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Abstract. The safe flocking problem requires a collection of mobile

agents to (a) converge to and maintain an equi-spaced lattice for-

mation, (b) arrive at a destination, and (c) always maintain a min-

imum safe separation. Safe flocking in Euclidean spaces is a well-

studied and difficult coordination problem. In this paper, we study

one-dimensional safe flocking in the presence of actuator faults and

directional failure detectors (DFDs). Actuator faults cause affected

agents to move permanently with arbitrary velocities, and DFDs

detect failures only when actuation and required motion are in op-

posing directions. First, assuming existence of a DFD for actuator

faults, we present an algorithm for safe flocking. Next, we show

that certain actuator faults cannot be detected with DFDs, while

detecting others requires time that grows linearly with the number

of participating agents. Finally, we show that our DFD algorithm

achieves the latter bound.

Keywords. failure detector, flocking, self-stabilization, switched

systems.

1 Introduction

Safe flocking is a distributed coordination problem that
requires a collection of mobile agents situated in a Eu-
clidean space to satisfy three properties, namely to:
(a) form and maintain an equi-spaced lattice structure
called a flock, (b) reach a specified destination called the
goal , and (c) always maintain a minimum safe separa-
tion. The origins of this problem can be traced to biolog-
ical studies aimed at understanding the rules that gov-
ern flocking in nature (see [1, 2], for example). More re-
cently, recognizing that such understanding could aid the
design of autonomous robotic platoons or swarms, this
problem and variants have been studied in the robotics,
control, and multi-agent systems literature (see, for exam-
ple, [3, 4, 5, 6, 7, 8, 9, 10]). Most works on flocking assume
agents communicate synchronously and that there are no
failures [11, 4]. In [11, 4], flocking is studied where agents
move at constant velocities and update only their orien-
tations, while in [12, 7], agents have double-integrator dy-
namics. Even in these settings, to the best of our knowl-
edge, practical safe-flocking in general Euclidean spaces
is an open problem, as existing algorithms require un-
bounded accelerations for guaranteeing safety [7].

∗Taylor T. Johnson and Sayan Mitra are with the Coor-
dinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL 61801. E-mails: johnso99@illinois.edu, mi-
tras@crhc.uiuc.edu
†Manuscript received February 17, 2011; revised x.

In this paper, we study one-dimensional safe-flocking
within the realm of synchronous communication, but
with a different set of dynamics and failure assumptions.
First, we assume rectangular single-integrator dynamics.
At the beginning of each synchronous round, the algo-
rithm decides a target point ui for agent i based on mes-
sages received from i’s neighbors, and agent i moves with
bounded speed ẋi ∈ [vmin, vmax] in the direction of ui
for the duration of that round. That is, our flocking al-
gorithm calculates only the direction in which an agent
should move, based on the positions of adjacent agents,
and then the speed with which an agent moves is chosen
nondeterministically over a range, making the algorithm
implementation independent with respect to lower-level
motion controllers. Furthermore, the model obtained
with rectangular dynamics overapproximates any behav-
ior that can be obtained with double-integrator dynam-
ics with bounded acceleration. Even in this setting with
simpler dynamics, it is tricky to develop distributed algo-
rithm that provide collision avoidance, as evidenced by an
error that we uncovered in the algorithm proposed in [6];
see Section 4 for details of the error.

Unlike the algorithms in [6, 5, 7, 4] that provide conver-
gence to a flock, we require termination, that is, agents
should eventually stop moving. To this end, we use a
form of quantization [13, 14]: we assume that there ex-
ists a constant β > 0 such that an agent i moves in a
particular round if and only if the computed target ui
is more than β away from the agent’s current position
xi. We believe that such quantized control is appropri-
ate for realistic actuators, where power constraints make
it is undesirable for the agents to move forever in order
to achieve convergence. Quantization affects the type of
flock formation that we can achieve and also makes the
proof of termination more involved.

Our algorithm combines the corrected algorithm
from [6] with Chandy-Lamport’s distributed global snap-
shot algorithm [15]. The targets are computed such that
the agents preserve safe separation and eventually form
a weak flock, which remains invariant, and progress is
ensured to a tighter strong flock. Once a strong flock
is attained, this property can be detected through the
snapshot algorithm [15], and the detecting agent moves
toward the destination. This breaks the strong flock, but
preserves the weak flock, and in addition, the detecting
agent makes progress toward the goal.

In addition, we allow agents to be affected by actua-
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tor faults. This physically corresponds to, for example,
an agent’s motors being stuck at an input voltage or a
control surface becoming immobile. Actuator faults are
permanent and cause the afflicted agents to move forever
with a bounded and constant velocity. Actuator faults
are a new class of failures that we believe are going to
be important in designing and analyzing a wide range of
distributed cyber-physical systems [16]. Unlike byzantine
faults, behaviors resulting from actuator faults are con-
strained by physical laws. Also, unlike crash failures [17]
which typically thwart progress but not safety, actuator
faults can also violate safety.

