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Abstract

The safe flocking problem requires a collection of N mobile agents to (a) converge to and maintain an
equi-spaced lattice formation, (b) arrive at a destination, and (c) always maintain a minimum safe separa-
tion. Safe flocking in Euclidean spaces is a well-studied and difficult coordination problem. Motivated by
real-world deployment of multi-agent systems, this paper studies one-dimensional safe flocking, where
agents are afflicted by actuator faults. An actuator fault is a new type of failure that causes an affected
agent to be stuck moving with an arbitrary velocity. In this setting, first, a self-stabilizing solution for the
problem is presented. This relies on a failure detector for actuator faults. Next, it is shown that certain
actuator faults cannot be detected, while others may require O(N) time for detection. Finally, a simple
failure detector that achieves the latter bound is presented. Several simulation results are presented that
illustrate the algorithm in operation and the effects of failures on progress towards flocking.

1 Introduction

Safe flocking is a distributed coordination problem that requires a collection of mobile agents situated in a
Euclidean space to satisfy three properties, namely to: (a) form and maintain an equi-spaced lattice struc-
ture or a flock, (b) reach a specified destination or goal position, and (c) always maintain a minimum safe
separation. The origins of this problem can be traced to biological studies aimed at understanding the rules
that govern flocking in nature (see [1, 2], for example). More recently, recognizing that such understand-
ing could aid the design of autonomous robotic platoons or swarms, the problem as stated above and its
variants have been studied in the robotics, control, and multi-agent systems literature (see [3, 4, 5, 6, 7] and
references therein). Typically, the problem is studied for agents with synchronous communication, without
failures, and with double-integrator dynamics—that is, the distributed algorithm sets the acceleration for
each agent. To the best of our knowledge, even in this setting, safe-flocking is an open problem, as exist-
ing algorithms require unbounded accelerations for guaranteeing safety [5], which cannot be achieved in
practice.

In this paper, we study one-dimensional safe-flocking within the realm of synchronous communication,
but with a different set of dynamics and failure assumptions. First, we assume rectangular single-integrator
dynamics. That is, at the beginning of each round, the algorithm decides a target point ui for agent i based
on messages received from i’s neighbors, and agent i moves with bounded speed ẋi ∈ [vmin, vmax] in the
direction of ui for the duration of that round. This simplifies the dynamics and achieving safety becomes
relatively easy. Even in this setting however, it is nontrivial to develop and prove that an algorithm provides
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collision avoidance, as illustrated by an error—a forgotten case for the special dynamics of the rightmost
(N th) agent—that we found in the inductive proof of safety in [3]. To fix the error, the algorithm from [3]
requires the modification presented later in this paper (Figure 7, Line 31). The model obtained with rectan-
gular dynamics overapproximates any behavior that can be obtained with double integrator dynamics with
bounded acceleration. Our algorithm combines the corrected algorithm from [3] with Chandy-Lamport’s
global snapshot algorithm [8]. The key idea is that each agent periodically computes its target based on
messages received from its neighbors, then moves toward this target with some arbitrary but bounded ve-
locity. The targets are computed such that the agents preserve safe separation and eventually form a weak
flock, which remains invariant, and progress is ensured to a tighter strong flock. Once a strong flock is at-
tained, this property can be detected through the use of a distributed snapshot algorithm [8]. Once this is
detected, the detecting agent moves toward the destination, sacrificing the strong flock in favor of making
progress toward the goal, but still preserving the weak flock.

Unlike the algorithms in [3, 4, 5, 6] that provide convergence to a flock, we require the stronger termina-
tion. Our algorithm achieves termination through quantization: we assume that there exists a constant β > 0
such that an agent i moves in a particular round if and only if the computed target ui is more than β away
from the current position xi. We believe that such quantized control is appropriate for realistic actuators,
and useful for most power-constrained settings where it is undesirable for the agents to move forever in
order to achieve convergence. Quantization affects the type of flock formation that we can achieve and also
makes the proof of termination more interesting.

We allow agents to be affected by actuator faults. This physically corresponds to, for example, an agent’s
motors being stuck at an input voltage or a control surface becoming immobile. Actuator faults are perma-
nent and cause the afflicted agents to move forever with a bounded and constant velocity. Actuator faults
are a new class of failures that we believe are going to be important in designing and analyzing a wide
range of distributed cyber-physical systems [9]. Unlike byzantine faults, behaviors resulting from actuator
faults are constrained by physical laws. Also, unlike crash failures which typically thwart progress but not
safety, actuator faults can also violate safety. A faulty agent has to be detected (and possibly avoided) by the
non-faulty agents to avoid collisions and ensure progress. In this paper, we assume that after an actuator
fault, a faulty agent continues to communicate and compute, but its actuators continue to move with the
arbitrary but constant failure velocity.

Some attention has been given to failure detection in flocking such as [10], which works with a similar
model of actuator faults. While [10] uses the therein developed motion probes in failure detection scenarios,
no bounds are stated on detection time. Instead, convergence was ensured assuming that failure detection
had occurred within some bounded time, while our work states an O(N) detection time bound, where N
is the number of agents.

Our flocking algorithm determines only the direction in which an agent should move, based on the posi-
tions of adjacent agents. The speed with which an agent moves is chosen nondeterministically over a range,
making the algorithm implementation independent with respect to the lower-level motion controller. The
intuition behind failure detection is based on this nondeterministic choice, and simply is to observe that
an agent has moved in the wrong direction, or moved when it should not have. Under some assumptions
about the system parameters, a simple lower-bound is established, indicating that no detection algorithm
can detect failures in less than O(N) rounds. A failure detector is presented that utilizes this idea in detect-
ing certain classes of failures in O(N) rounds. Unfortunately, certain failures lead to a violation of safety
in fewer rounds, so a failure detector which detects failures faster than O(N) rounds is necessary to ensure
safety. However, some failures are undetectable, such as an agent failing with zero velocity at the goal, and
thus we establish that no such failure detector exists. But, under a restricted class of actuator faults, it is
shown that the failure detector with O(N) detection time can be combined with the flocking algorithm to
guarantee the required safety and progress properties. This requires non-faulty agents to be able to avoid
faulty ones. In one dimension (such as on highways), this is possible if there are multiple lanes. To avoid
collisions and ensure progress, non-faulty agents avoid faulty ones by moving to a lane with no nearby
faulty agents.

In summary, the key contributions of the paper are the following:
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(a) Formal introduction of the notion of actuator faults and stabilization in the face of such faults.

(b) A solution to the one-dimensional safe flocking problem in the face of actuator faults, quantization, and
with bounded control. Our solution brings distributed computing ideas (self-stabilization and failure
detection) to a distributed control problem.

Paper organization In Section 2 we introduce preliminary notation and a formal model of the complete
system of agents and the properties to be analyzed. Then in Section 3, analysis of the system is presented.
First basic system properties are established in Section 3.1. Then in Section 3.2, safety is established in
spite of actuator faults, followed by establishing progress of the fail-free executions of the system toward a
flock and goal in Section 3.3. Section 3.4 presents the lower-bound on failure detection, and analysis of the
failure detection scheme incorporated in our algorithm. Next, Section 3.5 presents simulation studies of the
system. Finally in Section 4, we present conclusions from this study and future work.

2 System Model

This section presents a formal model of the distributed flocking algorithm modeled as a discrete transition
system, as well as formal specifications of the system properties to be analyzed. First are some preliminary
definitions.

2.1 Preliminaries

Denote the sets of natural, real, and nonnegative real numbers by N, R, and R≥0, respectively. For K ∈ N,
[K]

∆
= {1, . . . ,K} and for a set S S⊥

∆
= S ∪ {⊥}. For a variable x, its type is denoted by type(x ) and it is the

set of values that it can take. A discrete transition system A is a tuple 〈X,Q,Q0, A,→〉, where

(i) X is a set of variables with associated types,

(ii) Q is the set of states, which is the set of all possible valuations of the variables in X ,

(iii) Q0 ⊆ Q is the set of start states,

(iv) A is a set of transition labels, and

(v) →⊆ Q×A×Q is a set of discrete transitions.

An execution fragment of A is an (possibly infinite) alternating sequence of states and transition names,
α = x0, a1, x1, . . ., such that for each index k appearing in α, (xk, ak+1,xk+1) ∈→. An execution is an
execution fragment with x0 ∈ Q0.

