∧Membersm,n 6= ∅}
4 if tokeni,j = ⊥ then tokeni,j := choose from NEPrevi,j

if ((tokeni,j = i + 1 ∧∀ p ∈ Membersi,j : px + l/2 ≤ i + 1− d)
6 ∨ (tokeni,j = i− 1 ∧∀ p ∈ Membersi,j : px − l/2 ≥ i + d)

∨ (tokeni,j = j + 1 ∧∀ p ∈ Membersi,j : py + l/2 ≤ j + 1− d)
8 ∨ (tokeni,j = j − 1 ∧∀ p ∈ Membersi,j : py − l/2 ≥ j + d))

then
10 signali,j := tokeni,j

if |NEPrevi,j | > 1 then
12 tokeni,j := choose from NEPrevi,j \ {tokeni,j}

elseif |NEPrevi,j | = 1 then tokeni,j ∈ NEPrevi,j
14 else tokeni,j := ⊥

else signali,j := ⊥; tokeni,j := tokeni,j

Figure 5. Signal function.

Finally, the Move function (Figure 6) models the
physical movement of entities over a given round.
For cell 〈i, j〉, let 〈m,n〉 be next i,j . The entities in
Membersi,j move in the direction of 〈m,n〉 if and only
if signalm,n is set to 〈i, j〉. In that case, all the entities
in Membersi,j are shifted in the direction of cell 〈m,n〉.
This may lead to some entities crossing the boundary
of Celli,j into Cellm,n, in which case, such entities are
removed from Membersi,j . If 〈m,n〉 is not the target,
then the removed entities are added to Membersm,n.
In this case (Lines 13-20), the transferred entities are
placed at the edge of Cellm,n. However, if 〈m,n〉 is the
target, then the removed entities are not added to any
cell and thus no longer exist in System.

1 if ¬failedi,j ∧ signalnexti,j = 〈i, j〉 then
let 〈m,n〉 = nexti,j

3 for each p ∈ Membersi,j
px := px + v(m− i)

5 py := py + v(n− j)

7 if (m = i + 1 ∧ px + l/2 > i + 1) ∨ (m = i− 1 ∧ px − l/2 < i)
∨ (n = j + 1 ∧ py + l/2 > j + 1) ∨ (n = j − 1 ∧ py − l/2 < j)

9 then
Membersi,j := Membersi,j \ {p}

11 if 〈m,n〉 6= tid
then Membersm,n := Membersm,n ∪ {p}

13 if m = i + 1 ∧ px + l/2 > i + 1
then px := m + l/2

15 elseif m = i− 1 ∧ px − l/2 < i
then px := m− l/2

17 elseif n = j + 1 ∧ py + l/2 > j + 1
then py := n + l/2

19 elseif n = j − 1 ∧ py − l/2 < j
then py := n− l/2

Figure 6. Move function.

The source cells 〈i, j〉 ∈ SID , in addition to the
above, add at most one entity in each round to
Membersi,j such that the addition of an entity does not
violate the minimum gap between entities at Celli,j .

III. ANALYSIS

In this section we present an analysis of System with
regards to safety and progress properties. Roughly, the
safety property requires that there is a minimum gap
between entities and the progress property requires
that all entities which reside on cells with feasible paths
to the target, eventually reach the target.

A. Safety analysis

For any state x of System, define:

Safei,j(x)
∆
= ∀p, q ∈ x.Membersi,j , p 6= q,

(|px − qx| ≥ d) ∨ (|py − qy| ≥ d), and

Safe(x)
∆
= ∀ 〈i, j〉 ∈ ID,Safei,j(x).

A state is safe if for every cell, the distance between the
centers of any two entities along either coordinate is at
least d. Thus, in a safe state, the edges of all entities in
a cell are separated by a distance of rs. However, the
entities in two adjacent cells may have edges spaced
apart by less, although their centers will be spaced by
at least l.

We proceed by proving some preliminary properties
of System which will be used for establishing the
desired safety property. The following invariant asserts
that no entities exist between the boundaries of cells.
This is a consequence of transferring entities upon an
entity’s edge touching an edge of a cell, and then
resetting the entity’s position to be within the new cell.