In this paper, a faulty agent has to be detected (and
possibly avoided) by the non-faulty agents to avoid colli-
sions and ensure progress. In this paper, we assume that
after an actuator fault, a faulty agent continues to com-
municate and compute, but its actuators cause the agent
to continue to move with the arbitrary but bounded fail-
ure velocity. For detecting faults, we restrict our attention
to the class of failure detectors that rely on incorrect mo-
tion, which we call directional failure detectors (DFDs).
A fault is detected by a DFD when either the actua-
tion and the desired motion are in opposing directions,
or there is actuation in a situation where there should
be none. With DFDs, some faults are undetectable, such
as an agent failing with zero velocity at the goal. For
DFDs, we establish a simple lower-bound for faults which
are detectable in finite time, which shows that there are
faults that cannot be detected in fewer than O(N) rounds,
where N is the total number of agents. Unfortunately,
certain faults may lead to a violation of safety in fewer
rounds, so DFDs cannot ensure safety in such cases.

With DFDs, under some additional assumptions—such
as sufficient initial spacing and detectable faults—our al-
gorithm for safe flocking works in spite of failures. This
ensures that non-faulty agents are able to avoid faulty
ones. In one dimension (such as on highways), this is
possible if there are multiple lanes. To avoid collisions
and ensure progress, non-faulty agents avoid faulty ones
by moving to a lane with no nearby faulty agents.

Overall, our system model is described by a non-
deterministic switched system, where nondeterminism
arises from (a) agents choosing velocities in the range
[vmin, vmax], and (b) actuator faults, which cause a non-
deterministic switch to a different system matrix upon
occurring. We prove safety properties using inductive in-
variants. For proving progress and stabilization, that is,
recovery after faults, we show that the DFD eventually
notifies agents that any of their neighbors are faulty so
that eventually faults do not violate progress, and then
we combine this with a convergence proof which relies
on Lyapunov theory to show that eventually flocking is
achieved and the goal reached. In summary, the key con-
tributions of this paper are:

(a) Introduction of actuator faults, directional failure de-
tectors, and stabilization in spite of such failures in
distributed cyber-physical systems.

(b) A solution to the one-dimensional safe flocking prob-
lem in the face of actuator faults, quantization, and
with bounded control. Our solution brings dis-
tributed computing ideas (self-stabilization and fail-
ure detection) to a distributed control problem.

Paper organization In Section 2, we introduce the
formal model of the system and its properties. In Sec-
tion 3, we introduce the main result—that the algorithm
solves the safe flocking problem in spite of actuator faults.
In Section 3.2, we establish safety in spite of actuator
faults, then in Section 3.3, we show progress of the sys-
tem toward a flock and goal, and Section 3.4 presents
analysis of DFDs. Section 3.5 extends the main result by
removing the assumption used in Sections 3.2, 3.3, and 3.4
that faults cannot cause the communication graph of non-
faulty agents to partition. Finally, Section 4 reviews rel-
evant related work and we conclude in Section 5. Ap-
pendix A presents a switched systems model of the sys-
tem, and Appendix B presents simulation studies of the
system.

2 System Model

This section presents a formal model of the distributed
flocking algorithm modeled as a discrete transition sys-
tem, as well as formal specifications of the system prop-
erties to be analyzed.

2.1 Preliminaries

For a natural number K ∈ N, [K]
∆
= {1, . . . ,K} and for a

set S, we define S⊥
∆
= S ∪ {⊥}. For a set S, |S| denotes

the cardinality of S. For a variable x, its type is denoted
by type(x ) and is the set of values that it can take. For
a set of variables X, a valuation is a function that maps
each x ∈ X to a value in type(x ). A discrete transition
system A is a tuple 〈X,Q,Q0, A,→〉, where

(i) X is a set of variables with associated types,

(ii) Q is the set of states, which is the set of all possible
valuations of the variables in X,

(iii) Q0 ⊆ Q is the set of start states,

(iv) A is a set of transition labels, and

(v) →⊆ Q×A×Q is a set of discrete transitions.

