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Abstract. The safe flocking problem requires a collection of N mobile
agents to (a) converge to and maintain an equi-spaced lattice formation,
(b) arrive at a destination, and (c) always maintain a minimum safe sepa-
ration. Safe flocking in Euclidean spaces is a well-studied and difficult co-
ordination problem. Motivated by real-world deployment of multi-agent
systems, this paper studies one-dimensional safe flocking, where agents
are afflicted by actuator faults. An actuator fault is a new type of failure
that causes the affected agent to be stuck with an arbitrary velocity. In
this setting, first, a self-stabilizing solution for the problem is presented.
This relies on a failure detector for actuator faults. Next, it is shown that
certain actuator faults cannot be detected, while others may require O(N)
time for detection. Finally, a simple failure detector that achieves the latter
bound is presented. Several simulation results are presented for illustrat-
ing the effects of failures on the progress towards flocking.
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1 Introduction

Safe flocking is a distributed coordination problem that requires a collection of
mobile agents situated in a Euclidean space to satisfy three properties, namely
to: (a) form and maintain an equi-spaced lattice structure or a flock, (b) reach
a specified destination or goal position, and (c) always maintain a minimum
safe separation. The origins of this problem can be traced to biological studies
aimed at understanding the rules that govern flocking in nature (see for exam-
ple [13,11]). More recently, recognizing that such understanding could aid the
design of autonomous robotic platoons or swarms, the problem as stated above
and its variants have been studied in the robotics, control, and multi-agent sys-
tems literature (see [7,5,12,8,14] and references therein). Typically, the problem
is studied for agents with synchronous communication, without failures, and
with double-integrator dynamics—that is, the distributed algorithm sets the
acceleration for each agent. To the best of our knowledge, even in this setting,
safe-flocking is an open problem, as existing algorithms require unbounded ac-
celerations for guaranteeing safety [12], which cannot be achieved in practice.

In this paper, we study one-dimensional safe-flocking within the realm of
synchronous communication, but with a different set of dynamics and failure
assumptions. First, we assume rectangular single-integrator dynamics. That is,
at the beginning of each round, the algorithm decides a target point ui for
agent i based on messages received from i’s neighbors, and agent i moves with



bounded speed ẋi ∈ [vmin, vmax] in the direction of ui for the duration of that
round. This simplifies the dynamics and achieving safety becomes relatively
easy. Even in this setting however, it is nontrivial to develop and prove that an
algorithm provides collision avoidance, as illustrated by an error that we found
in the inductive proof of safety in [7]. To fix the error, the algorithm from that
paper requires the modification presented later in this paper. Nevertheless, the
model obtained with this rectangular dynamics overapproximates any behav-
ior that can be obtained with double integrator dynamics with bounded accel-
eration. Our algorithm combines the corrected version of the algorithm from [7]
with Chandy-Lamport’s global snapshot algorithm [3]. The key idea is that
each agent periodically computes its target based on messages received from
its neighbors and moves toward this target with some arbitrary but bounded
velocity. The targets are computed such that the agents preserve safe separation
and they eventually form a weak flock, which remains invariant, and progress is
ensured to a tighter strong flock. Once a strong flock is attained, this property
can be detected through the use of a distributed snapshot algorithm [3]. Once
this is detected, the detecting agent makes a move towards the destination, sac-
rificing the strong flock in favor of making progress towards the goal, but still
preserving the weak flock.

Unlike the algorithms in [7,5,8,12] that provide convergence to a flock, we
require the stronger termination. Our algorithm achieves termination through
quantization: we assume that there exists a constant β > 0 such that an agent i
moves in a particular round if and only if the computed target ui is more than β
away from the current position xi. We believe that such quantized control is ap-
propriate for realistic actuators, and useful for most power-constrained settings
where it is undesirable for the agents to move forever in order to achieve con-
vergence. Quantization affects the type of flock formation that we can achieve
and also makes the proof of termination more interesting.

Finally, we allow agents to be affected by actuator failures. This physically
corresponds to, for example, an agents’s motors being stuck at an input volt-
age. Actuator faults are permanent and cause the afflicted agents to move for-
ever with a bounded and constant velocity. Actuator faults are a new class of
failures that we believe are going to be important in designing and analyzing a
wide range of distributed cyber-physical systems [9]. Unlike byzantine faults,
behaviors resulting from actuator faults are constrained by physical laws. Also,
unlike crash failures which typically thwart progress, but do not violate safety,
actuator failures can also violate safety. A faulty agent has to be detected (and
possibly avoided) by the non-faulty agents. In this paper, we assume that after
an actuator failure, an agent continues to communicate and compute, but its
actuators continue to move with the arbitrary but constant velocity.

Our flocking algorithm determines only the direction in which an agent
should move, based on neighbor information. The speed with which it moves is
chosen nondeterministically over a range (this makes the algorithm implemen-
tation independent with respect to the lower-level motion controller). Thus,
the only way of detecting failures is to observe that an agent has moved in



the wrong direction. Under some assumptions about the system parameters, a
simple lower-bound is established, indicating that no detection algorithm can
detect failures in less than O(N) rounds. A failure detector is presented that
utilizes this idea in detecting certain classes of failures in O(N) rounds. Un-
fortunately, certain failures lead to a violation of safety in fewer rounds, so a
failure detector which detects failures faster than O(N) rounds is necessary to
ensure safety. However, some failures are undetectable, such as an agent failing
with zero velocity at the goal, thus we establish that no such failure detector
exists. But, it is shown that the failure detector with O(N) detection time can
be combined with the flocking algorithm to guarantee the required safety and
progress properties in the face of a restricted class of actuator failures. Lastly,
non-faulty agents need a way to avoid faulty ones. In one dimension (such as
on highways), this is possible if there are multiple lanes.