Invariant 1. In any reachable state x, ∀ 〈i, j〉 ∈ ID , ∀p ∈
x.Membersi,j

i+
l

2
≤ px ≤ i+ 1− l

2
, and

j +
l

2
≤ py ≤ j + 1− l

2
.

The next invariant states that cells’ Members are
disjoint. This is immediate from the Move function
since entities are only added to one cell’s Members
upon being removed from a different cell’s Members .

Invariant 2. In any reachable state x, for any distinct
〈i, j〉, 〈m,n〉 ∈ ID , x.Membersi,j ∩ x.Membersm,n = ∅.

Next, we define a predicate which states that if
signal i,j is set to some 〈m,n〉 ∈ Nbrsi,j , then there
is a large enough gap from the common edge where
no entities exist in Celli,j . For a state x, H(x)

∆
=

∀ 〈i, j〉 ∈ ID , ∀ 〈m,n〉 ∈ Nbrsi,j , if x.signal i,j = 〈m,n〉

then exactly one of the following hold:

m = i+ 1 ∧ ∀p ∈ x.Membersi,j , px +
l

2
≤ i+ 1− d,

m = i− 1 ∧ ∀p ∈ x.Membersi,j , px −
l

2
≥ i+ d,

n = j + 1 ∧ ∀p ∈ x.Membersi,j , py +
l

2
≤ j + 1− d,

n = j − 1 ∧ ∀p ∈ x.Membersi,j , py −
l

2
≥ j + d.

H(x) is not an invariant property because once entities
move the property may be violated. However, for
proving safety all that needs to be established is that
at the point of computation of the signal variable this
property holds. The next key lemma states this.

Lemma 3. For all reachable states x, H(x)⇒ H(xs) where
xS is the state obtained by applying the Route and Signal
functions to x.

Proof: Fix a reachable state x, a 〈i, j〉 ∈ ID , and a
〈m,n〉 ∈ Nbrsi,j such that x.signal i,j = 〈m,n〉. Let xR

be the state obtained by applying the Route function of
Figure 4 to x and xS be the state obtained by applying
the Signal function of Figure 5 to xR.

Without loss of generality, assume 〈m,n〉 = 〈i− 1, j〉,
so if x.signali,j = 〈i− 1, j〉, then ∀p ∈ x.Membersi,j ,
px− l

2 ≥ i+d. First, observe that H(xR). This is because
the Route function does not change any of the variables
involved in the definition of H(.). Next, we show that
H(xR) implies H(xS). There are two possible cases.
First, if xS .signal i,j 6= 〈m,n〉 then the statement holds
vacuously. Second, when xS .signal i,j = 〈i− 1, j〉, the
second condition in H(xR) and Figure 5, Line 6 implies
H(xS). The cases where 〈m,n〉 takes the other values
in Nbrsi,j follow by symmetry.

The following lemma asserts that if there is a cycle of
length two formed by the signal variables, then entity
transfers cannot occur between the involved cells in
that round.

Lemma 4. Let x be any reachable state and x′ be a state that
is reached from x after a single update transition (round).
If x.signal i,j = 〈m,n〉 and x.signalm,n = 〈i, j〉, then
x.Membersi,j = x′.Membersi,j and x.Membersm,n =
x′.Membersm,n.

Proof: No entities enter either x′.Membersi,j or
x′.Membersm,n from any other 〈a, b〉 ∈ Nbrsi,j or
〈c, d〉 ∈ Nbrsm,n since x.signal i,j = 〈m,n〉 and
x.signalm,n = 〈i, j〉. Assume without loss of generality
that 〈m,n〉 = 〈i− 1, j〉. It remains to be established
that @p ∈ x.Membersi−1,j such that p′ ∈ x′.Membersi,j
where p = p′ or vice-versa. For the transfer to occur,
px must be such that p′x = px + l

2 + v > i by Figure 6,
Line 4. But for x.signal i,j = 〈i− 1, j〉 to be satisfied,

it must have been the case that px − l
2 < i + l + rs

by Figure 5, Line 6 and since v < l, a contradiction is
reached.

Now we state and prove the safety property of
System.

Theorem 5. For any reachable state x, Safe(x).

Proof: The proof is by standard induction over
the length of any execution of System. The base case
is satisfied by the initialization assumption. For the
inductive step, consider reachable states x, x′ and an
action a ∈ A such that x

a→ x′. Fix 〈i, j〉 ∈ ID and
assuming Safei,j(x), show that Safei,j(x′).