A state x is reachable if there exists a finite execution that ends in x. A stable predicate S ⊆ Q is a set
of states closed under →. If a stable predicate S contains Q0, then it is called an invariant predicate and
the reachable states of A are contained in S. A safety property specified by a predicate S ⊆ Q is satisfied
by A if all of its reachable states are contained in S. Self-stabilization is a property of non-masking fault
tolerance which guarantees that once new failures cease to occur, the system eventually returns to a legal
state [11]. In this paper, we model actuator faults by transitions with the special label fail. Given G ⊆ Q, A
self-stabilizes to G if (a) G is a stable predicate for A along execution fragments without fail-transitions, and
(b) from every reachable state of A (including states reached via fail transitions), every fail-free execution
fragment eventually reaches G.
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2.2 Model of Safe Flocking System

The distributed system consists of a set of N mobile agents physically positioned on NL infinite, parallel
lanes. The system can be thought of as a collection of cars in the lanes on a highway. Refer to Figures 1 and 2
for clarity, which show the system at a potential state with faulty agents, as well as a potential terminal
configuration. Also see Figures 3 and 4, which show the system making progress (reaching the origin as a

T(x)=8
Lane 2

4 6 7vf vf

0

H(x)=2
Lane 0

Lane 1

4

5 13

6 7vf4 vf7

vf1=0

≤rf+δ/2 ≤rf+δ/2 ≤rf+δ

≤rf+δ/2

Figure 1: System at state x for N = 8, F̄ (x) =
{2, 3, 5, 6, 8}, F (x) = {1, 4, 7}. Faulty actuator veloci-
ties are labeled vf i. Non-faulty agents have avoided
faulty agents by changing lanes. Note that L(x, 6)
= 5. Also, if 4 ∈ Suspected6, then LS(x, 6) = L(6)
= 5, else LS(x, 6) = 4. Assuming S(x) = F (x),
FlockW (x), but ¬FlockS (x), since |x.x6 − x.x5 − rf |
≤ δ (and not δ/2).

Lane 2

6

T(x)=8

0

H(x)=2
Lane 0

Lane 1

5 13

6

vf1=0

≤rf+δ/2 ≤rf+δ/2 ≤rf+δ/2

≤rf+δ/2

Figure 2: System potential Terminal configuration,
having achieved FlockS (x) and reached the goal (the
origin). Observe that faulty agents 4 and 7 with
nonzero velocity have diverged and that non-faulty
agents do not necessarily end on the same lane.
Faulty agent 1 with zero velocity remains stationary,
but does not prevent formation of the flock due to
proper left LS and right RS neighbor selection.

flock), and note that agents 1 through 5 move to lane 2 around round 375 to avoid the faulty agent 6. We
assume synchrony and the communication graph is complete, regardless of lanes. That is, agents have syn-
chronized clocks, message delays are bounded, and computations are instantaneous. At each round, each
agent exchanges messages bearing state information with its neighbors, and note that this means agents in
different lanes communicate. The neighbors of an agent are the other agents that are sufficiently close to the
agent, regardless of lane. Agents then update their software state and (nondeterministically) choose their
velocities, which they operate with until the beginning of the next round. Under these assumptions, it is
convenient to model the system as a collection of discrete transition systems that interact through shared
variables.

Let ID ∆
= [N ] be the set of unique agent identifiers and LD

∆
= [NL] be the set of lane identifiers. The

following positive constants are used throughout the paper:

(a) rs: minimum required inter-agent gap or safety distance in the absence of failures,

(b) rr: reduced safety distance in the presence of failures,

(c) rc: communications distance,

(d) rf : desired maximum inter-agent gap which defines a flock,

(e) δ: flocking tolerance parameter—that is, the maximum deviation from rf agents may be spaced and
constitute a flock,

(f) β: quantization parameter, used to prevent agents from moving if the algorithm decides too small a
movement so that eventually the algorithm terminates, and

(g) vmin, vmax: minimum and maximum velocities.
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Figure 3: System progressing: eventually the agents
have formed a flock and the faulty agent 6 with
nonzero velocity has diverged.
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Figure 4: System progressing: illustrating that non-
faulty agents have avoided faulty agent 6 by chang-
ing lanes.

State Variables. The discrete transition system corresponding to Agenti has the following private variables,
where initial values of the variables are shown in Figure 5 using the ‘:=’ notation.

1variables
x, xo : R

3 u, uo : R := x
lane : IDL := 1

5 sr : B := false
gsf : B := false

7 failed : B := false
vf : R⊥ := ⊥

9 Suspected : Set[ID⊥ ] := {}
Nbrs : Set[ID ] := Nbrs(x, i)

11 L : Nbrs := LS(x, i)
R : Nbrs := RS(x, i)

Figure 5: Variables of Agenti.

(a) gsf : indicates whether the stable predicate detected by the global snapshot is satisfied or not,

(b) sr : indicates whether the global snapshot algorithm has been initiated,

(c) failed : indicates whether or not agent i has failed,

(d) vf : velocity with which agent i has failed, and

(e) Nbrs : set of identifiers of agents that are neighbors of agent i, at the pre-state x of any transition, so it is
Nbrs(x, i), and

(f) L and R: identifiers of the nearest left and right neighbors of agent i.

The following shared variables are controlled by agent i, but can also be read by i’s neighbors (also see
Figure 6):

(a) x and xo: current position and position from the previous round of agent i,
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(b) u and uo: target position and target position from the previous round of agent i,

(c) lane : the lane currently occupied by agent i,

(d) Suspected : set of neighbors that agent i believes to have failed.

These variables are shared in the following sense: At the beginning of each round k, their values are broad-
cast by Agenti and are used by the neighbors of agent i to update their states in that round. The discrete
transition system modeling the complete ensemble of agents is called System.

We refer to states of System with bold letters x, x′, etc., and individual state components of Agenti by
x.xi, x.ui, etc. When necessary to distinguish i’s knowledge of neighbor j’s state variables for a state xk,
the notation xk.xi,j will be used to indicate this is j’s position xk−1.xj from the perspective of i at round k.

Agentj

xj, xoj

uj, uoj

lanej

Suspectedj

Agenti

xi, xoi

ui, uoi

lanei

Suspectedi j

srj

gsfj

failedj

vfj

Nbrsj

i

sri

gsfi

failedi

vfi

Nbrsi

Figure 6: Interaction between a pair of neighboring agents is modeled with shared variables x , xo, u , uo,
lane , and Suspected .

Actuator Faults and Failure Detection. The failure of agent i’s actuators is modeled by the occurrence of
a transition labeled by faili. This transition is always enabled unless i has already failed, and as a result
of its occurrence, the variable failed i is set to true. An actuator fault causes the affected agent to move
forever with a constant but arbitrary failure velocity. At state x, F (x) and F̄ (x) denote the sets of faulty and
non-faulty agent identifiers, respectively.

Agents do not have any direct information regarding the failure of other agents’ actuators (i.e., agent i
cannot read failed j). Agents rely on timely failure detection to avoid violating safety or drifting away from
the goal by following a faulty agent. Failure detection at agent i is abstractly captured by the Suspectedi
variable and a transition labeled by suspecti. The suspecti(j) transition models a detection of failure of some
agent j by agent i. Failures are irreversible in our model, and thus so are failure detector suspicions. For
agent i, at any given state Suspectedi ⊆ ID is the set of agent identifiers that agent i’s failure detector
suspects as faulty. At state x, Agenti where x.failed i = true is a faulty agent, otherwise it is a non-faulty
agent. Agentj is said to be suspected if some agent i suspects it, otherwise it is unsuspected. At state x, if
∃i ∈ ID such that i ∈ x.Suspectedj , then i is called an agent suspected by j. Denote the sets of suspected and
unsuspected agents by S(x) and S̄(x), respectively.

The detection time is the minimum number of rounds within which every failure is always suspected.
In most parts of Section 3 we will assume that there exists a finite detection time kd for any failure. In
Section 3.4, we will discuss specific conditions under which kd is in fact finite and then give upper and lower
bounds for it. The failure detection strategy used by our flocking algorithm is encoded as the precondition
of the suspect transition. Note that the precondition assumes that i has access to some of j’s shared variables,
namely xj , xoj , uj and uoj . When the precondition of suspect(j) is satisfied at Figure 7, Lines 6–8, j is
added to Suspected i. This precondition checks that either j moved when it should not have (due to being
quantized), or if j should have moved, that j moved in the wrong direction away from its computed target
uj . The rationale behind this condition will become clear as we discuss the flocking algorithm.
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faili(v), |v| ≤ vmax

2 pre ¬ failed
eff failed := true; vf := v

4

suspecti(j), j ∈ Nbrs
6 pre j /∈ Suspected ∧ (if |xoj − uoj | ≥ β

then sgn (xj − xoj) 6= sgn (uoj − xoj)
8 else |xj − uoj | 6= 0)

eff Suspected := Suspected ∪ {j}
10

snapStarti
12 pre L=⊥ ∧¬sr

eff sr := true // global snapshot invoked
14

snapEndi(GS), GS ∈ {f alse, true}
16 eff gsf := GS; // global snapshot returns

sr := false

updatei
20eff uo := u; xo := x

for each j ∈ Nbrs, Suspected := Suspected ∪ Suspectedj
22Mitigate:

if ¬ failed ∧ (∃ s ∈ Suspected : lanes = lane)
24∧ (∃ L ∈ LD : ∀ j ∈ Nbrs, (lanej = L⇒

xj /∈ [x− rs − 2vmax, x+ rs + 2vmax ]))
26then lane := L fi

Target :
28if L=⊥ ∧ gsf then u := x−min{x, δ/2};

gsf := f alse
30elseif L=⊥ then u := x

elseifR=⊥ then u := (xL + x+ rf )/2
32else u := (xL + xR)/2 fi

Quant : if |u− x| < β then u := x fi
34Move: if failed then x := x + vf

else x := x + sgn (x− u) choose [vmin, vmax] fi

Figure 7: Agenti’s transitions: failure detection, global snapshots, and target updates.

