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Stability Results
• Due to saturation, define a local region of attraction Λ.       

Λ ≜ ��� � ∈ �\~: ∃� ∈ ℝ��	such	that	�
�� � ⊆ ℒ�,� � ⊆ ℳ

• Elements of the state space such that there is some 
sublevel set that contains the quantization region, and is 
entirely contained in the unsaturated state space.

• Due to quantization, establish convergence to the set Ω.
Ω ≜ ⋃ ℒ�,� ��∈ℳ\~

• The union, over each unsaturated quantization region, of 
the smallest sublevel sets of the corresponding Lyapunov 
function containing the quantization region that contains 
the origin.

Lemma: For any unsaturated quantization region q in Λ (except the origin), 
if x ∈ Bq, and v = q, then Vq is a Lyapunov function.

Theorem: If the sampling period  > (log µ) / 2λm and Ω ⊂ Λ, then any 
infinite execution starting in Λ eventually reaches and remains in Ω.
• Restriction on  ensures that Lyapunov functions decrease enough 

between switches (average dwell-time constant).
• λm: minimum convergence rate over all quantization regions.
• µ: maximum switching factor increase between any two unsaturated 

quantization regions.

Example
• Two 1-dimensional linear systems connected in a ring (like Fig. 1).
• Parameters: a1 = -2, b1 = -3, a2 = 1, b2 = 1
• Saturation constant: M = 3
• Quantizer error: ∆ = 0.5
• Sampling delay / dwell-time:  = 0.001

Conclusions
• Presented an algorithmic method using LMIs and reachability of 

hybrid systems to algorithmically prove stability of digitally 
interconnected linear systems.

• Future work to reduce number of LMIs being solved to make the method 
more scalable.

• Method could be applied to stability verification for some DCPS.
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Introduction
• Consider the problem of proving that a group of mobile robots 

in the plane, each following the same protocol, eventually 
forms an equi-spaced formation.

• Cyber-physical systems (CPS) have a strong coupling 
between computational and physical processes, like the robot 
system.

• This work focuses on algorithmic techniques for automatically 
proving stability for a class of CPS with linear dynamics.

Interconnected Systems
An interconnected system [1] is composed of N linear 
subsystems, where output signals of some systems are fed as 
input signals to other systems according to an interconnection 
function G.

Digitization
Enforces three constraints on the inputs to subsystems.
1. Quantization and Saturation: the input takes values from a 

finite subset of the reals (Fig. 2).
• If unsaturated, the quantized value is near the actual 

value.
2. Sampling: an input signal may only change values 

periodically (Fig. 3).

Stability Analysis
• Compute Lyapunov function Vq for each unsaturated 

quantization region q by solving linear matrix inequalities 
(LMIs).
• Compute overapproximation Bq,! of states reachable 

from quantization region q (Figs. 3 and 4).
• Storage function Vi for each subsystem.
• Extra constraint if subsystems i and j are connected 

according to G.
• Compute an ellipsoid Eq containing Bq, .
• Apply the S-procedure to force the domain of the 

Lyapunov function to be Eq.
• If feasible, then Vq = Σi∈{1,…,N} Vi is a Lyapunov function.

Fig. 1 (left): Ring interconnection 
of N linear subsystems with 
digitization defined by an 
interconnection function G. Each 
linear subsystem and its digitizer 
Di is modeled as a hybrid 
input/output automaton denoted 
"i.

Fig. 2 (left): Example of two 
interconnected one-dimensional 
subsystems, where quantization 
regions (equivalence classes) are 
squares projected onto the real 
plane state space. Quantizer 
output for each equivalence class 
is indicated where ∆ is a 
constant. There are 9 
unsaturated quantization regions, 
and 16 saturated regions beyond 
the quantization saturation M.
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Fig. 4 (left): 
Computation of 
Bq, using the 
tool from [2] for a 
quantization 
region of the 
example. 
Sampling time is 
chosen to be 
much larger 
( 

	
=1 instead of 

0.001) than it 
usually would be 
for illustration.

Fig. 3 (left): Illustration of 
digitization on an 
example execution for 
an interconnected 
system with a two-
dimensional state space. 
The trajectory starts 
from x0, but the sampling 
delay  causes the input 
v to remain fixed to q 
even though the 
trajectory has entered 
the quantization region 
p. The update to v = p 
occurs at xs instead of at 
the boundary between p 
and q. The sets Eq and 
Bq, over which the 
Lyapunov function Vq is 
valid are shown.
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Fig. 5 (right): Trajectories 
illustrating local region of 
attraction Λ and final set of 
states Ω. Trajectories 
entering (and staying in) Ω
are in green, while those 
that diverge due to 
saturation are in red. Blue 
circles are ellipsoids 
containing the square 
equivalence classes 
defined by the digitizer. 
Red stars are quantizer 
values.
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