If a = faili,j , then clearly Safe(x′) as none of the
entities move.

For a = update, there are two cases to consider by
Invariant 2. First, x′.Membersi,j ⊆ x.Membersi,j . There
are two sub-cases: if x′.Membersi,j = x.Membersi,j ,
then all entities in x.Members move identically
and the spacing between two distinct entities p,
q ∈ x′.Membersi,j is unchanged. That is, ∀p, q ∈
x.Membersi,j , ∀p′, q′ ∈ x′.Membersi,j such that p′ =
p and q′ = q and where p 6= q, |p′x − q′x| =
|px + vc− qx − vc|, where c is a constant. It follows
that |p′x − q′x| ≥ d. By similar reasoning it follows that∣∣p′y − q′y∣∣ is also at least d. The second sub-case arises
if x′.Membersi,j (x.Membersi,j , then Safei,j(x

′) is
either vacuously satisfied or it is satisfied by the same
argument as above.

The second case is when x′.Membersi,j *
x.Membersi,j , that is, there exists some entity
p′ ∈ x′.Membersi,j that was not in x.Membersi,j .
There are two sub-cases. The first sub-case is when p′

was added to x′.Membersi,j since 〈i, j〉 ∈ SID . In this
case, the specification of the source cells states that the
entity p′ was added to x′.Membersi,j without violating
Safei,j(x

′), and the proof is complete. Otherwise,
p′ was added to x′.Membersi,j by a neighbor, so
p′ ∈ x.Membersi′,j′ for some 〈i′, j′〉 ∈ x.Nbrsi,j .
Without loss of generality, assume that i′ = i − 1 and
j′ = j. That is, p′ was transferred to Celli,j from its
left neighbor. From Line 14 of Figure 6 it follows that
p′x = i + l

2 . The fact that p′ transferred from Celli′,j′
in x to Celli,j in x′ implies that x.next i′,j′ = 〈i, j〉 and
x.signal i,j = 〈i′, j′〉—these are necessary conditions
for the transfer. Thus, applying at state x the second
inequality from H(x) and Lemma 3, it follows that
for every q ∈ x.Membersi,j , qx ≥ i + d + l

2 . It must be
established that if p′ is transfered to x′.Membersi,j ,
then every q′ ∈ x′.Membersi,j , where q′ 6= p′ satisfies
q′x ≥ i + d + l

2 , which means that q did not move
towards p. This follows by application of Lemma 4,
which states that if entities on adjacent cells move
towards one another simultaneously, then a transfer

of entities cannot occur. This implies that all entities
q′ in x′.Membersi,j have edges greater than rs of the
edges of any such entity p′, implying Safei,j(x

′), since
p′x = i + l

2 and q′x ≥ i + d + l
2 , so q′x − p′x ≥ d. Finally,

since 〈i, j〉 was chosen arbitrarily, Safe(x′).
Theorem 5 shows that System is safe in spite of

failures.

B. Stabilization of Routing and Progress

We show that under mild assumptions, once new
failures cease to occur, System recovers to a state where
each entity on a non-faulty cell with a feasible path to
the target makes progress towards it.

For a state x, inductively define the path distance ρ of
any cell 〈i, j〉 ∈ ID as the distance to the target through
non-faulty cells. Let ρ(x, 〈i, j〉) ∆

=
∞ if failed i,j ,

0 if 〈i, j〉 = tid ,

1 + min
〈m,n〉∈Nbrsi,j∩NF (x)

ρ(x, 〈m,n〉) otherwise.

A cell is said to be target connected if its path distance
is finite. We define

TC(x)
∆
= {〈i, j〉 | ρ(x, 〈i, j〉) <∞}

as the set of cell identifiers that are connected to the
target through non-faulty cells.

The analysis relies on the following assumptions on
the environment of System which controls the occur-
rence of fail transitions and the insertion of entities by
the source. (a) The target cell does not fail. (b) Source
cells 〈s, t〉 ∈ SID place entities in Memberss,t without
blocking any of their nonempty non-faulty neighbors
perpetually. That is, for any execution α of System, if
there exists an 〈i, j〉 ∈ Nbrss,t, such that for every state
x in α after a certain round, 〈i, j〉 ∈ x.NEPrevs,t, then
eventually signals,t becomes equal to 〈i, j〉 in some
round of α.