Neighbors. Agenti is said to be a neighbor of a different Agentj at state x if and only if |x.xi − x.xj | ≤ rc.
The set of identifiers of all neighbors of Agenti at state x is denoted by

Nbrs(x, i)
∆
= {j ∈ ID : i 6= j ∧ |x.xi − x.xj | ≤ rc}.

At state x, let L(x, i) (and symmetrically R(x, i)) be the nearest non-failed agent left (resp. right) of Agenti,
with ties broken arbitrarily. If no such neighbor exists, then L(x, i) andR(x, i) are defined as⊥. Let LS(x, i)
(and symmetrically RS(x, i)) be the nearest unsuspected agent left (resp. right) of Agenti at state x, or ⊥
if no such agents exist. LS(x, i) and RS(x, i) take values from {⊥} ∪ Nbrs(x, i) \ x.Suspectedi, and thus,
LS(x, i) (and RS(x, i)) is the identifier of nearest non-suspected agent positioned to the left (right) of i on
the real line. Observe that this is regardless of lane. An unsuspected Agenti with both unsuspected left
and right neighbors is a middle agent. Let the set of middle agent identifiers be Mids(x) for state x. An
unsuspected Agenti without an unsuspected left neighbor is the head agent, and is denoted by the singleton
H(x). If Agenti is unsuspected, is not the head, and does not have an unsuspected right neighbor, it is the
tail agent and is denoted by the singleton T (x). Let RMids(x)

∆
= Mids(x) \ {R(x, H(x))}. Observe that the

following holds,

H(x)
∆
= min S̄(x), and

T (x)
∆
= max S̄(x).

Flocking Algorithm. The state transitions are fails, snapStarts, snapEnds, suspects, and updates. A faili(v)
transition where i ∈ NF (x) for a state x models the permanent failure of Agenti. As a result of this transition,
failed i is set to true and vf i is set to v. This causes Agenti to move forever with velocity v. Assume that
|v| ≤ vmax, which is reasonable due to actuation constraints.

The distributed flocking algorithm executed at Agenti uses two separate processes (threads): (a) a pro-
cess for taking distributed global snapshots, and (b) a process for updating the target position for Agenti.

The snapStart and snapEnd transitions model the periodic initialization and termination of a distributed
global snapshot protocol—such as Chandy and Lamport’s snapshot algorithm [8]—by the head agent. This
global snapshot is used for detecting a stable global predicate, which in turn influences the target computa-
tion for the head agent. Although we have not modeled this explicitly, we assume that the snapStarti tran-
sition is performed periodically by the head agent when the precondition is enabled. If the global predicate
holds, then snapEnd(true) occurs, otherwise snapEnd(f alse) occurs. Chandy-Lamport’s algorithm can be
applied since (a) we are detecting a stable predicate, (b) the communications graph is complete, and (c) the
stable predicate being detected is reachable. Thus, we assume that in any infinite execution, a snapEndi
transition occurs within O(N) rounds from the occurrence of the corresponding snapStarti transition.
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The update transition models the evolution of all (faulty and non-faulty) agents over a synchronous
round. It is composed of four subroutines: Mitigate , Target , Quant , and Move , which are executed in this
sequence for updating the state of System. The entire update is instantaneous and atomic; the subroutines

are used for clarity of presentation. To be clear, for x
update→ x′, x′ is obtained by applying each of these

subroutines. We refer to the intermediate states after Mitigate , Target , Quant , and Move as xM , xT , xQ, and
xV , respectively. That is, xM

∆
= Mitigate(x), xT

∆
= Target(xM ), etc., and note x′ = xV = Move(xQ).

Mitigate is executed by non-faulty agents and may cause them to change lanes, thus restoring safety
and progress properties that may be reduced or violated by failures. Target determines a new target to
move toward. There are three different rules for target computations based on an agent’s belief of whether
it is a head, middle, or tail agent. For a state x, each middle agent i attempts to maintain the average of
the positions of its nearest unsuspected left and right neighbors (Figure 7, Line 32). Assuming that the goal
is to the left of the tail agent, the tail agent attempts to maintain rf distance from its nearest unsuspected
left neighbor (Figure 7, Line 31). The head agent periodically invokes a global snapshot and attempts to
detect a certain stable global predicate FlockS (defined below). If this predicate is detected, then the head
agent moves towards the goal (Figure 7, Line 29), otherwise it does not change its target u from its current
position x. As mentioned before, targets are still computed for faulty agents, but their actuators ignore these
new values. Quant is the quantization step which prevents targets ui computed in the Target subroutine
from being applied to real positions xi, if the difference between the two is smaller than the quantization
parameter β. It is worth emphasizing that quantization is a key requirement for any realistic algorithm
that actuates the agents to move with bounded velocities. Without quantization, if the computed target
is very close to the current position of the agent, then the agent may have to move with arbitrarily small
velocity over that round. Finally, Move moves agent positions xi toward the quantized targets. Note that
Move abstractly captures the physical evolution of the system over a round; that is, it is the time-abstract
transition corresponding to physical evolution over an interval of time.

2.3 Model as a Discrete-Time Switched Linear System

The following is a view of the system as a discrete-time switched system and displays that failures can be
modeled as a combination of an additive affine control and a switch to another system matrix.

Discrete-time switched systems can be described as x[k + 1] = fp(x[k]) in general where x ∈ RN , p ∈ P
for some index set P , such as P = {1, 2, . . . ,m}, or as x[k + 1] = Apx[k] for linear discrete-time switched
systems [12]. For the following, assume that Figure 7, Line 35 is deleted and replaced with x := u. This
deletion removes the nondeterministic choice of velocity with which to set position x, and instead sets it
to be the computed control value u. This nondeterministic choice can be modeled through the use of a
time-varying system matrix A[k] as in [3], but we omit it for simplicity of presentation.

The effect of an update transition on the position variables of all agents in System can be represented by
the difference equation x[k + 1] = Apx[k] + bp where for a state xk at round k,

x[k] =


xk.xH(xk)

xk.xx.RH(xk)

...

xk.xT (xk)

 ,
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Ap =



a1,1 0 0 0 0 0 . . .

a2,1 a2,2 a2,3 0 0 0 . . .

0 a3,2 a3,3 a3,4 0 0 . . .

0 0
. . . . . . . . . 0 . . .

0 0 0 ai,i−1 ai,i ai,i+1 . . .

0 0 0
. . . . . . . . . . . .

0 0 0 0 0 aN,N−1 aN,N


, and

bp =



b1
...

bi
...

bN


.

The following are the family of matricesAp and vectors bp that are switched among based on the state of
System; refer to Figure 7 for the following referenced line numbers. From Line 29, for H(xk), if FlockS(xk),
then either (a) if xk.xH(xk) ≥ δ, then a1,1 = 1 and b1 = − δ2 , otherwise (b) a1,1 = 0 and b1 = 0. From Line 30,
if ¬FlockS(xk), then a1,1 = 1 and b1 = 0. From Line 32, for i ∈ Mids(xk), ai,i = 0, ai,i−1 = 1

2 , ai,i+1 = 1
2 ,

and bi = 0. Finally, from Line 31, for T (xk), aN,N−1 = 1
2 , aN,N = 1

2 , and bN =
rf
2 .

Next, all coefficients in the matrix can change due to the quantization law in Line 33. If the conditional
on Line 33 is satisfied for agent i ∈ Mids(xk), then ai,i = 1, ai,xk.Li

= 0, ai,xk.Ri
= 0, and bi = 0, for agent

i = H(xk), then ai,i = 1 and bi = 0, and for agent i = T (xk), then ai,xk.Li
= 0, ai,i = 1, and bi = 0.

Failures also cause a switch of system matrices. The actuator stuck-at failures being modeled are repre-
sentative of an additive error term in the bp vector [13]. From Line 34, for i ∈Mids(xk), ai,i = 1, ai,xk.Li = 0,
ai,xk.Ri

= 0, and bi = xk.vfi, for i = H(xk), ai,i = 1 and b1 = xk.vfH(xk), and for i = T (xk), aN,N−1 = 0,
aN,N = 1, and bN = xk.vfT (xk).