In summary, the key contributions of the paper are the following:

(a) A solution to the one-dimensional safe flocking problem in the face of ac-
tuator faults, quantization, and with bounded control. The solution brings
distributed computing ideas (self-stabilization and failure detection) to a
distributed control problem.

(b) Formal introduction of the notion of actuator faults and stabilization in the
face of such faults.

2 System Model

This section presents a formal model of the distributed flocking algorithm mod-
eled as a discrete transition system, as well as formal specifications of the sys-
tem properties to be analyzed. For K ∈ N, [K]

∆
= {1, . . . ,K} and for a set S

S⊥
∆
= S ∪ {⊥}. A discrete transition system A is a tuple 〈X,Q,Q0, A,→〉, where

(i)X is a set of variables with associated types, (ii)Q is the the set of states which
is the set of all possible valuations of the variables in X , (iii) Q0 ⊆ Q is the set
of start states, (iv) A is a set of transition labels, and (v)→⊆ Q×A×Q is a set of
discrete transitions. An execution fragment of A is an (possibly infinite) alternat-
ing sequence of states and transition names, α = x0, a1, x1, . . ., such that for
each index k appearing in α, (xk, ak+1,xk+1) ∈→.An execution is an execution
fragment with x0 ∈ Q0.

A state x is reachable if there exists a finite execution that ends in x. A stable
predicate S ⊆ Q is a set of states that is closed under→. If a stable predicate S
contains Q0, then it is called an invariant predicate and the reachable states of
A are then contained in S. A safety property specified by a predicate S ⊆ Q is
satisfied by A if all of its reachable states are contained in S. Self-stabilization
is a property of non-masking fault tolerance which guarantees that once new
failures cease to occur, the system eventually returns to a legal state [4]. In this
paper, we model actuator failures by transitions with the special label fail. Given
G ⊆ Q, A self-stabilizes to G if (a) G is a stable predicate for A without the fail-
transitions, and (b) from every reachable state of A (including fail transitions),
every fail-free execution fragment eventually reaches G.



2.1 Model of Safe Flocking System

The distributed system consists of a set ofN mobile agents physically positioned
onNL infinite, parallel lanes. The system can be thought of as a collection of cars
in the lanes on a highway. We assume that the system is synchronous and the
communication graph is complete1, that is, agents have synchronized clocks,
message delays are bounded, and computations are instantaneous. We will be
concerned with synchronous algorithms that operate in rounds. At each round,
each agent exchanges messages bearing state information with its neighbors.
Agents then update their software state and (nondeterministically) choose their
velocities, which they operate with until the beginning of the next round. Un-
der these assumptions, it is convenient to model the system as a collection of
discrete transition systems that interact through shared variables.

Let ID ∆
= [N ] be the set of unique agent identifiers and LD ∆

= [NL] be the set
of lane identifiers. The following positive constants are used throughout the pa-
per: (a) rs: minimum required inter-agent gap or safety distance in the absence
of failures, (b) rr: reduced safety distance in the presence of failures, (c) rf :
desired maximum inter-agent gap which defines a flock, (d) δ: flocking toler-
ance parameter, (e) β: quantization parameter, and (f) vmin, vmax: minimum and
maximum velocities.

State Variables. The discrete transition system corresponding to Agenti has the
following private variables with initial values in parentheses: (a) failed(false):
indicates whether or not agent i has failed, (b) vf (⊥): velocity with which agent
i has failed, and (c) L and R: identifiers of the nearest left and right neighbors
of agent i. The following shared variables are controlled by agent i, but can also
be read by i’s neighbors: (a) x and xo: current position and position from the
previous round of agent i on the real line, (b) u and uo: target position and target
from the previous round of agent i (all positions are on the real line), (c) lane : the
lane currently occupied by agent i, (d) Suspected : set of neighbors that agent i
believes to have failed. These variables are shared in the following sense: At the
beginning of each round k, their values are broadcast by Agenti and are used
by the neighbors of agent i to update their states in that round. The discrete
transition system modeling the complete ensemble of agents is called System.
We refer to states of System with bold letters x, x′, etc., and individual state
components of Agenti by x.xi, x.ui, etc.

Actuator Failures and Failure Detection. The actuator failure of agent i is mod-
eled by the occurrence of a transition labeled by faili. This transition is always
enabled unless i has already failed, and as a result of its occurrence, the variable
failed i is set to true. An actuator failure causes the affected agent to move with
a constant but arbitrary failure velocity forever2. At state x, F (x) and NF (x)
denote the sets of faulty and non-faulty agent identifiers, respectively.

1 This communication assumption is relaxed in [9].
2 It is worth noting that some attention has been given to failure detection in flocking,

and most closely related is [6], which works with a similar model of actuator failures.



Agents do not have any direct information regarding the actuator failures
of other agents (i.e., agent i cannot read failedj). They have to rely on timely
failure detection to avoid violating safety or drifting away from the goal by fol-
lowing a faulty agent. Failure detection at agent i is abstractly captured by the
Suspectedi variable and a transition labeled by suspecti. The suspecti(j) transi-
tion models a detection of failure of some agent j by Agenti. Failures are irre-
versible in our model, and thus so are failure detector suspicions. For agent i,
at any given state Suspectedi ⊆ ID is the set of agent identifiers that agent i’s
failure detector suspects as faulty. Agentj is said to be suspected if some agent i
suspects it, otherwise it is unsuspected. Which particular agent suspects a faulty
agent j is somewhat irrelevant. We assume the failure detectors of all the agents
share information through some background gossip, and when one agent sus-
pects agent i, all the other agents also suspect i in the same round. Denote the
sets of suspected and unsuspected agents by S(x) and NS(x), respectively.