Let a fault-free execution fragment α be a sequence
of states starting from x along which there are no
fail(〈i, j〉) transitions for any 〈i, j〉 ∈ NF (x). Intuitively,
a fault-free execution fragment is an execution frag-
ment with no new failures, although for the first state
x of α, F (x) need not be empty.

Lemma 6. Consider any reachable state x of System and
any 〈i, j〉 ∈ TC(x) \ {tid}. Let h = ρ(x, 〈i, j〉). Any fault-
free execution fragment α starting from x stabilizes in h
rounds to a set of states S with all elements satisfying:

disti,j = h, and
nexti,j = 〈in, jn〉 ,where ρ(x, 〈in, jn〉) = h− 1.

Proof: Fix an arbitrary state x, a fault-free execution
fragment α starting from x, and 〈i, j〉 ∈ TC(x) \ {tid}.
We have to show that the set of states S defined by the
above equations is closed under update transitions and
that after h rounds, the execution fragment α enters S.

First, by induction on h we show that S is stable.
Consider any state y ∈ S and a state y′ that is obtained
by applying an update transition to y. We have to show
that y′ ∈ S. For the base case, h = 1, so y.dist i,j = 1
and y.next i,j = tid. From Lines 2 and 4 of the Route
function in Figure 4, and that there is a unique tid , it
follows that y′.dist i,j remains 1 and y′.next i,j remains
tid. For the inductive step, the inductive hypothesis is
for any given h, if for any 〈i′, j′〉 ∈ NF (x), y.dist i′,j′ =
h and y.next i′,j′ = 〈m,n〉, for some 〈m,n〉 ∈ ID with
ρ(x, 〈m,n〉) = h− 1, then

y′.disti′,j′ = h and y′.nexti′,j′ = 〈m,n〉 .

Now consider 〈i, j〉 such that ρ(y, 〈i, j〉) =
ρ(y′, 〈i, j〉) = h + 1. In order to show that S is
closed, we have to assume that y.dist i,j = h + 1 and
y.next i,j = 〈m,n〉, and show that the same holds
for y′. Since ρ(y′, 〈i, j〉) = h + 1, 〈i, j〉 does not have
a neighbor with path distance smaller than h. The
required result follows from applying the inductive
hypothesis to 〈m,n〉 and from Lines 2 and 4 of
Figure 4.

Next, we have to show that starting from x, α enters
S within h rounds. Once again, this is established
by inducting on h, which is ρ(x, 〈i, j〉). The base case
only includes the paths satisfying h = ρ(x, 〈i, j〉) = 1
and follows by instantiating 〈in, jn〉 = tid. For the
inductive case, assume that at round h, dist i′,j′ = h
and next i′,j′ = 〈in, jn〉 such that ρ(x, 〈in, jn〉 = h − 1
and 〈in, jn〉 is the minimum identifier amongst all such
cells. Observe that one such 〈i′, j′〉 ∈ Nbrs(i, j) by the
definition of TC. Then at round h+1, by Lines 2 and 4
of Figure 4, dist i,j = dist i′,j′ + 1 = h+ 1.

The following corollary of Lemma 6 states that af-
ter new failures cease occurring, all target connected
cells get their next variables set correctly within at
most O(N2) rounds. It follows since the value of h
in Lemma 6 for any target connected cell is at worst
O(N2).

Corollary 7. Consider any execution of System with arbi-
trary but finite sequence of fail transitions. Within O(N2)
rounds of the last fail transition, every target connected
cell 〈i, j〉 in System has next i,j fixed permanently to the
identifier of the next cell along such a path.

C. Progress of entities towards the target

Using the results from the previous sections, we
show that once new failures cease occurring, every

entity on a target connected cell eventually gets to
the target. The result (Theorem 10) uses two lemmas
which establish that, along every infinite execution
with a finite number of failures, every nonempty target
connected cell gets permission to move infinitely often
(Lemma 9), and a permission to move allows the
entities on a cell to make progress towards the target
(Lemma 8). We start with the latter.

For the remainder of this section, we fix an arbitrary
infinite execution α of System with a finite number of
failures. Let xf be the state of System at the round
after the last failure, and α′ be the infinite failure-free
execution fragment xf , xf+1, . . . of α starting from xf .
Observe that TC(xf) = TC(xf+1) = TC(. . .), so define
TC to be TC(xf).