2.4 Key Predicates

We now define a set of predicates on the state space of System that capture the key properties of safe flocking.
These will be used for proving that the algorithm described above solves safe flocking in the presence of
actuator faults. We start with safety. A state x of System satisfies Safety if the distance between every pair
of agents on the same lane is at least the safety distance rs. Formally, Safety(x)

∆
= ∀i, j ∈ ID , i 6= j,x.lanei =

x.lanej =⇒ |x.xi − x.xj | ≥ rs. When failures occur, a reduced inter-agent gap of rr will be guaranteed.
We call this weaker property reduced safety: SafetyR(x)

∆
= ∀i ∈ F̄ (x),∀j ∈ ID, i 6= j,x.lanei = x.lanej =⇒

|x.xi − x.xj | ≥ rr.
An ε-flock is where each non-faulty agent with an unsuspected left neighbor (not necessarily in the

same lane) is within rf ± ε from the left neighbor. Formally, Flock(x, ε)
∆
= ∀ i ∈ S̄(x), LS(x, i) 6= ⊥,∣∣x.xi − x.xLS(x,i) − rf

∣∣ ≤ ε. In this paper, we will use the Flock predicate with two specific values of ε,
namely δ (the flocking tolerance parameter) and δ

2 . The weak flock and the strong flock predicates are defined
as FlockW (x)

∆
= Flock(x, δ), and FlockS (x)

∆
= Flock(x, δ2 ), respectively.

Related to quantization, we have the no big moves (NBM) predicate, where none of the agents (except
possibly the head agent) have any valid moves, because their computed targets are less than β (quantization
constant) away from their current positions. NBM (x)

∆
= ∀i ∈ F̄ (x), LS(x, i) 6= ⊥, |xT .ui − x.xi| ≤ β, where

xT is the state following the application of Target subroutine to x. The Goal predicate is satisfied at states
where the head agent is within β distance of the goal (assumed to be the origin without loss of generality),
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that is, Goal(x)
∆
= x.xH(x) ∈ [0, β]. Finally, a state satisfies the Terminal predicate if it satisfies both Goal

and NBM .
An outline of the properties to be introduced is presented in Figure 8. In this figure, start states Q0 at

least satisfy Safety . Fail-free executions are represented by lines with arrows labeled αff . Safety is invariant
along fail-free executions. Eventually NBM—and thus also FlockW and FlockS —is satisfied along any
fail-free execution, upon which after termination of the global snapshot algorithm, the head agent may
move towards states satisfying Goal causing FlockS to no longer be satisfied, while FlockW remains stable.
However, along executions with failures, represented by the red line with an arrow labeled αf , Safety is
not necessarily upheld, but SafetyR is invariant when combined with a failure detector, whose action is
represented by the green line with an arrow labeled αfd . Upon this detection, any fail-free execution is then
guaranteed to reach states satisfying NBM and also eventually Goal .

SafeR
S f

αfdFlock

Safe αff
fdFlockW

FlockS
αff αff

Q0

FlockS

NBMαff αf
αff

NBM
αff

ff αf
Goal αff

αff

Figure 8: Set view of desired properties of System.

3 Analysis

The main result of the paper (Theorem 3.1) is that the algorithm in Figure 7 achieves safe flocking in spite of
failures provided: (a) there exists a failure detector that detects actuator faults sufficiently fast, and (b) there
is enough room some lane such that each non-faulty agent can safely avoid faulty agents and eventually
make progress. For the first part of our analysis, we will simply assume that any failure is detected within
kd rounds. In Section 3.4, we shall examine conditions under which kd is finite and state its lower and
upper bounds. Assumption b is trivially satisfied if the number of lanes is greater than the total number of
failures; but it is also satisfied with fewer lanes, provided the failures are sufficiently apart in space. There
are two space requirements for Assumption b: the first ensures safety and the second ensure progress by
preventing “walls” of faulty agents from existing forever and ensuring that infinitely often all non-faulty
agents may make progress.

Theorem 3.1 Suppose there exists a failure detector which suspects any actuator fault within kd rounds. Suppose
further that vmax ≤ (rs − rr)/(2kd). Let α = x0, . . ., xp, xp+1 be an execution where xp is the state after the last
fail transition. Let αff = xp+1, . . ., be the fail-free suffix of α. Let f be the number of actuator faults. Suppose either

(a) NL > f , or

(b) NL ≤ f and along αff , ∀x ∈ αff , ∃L ∈ LD such that ∀i ∈ F̄ (x), ∀j ∈ F (x), x.lanej 6= L and |x.xi − x.xj | >
rs + 2vmaxkd, and also that infinitely often, ∀m,n ∈ F (x), m 6= n, |x.xm − x.xn| > rs + 2vmax .

Then, (a) Every state in α satisfies the reduced safety property, SafetyR, and (b) Eventually Terminal and FlockS

are satisfied.
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In what follows, we state and prove a sequence of lemmas that culminate in Theorem 3.1. Under the
assumptions and analysis of this section, the following relationships are satisfied: NBM ⊂ FlockS ⊂ FlockW

⊂ Safety ⊂ SafetyR. We begin with some assumptions.

Assumptions. Except where noted in Section 3.4, the remainder of the paper utilizes the assumptions of
Theorem 3.1. Additionally, these assumptions are required throughout the paper:

(a) NL ≥ 2: there are at least 2 lanes,

(b) rr < rs < rf < rc: the reduced safety gap rr required under failures is strictly less than the safety gap
rs in the absence of failures, which in turn is strictly less than the flocking distance rf , all of which are
less than the communication distance rc,

(c) δ
2 < rc,

(d) 0 < vmin ≤ vmax ≤ β ≤ δ/(4N), and

(e) the communication graph of the non-faulty agents is always connected, so the graph of non-faulty
agents cannot partition.

Assumption (a) allows the safety and progress properties to be maintained in spite of failures by allowing
agents to move among a set of NL lanes, preventing collisions of failed and non-failed agents and allowing
non-failed agents to pass failed agents which are not moving in the direction of the goal. Assumption
(b) states the desired inter-agent spacing rf is strictly greater than these safety margins and strictly less
than the communications radius rc, as well as that the safety and reduced safety margins are smaller than
these. Assumption (c) prevents the agent nearest to the goal from moving beyond the communications
radius of any right agent it is adjacent to, that is, it prevents disconnection of the graph of neighbors.
Assumption (d) bounds the minimum and maximum velocities, although they may be equal. It then upper
bounds the maximum velocity to be less than or equal to the quantization parameter β. This is necessary
to prevent a violation of safety due to overshooting computed targets. Finally, β is upper bounded such
that NBM ⊆ FlockS . Intuitively, the bound on β is to ensure that errors from flocking due to quantization
do not accumulate along the flock from the head to the tail. This is used to show that eventually FlockS is
satisfied by showing eventually NBM is reached. Assumption (e) is a natural assumption indicating there
is a single network of agents. Note that this is weaker than the network being complete. It further states
that failures do not cause the graph of non-faulty neighbors to partition.

Finally, assume that in all start states x ∈ Q0 of System, Safety(x) ∧ x.xH(x) ≥ 0.

3.1 Basic Analysis

The following lemma ensures that the set of neighbors of an agent is well defined and matches the defini-
tion of Nbrs(x, i) for agent i at the pre-state x of any transition. It follows by observing that only update
transitions modify Nbrs(x, i).

Lemma 3.2 For any reachable state x such that for all i ∈ F̄ (x), Nbrs(x, i) = x.Nbrsi. For any agent i ∈ ID, for
a state x′ such that x a→ x′ for a ∈ A \ {update}, Nbrs(x′, i) = x′.Nbrsi and Nbrs(x, i) = x.Nbrsi.

The next lemma states that if neighbors change, then they do so symmetrically. This is used to establish
safety upon agents no longer relying on suspected agents for target computation.

Lemma 3.3 For any reachable state x such that x a→ x′ for any a ∈ A, ∀i, j ∈ ID, if x.Li 6= j and x′.Li = j, then
x′.Rj = i.

11



Proof : Fix i and j and observe that only the suspect or update action changes LS(x, i) orRS(x, j) by changing
either the positions of agents xi or the sets of suspected agents. By Lemma 3.2, we consider L and R. There
are two cases when x.Li 6= x′.Li = j. The first is upon agents that were not neighbors at x becoming
neighbors at x′, that is, j /∈ x.Nbrsi and j ∈ x′.Nbrsi. This is only possible due to the update action since
no other action changes xi. By definition of neighbor, also i /∈ x.Nbrsj and i ∈ x′.Nbrsj . By the symmetric
definitions of LS(x′, i) and RS(x′, j), we have x′.Rj = i.

The second case is when agents i and j were neighbors at x, so j ∈ x.Nbrsi and i ∈ x.Nbrsj , but now
have at least one suspected agent f where i > f > j between them and f ∈ x.Nbrsi ∩ x.Nbrsj . This is
possible due to the suspect or update transitions. Prior to suspecting that f is failed, no change of LS(x, i)
and RS(x, j) occurs by definition, implying that for the hypothesis of the lemma to be satisfied, x′ must be
a state where f ∈ x′.Suspectedi ∩ x′.Suspectedj , since i and j both use the same suspect action at Figure 7,
Line 5. In this case, the symmetric switch occurs by definition of LS(x, i) and RS(x, j), we have x′.Rj = i.
Otherwise, f /∈ x′.Suspectedi ∩ x′.Suspectedj and a contradiction that x.Li 6= x′.Li occurs.

Next, assuming there are no failures, Lemma 3.4 shows that Agenti’s knowledge about the identities of
its neighbors is true to its actual identities and remains so in all reachable states. This would be an invariant,
but can be violated with failures.