The detection time is the minimum number of rounds within which every
failure is always suspected. In most parts of Section 3 we will assume that there
exists a finite detection time kd for any failure. In Section 3.3, we will discuss
specific conditions under which kd is in fact finite and then give upper and
lower bounds for it. We complete the present discussion by describing the fail-
ure detection strategy used by our flocking algorithm, which is encoded as the
precondition of the suspect transition. Note that the precondition assumes that i
has access to some of j’s shared variables, namely xj , xoj , uj and uoj . When the
precondition of suspect(j) is satisfied at Figure 1, j is added to the Suspected i.
This precondition checks that either j moved when it should not have, or that
j moved in the wrong direction, away from its computed target. The rationale
behind this condition will become clear as we discuss the flocking algorithm.

Neighbors. At state x, let L(x, i) (and symmetrically R(x, i)) be the nearest non-
failed agent left (resp. right) of Agenti, with ties broken arbitrarily. If no such
neighbor exists, then L(x, i) andR(x, i) are defined as⊥. Let LS(x, i) (and sym-
metrically RS(x, i)) be the nearest unsuspected agent left (resp. right) of Agenti
at state x, or ⊥ if no such agents exist. An unsuspected Agenti with both un-
suspected left and right neighbors is a middle agent. Let the set of middle agent
identifiers be Mids(x) for state x. An unsuspected Agenti without an unsus-
pected left neighbor is said to be a head agent, and is denoted by H(x). If Agenti
is unsuspected, is not the head, and does not have an unsuspected right neigh-
bor, it is a tail agent and is denoted by T (x).

Flocking Algorithm. The distributed flocking algorithm executed at Agenti uses
two separate processes (threads): (a) a process for taking distributed global
snapshots, and (b) a process for updating the target position for Agenti.

However, this work uses the developed motion probes in failure detection scenarios,
but has no stated bounds on detection time as more effort was spent ensuring con-
vergence, assuming that failure detection has occurred within some time, while our
work states a detection time bound.



1 faili(v), |v| ≤ vmax

pre ¬ failed
3 eff failed := true; vf := v

5 suspecti(j), j ∈ ID
pre j /∈ Suspected ∧ (if |xoj − uoj | > β

7 then sgn (xj − xoj) 6= sgn (uoj − xoj)
else |xj − uoj | 6= 0)

9 eff Suspected := Suspected ∪ {j}

11 snapStarti
pre L=⊥ ∧¬snaprun

13 eff snaprun := true // global snapshot invoked

15 snapEndi(GS), GS ∈ {true, f alse}
eff gsf := GS // global snapshot returns

17 snaprun := f alse

19 updatei
eff uo := u; xo := x

21 for each j ∈ ID
Suspected := Suspected ∪ Suspectedj

Mitigate:
24if ¬ failed then

for each {s ∈ Suspected : lanes = lane}
26if ∃ L ∈ LD : ∀ j ∈ ID, lanej = L

∧ xj /∈ [x− rs − 2vmax, x+ rs + 2vmax ]
28then lane := L; fi

fi
30

Target :
32if L=⊥ then

if gsf then u := x−min{x, δ/2}
34then gsf := f alse

else u := x fi
36elseifR=⊥ then u := (xL + x+ rf )/2

else u := (xL + xR)/2 fi
38

Quant :
40if |u− x| < β then u := x fi

42Move:
if failed then x := x + vf

44else x := x + sgn (x− u) choose [vmin, vmax]
fi

Fig. 1. Agenti’s transitions: failure detection, global snapshots, and target updates.

The snapStart and snapEnd transitions model the periodic initialization and
termination of a distributed global snapshot protocol—such as Chandy and
Lamport’s snapshot algorithm [3]—by the head agent. This global snapshot is
used for detecting a stable global predicate, which in turn influences the tar-
get computation for the head agent. Although we have not modeled this ex-
plicitly, we assume that the snapStarti transition is performed periodically by
the head agent when the precondition is enabled. If the global predicate holds,
then snapEnd(true) occurs, otherwise snapEnd(f alse) occurs. It is straightfor-
ward to check that the assumptions necessary for applying Chandy-Lamport’s
algorithm are satisfied here since (a) we are detecting a stable predicate, (b) the
communications graph is always fully connected, and (c) the stable predicates
are reachable. Thus, we assume that in any infinite execution, a snapEndi tran-
sition occurs within O(N) rounds from the occurrence of the corresponding
snapStarti transition.

The update transition models the evolution of all (faulty and non-faulty)
agents over a synchronous round. It is composed of four subroutines: Mitigate ,
Target , Quant , and Move , which are executed in this sequence for updating
the state of System. The whole update action is instantaneous and atomic; the

subroutines are used for clarity of presentation3. To be clear, for x
update→ x′, x′

is obtained by applying each of these subroutines. We refer to the intermedi-
ate states after Mitigate , Target , Quant , and Move as xM , xT , xQ, and xV , re-

3 Move abstractly captures the physical evolution of the system over a round. It is the
time-abstract transition corresponding to physical evolution over an interval of time.



spectively. That is, xM
∆
= Mitigate(x), xT

∆
= Target(xM ), etc., and observe that

x′ = xV = Move(xQ).
Mitigate is executed by non-faulty agents and attempts to restore safety and

progress properties that may be reduced or violated by failures. Target deter-
mines a new target to move towards, which is roughly the average of the posi-
tions of the closest left and right unsuspected neighbors of any agent. As men-
tioned before, targets are still computed for faulty agents, but their actuators
ignore these new values. Quant is the quantization step which prevents targets
ui computed in the Target subroutine from being applied to real positions xi,
if the difference between the two is smaller than the quantization parameter β. It
is worth emphasizing that quantization is a key requirement for any realistic
algorithm that actuates the agents to move with bounded velocities. Without
quantization, if the computed target is very close to the current position of the
agent, then the agent may have to move with arbitrarily small velocity over that
round. Finally, Move moves agent positions xi toward the quantized targets.