A state x ∈ Q of A is a valuation of all the variables in
X and a valuation of a variable x ∈ X is written x.x.
An execution fragment of A is an (possibly infinite) alter-
nating sequence of states and transition names, α = x0,
a1, x1, . . ., such that for each index k appearing in α,
(xk, ak+1,xk+1) ∈→ and is represented by the notation

xk
ak+1→ xk+1. An execution is an execution fragment with

x0 ∈ Q0.
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A state x is reachable if there exists a finite execution
that ends in x, and the set of reachable states is denoted
Reach(x). A stable predicate S ⊆ Q is a set of states
closed under →. If a stable predicate S contains Q0,
then it is called an invariant predicate and the reach-
able states of A are contained in S. A safety property
specified by a predicate S ⊆ Q is satisfied by A if all of
its reachable states are contained in S. Self-stabilization
is a property of non-masking fault tolerance which guar-
antees that once new failures cease to occur, the system
eventually returns to a stable set [18]. Self-stabilization
has been widely employed in developing distributed algo-
rithms which operate in fault-prone and dynamic environ-
ments [19, 20]. In this paper, we model actuator faults by
transitions with the special label fail, where such a transi-
tion will update the corresponding agent’s state variables
such that it moves with a constant failure velocity.

We define a fail-free execution fragment as an execu-
tion fragment αff beginning from some reachable state x
that does not contain any more fail actions. Along such
execution fragments αff , no non-faulty agents fail, nor
do any faulty agents recover from being failed. We also
define the fail-free reachable states, FFReach(x) to be
the set of states that is reachable from a reachable state
x with any fail-free execution fragment. If we discuss
FFReach(X) where X is a set of reachable states, this
is defined as

⋃
x∈X FFReach(x). We define the fail-free

states reachable in t rounds as FFReach(x, t) to be the
fail-free reachable states reached in t rounds without any
new faults—this constrains any corresponding fail-free ex-
ecution fragment starting from a state in FFReach(x) for
a reachable state x to be a sequence of at most length t.
We define FFReach(X, t) analogously to FFReach(X) for
a set of reachable states X.

Given S ⊆ Q, A self-stabilizes to S if (a) S is a sta-
ble predicate for A for all transitions except possibly the
fail transitions, (b) from every reachable state of A (in-
cluding states reached via fail transitions), every fail -free
execution fragment eventually reaches S.

2.2 Model of Safe Flocking System

One desired property of safe flocking is that the system
reaches a goal position, and we assume the goal is the ori-
gin without loss of generality (it could be any other real
value), and that all agent positions are initially in the non-
negative reals (for a non-origin goal, they just need to be
greater than or equal to the goal position). A distributed
system consists of a set of N mobile agents physically
positioned on NL parallel lanes, which extend infinitely
over nonnegative reals. The system can be thought of as a
collection of cars in the lanes on a highway (see Figures 2
and 3). We assume NL ≥ 2, that is, there are at least
two lanes, and we will later see that this allows safety and
progress properties to be maintained in spite of failures.
Having lanes allows non-faulty agents to avoid collisions
with faulty agents, and allows them to pass faulty agents

which are not moving toward the goal.
We assume synchronous communication between

agents: agents have synchronized clocks, message delays
are bounded, and computations are instantaneous. The
communication neighbors of an agent are the other agents
that are sufficiently close to the agent (within rc, the com-
munication distance defined below), regardless of lane.
At each round, each agent exchanges messages bearing
state information with its neighbors, and we emphasize
that agents in different lanes communicate. Agents then
update their software state and (nondeterministically)
choose their velocities, which they operate with until the
beginning of the next round. Under these assumptions,
it is convenient to model the system as a collection of
discrete transition systems that interact through shared
variables.

Let ID
∆
= [N ] be the set of unique agent identifiers and

LD
∆
= [NL] be the set of lane identifiers. Additionally,

the following positive real constants are used throughout
the paper:

(a) rs: minimum required inter-agent gap or safety dis-
tance in the absence of failures,

(b) rr: reduced safety distance in the presence of failures,

(c) rc: communications distance,

(d) rf : desired inter-agent gap which defines a flock,

(e) δ: flocking tolerance parameter,

(f) β: quantization parameter, and

(g) vmin and vmax: minimum and maximum velocities.

State Variables. The domains and initial values of the
state variables for each agent are shown in Figure 1 using
the ‘:=’ notation. This notation defines what valuation
the variables initially take. The discrete transition sys-
tem corresponding to agent i has the following private
variables:

(a) failed i: indicates whether or not agent i is faulty,

(b) vf i: if agent i is faulty, then this is the velocity with
which it has failed,

(c) Nbrsi: is the set of identifiers of agents that are neigh-
bors of agent i,

(d) Li and Ri: are respectively the identifiers of the near-
est left and right neighbors of agent i that i believes
to not be faulty,

(e) sr i: indicates whether the global snapshot algorithm
has been initiated, and

(f) gsf i: indicates whether a certain stable predicate
(strong flocking, defined below) detected by the
global snapshot is satisfied or not.
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xi, xoi : R
ui, uoi : R := xi

lanei : LD := 1

sr i : B := false

gsf i : B := false

failedi : B := false

vf i : R⊥ := ⊥
Li : ID := LS(x, i)

Ri : ID := RS(x, i)

Nbrsi : Set[ID ] := Nbrs(x, i)

Suspi : Set[ID ] := ∅

Figure 1: Variables of Agenti.