Lemma 3.4 If there are no failures, in any reachable state x, for all i ∈ ID,

x.left i = LS(x, i) =


⊥ if i = 1,

i− 1 i ∈ {2, . . . , N − 1}, and

N − 1 i = N.

x.right i = RS(x, i) =


2 if i = 1,

i+ 1 i ∈ {2, . . . , N − 1}, and

⊥ i = N.

Safe Failures. Next we note that there exists failures which do not violate safety. In particular, let x be a
state along any execution of System and assume that F (x) = ∅. Consider the execution fragment α = x .
fail1(v) . x′ . fail2(v) . x′′ . . . . failN(v) . xf . That is, ∀i ∈ ID, let faili(v) occur where v is the same for each of
these faili transitions. Then, for any round xs appearing after xf in α, Safety(xs).

Sharing Suspected Sets. The motivation for sharing sets of suspected agents among neighbors in Figure 7,
Line 21, is illustrated by the following observation. It gives a failure condition under which no moves
are possible and hence no progress can be made if sets of suspected agents are not shared. Assume that
neighbors do not share sets of suspected agents, so Figure 7, Line 21 is deleted. Let x be a state along
some execution where there are no failures and let agents i ∈ ID \ H(x) be spaced evenly at a distance
greater than flocking such that ¬FlockS(x), and particularly x.xi − x.xLi

= x.xRi
− x.xi = . . . = x.xT (x) −

x.xLT (x)
> rf ± δ

2 . Let there be a non-faulty agent p which is located farther than rc from agent T (x) so
that p /∈ x.NbrsT (x). Consider an execution fragment starting from x such that for every state x′ in the
execution fragment, F (x′) = ID \ {p} and x′.vfj = 0 for all j ∈ F (x′). Then, for states x′′ reachable from
x′, x′′.Suspectedp = ∅ and hence no progress is made as p never learns it must change lanes, so ∀i ∈ ID,
x′′.xi = x′.xi.
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3.2 Safety

First, we establish that System satisfies the safety part of the safe flocking problem. The following lemma
states that in each round, each agent moves by at most vmax, and follows immediately from Figure 7,
Line 35.

Lemma 3.5 For any two states x,x′ of System, if x a→ x′ for some transition a, then for each agent i ∈ ID,
|x′.xi − x.xi| ≤ vmax.

The following corollary states that any two agents move towards or away from one another by at most
2vmax from one round to another and follows from Lemma 3.5.

Corollary 3.6 For any execution α, for states x,x′ ∈ α such that x a→ x′ for any a ∈ A, ∀i, j ∈ ID such that i 6= j,
then |(x′.xi − x.xi)− (x′.xj − x.xj)| ≤ 2vmax.

Proof : By Lemma 3.5, both of |x′.xi − x.xi| ≤ vmax and |x′.xj − x.xj | ≤ vmax. This gives that x′.xi ∈
[x.xi − vmax,x.xi + vmax] and x′.xj ∈ [x.xj − vmax,x.xj + vmax], and the result follows.

The next lemma establishes that, upon changes in which neighbors an agent i uses to compute its target
position, safety is not violated.

Lemma 3.7 For any execution α, for states x,x′ ∈ α such that x a→ x′ for any a ∈ A, ∀i, j ∈ ID, if LS(x, i) 6= j
and RS(x, j) 6= i and LS(x′, i) = j and RS(x′, j) = i and x.xRS(x,j) − x.xLS(x,i) ≥ c, then x′.xRS(x′,j) −
x′.xLS(x′,i) ≥ c, for any c > 0.

Proof : Only suspect and update modify LS(x, i), RS(x, i), or xi for any i. By Lemma 3.2, we discuss L and
R. By Lemma 3.3, which states that neighbor switching occurs symmetrically, if x.Li 6= j and x′.Li = j,
then x′.Rj = i. It remains to be established that x′.xx′.Rj

− x′.xx′.Li
≥ rs. For convenient notation, observe

that x′.xx′.Rj = x′.xi and x′.xx′.Li = x′.xj . Now,

x′.xj =
x.xx.Lj

+ x.xi

2
, and

x′.xi =
x.xj + x.xx.Ri

2
,

and thus

x′.xi − x′.xj =
x.xj + x.xx.Ri

2
−

x.xx.Lj
+ x.xi

2

=
x.xj − x.xx.Lj

+ x.xx.Ri
− x.xi

2
.

Finally, by the hypothesis,

x′.xi − x′.xj ≥
rs + rs

2
≥ rs.

The cases for i = N and j = 1 follow by similar analysis, as does the case when x′.xm is quantized so that
x.xm = x′.xm for any m ∈ ID.

Invariant 3.8 shows the spacing between any two non-faulty agents in any lane is always at least rr, and
the spacing between any non-faulty agent and any other agent in the same lane is at least rr. There is no
result on the spacing between any faulty agents—they may collide.

Invariant 3.8 For any reachable state x, SafetyR(x).
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Proof : The proof is by induction over the length of any execution of System. The base case follows by the
assumption that the initial state satisfies Safety . For the inductive case, for each transition a ∈ A, we show
if x a→ x′ ∧ x ∈ SafetyR, then x′ ∈ SafetyR. The faili(v), snapStarti, snapTermi, and suspecti transitions do not
modify any xi or ui, so SafetyR(x′) For the update transition, the inductive hypothesis gives that Safety
is satisfied for the pre-state x. For the remainder of the proof, let l = x.Li (the unsuspected agent left of
i), r = x.Ri (the unsuspected agent right of i), and ll = x.Lx.Li

(the unsuspected agent left of l). If these
variables change between x and x′, the result follows by Lemma 3.7. The remainder of the proof is divided
into two cases: the first case analyzes the spacing between two non-faulty agents, and the second case
analyzes the spacing between any faulty agent and non-faulty agent, which reside in the same lane. All the
following comes from Figure 7, Lines 27–32 and the inductive hypothesis.

For the first case showing the spacing between any two non-faulty agents, it is sufficient to show if
∀i ∈ F̄ (x), x.ui − x.ul ≥ rr and x.xi − xl ≥ rr, then x′.ui − x′.ul ≥ rr. If i is any non-faulty middle agent,
x′.ui − x′.ul = x.xl−x.xll+x.xr−x.xi

2 ≥ rr. If i is the non-faulty tail, x′.ui − x′.ul =
rf+x.xl−x.xll

2 ≥ rr. Since
0 ≤ xH(x), then by the inductive hypothesis, x′.uH(x′) ≤ x.uH(x). Cases when quantization changes any
x′.ui in Line 33 follow by similar analysis and are omitted for space. Thus, SafetyR(x).

Next is the proof of the second case, that the spacing between any non-faulty and any faulty agent which
reside in the same lane is at least rr. For simplicity of presentation, assume we are dealing with a fail-free
execution, under which case, the detection time until all failures are detected is kd. If we were not dealing
with a fail-free execution, just choose the maximum such kd and pick vmax as in Theorem 3.1. For a failed
agent j, x′.xj = x.xj + x.vfj by Line 34. Given the assumption that vmax ≤ rs−rr

2kd
, it is the case that at

round kd, xd.xj ≤ x.xj +kdvmax = x.xj + rs−rr
2 where we considered the case for x.vj > 0 and the negative

failure velocity case follows symmetrically. By assumption that any failure is detected by round kd and
by Lemma 3.5, any failed agent j and any non-failed agent i have moved towards one another by at most
2kdvmax, and thus xd.xj − xd.xi ≤ 2kdvmax = rs − rr.

This implies at least SafetyR(xm) for any states xm in any state in the execution between x and xd. It
remains to be established that SafetyR(x′d) for a state x′d reachable from state xd. By the detection time
assumption, any agent i will have j ∈ xd.Suspectedi, which changes LS(xd) and RS(xd), but now apply
Lemma 3.7, which shows there is at least rr space between i and j. Finally, by Figure 7, Line 26, x′d.lanei 6=
xd.lanej , since NL ≥ 2, and by Assumption b of Theorem 3.1, SafetyR(x′d).

3.3 Progress

The progress analysis works with fail-free executions, that is, there are no further faili transitions. Note that
this does not mean F (x) = ∅, only that along such executions |F (x)| does not change. This is a standard
assumption used to show convergence from an arbitrary state back to a stable set [14], albeit we note that we
are dealing with permanent faults instead of transient ones. In this case, the stable set eventually reached
are states where Terminal is satisfied. However, note that the first state in such an execution is not entirely
arbitrary, as Section 3.2 established that such states satisfy at least SafetyR, and all the following analysis
relies on this assumption.