There are three different rules for target computations based on an agent’s
belief of whether it is a head, middle, or tail agent. For a state x, each middle
agent i attempts to maintain the average of the positions of its nearest unsus-
pected left and right neighbors (Figure 1, Line 37). Assuming that the goal is to
the left of the tail agent, the tail agent attempts to maintain rf distance from its
nearest unsuspected left neighbor (Figure 1, Line 36). The head agent period-
ically invokes a global snapshot and attempts to detect a certain stable global
predicate FlockS (defined below). If this predicate is detected, then the head
agent moves towards the goal (Figure 1, Line 34), otherwise it does not change
its target u from its current position x.

2.2 Key Predicates
We now define a set of predicates on the state space of System that capture key
properties of safe flocking. These will be used for proving that the algorithm
described above solves safe flocking in the presence of actuator faults. We start
with safety. A state x of System satisfies Safety if the distance between every pair
of agents on the same lane is at least the safety distance rs. Formally, Safety(x)
∆
= ∀i, j ∈ ID, i 6= j,x.lanei = x.lanej =⇒ |x.xi − x.xj | ≥ rs. When failures
occur, a reduced inter-agent gap of rr will be guaranteed. We call this weaker
property reduced safety: SafetyR(x)

∆
= ∀i ∈ NF (x),∀j ∈ ID, i 6= j,x.lanei =

x.lanej =⇒ |x.xi − x.xj | ≥ rr.
An ε-flock is where each non-faulty agent with an unsuspected left neighbor

(not necessarily in the same lane) is within rf ± ε from that neighbor. Formally,
Flock(x, ε)

∆
= ∀i ∈ NF (x), LS(x, i) 6= ⊥,

∣∣x.xi − x.xLS(x,i) − rf
∣∣ ≤ ε. In this pa-

per, we will use the Flock predicate with two specific values of ε, namely δ (the
flocking tolerance parameter) and δ

2 . The weak flock and the strong flock pred-

icates are defined as FlockW (x)
∆
= Flock(x, δ), and FlockS (x)

∆
= Flock(x, δ2 ),

respectively.
Related to quantization, we have the no big moves (NBM) predicate, where

none of the agents (except possibly the head agent) have any valid moves, be-



cause their computed targets are less than β (quantization constant) away from
their current positions. NBM (x)

∆
= ∀i ∈ NF (x), LS(x, i) 6= ⊥, |xT .ui − x.xi| ≤

β, where xT is the state following the application of Target subroutine to x. The
Goal predicate is satisfied at states where the head agent is within β distance
of the goal (assumed to be the origin without loss of generality). Finally, a state
satisfies the Terminal predicate if it satisfies both Goal and NBM .

3 Analysis
The main result of the paper (Theorem 1) is that the algorithm in Figure 1
achieves safe flocking in spite of failures provided: (a) there exists a failure de-
tector that detects actuator failures sufficiently fast, and (b) each non-faulty agent
has enough room to jump to some lane to safely avoid faulty agents and even-
tually make progress. For the first part of our analysis, we will simply assume
that any failure is detected within kd rounds. In Section 3.3, we shall examine
conditions under which kd is finite and state its lower and upper bounds. As-
sumption (b) is trivially satisfied if the number of lanes is greater than the total
number of failures; but it is also satisfied with fewer lanes, provided the failures
are sufficiently apart in space. There are two space requirements for Assump-
tion (b): the first ensures safety and the second ensure progress by preventing
“walls” of faulty agents from existing forever and ensuring that infinitely often
all non-faulty agents may make progress.

Theorem 1. Suppose there exists a failure detector which suspects any actuator fault
within kd rounds. Suppose further that vmax ≤ (rs − rr)/(2kd). Let α = x0, . . .,
xp, xp+1, . . . be an execution where xp is the state after the last fail transition. Let
αff = xp+1, . . ., be the fail-free suffix of α. Let f be the number of actuator faults.

(a) If NL > f , or
(b) IfNL ≤ f and along αff , ∀x ∈ αff , ∃L ∈ LD such that ∀i ∈ NF (x), ∀j ∈ F (x),

x.lanej 6= L and |x.xi − x.xj | > rs + 2vmaxkd, and also that infinitely often,
∀m,n ∈ F (x), m 6= n, |x.xm − x.xn| > rs + 2vmax.

Then, (a) Every state in α satisfies the reduced safety property, SafetyR, and (b) Even-
tually Terminal and FlockS are satisfied.

In what follows, we state and informally discuss a sequence of lemmas that
culminate in Theorem 1. Under the assumptions and analysis of this section,
the following relationships are satisfied: NBM ⊂ FlockS ⊂ FlockW ⊂ Safety ⊂
SafetyR. Detailed proofs of the lemmas appear in the technical report [10]. We
begin with some assumptions.

Assumptions. Except where noted in Section 3.3, the remainder of the paper
utilizes the assumptions of Theorem 1. Additionally, these assumptions are re-
quired throughout the paper: (a) NL ≥ 2: there are at least 2 lanes, (b) rr <
rs < rf : the reduced safety gap rr required under failures is strictly less than
the safety gap rs in the absence of failures, which in turn is strictly less than the
flocking distance, (c) vmin ≤ vmax ≤ β ≤ δ

4N , and (d) the communication graph



of the non-faulty agents is always fully connected, so the graph of non-faulty
agents cannot partition. Assumption (c) bounds the minimum and maximum
velocities, although they may be equal. It then upper bounds the maximum ve-
locity to be less than or equal to the quantization parameter β. This is necessary
to prevent a violation of safety due to overshooting computed targets. Finally,
β is upper bounded such that NBM ⊆ FlockS . Intuitively, the bound on β is to
ensure that errors from flocking due to quantization do not accumulate along
the flock from the head to the tail. This is used to show that eventually FlockS

is satisfied by showing eventually NBM is reached.

3.1 Safety

First, we establish that System satisfies the safety part of the safe flocking prob-
lem. The following lemma states that in each round, each agent moves by at
most vmax, and follows immediately from the specification of System.