T(x)=8
Lane 2

4 6 7vf vf
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Figure 2: System at state x for N = 8 agents and
NL = 3 lanes. Agent positions are indicated by the cir-
cles on the lanes. The non-faulty agents identifiers are
F̄ (x) = {2, 3, 5, 6, 8} and the faulty agent identifiers are
F (x) = {1, 4, 7}. Failure velocities of faulty agents are
labeled vf i. Non-faulty agents have avoided faulty agents
by changing lanes. Note that L(x, 6) = 5. Also, if 4 ∈
Susp6, then LS(x, 6) = L(6) = 5, else LS(x, 6) = 4. As-
suming S(x) = F (x), FlockW (x), but ¬FlockS (x), since
|x.x6 − x.x5 − rf | ≤ δ, but not δ/2.

Lane 2

6
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H(x)=2
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5 13

6
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Figure 3: A terminal configuration, where the system has
achieved FlockS (x) and reached the head has reached the
goal (the origin). Observe that faulty agents 4 and 7 with
nonzero velocity have diverged and that non-faulty agents
do not necessarily terminate on the same lane. Faulty
agent 1 with zero velocity remains stationary, but does
not prevent formation of the flock due to proper left LS
and right RS neighbor selection.

For the sake of convenient modeling1, we assume the
following shared variables are controlled by agent i, and
are instantaneously read by the neighbors of i at the be-
ginning of each round (see Figure 4):

1In a real implementation, these variables could be broadcast to
the neighbors of i using messages at the beginning of each round.

(a) xi and xoi: agent i’s current position and position
from the end of the previous round,

(b) ui and uoi: agent i’s target position and target posi-
tion from the end of the previous round,

(c) lanei: the lane currently occupied by agent i, and

(d) Suspi: set of neighbors that agent i believes to be
faulty.

The discrete transition system modeling the complete
ensemble of agents is called System. We refer to states—
valuations of all variables—of System with bold letters x,
x′, etc., and at a given state x, the valuation of Agenti’s
variable xi is denoted by x.xi

AgentjAgenti

xi, xoi
u uo

xj, xoj
u uoui, uoi

lanei
Susp

uj, uoj
lanej
SuspSuspi Suspj

srsri
gsfi

f il d

srj
gsfj

failedfailedi
vfi

L R

failedj
vfj

L RLi, Ri
Nbrsi

Lj, Rj
Nbrsj

Figure 4: Interaction between a pair of neighboring agents
is modeled with shared variables x , xo, u, uo, lane, and
Susp.

Actuator Faults and Failure Detection. The fail-
ure of agent i’s actuators is modeled by the occurrence
of a transition labeled by faili(v), where v is the failure
velocity parameter. Assume that |v| ≤ vmax, which is
reasonable due to physical actuation constraints. As a
result of this transition, failed i is set to true and vf i is
set to v. This transition is always enabled unless i is al-
ready faulty. At state x, if x.failed i = true, then Agenti is
a faulty agent, otherwise it is a non-faulty agent. At state
x, F (x) and F̄ (x) denote the sets of faulty and non-faulty
agent identifiers, respectively. An actuator fault causes
the affected agent to move forever with a constant but
arbitrary failure velocity.

Agents do not have any direct information regarding
the failure of other agents’ actuators (that is, agent i
cannot read failed j nor vf j). Instead, they rely on timely
failure detection to avoid violating safety or drifting away
from the goal by following a faulty agent. Failure detec-
tion at agent i is abstractly captured by the Suspi vari-
able and a transition labeled by suspecti. The suspecti(j)
transition models a failure detection of a faulty agent j by
agent i. Failures are irreversible in our model, and thus so
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are failure detector suspicions. For agent i, at any given
state x, x.Suspi ⊆ ID is the set of agent identifiers that
agent i’s failure detector suspects as faulty. Agent j is
said to be suspected if some agent i suspects it, otherwise
it is unsuspected. At state x, if there exists i ∈ ID such
that i ∈ x.Suspj , then i is called an agent suspected by j.
We denote the sets of suspected and unsuspected agents
by S(x) and S̄(x), respectively. Later in Section 3.4 we
will introduce a specific kind of failure detector called the
directional failure detector (DFD), which will explain the
precondition of the suspect action.