Influence of Failures on Progress. First observe that, like safety, progress may be violated by failures.
Any failed agent with nonzero velocity diverges by the definition of velocities in Figure 7, Line 34. This
observation also highlights why Flock is quantified over agents with identifiers in the set of suspected
agents S̄(x) and not the set of failed agents F̄ (x) or all agents ID—if it were quantified over ID, at no future
point could Flock(x) be attained if a failed agent has diverged. Furthermore, if Flock(x) relied on F̄ (x)
instead of S̄(x), then potentially the failure detection algorithm could rely upon the head agent’s detection
of this predicate on the global snapshot for detection of failures. Zero velocity failures may also cause
progress to be violated, where a “wall” of non-moving failed agents may be created, but such situations are
excluded by the second part of Assumption b in Theorem 3.1.
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Progress along Fail-Free Executions. In the remainder of this section, we show that once new actuator
faults cease occurring, System eventually reaches a state satisfying Terminal . This is a convergence proof
and we will use a Lyapunov-like function to prove this property. The remainder of this section applies to
any infinite fail-free execution fragment, so fix such a fragment αff . Note that this does not mean there are
no failures, so for each state x ∈ αff , it is not necessary that F (x) = ∅, only that new failures do not occur,
so ∀x,x′ ∈ αff , F (x) = F (x′).

These descriptions of error dynamics are used in the analysis:

e(x, i)
∆
=

{
|x.xi − x.xx.Li

− rf | if i is a middle or a tail agent,
0 otherwise,

eu(x, i)
∆
=

{
|x.ui − x.ux.Li − rf | if i is a middle or a tail agent,
0 otherwise.

Here e(x, i) gives the error with respect to rf of Agenti and its non-suspected left neighbor and eu(x, i),
with respect to target positions x.ui rather than physical positions x.xi.

Now, we make the simple observation from Line 35 of Figure 7 that if a non-faulty agent i moves in
some round in spite of quantization, then it moves by at least a positive amount vmin. Observe that an
agent may not move in a round if the conditional in Figure 7, Line 33 is satisfied, but this does not imply
vmin = 0. This follows from Figure 7, Line 35.

Lemma 3.9 For any failure-free execution fragment α and for two adjacent rounds xk and xk+1 in α, for any i ∈
F̄ (xk) ∩ F̄ (xk+1), if |xk,T .ui − xk.xi| > β, then |xk+1.xi − xk.xi| ≥ vmin > 0.

Next, Lemma 3.10 states that from any reachable state x which does not satisfy NBM , the maximum er-
ror over all non-faulty agents in non-increasing. This is shown by first noting that only the update transition
can cause any change of e(x, i) or eu(x, i), and then analyzing the change in value of eu(x, i) for each of
the computations of ui in the Target subroutine of the update transition. Then it is shown that applying the
Quant subroutine cannot cause any eu(x, i) to increase, and finally computing xi in the Move subroutine
does not increase any e(x, i).

Lemma 3.10 For reachable states x, x′, if x a→ x′ and x /∈NBM , for some a ∈A, then max
i∈F̄ (x)

e(x′, i)≤ max
i∈F̄ (x)

e(x, i).

Proof : Target and Quant are the only subroutines of updatei to modify ui. Now max
i∈F̄ (xT )

eu(xT , i) ≤ max
i∈F̄ (x)

eu(x, i)

which follows from eu(xT , i) being computed as convex combinations of positions from x, specifically

i = H(xT ) ⇒ eu(xT , i) = 0

i = xT .RH(xT ) ⇒ eu(xT , i) =
eu(x,x.Ri)

2

i ∈ RMids(xT ) ⇒ eu(xT , i) =
eu(x,x.Li) + eu(x,x.Ri)

2

i = T (xT ) ⇒ eu(xT , i) =
eu(x,x.Li) + eu(x, i)

2
.

Finally, Quant sets xQ.ui = xT .ui or xQ.ui = xT .xi. In the first case, when xQ.ui = xT .ui, the result follows
by the above reasoning. In the other case, when xQ.ui = xT .xi, if ui and uL are each quantized, then ei
does not change for any i and the result follows. If, however, ui is quantized and uL is not quantized, then
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ei is computed as

i = H(xT ) ⇒ eu(xT , i) = 0

i = xT .RH(xT ) ⇒ eu(xT , i) = eu(x, i)

i ∈ RMids(xT ) ⇒ eu(xT , i) =
eu(x,x.Ri) + eu(x, i)

2

i = T (xT ) ⇒ eu(xT , i) =
eu(x, i) + eu(x,x.Li)

2
.

Likewise, if uL is quantized and ui is not quantized, then ei is computed as

i = H(xT ) ⇒ eu(xT , i) = 0

i = xT .RH(xT ) ⇒ eu(xT , i) =
eu(x, i) + eu(x,x.Ri)

2

i ∈ RMids(xT ) ⇒ eu(xT , i) =
eu(x,x.Li) + eu(x, i)

2

i = T (xT ) ⇒ eu(xT , i) =
eu(x, i)

2
.

Finally, applying Lemma 3.5 indicates that error between actual positions and not target positions is non-
increasing.

Next, Lemma 3.11 shows sets of states satisfying NBM are invariant, a state satisfying NBM is reached,
and gives a bound on the number of rounds required to reach such a state. Define the candidate Lyapunov
function as V (x)

∆
=
∑
i∈F̄ (x) e(x, i). Note the similarity of this candidate with the one found in [15]. In

particular, it is not quadratic and is the sum of absolute values of the positions of the agents. Define the
maximum value the candidate Lyapunov function obtained over any state x ∈ αff satisfying NBM as
γ

∆
= sup

x∈NBM
V (x).

Lemma 3.11 Let xk be the first state of αff , and let the head agent’s position be fixed. If V (xk) > γ, then the update
transition decreases V (xk) by at least a positive constant ψ. Furthermore, there exists a finite round c such that
V (xc) ≤ γ, where xc ∈ NBM (x) and k < c ≤ d(V (xk)− γ)/ψe, where ψ = vmin.

Proof : By definition of NBM since xk /∈ NBM , ∃j ∈ F̄ (xk) such that |xk,T .xj − xk.xj | > β, where xk,T is the
state obtained applying the subroutines of the update transition through Target . Let j = argmax

i∈NF(xk)

e(xk, i).

Thus Figure 7, Line 33 is not satisfied for j and vmax ≥ |xk+1.xj − xk.xj | ≥ vmin by Figure 7, Line 35. Let
∆V (xk,xk+1)

∆
= V (xk+1)− V (xk), and we show ∆V (xk,xk+1) < ψ for some ψ < 0. Observe that −vmin ≥

∆V (xk,xk+1) ≥ −vmax and since vmax ≥ vmin > 0 let ψ = vmin. Therefore a transition xk
update→ xk+1

causes V (xk+1) to decrease by at least a positive constant vmin. By repeated application of this reasoning,
∃c, k < c ≤

⌈
V (xk)−γ
vmin

⌉
such that V (xc) ∈ NBM and V (xc) ≤ γ.

Lemma 3.11 stated a bound on the time it takes for System to reach the set of states satisfying NBM .
However, to satisfy FlockS (x), all x ∈ NBM must be inside the set of states that satisfy FlockS , and the
following lemma states this. From any state x that does not satisfy FlockS (x), there exists an agent that
computes a control that will satisfy the quantization constraint and hence make a move towards NBM .
This follows from the assumption that β ≤ δ/(4N).

Lemma 3.12 If FlockS (x), then V (x) ≤
∑
i∈F̄ (x) e(x, i) = (δ

∣∣F̄ (x)
∣∣)/4.
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Now we observe that FlockW is a stable predicate, that is, that once a weak flock is formed, it remains
invariant. This result follows from analyzing the Target subroutine which computes the new targets for
the agents in each round. Note that the head agent moves by a fixed distance δ

2 , only when FlockS holds,
which guarantees that FlockW is maintained even though FlockS may be violated. This establishes that for
any reachable state x′, if V (x′) > V (x), then V (x′) < (δ

∣∣F̄ (x)
∣∣)/2.

Lemma 3.13 FlockW is a stable predicate.

Proof : We show ∀x, x′ ∈ αff such that x a→ x′ for any a ∈ A, if FlockW (x), then FlockW (x′). If FlockW (x),
there are two cases to consider. In the first case, System satisfies FlockW (x) ∧ ¬ FlockS (x), then FlockW (x′)
holds by application of Lemma 3.11 since x′.xH(x′) = x.xH(x′) by Figure 7, Line 30. In the second case,
System satisfies FlockW (x) ∧ FlockS (x) so upon termination of the global snapshot algorithm, if x.xH(x) 6=
x.xg , then H(x) computes x′.uH(x′) < x.uH(x) and applies this target x′.uH(x′) < x.uH(x) by Figure 7,
Line 29, and we show FlockS (x) ⇒ FlockW (x′). If x.xH(x) ∈ [0, β] such that the predicate on Line 33 is
satisfied, then x′.xH(x′) = x.xH(x) and the proof is complete. If not, then by the definition of x′.uH(x′) in
Figure 7, Line 29, H(x) will compute a target no more than δ/2 to the left, so

∣∣x′.uH(x′) − x.uH(x)

∣∣ ≤ δ/2.
Now, for Agenti to have moved, the error between the distance of H(x) and x.RH(x) and the flocking
distance must have been at most δ/2 by the definition of FlockS . AgentRH(x)

will have moved to the center
of H(x) and RRH(x)

, so x′.uRH(x′) may be less than, equal to, or greater than its previous position x.xRH(x)
,

requiring a case analysis of each of these three possibilities. In the first two cases x′.uRH(x′) ≤ x.xRH(x′) and
the proof is complete. The other case follows by applying Lemma 3.5 to H(x) and x.RH(x) and observing
that the most they would ever move apart by is 2β ≤ δ/2 and are now separated by at most δ, hence
FlockW (x′) is satisfied.