Lemma 8. For any 〈i, j〉 ∈ TC, k > f , if xk.signalm,n =
〈i, j〉 and xk.next i,j = 〈m,n〉, then ∀p ∈ xk.Membersi,j ,
if p′ ∈ xk+1.Membersi,j such that p′ = p, then

|p′x −m| < |px −m| , or
∣∣p′y − n∣∣ < |py − n| ,

otherwise if p′ ∈ xk+1.Membersm,n such that p′ = p, then

m ≤ p′x ≤ m+ 1, or n ≤ p′y ≤ n+ 1.

Proof: The first case is when no entity transfers
from 〈i, j〉 to 〈m,n〉 in the k+1th round. In this case, the
result follows since velocity is applied towards 〈m,n〉
by Move in Figure 6, Lines 4 to 5. The second case is
when some entity p transfers from 〈i, j〉 to 〈m,n〉, in
which case p′x ∈ [m,m+1] or p′y ∈ [n, n+1] by Figure 6,
Lines 13 to 20.

Lemma 9. Consider any 〈i, j〉 ∈ TC \ {tid}, such that for
all k > f , (if xk.Membersi,j 6= ∅, then ∃k′ > k such that
xk′ .signalnexti,j = 〈i, j〉).

Proof: Since 〈i, j〉 ∈ TC, there exists h < ∞ such
that for all k > f , ρ(xk) = h. We prove the lemma
by inducting on h. The base case is h = 1. Fix 〈i, j〉
and instantiate k′ = f + 4. By Lemma 6, for all non-
faulty 〈i, j〉 ∈ Nbrstid, xf .nexti,j = tid since k > f .
For all k > f , if xk.Membersi,j 6= ∅, then signal tid
changes to a different neighbor with entities every
round. It is thus the case that |xk.NEPrev tid| ≤ 4 and
since Memberstid = ∅ always, exactly one of Figure 5,
Lines 5-Lines 8 is satisfied in any round, then within
4 rounds, signal tid = 〈i, j〉.

For the inductive case, let ks = k + h be the step
in α after which all non-faulty 〈a, b〉 ∈ Nbrsi,j have
xks

.nexta,b = 〈i, j〉 by Lemma 6. Also by Lemma 6,
∃ 〈m,n〉 ∈ Nbrsi,j such that xks .distm,n < xks .dist i,j ,
implying that after ks, |xks .NEPrev i,j | ≤ 3 since
xks

.next i,j = 〈m,n〉 and xks
.nextm,n 6= 〈i, j〉. By the

inductive hypothesis, xks
.signalnexti,j = 〈i, j〉 infinitely

often. If 〈i, j〉 ∈ SID, then entity initialization does
not prevent xk.signal i,j = 〈a, b〉 from being satis-
fied infinitely often by the second assumption intro-
duced in Subsection III-B. It remains to be established
that signal i,j = 〈a, b〉 infinitely often. Let 〈a, b〉 ∈
xks

.NEPrev i,j where ρ(xks
, 〈a, b〉) = h+ 1.

If |xks
.NEPrev i,j | = 1, then since the inductive

hypothesis satisfies signalnexti,j = 〈i, j〉 infinitely of-
ten, then Lemma 8 applies infinitely often, and thus
Membersi,j = ∅ infinitely often, finally implying that
signal i,j = 〈a, b〉 infinitely often.

If |xks .NEPrev i,j | > 1, there are two sub-cases. The
first sub-case is when no entity enters 〈i, j〉 from some
〈c, d〉 6= 〈a, b〉 ∈ xks

.NEPrev , which follows by the
same reasoning used in the |xks

.NEPrev | = 1 case.
The second sub-case is when a entity enters 〈i, j〉
from 〈c, d〉, in which case it must be established that
signal i,j = 〈a, b〉 infinitely often. This follows since if
xk′ .tokeni,j = 〈a, b〉 where k′ > kt > ks and kt is the
round at which an entity entered 〈i, j〉 from 〈c, d〉, and
the appropriate case of Lemma 3 is not satisfied, then
xk′+1.signal i,j = ⊥ and xk′+1.tokeni,j = 〈a, b〉 by Fig-
ure 5, Line 15. This implies that no more entities enter
〈i, j〉 from either cell 〈c, d〉 satisfying 〈c, d〉 6= 〈a, b〉.
Thus tokeni,j = 〈a, b〉 infinitely often follows by the
same reasoning |xks

.NEPrev | = 1 case.
The final theorem establishes that entities on any cell

in TC eventually reach the target in α′.