We define detection time as the minimum number of
rounds within which every faulty agent is suspected by
all of its non-faulty neighbors. For safe flocking, we re-
quire all faulty agents to have finite detection time. How-
ever, in Section 3.4, we identify a class of faults—called
undetectable faults—which do not have finite detection
time. All other faults are called detectable faults—and by
definition have finite detection time—and for all of these
faults, we present an algorithm which accomplishes safe
flocking. In most parts of Section 3 we will restrict our
attention to detectable faults, and in Section 3.4, we dis-
cuss specific conditions under which the detection time is
finite and state upper and lower bounds for it.

1 faili(v), |v| ≤ vmax

pre ¬failed
3 eff failed := true; vf := v

5 suspecti(j), j ∈ Nbrs
pre j /∈ Susp ∧ (if |xoj − uoj | ≥ β

7 then sgn (xj − xoj) 6= sgn (uoj − xoj)
else |xj − uoj | 6= 0)

9 eff Susp := Susp ∪ {j}

11 snapStarti
pre L = ⊥ ∧¬sr

13 eff sr := true // global snapshot invoked

15 snapEndi(GS), GS ∈ {false, true}
eff gsf := GS; // returns whether strong flocking satisfied

17 sr := false

19 updatei
eff uo := u; xo := x; Nbrs := Nbrs(x, i)

21 for each j ∈ Nbrs, Susp := Susp ∪ Suspj

L := LS(x, i); R := RS(x, i)
23 Mitigate:

if ¬ failed ∧ (∃ s ∈ Susp : lanes = lane)
25 ∧ (∃ L ∈ LD : ∀ j ∈ Nbrs, (lanej = L ⇒

xj /∈ [x− rs − 2vmax, x+ rs + 2vmax ]))
27 then lane := L fi

Target:
29 if L = ⊥ ∧ gsf then u := x−min{x, δ/2}; gsf := false

elseif L = ⊥ then u := x
31 elseif R = ⊥ then u := (xL + x+ rf )/2

else u := (xL + xR)/2 fi
33 Quant:

if |u− x| ≤ β then u := x; fi
35 Move:

if failed then x := x + vf
37 else x := x + sgn (x− u) choose [vmin, vmax] fi

Figure 5: Agenti’s transitions: failures, global snapshot
initiation and termination, failure detection and miti-
gation, target computations, and movement. Variables
without subscripts are those of Agenti.

Communication Neighbors and Groups. Before
presenting the update transition, which models the flock-
ing algorithm, we introduce some additional notation.
The set of identifiers of all neighbors of Agenti at state
x is defined as

Nbrs(x, i)
∆
= {j ∈ ID : i 6= j ∧ |x.xi − x.xj | ≤ rc}.

For a state x, neighbors induces a communication

graph Γ(x)
∆
= (ν(x), E(x)), where the set of vertices are

agent identifiers—that is, ν(x)
∆
= ID—and the set of

undirected edges are

E(x)
∆
= {(i, j) ∈ ID × ID : j ∈ Nbrs(x, i)}.

The non-faulty communication graph ΓF̄ (x) is the sub-
graph of Γ(x) restricted to non-faulty agent identi-
fiers. We say that agent i is connected to agent j at

state x if there exists a sequence of vertices ρ(x)
∆
=

i, v1, v2, . . . , vn−1, j in Γ(x), beginning with i and end-
ing with j such that each pair of adjacent vertices
(i, v1), (v1, v2), . . . , (vn−1, j) is an edge in E(x). We anal-
ogously define non-faulty connectedness between non-
faulty agents i and j, except in terms of ΓF̄ (x) for a
state x. We define the communication group—or group
for short—of an agent i, denoted G(x, i), to be the set
of vertices of the maximal connected subgraph of Γ(x)
containing i. By this definition, if agents i and j are
connected at a state x, then G(x, i) = G(x, j).

For a state x, we denote the set of all distinct commu-
nication groups as G(x), where the cardinality of G(x)
is equal to the number of disjoint communication groups,
which we denote by |G(x)|. Similarly, we define GF̄ (x)
to be the set of all the non-faulty communication groups.

For any two states x,x′ of System, if x
a→ x′ for some

action a ∈ A, we say that two groups have merged if
∃i, j ∈ ID such that i was not connected to j at state x,
but i is connected to j at state x′; the two groups that
merged are G(x, i) and G(x, j) and the resulting group is
G(x′, i) = G(x′, j). We will see below where we describe
the update action that merges are possible because any
agent i’s position xi may change, which will also modify
Nbrs(x, i) and thus Γ and connectivity. Similarly, we will
say two groups have partitioned if ∃i, j ∈ ID such that i
was connected to j at state x, but i is not connected to j
at state x′; the two groups that partitioned are G(x, i) =
G(x, j) and G(x′, i) 6= G(x′, j). Where we talk about
merges and partitions of non-faulty groups, we assume
the groups are elements of GF̄ (x) and not G(x). Note
that it is insufficient to define group merges and partitions
in terms of |G(x)| since it is possible for a single group to
partition into two groups, where one of these partitions
merges with another group.