The following corollary follows from Lemma 3.11, as FlockS (x) is violated after becoming satisfied only
if the head agent moves, in which case x′.xH(x′) < x.xH(x), which causes V (x′) ≥ V (x).

Corollary 3.14 For x ∈ αff such that, if FlockS (x), x a→ x′ for any a ∈ A, and x.xH(x) = x′.xH(x′), then
FlockS (x′).

The following lemma—with Assumption b of Theorem 3.1 that gives eventually a state is reached such
that non-faulty agents may pass faulty agents—is sufficient to prove that Terminal is eventually satisfied
in spite of failures. After this number of rounds, no agent j ∈ F̄ (x) believes any i ∈ F (x) is its left or
right neighbor, and thereby any failed agents diverge safely along their individual lanes if |x.vi| > 0 by
the observation that failed agents with nonzero velocity diverge. Particularly, after some agent j has been
suspected by all non-faulty agents, the Mitigate subroutine of the update transition shows that the non-
faulty agents will move to a different lane at the next round. This shows that mitigation takes at most one
additional round after detection, since we have assumed in Theorem 3.1 that there is always free space on
some lane. This implies that so long as a failed agent is detected prior to safety being violated, only one
additional round is required to mitigate, so the time of mitigation is a constant factor added to the time to
suspect, resulting in the overall time constant c to ensure safety and progress being linear in the number of
agents.

Lemma 3.15 For any fail-free execution fragment αff , if x.failed i at some state x ∈ αff , then for a state x′ ∈ αff at
least c rounds from x, ∀j ∈ ID .x′.Lj 6= i ∧ x′.Rj 6= i.

The following general sequence convergence lemma is used to show that System eventually satisfies the
desired properties and terminates. Essentially, it states that for a lexicographically ordered tuple, at least
one component decreases in every step, and the other component does not increase beyond some bound.

Lemma 3.16 Consider any infinite sequence of lexicographically ordered pairs 〈a1, b1〉, . . ., 〈aj , bj〉, . . . where aj ,
bj ∈ R≥0. Suppose ∃c1, c2, c3, c4, c5, c6 such that c1 > 0, c2 > 0, c3 > 0, c4 ≥ 0, c5 ≥ 0, and c6 ≥ 0. If ∀j,
(i) aj+1 ≤ aj (ii) aj+1 = aj ∧ bj > c4 then bj+1 ≤ bj − c1 (iii) aj+1 < aj then bj+1 ≤ c6 (iv) bj ≤ c2 ∧ aj > c5
then aj+1 ≤ max{0, aj − c3} Then, ∃t such that 〈a1, b1〉, . . ., 〈at, bt〉, 〈at+1, bt+1〉, . . . and 〈at, bt〉 = 〈at+1, bt+1〉,
where at ∈ A = [0, c5] and bt ∈ B = [0, c4].
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Proof : First, note that by assumption, aj+1 is bounded from above by aj (that is, by a1). Now assume for the
purpose of contradiction that there exists a pair 〈ap, bp〉where ap > c5 and bp > c4 such that ∀f ≥ p, 〈af , bf 〉
= 〈ap, bp〉. Then, we show there exists a q > p such that 〈ap, bp〉 = 〈aq, bq〉where aq < ap and bq < bp.

Without loss of generality, assume that bp > c2 initially. Now, starting from 〈ap, bp〉, the next step
in the sequence is such that bp+1 ≤ bp − c1, since it must be the case that ap = ap+1 as we assumed
bp > c2. This process of bj decreasing continues in the form of bn ≤ bp − nc1 where n is the step that
bn ≤ c2, thus bn ≤ bp − nc1 ≤ c2 and n ≥ bp−c2

c1
. At the next step from n, that is n + 1, it must be the

case that an+1 ≤ max{0, an − c3} since bn ≤ c2 and an = ap > c5. Since an+1 < an, it is the case that
bn+1 ≤ c6 − c2 = c6 − nc1. Note that it would seem to remain to be established that bn > c4 so that the
decrease of bn+1 could occur, but, if it is in fact the case that bn ≤ c4, then bp ∈ B as desired. Therefore,
q = n+1 > p and since 〈ap, bp〉 becomes smaller at a larger step in the sequence, we reach the contradiction.
By repeatedly applying the previous arguments, existence of such a t is established.

The next theorem shows that System eventually reaches the goal as a strong flock, that is, there is a finite
round t such that Terminal(xt) and FlockS(xt) and shows that System is self-stabilizing when combined
with a failure detector.

Theorem 3.17 Let αff = x0, x1, . . .. Consider the infinite sequence
〈
x0.xH(x0), V (x0)

〉
,
〈
x1.xH(x1), V (x1)

〉
, . . .,〈

xt.xH(xt), V (xt)
〉
, . . .. Then, there exists t at most

⌈
(V (x0)−|F̄ (x)|δ/4)

vmin

⌉
+

⌈
|F̄ (x)|δ/4
vmin

⌉
max{1, x0.xH(x0)

vmin
O(N)}

rounds from x0 in αff , such that:

(a) xt.xH(xt) = xt+1.xH(xt+1),

(b) V (xt) = V (xt+1),

(c) xt.xH(xt) ∈ [0, β],

(d) V (xt) ≤
∣∣F̄ (x)

∣∣ δ
4 ,

(e) Terminal(xt), and

(f) FlockS (xt).

Proof : This follows from Lemma 3.11, the O(N) termination time of the snapshot algorithm, and from
Lemma 3.16 by instantiating (a) c1 = vmin, (b) c2 = (N − 1) δ4 , (c) c3 = δ

2 , (d) c4 = γ, (e) c5 = β, and
(f) c6 = (N − 1) δ2 .

3.4 Failure Detection

In the earlier analysis we assumed that it is possible to detect all actuator faults within a finite number of
rounds kd. Unfortunately this is not true, as there exist failures which cannot be detected at all. A trivial
example of such an undetectable failures is the failure of a node with zero velocity at a terminal state, that
is, a state at which all the agents are at the goal in a flock and therefore are static. While such failures were
undetectable in any number of rounds, these failures do not violate Safety or Terminal . It turns out that
only failures which cause a violation of safety or progress may be detected.

Lower-Bound on Detection Time. While the occurrence of faili(v) may never be detected in some cases
as just illustrated, we show a lower-bound on the detection time for all faili(v) transitions that can be de-
tected. The following lower-bound applies for executions beginning from states that do not a priori satisfy
Terminal. It says that a failed agent mimicked the actions of its correct non-faulty behavior in such a way
that despite the failure, System still progressed to NBM as was intended. From an arbitrary state, it takes
O(N) rounds to converge to a state satisfying NBM by Lemma 3.11.
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Lemma 3.18 The detection time lower-bound for any detectable actuator fault is O(N).

Proof : Consider a fail-free execution αf which begins with a state with a single failure, and a fail-free exe-
cution αn which begins with a state without any failures. Let the initial state x of both these executions be
the same (except let the head agent be failed with zero failure velocity for αf ) and satisfy x /∈ Terminal and
x /∈ FlockS . In both executions, assume that any time Line 35 of Figure 7 is executed, the nondeterministic
choice results in vmin. We know that the computed target for the head node is non-zero only if the state of
the whole system satisfies FlockS . Lemma 3.11 implies that x′ is a constant c number of rounds away from
x in each of αf and αn where c is O(N), and only once x′ ∈ NBM can it be guaranteed that x′ ∈ FlockS .
Once x′ ∈ FlockS , at some state x′′, which is a constant d number of rounds from x′ in each of αf and αn,
will uH(x′′) 6= 0, where d isO(N) by theO(N) termination of the snapshot algorithm Figure 7, Line 29 Thus,
αf and αn are indistinguishable up to state x′ and by Lemma 3.11, x′ is a constant a number of rounds from
x where a is O(N).

Next we show that the the failure detection mechanism incorporated in Figure 7 does not produce any
false positives.

Lemma 3.19 In any reachable state x, ∀j ∈ x.Suspected i ⇒ x.failed j .

Proof : Suppose ∃i, j such that j ∈ x.Suspected i, then the precondition for suspecti must have been satisfied
at some round ks in the past when j was added to Suspected i. Let xs correspond to the state at round ks
and x′s be the subsequent state in the execution. At the round prior to ks, there are two cases based the
computation of uj in Figure 7, Line 33 for some j /∈ xks−1.Suspected i.

The first case occurs if the quantization constraint |xs.xj − xs,T .uj | ≤ β is not satisfied (Figure 7, Line 33),
so Agentj applies a velocity in the direction of sgn (uj − xj). If sgn (x′s.xj − xs.xj) 6= sgn (xs.uj − xs.xj),
then Agentj moved in the wrong direction, since it computed a move xs.uj but in actuality applied a velocity
that caused it to move away from xs.uj instead of towards it. This is possible only if sgn (x′s.uj − x′s.xj) 6=
sgn (xs.uj − xs.xj), implying that xs.vfj 6= 0, and thus xs.failed j = true.