Theorem 10. Consider any 〈i, j〉 ∈ TC , ∀k > f , ∀p ∈
xk.Membersi,j , ∃k′ > k such that p ∈ xk′ .Membersnexti,j .

Proof: Fix 〈i, j〉 ∈ TC , a round k > f and
p ∈ xk.Membersi,j . Let h = max〈i,j〉∈TC ρ(xf , 〈i, j〉)
which is finite. By Lemma 6, at every round after
ks = k + h for any 〈i, j〉 ∈ TC, the sequence of
identifiers β = 〈i, j〉 ,xks .next i,j ,xks .nextxks .nexti,j

, . . .
forms a fixed path to tid. Applying Lemma 9 to
〈i, j〉 ∈ TC shows that there exists km ≥ ks such that
xkm

.signalnexti,j = 〈i, j〉. Now applying Lemma 8 to
xkm

establishes movement of p towards xks
.next i,j ,

which is also xkm .next i,j . Lemma 9 further estab-
lishes that this occurs infinitely often, thus there is
a round k′ > km such that p gets transferred to
xkm

.Membersnexti,j .
By a simple induction of the sequence of identifiers

in the path β, it follows that entities on any cell in TC
eventually get consumed by the target.

IV. SIMULATION

We have performed several simulation studies of the
algorithm for evaluating its throughput performance.
In this section, we discuss the main findings with illus-
trative examples taken from the simulation results. Let

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

rs

th
ro

ug
hp

ut

v=0.05
v=0.1
v=0.2
v=0.25

Figure 7. Throughput versus safety spacing rs for several values
of v, for K = 2500, l = 0.25 for System with 8× 8 cells.

the K-round throughput of System be the total number
of entities arriving at the target over K rounds, divided
by K. We define the average throughput (henceforth
throughput) as the limit of K-round throughput for
large K. All simulations start at a state where all cells
are empty and subsequently entities are added to the
source cells.

Throughput without failures as a function of rs, l, v:
Rough calculations show that throughput should be
proportional to cell velocity v, and inversely propor-
tional to safety distance rs and entity size l. Figure 7
shows throughput versus rs for several choices of v
for an 8 × 8 instance of System. The parameters are
set to l = 0.25, SID = {〈1, 0〉}, tid = 〈1, 7〉, and
K = 2500. The entities move along the path β

∆
=

〈1, 0〉 , 〈1, 1〉 , 〈1, 2〉 , 〈1, 3〉 , 〈1, 4〉 , 〈1, 5〉 , 〈1, 6〉 , 〈1, 7〉 with
length 8. For the most part, the inverse relationship
with v holds as expected: all other factors remaining
the same, a lower velocity makes each entity take
longer to move away from the boundary, which causes
the predecessor cell to be blocked more frequently,
and thus fewer entities reach tid from any element of
SID in the same number of rounds. In cases with low
velocity (for example v = 0.1) and for very small rs,
however, the throughput can actually be greater than
that at a slightly higher velocity. We conjecture that this
somewhat surprising effect appears because at very
small safety spacing, the potential for safety violation
is higher with faster speeds, and therefore there are
many more blocked cells per round. We also observe
that the throughput saturates at a certain value of rs
(≈ 0.55). This situation arises when there is roughly
only one entity in each cell.

0 1 2 3 4 5 6 7
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

number of turns along path

th
ro

ug
hp

ut

rs=0.05, v=0.2, l=0.2

rs=0.05, v=0.1, l=0.2

rs=0.05, v=0.1, l=0.1

rs=0.05, v=0.05, l=0.1

Figure 8. Throughput versus number of turns along a path, for a
path of length 8, where K = 2500, rs = 0.05, and each of l and v
are varied for System with 8× 8 cells.