At state x, let L(x, i) (and symmetrically R(x, i)) be
the nearest non-faulty agent strictly left (resp. right) of
Agenti, with ties broken arbitrarily (by taking the mini-
mum agent identifier). We will see in Section 3 that since
agents start from distinct positions, the only situation in
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which x.xi = x.xj is when at least one of them is faulty.
If no such neighbor exists, then L(x, i) and R(x, i) are de-
fined to be ⊥. Let LS(x, i) (and symmetrically RS(x, i))
be the nearest unsuspected agent strictly left (resp. right)
of Agenti at state x, or ⊥ if no such agents exist. LS(x, i)
and RS(x, i) take values from {⊥} ∪Nbrs(x, i) \ x.Suspi.
An unsuspected Agenti with both unsuspected left and
right neighbors is called a middle agent. Let the set of
middle agent identifiers be Mids(x) for a state x. An un-
suspected Agenti without an unsuspected left neighbor is
called a head agent. If Agenti is unsuspected, is not a head
agent, and does not have an unsuspected right neighbor,
then it is called a tail agent. For a state x, we define

Heads(x)
∆
= {i ∈ S̄(x) : LS(x, i) = ⊥},

Tails(x)
∆
= {i ∈ S̄(x) : LS(x, i) 6= ⊥ ∧RS(x, i) = ⊥},

Mids(x)
∆
= S̄(x) \ (Heads(x) ∪ Tails(x)), and

RMids(x)
∆
= Mids(x) \ {R(x, i) : i ∈ Heads(x)}.

Also for a state x and a group g ∈ G(x), we define

H(x, g)
∆
= Heads(x) ∩ g, and

T (x, g)
∆
= Tails(x) ∩ g.

For a state x and group g ∈ G(x), each of H(x, g) and
T (x, g) are singletons, so by abuse of notation, we will
refer to H(x, g) and T (x, g) as the element in the single-
ton. Likewise, if Heads(x) or Tails(x) are singletons, we
drop the group in the definitions of H(x, g) and T (x, g),
and denote the singleton element by H(x) and T (x), re-
spectively. Observe that the following hold for a state
x,

Heads(x) ≡ min
g∈G(x),i∈S̄(x)∩g

x.xi,

Tails(x) ≡ max
g∈G(x),i∈S̄(x)∩g

x.xi, and

|Heads(x)| ≥ |Tails(x)| .

The last relation reiterates the observation that agents
without any communication neighbors are defined to be
heads.

Distributed Detection of a Strong Flock. The dis-
tributed flocking algorithm executed at Agenti uses two
separate processes (threads): (a) a process for taking dis-
tributed global snapshots, and (b) a process for updating
the target position for Agenti.

The snapStart and snapEnd transitions model the peri-
odic initialization and termination of a distributed global
snapshot protocol—such as Chandy and Lamport’s snap-
shot algorithm [15]—by a head agent. This global snap-
shot is used only to detect a stable global predicate, not
the entire state of the system. This stable predicate influ-
ences the target computation for a head agent. Although
we have not modeled this explicitly, we assume that the

snapStarti transition is performed periodically by a head
agent; a new snapshot starts only after the previous one
completes. Note that several instances of the global snap-
shot algorithm may be running simultaneously, one in-
stance for each element in Heads(x). If the global pred-
icate holds at some state along the execution fragment,
then snapEnd(true) occurs, otherwise snapEnd(false) oc-
curs; see [15] for more details. Chandy-Lamport’s algo-
rithm can be applied since (a) we are detecting a stable
predicate and (b) the stable predicate being detected is
reachable. The algorithm also requires connectivity of the
communications graph, which we will assume in all sec-
tions except Section 3.5. In Section 3.5, we will see that
the non-faulty communication groups we are concerned
about do not partition, and thus we can still apply the
algorithm, assuming messages are restricted to non-faulty
groups. Thus, we assume that in any infinite execution, a
snapEndi transition occurs within O(N) rounds from the
occurrence of the corresponding snapStarti transition.

Flocking Algorithm. The update transition models
the evolution of all (faulty and non-faulty) agents over
a synchronous round. For the purpose of presentation,
we have decomposed it into four parts: Mitigate, Target ,
Quant , and Move, which are executed in sequence for up-
dating the state of System. The entire update is instan-
taneous and atomic; the breakdown into parts are used

for clarity of presentation. To be clear, for x
update→ x′,

x′ is obtained by applying each of these subroutines. By
abuse of notation, we refer to the intermediate states af-
ter Mitigate, Target , Quant , and Move as xM , xT , xQ,

and xV , respectively. That is, we let xM
∆
= Mitigate(x),

xT
∆
= Target(xM ), etc., and note x′ = xV = Move(xQ).