The second case is when the quantization constraint |xs.xj − xs,T .uj | ≤ β was satisfied in Figure 7,
Line 33, so |xs.xj − xs.uj | = 0 should have been observed, but instead it was observed that Agentj per-
formed a move, such that |x′s.xj − xs.xj | 6= 0. This implies that xs.failed j = true since the only way
|x′s.xj − xs.xj | 6= 0 is if for xs.vfj 6= 0, x′s.xj = xs.xj + xs.vfj .

The next lemma shows a partial completeness property [16] of the failure detection mechanism incorpo-
rated in Figure 7.

Lemma 3.20 Suppose that x is a state in the fail-free execution fragment αff such that ∃ j ∈ F (x), ∃ i ∈ ID, and j
is not suspected by i. Suppose that either (a) |x.xoj − x.uoj | ≤ β and |x.xj − x.uoj | 6= 0, or (b) |x.xoj − x.uoj | >
β and sgn (x.xj − x.xoj) 6= sgn (x.uoj − x.xoj). Then, x

suspecti(j)→ x′.

Proof : For a suspecti transition to be taken, the precondition at Lines 6–8 of Figure 7 must satisfy that j /∈
x.Suspectedi, and that either (a) |x.xoj − x.uoj | ≤ β and |x.xj − x.uoj | 6= 0, or (b) |x.xoj − x.uoj | > β and
sgn (x.xj − x.xoj) 6= sgn (x.uoj − x.xoj). These are the two hypotheses of the lemma and thus the result
follows that the suspecti transition is enabled.

Now we show an upper-bound on the number of rounds to detect any failure which may be detected
using the failure detection mechanism incorporated in Figure 7 by applying Lemma 3.18 with Lemmata 3.19
and 3.20, and that agents share suspected sets in Figure 7, Line 21. This states an O(N) upper-bound on the
detection time of our failure detector and shows that eventually all non-faulty agents know the set of failed
agents.

Corollary 3.21 For any state xk ∈ αff such that xk /∈ Terminal, there exists a round xs in αff such that ∀i ∈
F̄ (xs), xs.Suspected i = F (x) and k − s is O(N).
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3.5 Simulations

Simulation studies were performed, where flocking convergence time (as by Lemma 3.11), goal conver-
gence time (as by Theorem 3.17), and failure detection time (as by Corollary 3.21) were of interest. Unless
otherwise noted, the parameters are chosen as N = 6, NL = 2, rs = 20, rf = 40, δ = 10, β = δ/(4N),
vmin = β

2 , vmax = β, the head agent starts with position at rf , and the goal is chosen as the origin.
Figure 9 shows System without failures “expanding” [3] to form a strong flock prior to moving towards

the goal, and Figure 10 shows the value of the Lyapunov function, V , and maximum agent error from
flocking, emax, during this simulation. The initial state is that each agent is spaced by rs from its left
neighbor. Observe that while moving towards the goal, FlockS is repeatedly satisfied and violated, with
invariance of FlockW .

Figure 11 shows that for a fixed value of vmin, the time to convergence to NBM is linear in the number
of agents. This choice of fixed vmin must be for the largest number of agents, 12 in this case, as vmin is upper
bounded by β = δ

4N which is a function ofN . As vmin is varied the inverse relationship withN is observed,
resulting in a roughly quadratic growth of convergence time to NBM . This illustrates linear convergence
time as well as linear detection time, as this is bounded by the convergence time from Corollary 3.21. The
initial state was for expansion, so each agent was spaced at rs from its left neighbor.
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Figure 9: Agent expansion simu-
lation showing agent positions, xi.
Observe that first the agents form a
flock by expanding and then move
toward the goal.
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versus number of agents N with
fixed and varying values of vmin
(i.e., as a function of N or not).

Figure 12 illustrates the positions of the agents as they move towards the goal, and highlights that
FlockW is a stable predicate. The simulation began with System satisfying FlockS , which was then inval-
idated as the head agent learned this through the global snapshot protocol and made a move toward the
goal. Figure 13 shows the values of the maximum agent error emax along with the Lyapunov function
V from the simulation in Figure 12, and displays that FlockS is not invariant, while FlockW is a stable
predicate, since V is bounded by Nδ

2 .
Figure 14 shows the detection time with varying N and f from a fixed initial condition of inter-agent

spacings at 2rf . The fAvg = i lines show the total detection time divided by f . Failures were fixed with
vfi = 0, failing each combination of agents, so for f = 2 andN = 3, each combination of {1, 2}, {1, 3}, {2, 3}
were failed individually, and the detection time is the average over the number of these combinations for
each choice of f and N . The detection time averaged over the number of failure indicates that the detection
time to detect any failure in a multiple failure scenario is on the same order as that in the single failure case.
However, the detection time not averaged over the number of failures indicates that the detection time to
detect all failures increases linearly in f and on the order of N , as predicated by Corollary 3.21.

Figure 15 shows the detection time as a function of which agent fails with what failure velocity from
three different types of initial states. In all single-failure simulations, a trend was observed on the detection
time. When failing each agent individually, and with all else held constant (initial conditions, round of
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Figure 12: Movement of the flock
towards the goal with FlockW in-
variance.
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and repeated entry to NBM and
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failure, etc.), only one of the detection times for failure velocities of−vmax, 0, or vmax is ever larger than one
round. The frequent occurrence of a single round detection is interesting. For instance, in the expansion
case, each failed agent i except the tail are detected in one round when vfi 6= 0 since a violation of safety
occurs. However, detecting that the head agent has failed with zero velocity requires convergence of the
system to a strong flock prior to detection, as does detecting that the tail agent failed with vmax, as this
mimics the desired expansive behavior up to the point where the tail moves beyond the flock. In the
contraction case, each failed agent i except the tail is detected in one round when vfi 6= 0, since they are at
the center of their neighbors positions, while the tail agent failing with −vmax takes many rounds to detect,
since it should be moving towards its left neighbor to cause the contraction. Thus the observation is, for a
reachable state x, if |F (x)| = 1, let the identifier of the failed agent be i, and consider the three possibilities of
x.vfi = 0, x.vfi ∈ (0, vmax], and x.vfi ∈ [−vmax, 0). Then along a fail-free execution fragment starting from
x, for one of these choices of vfi, the detection time is greater than 1, and for the other two, the detection
time is 1. This illustrates there is only one potentially “bad” mimicking action which allows maintenance of
both safety and progress and takes more than one round to detect. The other two failure velocity conditions
violate either progress or safety immediately and lead to an immediate detection.

Expansion Contraction Mixed

Id −vmax 0 vmax −vmax 0 vmax −vmax 0 vmax

1 1 228 1 1 487 1 1 64 1

2 1 26 1 1 28 1 1 1 49

3 1 18 1 1 19 1 34 1 1

4 1 9 1 1 9 1 1 1 34

5 1 4 1 1 4 1 49 1 1

6 1 1 138 308 1 1 1 1 22

Figure 15: Detection time when a single agent i fails at round 0 with velocity −vmax, 0, or vmax from an
expansion, contraction, and mixed initial state.

4 Conclusion

This report presented an algorithm for the safe flocking problem—where the desired properties are safety
invariance and eventual progress, that eventually a strong flock is formed and a destination reached by that
flock—in spite of permanent actuator faults. AnO(N) lower-bound was presented for the detection time of
actuator faults, as well as conditions under which the given failure detector can match this bound, although
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it was established that this is not always possible. The main result was that the algorithm is self-stabilizing
when combined with a failure detector. Without the failure detector, the system would not be able to
maintain safety as agents could collide, nor make progress to states satisfying flocking or the destination,
since failed agents may diverge, causing their neighbors to follow and diverge as well. Simulation results
served to reiterate the formal analysis, and demonstrated the influence of certain factors—such as multiple
failures and failure velocity—on the failure detection time.
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[13] J. Gertler, Fault Detection and Diagnosis in Engineering Systems. New York, NY, USA: Marcel Dekker,
1998.

[14] A. Arora and M. Gouda, “Closure and convergence: A foundation of fault-tolerant computing,” IEEE
Trans. Softw. Eng., vol. 19, pp. 1015–1027, 1993.

[15] J. Yu, S. LaValle, and D. Liberzon, “Rendezvous without coordinates,” in Decision and Control, 2008.
CDC 2008. 47th IEEE Conference on, Dec. 2008, pp. 1803–1808.

[16] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,” J. ACM,
vol. 43, no. 2, pp. 225–267, 1996.

22


	1 Introduction
	2 System Model
	2.1 Preliminaries
	2.2 Model of Safe Flocking System
	2.3 Model as a Discrete-Time Switched Linear System
	2.4 Key Predicates

	3 Analysis
	3.1 Basic Analysis
	3.2 Safety
	3.3 Progress
	3.4 Failure Detection
	3.5 Simulations

	4 Conclusion