Lemma 1. For any two states x,x′ of System, if x a→ x′ for some transition a, then
for each agent i ∈ ID, |x′.xi − x.xi| ≤ vmax.

The next lemma establishes that, upon changes in which other agents an
agent i uses to compute its target position, safety is not violated.

Lemma 2. For any execution α, for states x,x′ ∈ α such that x a→ x′ for any a ∈ A,
∀i, j ∈ ID, if LS(x, i) 6= j and RS(x, j) 6= i and LS(x′, i) = j and RS(x′, j) = i
and x.xRS(x,j) − x.xLS(x,i) ≥ c, then x′.xRS(x′,j) − x′.xLS(x′,i) ≥ c, for any c > 0.

Invariant 1 shows the spacing between any two non-faulty agents in any
lane is always at least rr, and the spacing between any non-faulty agent and
any other agent in the same lane is at least rr. There is no result on the spac-
ing between any two faulty agents—they may collide. The proof, which is by
induction, is given in Appendix A.

Invariant 1. For any reachable state x, SafetyR(x).

3.2 Progress

The progress analysis works with fail-free executions, that is, there are no fur-
ther faili transitions. Note that this does not mean F (x) = ∅, only that along
such executions |F (x)| does not change. This is a standard assumption used
to show convergence from an arbitrary state back to a stable set [1], albeit we
note that we are dealing with permanent faults instead of transient ones. In this
case, the stable set eventually reached are states where Terminal is satisfied.
However, note that the first state in such an execution is not entirely arbitrary,
as Section 3.1 established that such states satisfy at least SafetyR, and all the
following analysis relies on this assumption.

First observe that, like safety, progress may be violated by failures. Any
failed agent with nonzero velocity diverges by the definition of velocities in
Figure 1, Line 43. This observation also highlights why Flock is quantified over
agents with identifiers in the set of suspected agents NS(x) and not the set



of failed agents NF (x) or all agents ID—if it were quantified over ID, at no
future point could Flock(x) be attained if a failed agent has diverged. Zero
velocity failures may also cause progress to be violated, where a “wall” of non-
moving failed agents may be created, but such situations are excluded by the
second part of Assumption (b) in Theorem 1.

Progress along Fail-Free Executions. In the remainder of this section, we show that
once new actuator failures cease occurring, System eventually reaches a state
satisfying Terminal . This is a convergence proof and we will use a Lyapunov-
like function to prove this property. The remainder of this section applies to any
infinite fail-free execution fragment, so fix such a fragment αff .

These descriptions of error dynamics are used in the analysis:

e(x, i)
∆
=

{
|x.xi − x.xx.Li

− rf | if i is a middle or a tail agent,
0 otherwise,

eu(x, i)
∆
=

{
|x.ui − x.ux.Li − rf | if i is a middle or a tail agent,
0 otherwise.

Here e(x, i) gives the error with respect to rf of Agenti and its non-suspected left
neighbor and eu(x, i), with respect to target positions x.ui rather than physical
positions x.xi.

Now, we make the simple observation from Line 44 of Figure 1 that if a non-
faulty agent imoves in some round, then it moves by at least a positive amount
vmin. Then, Lemma 3 states that from any reachable state x which does not sat-
isfy NBM , the maximum error over all non-faulty agents in non-increasing.
This is shown by first noting that only the update transition can cause any
change of e(x, i) or eu(x, i), and then analyzing the change in value of eu(x, i)
for each of the computations of ui in the Target subroutine of the update tran-
sition. Then it is shown that applying the Quant subroutine cannot cause any
eu(x, i) to increase, and finally the computation of xi in the Move subroutine
does not cause any e(x, i) to increase.

Lemma 3. For reachable states x,x′, if x a→ x′ and x /∈ NBM , for some a ∈ A, then
max

i∈NF (x)
e(x′, i) ≤ max

i∈NF (x)
e(x, i).

Next, Lemma 4 shows sets of states satisfying NBM are invariant, a state
satisfying NBM is reached, and gives a bound on the number of rounds re-
quired to reach such a state. Define the candidate Lyapunov function as V (x)

∆
=∑

i∈NF (x) e(x, i). Define the maximum value the candidate Lyapunov function

obtained over any state x ∈ αff satisfying NBM as γ ∆
= sup

x∈NBM
V (x).

Lemma 4. Let xk be the first state of αff , and let the head agent’s position be fixed.
If V (xk) > γ, then the update transition decreases V (xk) by at least a positive
constant ψ. Furthermore, there exists a finite round c such that V (xc) ≤ γ, where
xc ∈ NBM (x) and k < c ≤

⌈
V (xk)−γ

ψ

⌉
, where ψ = vmin.



Lemma 4 stated a bound on the time it takes for System to reach the set
of states satisfying NBM . However, to satisfy FlockS (x), all x ∈ NBM must
be inside the set of states that satisfy FlockS , and the following lemma states
this. From any state x that does not satisfy FlockS (x), there exists an agent that
computes a control that will satisfy the quantization constraint and hence make
a move towards NBM . This follows from the assumption that β ≤ δ

4N .

Lemma 5. If FlockS (x), then V (x) ≤
∑
i∈NF (x) e(x, i) =

δ|NF (x)|
4 .

Now we observe that FlockW is a stable predicate, that is, that once a weak
flock is formed, it remains invariant. This result follows from analyzing the
Target subroutine which computes the new targets for the agents in each round.
Note that the head agent moves by a fixed distance δ

2 , only when FlockS holds,
which guarantees that FlockW is maintained even though FlockS may be vi-
olated. This establishes that for any reachable state x′, if V (x′) > V (x), then
V (x′) < δ|NF (x)|

2 .

Lemma 6. FlockW is a stable predicate.

The following corollary follows from Lemma 4, as FlockS (x) is violated after
becoming satisfied only if the head agent moves, in which case x′.xH(x′) <
x.xH(x), which causes V (x′) ≥ V (x).