Throughput without failures as a function of the path:
For a sufficiently large K, throughput is independent
of the length of the path. This of course varies based
on the particular path and instance of System consid-
ered, but all other variables fixed, this relationship is
observed. More interesting however, is the relationship
between throughput and path complexity, measured
in the number of turns along a path. Figure 8 shows
throughput versus the number of turns along paths of
length 8. This illustrates that throughput decreases as
the number of turns increases, up to a point at which
the decrease in throughput saturates. This saturation
is due to signaling and indicates that there exists only
one entity per cell.

Throughput under failure and recovery of cells: Fi-
nally, we considered a random failure and recovery
model in which at each round each non-faulty cell
fails with some probability pf and each faulty cell
recovers with some probability pr [25]. A recovery sets
failed i,j = false and in the case of tid also resets
dist tid = 0, so that eventually Route will correct
nextm,n and distm,n for any 〈m,n〉 ∈ TC. Intuitively,
we expect that throughput will decrease as pf increases
and increase as pr increases. Figure 9 demonstrates this
result for 0.01 ≤ pf ≤ 0.05 and 0.05 ≤ pr ≤ 0.2.
Interestingly, there is roughly a marginal return on
increasing pr for a fixed pf , in that for a fixed pf
increasing pr results in smaller throughput gains.

V. CONCLUSION

We presented a self-stabilizing distributed traffic
control protocol for the partitioned plane where each
partition controls the motion of all entities within

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

pf

th
ro

ug
hp

ut

pr=0.05

pr=0.1

pr=0.15

pr=0.2

Figure 9. Throughput versus failure rate pf for several recovery
rates pr with an initial path of length 8, where K = 20000, rs = 0.05,
l = 0.2, and v = 0.2 for System with 8× 8 cells.

that partition. The algorithm guarantees separation
between entities in the face of crash failures of the soft-
ware controlling a partition. Once new failures cease
to occur, it guarantees progress of all entities that are
not isolated by failed partitions to the target. Through
simulations, we presented estimates of throughput
as a function of velocity, minimum separation, path
complexity, and failure-recovery rates.

Our algorithm is presented for a two dimensional
square-grid partition, however, an extension to three-
dimensional cube partitions follows in an obvious
way. The case for arbitrary tessellations of the plane
seems interesting as well as challenging, particularly
if the algorithms are to have asymptotically optimal
throughput. A further generalization would be to de-
velop algorithms for flow control of multiple types of
entities with arbitrary flow patterns (not necessarily
source-destination flows) specified for each type. Fi-
nally, for practical applications, we need algorithms
that tolerate a relaxed coupling between entities and
allow them some degree of independent movement
while preserving safety and progress.

REFERENCES

[1] C. Daganzo, M. Cassidy, and R. Bertini, “Possible explanations
of phase transitions in highway traffic,” Transportation Research
A, vol. 33, pp. 365–379, May 1999.

[2] D. Helbing and M. Treiber, “Jams, waves, and clusters,” Science,
vol. 282, pp. 2001–2003, December 1998.

[3] B. S. Kerner, “Experimental features of self-organization in
traffic flow,” Phys. Rev. Lett., vol. 81, no. 17, pp. 3797–3800,
October 1998.

[4] M. Nolan, Fundamentals of air traffic control. Wadsworth
Publishing Company, 1994.

[5] F. Borgonovo, L. Campelli, M. Cesana, and L. Coletti, “Mac
for ad hoc inter-vehicle network: services and performance,”
in IEEE Vehicular Technology Conf., vol. 5, 2003, pp. 2789–2793.

[6] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera,
A. M. Bayen, M. Annavaram, and Q. Jacobson, “Virtual trip

lines for distributed privacy-preserving traffic monitoring,” in
MobiSys ’08: Proceeding of the 6th International Conference on
Mobile Systems, Applications, and Services. New York, NY, USA:
ACM, 2008, pp. 15–28.

[7] T. Prevot, “Exploring the many perspectives of distributed air
traffic management: The multi aircraft control system macs,” in
Proceedings of the HCI-Aero, 2002, pp. 149–154.

[8] N. Leveson, M. de Villepin, J. Srinivasan, M. Daouk, N. Neogi,
E. Bachelder, J. Bellingham, N. Pilon, and G. Flynn, “A safety
and human-centered approach to developing new air traffic
management tools,” in Proceedings Fourth USA/Europe Air Traffic
Management R&D Seminar, December 2001, pp. 1–14.