Mitigate is executed by non-faulty agents and may
cause them to change lanes, mitigating the effect faults
have on the system properties introduced below in Sec-
tion 2.3. Target determines a new target to move toward.
There are three different rules for target computations
based on an agent’s belief of whether it is a head, mid-
dle, or tail agent. For a state x, each middle agent i
attempts to maintain the average of the positions of its
nearest unsuspected left and right neighbors (Figure 5,
Line 32). Since the goal is always left of the tail agents,
the tail agents attempt to maintain rf distance from their
nearest unsuspected left neighbor (Figure 5, Line 31).
As described above, head agents periodically invoke a
global snapshot and attempt to detect a certain stable
global predicate FlockS (defined below), indicating that
the agents have formed a tight flock formation and are
nearly equidistant. If this predicate is detected, then the
detecting head agent moves towards the goal (Figure 5,
Line 29), otherwise it does not change its target u from
its current position x.

As mentioned before, targets are still computed for
faulty agents, but their actuators ignore these new values.
Quant is the quantization step which prevents targets ui
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computed in the Target subroutine from being applied
to real positions xi, if the difference between the two is
smaller than the quantization parameter β. Quantization
is a key requirement for any algorithm that actuates the
agents to move with bounded velocities. Without quanti-
zation, if the computed target is very close to the current
position of the agent, then the agent may have to move
with arbitrarily small velocity over that round.

Finally, Move updates agent positions xi toward the
quantized targets ui. Note that Move abstractly cap-
tures the physical evolution of the system over a round,
and thus is the time-abstract transition corresponding to
physical evolution over an interval of time.

2.3 Key System Properties

We now define a set of predicates on the state space of
System that capture the key properties of safe flocking.
These will be used for proving that the algorithm de-
scribed above solves safe flocking in the presence of ac-
tuator faults. We start with safety. A state x of System
satisfies Safety if the distance between every pair of agents
on the same lane is at least the safety distance rs. For-
mally,

Safety(x)
∆
=∀i, j ∈ ID , i 6= j,x.lanei = x.lanej

=⇒ |x.xi − x.xj | ≥ rs.

We assume that in all initial states x ∈ Q0 of System,
Safety(x) and x.xH(x) ≥ 0. When failures occur, a re-
duced inter-agent gap of rr will be guaranteed. We call
this weaker property reduced safety :

SafetyR(x)
∆
=∀i ∈ F̄ (x),∀j ∈ ID , i 6= j,x.lanei = x.lanej

=⇒ |x.xi − x.xj | ≥ rr.

The following predicates are defined in terms of com-
munication groups, so for each of the following fix some
state x and some group g ∈ G(x). If there is a sin-
gle non-faulty group, then we omit the group identifier
g. An ε-flock for group g is where each non-faulty agent
with an unsuspected left neighbor (not necessarily in the
same lane) is within rf ± ε from that neighbor. Formally,

Flock(x, ε, g)
∆
=∀i ∈ g ∩ S̄(x), LS(x, i) 6= ⊥,∣∣x.xi − x.xLS(x,i) − rf

∣∣ ≤ ε.
In this paper, we will use the Flock predicate with two
specific values of ε, namely δ (the flocking tolerance pa-
rameter) and δ

2 . The weak flock and the strong flock pred-
icates are instantiated respectively as

FlockW (x, g)
∆
= Flock(x, δ, g), and

FlockS (x, g)
∆
= Flock(x,

δ

2
, g).

Related to quantization, we have the no big moves
(NBM) predicate, where none of the non-faulty agents—

except possibly a head agent—have any valid moves, be-
cause their computed targets are less than β, the quanti-
zation constant, away from their current positions.

NBM (x, g)
∆
=∀i ∈ g ∩ F̄ (x), LS(x, i) 6= ⊥,
|xT .ui − x.xi| ≤ β,

where xT is the state following the application of Target
subroutine to x. The Goal predicate is satisfied at states
where the leftmost non-faulty head agent—let LH(x) =

min
i∈Heads(x)∩F̄ (x)

x.xi be this agent’s identifier—is within β

distance of the goal—recall that we assumed it to be the
origin without loss of generality—that is,

Goal(x)
∆
= x.xLH(x) ∈ [0, β] .

Finally, a state satisfies the Terminal predicate if it sat-
isfies both Goal and NBM .