Corollary 1. For x ∈ αff such that, if FlockS (x), x
a→ x′ ∀a ∈ A, and x.xH(x) =

x′.xH(x′), then FlockS (x
′).

The following lemma—with Assumption (b) of Theorem 1 that gives even-
tually a state is reached such that non-faulty agents may pass faulty agents—is
sufficient to prove that Terminal is eventually satisfied in spite of failures. Af-
ter this number of rounds, no agent j ∈ NF (x) believes any i ∈ F (x) is its
left or right neighbor, and thereby any failed agents diverge safely along their
individual lanes if |x.vi| > 0 by the observation that failed agents with nonzero
velocity diverge. Particularly, after some agent j has been suspected by all non-
faulty agents, the Mitigate subroutine of the update transition shows that the
non-faulty agents will move to a different lane at the next round. This shows
that mitigation takes at most one additional round after detection, since we
have assumed in Theorem 1 that there is always free space on some lane. This
implies that so long as a failed agent is detected prior to safety being violated,
only one additional round is required to mitigate, so the time of mitigation is
a constant factor added to the time to suspect, resulting in the constant c being
linear in the number of agents.

Lemma 7. For any fail-free execution fragment αff , if x.failed i at some state x ∈ αff ,
then for a state x′ ∈ αff at least c rounds from x, ∀j ∈ ID.x′.Lj 6= i ∧ x′.Rj 6= i.

The next theorem shows that System eventually reaches the goal as a strong
flock, that is, there is a finite round t such that Terminal(xt) andFlockS(xt) and
shows that System is self-stabilizing when combined with a failure detector.



Theorem 2. Let αff be written x0, x1, . . .. Consider the infinite sequence of pairs〈
x0.xH(x0), V (x0)

〉
,
〈
x1.xH(x1), V (x1)

〉
, . . .,

〈
xt.xH(xt), V (xt)

〉
, . . .. Then, there

exists t at most
⌈
(V (x0)−|NF (x)|δ/4)

vmin

⌉
+
⌈
|NF (x)|δ/4

vmin

⌉
max{1, x0.xH(x0)

vmin
O(N)} rounds

from x0 in αff , such that: (a) xt.xH(xt) = xt+1.xH(xt+1), (b) V (xt) = V (xt+1),
(c) xt.xH(xt) ∈ [0, β], (d) V (xt) ≤ |NF (x)| δ4 , (e) Terminal(xt), and (f) FlockS (xt).

3.3 Failure Detection

In the earlier analysis we assumed that it is possible to detect all actuator faults
within finite number of rounds kd. Unfortunately this is not true, as there exist
failures which cannot be detected at all. A trivial example of such an unde-
tectable failures is the failure of a node with 0 velocity at a terminal state, that
is, a state at which all the agents are at the goal in a flock and therefore are static.
While such failures were undetectable in any number of rounds, these failures
do not violate Safety or Terminal . It turns out that only failures which cause a
violation of safety or progress may be detected. All the proofs for this section
are given in Appendix A.

Lower-Bound on Detection Time. While the occurrence of faili(v) may never be
detected in some cases as just illustrated, we show a lower-bound on the detec-
tion time for all faili(v) transitions that can be detected. The following lower-
bound applies for executions beginning from states that do not a priori satisfy
Terminal. It says that a failed agent mimicked the actions of its correct non-
faulty behavior in such a way that despite the failure, System still progressed to
NBM as was intended. From an arbitrary state, it takes O(N) rounds to con-
verge to a state satisfying NBM by Lemma 4.

Lemma 8. The lower-bound on detection time of actuator failures which may be de-
tected is O(N).

Next we show that the the failure detection mechanism incorporated in Fig-
ure 1 does not produce any false positives.

Lemma 9. In any reachable state x, ∀j ∈ x.Suspected i ⇒ x.failed j .

The next lemma shows a partial completeness property [2] and gives an upper
bound on the detection time for any detectable failure.

Lemma 10. Suppose that x is a state in the fail-free execution fragment αff such that ∃
j ∈ F (x), ∃ i ∈ ID, and j is not suspected by i. Suppose that either (a) |x.xoj − x.uoj |
≤ β and |x.xj − x.uoj | 6= 0, or (b) |x.xoj − x.uoj | > β and sgn (x.xj − x.xoj) 6=
sgn (x.uoj − x.xoj). Then, x

suspecti(j)→ x′.

Now we show a bound on the number of rounds to detect any failure which
may be detected using the failure detection mechanism incorporated in Figure 1
by applying Lemma 8 with Lemmata 9 and 10, and that agents share suspected
sets in Figure 1, Line 22. This states that the detection time is O(N) and that
eventually all non-faulty agents know the set of failed agents.

Corollary 2. For any state xk ∈ αff such that xk /∈ Terminal, there exists a round
xs in αff such that ∀i ∈ NF (xs), xs.Suspected i = F (x) and k − s is O(N).



3.4 Simulations

Simulation studies were performed, where flocking convergence time (as by
Lemma 4), goal convergence time (as by Theorem 2), and failure detection time
(as by Corollary 2) were of interest. Unless otherwise noted, the parameters are
chosen asN = 6,Nl = 2, rs = 20, rf = 40, rc = 250, δ = 10, β = δ

4(N) , vmin = β
2 ,

vmax = β, the head agent starts with position at rf , and the goal is chosen as
the origin. Figure 2 shows the value of the Lyapunov function V and maximum
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agent error from flocking, emax. The initial state is that each agent is spaced
by rs from its left neighbor, so the flock “expands” [7] to form a strong flock,
prior to the head agent moving towards the goal. Observe that while moving
towards the goal, FlockS is repeatedly satisfied and violated, with invariance of
FlockW .