[9] C. Livadas, J. Lygeros, and N. A. Lynch, “High-level modeling
and analysis of TCAS,” in Proceedings of the 20th IEEE Real-Time
Systems Symposium (RTSS’99), December 1999, pp. 115–125.

[10] J. Misener, R. Sengupta, and H. Krishnan, “Cooperative colli-
sion warning: Enabling crash avoidance with wireless technol-
ogy,” in 12th World Congress on Intelligent Transportation Systems,
2005, pp. 1–11.

[11] A. Girard, J. de Sousa, J. Misener, and J. Hedrick, “A control
architecture for integrated cooperative cruise control and colli-
sion warning systems,” in Decision and Control, 2001. Proceedings
of the 40th IEEE Conference on, vol. 2, 2001, pp. 1491–1496.

[12] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution of air
traffic management: A study in multi-agent hybrid systems,”
IEEE Trans. Autom. Control, vol. 43, pp. 509–521, 1998.

[13] C. Muñoz, V. Carreño, and G. Dowek, “Formal analysis of
the operational concept for the Small Aircraft Transportation
System,” in Rigorous Engineering of Fault-Tolerant Systems, ser.
LNCS, vol. 4157, 2006, pp. 306–325.

[14] D. Swaroop and J. K. Hedrick, “Constant spacing strategies for
platooning in automated highway systems,” Journal of Dynamic
Systems, Measurement, and Control, vol. 121, pp. 462–470, 1999.

[15] E. Dolginova and N. Lynch, “Safety verification for automated
platoon maneuvers: A case study,” in HART’97 (International
Workshop on Hybrid and Real-Time Systems), ser. LNCS, vol. 1201.
Springer Verlag, March 1997.

[16] P. Varaiya, “Smart cars on smart roads: Problems of control,”
IEEE Trans. Autom. Control, vol. 38, pp. 195–207, 1993.

[17] H. Kowshik, D. Caveney, and P. R. Kumar, “Safety and liveness
in intelligent intersections,” in Hybrid Systems: Computation and
Control (HSCC), 11th International Workshop, ser. LNCS, vol.
4981, April 2008, pp. 301–315.

[18] P. Weiss, “Stop-and-go science,” Science News, vol. 156, no. 1,
pp. 8–10, July 1999.

[19] Kornylak, “Omniwheel brochure,” Hamilton, Ohio, 2008.
[Online]. Available: http://www.kornylak.com/images/pdf/
omni-wheel.pdf.

[20] S. Gilbert, N. Lynch, S. Mitra, and T. Nolte, “Self-stabilizing
robot formations over unreliable networks,” ACM Trans. Auton.
Adapt. Syst., vol. 4, no. 3, pp. 1–29, July 2009.

[21] S. Dolev, L. Lahiani, S. Gilbert, N. Lynch, and T. Nolte, “Virtual
stationary automata for mobile networks,” in PODC ’05: Pro-
ceedings of the twenty-fourth annual ACM symposium on Principles
of distributed computing. New York, NY, USA: ACM, 2005, pp.
323–323.

[22] T. Nolte and N. Lynch, “A virtual node-based tracking algo-
rithm for mobile networks,” in Distributed Computing Systems,
International Conference on (ICDCS). Los Alamitos, CA, USA:
IEEE Computer Society, 2007, pp. 1–9.

[23] S. Dolev, Self-stabilization. Cambridge, MA: MIT Press, 2000.
[24] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS:

Combining specification, proof checking, and model checking,”
in Computer-Aided Verification, CAV ’96, ser. LNCS, R. Alur and
T. A. Henzinger, Eds., no. 1102. New Brunswick, NJ: Springer-
Verlag, July/August 1996, pp. 411–414.

[25] R. E. L. DeVille and S. Mitra, “Stability of distributed algorithms
in the face of incessant faults,” in Proceedings of 11th International
Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), November 2009, pp. 224–237.

http://www.kornylak.com/images/pdf/omni-wheel.pdf.
http://www.kornylak.com/images/pdf/omni-wheel.pdf.

	I Introduction
	II System Model
	II-A Overview of distributed cellular traffic control
	II-B Formal system model

	III Analysis
	III-A Safety analysis
	III-B Stabilization of Routing and Progress
	III-C Progress of entities towards the target

	IV Simulation
	V Conclusion