Figure 3 shows that for a fixed value of vmin, the time to convergence to
NBM is linear in the number of agents. This choice of fixed vmin must be for the
largest number of agents, 12 in this case, as vmin is upper bounded by β = δ

4N
which is a function of N . As vmin is varied the inverse relationship with N is
observed, resulting in a roughly quadratic growth of convergence time to NBM .
This illustrates linear convergence time as well as linear detection time, as this
is bounded by the convergence time from Corollary 2. The initial state was for
expansion, so each agent was spaced at rs from its left neighbor.

Figure 4 shows the detection time as a function of which agent fails with
what failure velocity from three different types of initial states. Expansion is
where agents start spaced at rs, contraction is where agents start spaced at 2rf ,
and mixed has expansion and contraction, particularly where agents with even
ids are spaced 2rf from their left neighbor, and odd ids are spaced by rs. Fre-
quently there is one round to detection. For instance, in the expansion case, each
failed agent i except the tail are detected in one round when vfi 6= 0 since a vi-
olation of safety occurs, whereas detecting that the head agent has failed with
zero velocity requires convergence of the system to a strong flock. Detecting the



Expansion Contraction Mixed

Id −vmax 0 vmax −vmax 0 vmax −vmax 0 vmax

1 1 228 1 1 487 1 1 64 1

2 1 26 1 1 28 1 1 1 49

3 1 18 1 1 19 1 34 1 1

4 1 9 1 1 9 1 1 1 34

5 1 4 1 1 4 1 49 1 1

6 1 1 138 308 1 1 1 1 22

Fig. 4. Detection time when a single agent
i fails at round 0 with velocity −vmax, 0,
or vmax from an expansion, contraction,
and mixed initial state.
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tail agent has failed with vmax requires many rounds to detect as well, as this
mimics the expansive behavior. In the contraction case, each failed agent i ex-
cept the tail is detected in one round when vfi 6= 0, since they are at the center
of their neighbors positions, while the tail agent failing with−vmax takes many
rounds to detect, since it should be moving towards its left neighbor to cause
the contraction. In the mixed case, failed agents with positive or negative fail-
ure velocity cannot be detected until they pass the center point of their left and
right neighbors. This leads to the following detection time observation, which
illustrates there is only one potentially “bad” mimicking action which allows
maintenance of both safety and progress and takes more than one round to de-
tect. The other two failures violate either progress or safety immediately and
lead to an immediate detection.

The observation is, for a reachable state x, if |F (x)| = 1, let the id of the failed
agent be i, and consider the three possibilities of x.vfi = 0, x.vfi ∈ (0, vmax],
and x.vfi ∈ [−vmax, 0) corresponding to the range of sgn (x.vfi). Then along a
fail-free execution fragment starting from x, for one of these choices of vfi, the
detection time is greater than 1, and for the other two, the detection time is 1.

Finally, Figure 5 shows the influence of multiple failures on detection time.
For each choice of F and N , 50 simulations were run with initial states satis-
fying the spacing between each agent being chosen uniformly from the range
[rs, rs + 2rf ], and f random agents were failed in the initial round with one of
vfi ∈ {−vmax, 0,+vmax}. In this experiment, it is difficult to observe the rela-
tionship between average detection time and the number of agents, N , but this
is due to the choice of random initial condition. The maximum time to detection
increases as a function of f which supports the above detection time observa-
tion in the multiple failure case. In particular, the average (over N ) maximum
detection times for each of f = 1, f = 2, and f = 3 are 62, 139, and 203 rounds,
respectively, and the conjecture predicts a linear increase in detection time as a
function of f . However, we observe slightly more than this, so it is the case that
the maximum detection time may be dependent upon the other failures.



4 Conclusion
This paper presents an algorithm for the safe flocking problem in spite of fail-
ures. It does so through self-stabilization when combined with a failure detec-
tor. Particularly, it establishes safety invariance and that eventually a strong
flock is formed and a destination reached. Without the failure detector, the sys-
tem would not be able to maintain safety as agents could collide, nor make
progress to states satisfying flocking or the destination, since failed agents may
diverge, causing their neighbors to follow and diverge as well.
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A General Sequence Convergence Lemma and Proofs

Lemma 11. Consider any infinite sequence of lexicographically ordered pairs 〈a1, b1〉,
. . ., 〈aj , bj〉, . . . where aj , bj ∈ R≥0. Suppose ∃c1, c2, c3, c4, c5, c6 such that c1 > 0,
c2 > 0, c3 > 0, c4 ≥ 0, c5 ≥ 0, and c6 ≥ 0. If ∀j, (i) aj+1 ≤ aj (ii) aj+1 = aj∧bj > c4
then bj+1 ≤ bj − c1 (iii) aj+1 < aj then bj+1 ≤ c6 (iv) bj ≤ c2 ∧ aj > c5 then
aj+1 ≤ max{0, aj − c3} Then, ∃t such that 〈a1, b1〉, . . ., 〈at, bt〉, 〈at+1, bt+1〉, . . . and
〈at, bt〉 = 〈at+1, bt+1〉, where at ∈ A = [0, c5] and bt ∈ B = [0, c4].

Proof of Invariant 1 : The proof is by induction over the length of any execu-
tion of System. The base case follows by the assumption that the initial state
satisfies Safety . For the inductive case, for each transition a ∈ A, we show if
x

a→ x′ ∧ x ∈ SafetyR, then x′ ∈ SafetyR. The faili(v), snapStarti, snapTermi, and
suspecti transitions do not modify any xi or ui, so SafetyR(x′) For the update
transition, the inductive hypothesis gives that SafetyR is satisfied for the pre-
state x. For the remainder of the proof, let l = x.Li (the unsuspected agent left
of i), r = x.Ri (the unsuspected agent right of i), and ll = x.Lx.Li

(the unsus-
pected agent left of l). If these variables change between x and x′, the result fol-
lows by Lemma 2. The remainder of the proof is divided into two cases: the first
case analyzes the spacing between two non-faulty agents, and the second case
analyzes the spacing between any faulty agent and non-faulty agent, which re-
side in the same lane. All the following comes from Figure 1, Lines 32–37 and
the inductive hypothesis.

For the first case showing the spacing between any two non-faulty agents,
it is sufficient to show if ∀i ∈ NF (x), x.ui − x.ul ≥ rr and x.xi − xl ≥ rr,
then x′.ui − x′.ul ≥ rr. If i is any non-faulty middle agent, x′.ui − x′.ul =
x.xl−x.xll+x.xr−x.xi

2 ≥ rr. If i is the non-faulty tail, x′.ui−x′.ul =
rf+x.xl−x.xll

2 ≥
rr. Since 0 ≤ xH(x), then by the inductive hypothesis, x′.uH(x′) ≤ x.uH(x).
Cases when quantization changes any x′.ui in Line 40 follow by similar analysis
and are omitted for space. Thus, SafetyR(x).

Next is the proof of the second case, that the spacing between any non-
faulty and any faulty agent which reside in the same lane is at least rr. For
simplicity of presentation, assume we are dealing with a fail-free execution,
under which case, the detection time until all failures are detected is kd. If we
were not dealing with a fail-free execution, just choose the maximum such kd
and pick vmax as in Theorem 1. For a failed agent j, x′.xj = x.xj + x.vfj by
Line 43. Given the assumption that vmax ≤ rs−rr

2kd
, it is the case that at round kd,

xd.xj ≤ x.xj+kdvmax = x.xj+
rs−rr

2 where we considered the case for x.vj > 0
and the negative failure velocity case follows symmetrically. By assumption
that any failure is detected by round kd and by Lemma 1, any failed agent j and
any non-failed agent i have moved towards one another by at most 2kdvmax,
and thus xd.xj − xd.xi ≤ 2kdvmax = rs − rr.

This implies at least SafetyR(xm) for any states xm in any state in the ex-
ecution between x and xd. It remains to be established that SafetyR(x′d) for a
state x′d reachable from state xd. By the detection time assumption, any agent i
will have j ∈ xd.Suspectedi, which changes LS(xd) and RS(xd), but now apply



Lemma 2, which shows there is at least rr space between i and j. Finally, by
Figure 1, Line 28, x′d.lanei 6= xd.lanej , since NL ≥ 2, and by Assumption (b) of
Theorem 1, SafetyR(x′d). ut

Proof of Theorem 2 : This follows from Lemma 4, the O(N) termination time of
the snapshot algorithm, and from Lemma 11 by instantiating (a) c1 = vmin,
(b) c2 = (N − 1) δ4 , (c) c3 = δ

2 , (d) c4 = γ, (e) c5 = β, and (f) c6 = (N − 1) δ2 . ut

Proof of Lemma 8 : Consider a fail-free execution αf which begins with a state
with a single failure, and a fail-free execution αn which begins with a state
without any failures. Let the initial state x of both these executions be the same
(except let the head agent be failed with zero failure velocity for αf ) and satisfy
x /∈ Terminal and x /∈ FlockS . In both executions, assume that any time Line 44
of Figure 1 is executed, the nondeterministic choice results in vmin. We know
that the computed target for the head node is non-zero only if the state of the
whole system satisfies FlockS . Lemma 4 implies that x′ is a constant c number
of rounds away from x in each of αf and αn where c is O(N), and only once
x′ ∈ NBM can it be guaranteed that x′ ∈ FlockS . Once x′ ∈ FlockS , at some
state x′′, which is a constant d number of rounds from x′ in each of αf and
αn, will uH(x′′) 6= 0, where d is O(N) by the O(N) termination of the snapshot
algorithm Figure 1, Line 34 Thus, αf and αn are indistinguishable up to state
x′ and by Lemma 4, x′ is a constant a number of rounds from x where a is
O(N). ut

Proof of Lemma 9 : Suppose ∃i, j such that j ∈ x.Suspected i, then the precondition
for suspecti must have been satisfied at some round ks in the past when j was
added to Suspected i. Let xs correspond to the state at round ks and x′s be the
subsequent state in the execution. At the round prior to ks, there are two cases
based the computation of uj in Figure 1, Line 39 for some j /∈ xks−1.Suspected i.

The first case is when the quantization constraint |xs.xj − xs,T .uj | ≤ β was
not satisfied in Figure 1, Line 39, so Agentj applies a velocity in the direction of
sgn (uj − xj). If sgn (x′s.xj − xs.xj) 6= sgn (xs.uj − xs.xj), then Agentj moved
in the wrong direction, since it computed a move xs.uj but in actuality ap-
plied a velocity that caused it to move away from xs.uj instead of towards it.
This is possible only if sgn (x′s.uj − x′s.xj) 6= sgn (xs.uj − xs.xj), implying that
xs.vfj 6= 0, and thus xs.failed j = true.

The second case is when the quantization constraint |xs.xj − xs,T .uj | ≤ β
was satisfied in Figure 1, Line 39, so |xs.xj − xs.uj | = 0 should have been ob-
served, but instead it was observed that Agentj performed a move, such that
|x′s.xj − xs.xj | 6= 0. This implies that xs.failed j = true since the only way
|x′s.xj − xs.xj | 6= 0 is if for xs.vfj 6= 0, x′s.xj = xs.xj + xs.vfj . ut

Proof of Lemma 10 : For a suspecti transition to be taken, the precondition at Line 8
of Figure 1 must satisfy that j /∈ x.Suspectedi, and that either (a) |x.xoj − x.uoj |
≤ β and |x.xj − x.uoj | 6= 0, or (b) |x.xoj − x.uoj | > β and sgn (x.xj − x.xoj) 6=
sgn (x.uoj − x.xoj). These are the two hypotheses of the lemma and thus the
result follows that the suspecti transition is enabled. ut
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