An outline of these properties is presented in Figure 6.
In this figure, start states Q0 at least satisfy Safety as
mentioned at the start of this section. Fail-free execu-
tions and execution fragments αff are represented by solid
black lines ending with arrows, an execution fragment
with failures is indicated by the red dash-dotted line, and
an execution where failure detection occurs as shown by
the green dashed line. Safety is shown to be invariant
along any fail-free execution. Figure 6 shows that eventu-
ally NBM —and thus also FlockW and FlockS —is satisfied
along any fail-free execution. After FlockS is satisfied and
the global snapshot algorithm terminates, a head agent
may move toward states satisfying Goal causing both
NBM and FlockS to break, while FlockW remains stable;
this all occurs many times as shown. However, along exe-
cutions with failures (the red dashed-dotted line ending in
a diamond), Safety is not necessarily upheld. But the re-
duced safety property SafetyR is invariant when combined
with a failure detector, as shown by the execution with
failure detection (the green dashed line ending in a circle).
Without failure detection, a fail-free execution fragment
beginning from a state where there are undetected faults
may leave SafetyR as shown by the black line going out-
side all the predicates, thus, failure detection is necessary
to maintain even the reduced safety property. Upon all
detectable failures being detected by their neighbors, any
fail-free execution is then guaranteed to reach states satis-
fying NBM (and thus also FlockS ) and also to eventually
reach Goal .

3 Analysis of Safe Flocking

The main result of the paper (Theorem 3.1) is that the
algorithm in Figure 5 achieves safe flocking in spite of
failures provided: (a) there exists a failure detector that
detects actuator faults sufficiently fast, and (b) there is
enough room in some lane such that each non-faulty agent
can safely avoid faulty agents by changing lanes and even-
tually make progress. For the first part of our analysis,



8 Taylor T. Johnson and Sayan Mitra

SafetyR
S f t

Flock

Safety

FlockW
FlockSFlockS

NBMNBM

Goal

Figure 6: Fail-free executions and executions with faults,
and different properties satisfied under these executions.

we will simply assume that any faulty agent is detected
within a finite number of rounds. In Section 3.4, we shall
examine conditions under which this holds.

We begin with some assumptions.

Assumptions. Except where noted in analyzing DFDs
in Section 3.4, the remainder of the paper utilizes the as-
sumptions of Theorem 3.1. Additionally, these assump-
tions are required throughout the paper:

(I) All initial states x ∈ Q0 satisfy Safety(x) and
x.xH(x) ≥ 0,

(II) rr < rs < rf < rc: the reduced safety gap rr
required when faulty agents are present is strictly
less than the safety gap rs in the absence of faulty
agents, which in turn is strictly less than the flock-
ing distance rf , all of which are less than the com-
munication distance rc,

(III) δ
2 < rc: this prevents head agents from moving
beyond the communications radius of their nearest
unsuspected right agent, that is, it prevents mo-
tion of non-faulty head agents from partitioning the
communication graph, and

(IV) 0 < vmin ≤ vmax ≤ β ≤ δ
4N : this upper bounds

the maximum velocity to be less than or equal to
the quantization parameter β. This is necessary
to prevent agents from overshooting computed tar-
gets ui, which could violate safety. Finally, β is
upper bounded to ensure NBM ⊆ FlockS , where
intuitively, the bound on β guarantees that errors
from flocking due to quantization do not accumu-
late along the flock from a head agent to a tail
agent. This is used to show that eventually FlockS

is satisfied by showing eventually NBM is reached.

Also, in most of this section, we assume that the graph
of non-faulty agents ΓF̄ (x) is connected for all reachable
states x, thus the graph of non-faulty agents cannot par-
tition; this restricts the type of actuator faults that are
allowed to occur. This assumption is relaxed to require
no connectivity requirement at all in Section 3.5.

Theorem 3.1. Let us assume that there exists a finite
number of rounds kd within which every faulty agent is
suspected, and vmax ≤ (rs− rr)/(2kd). Let x be any state
reachable after at most f faults.

(Non-Blocking Faults) Suppose that for every x′ ∈
FFReach(x), for every non-faulty agent i ∈ F̄ (x′),
there is a lane L ∈ LD such that there is no faulty
agent j ∈ F (x′) in lane L with position x′.xj in the
range [x′.xi − rs − 2vmaxkd,x

′.xi + rs + 2vmaxkd].

Then, (a) FFReach(x) ⊆ SafetyR, that is, all fail-free
states reachable from x satisfy the reduced safety property,
and (b) every fail-free execution fragment starting from a
state x′ ∈ FFReach(x) eventually satisfies Terminal and
FlockS .

The non-blocking faults assumption of Theorem 3.1
states a sufficient spacing requirement of faulty agents,
which ensures safety and progress by guaranteeing that
at any reachable state, any non-faulty agent always has
a sufficiently large space in some other lane where there
are no faulty agents. The non-blocking faults assump-
tion is trivially satisfied if the number of lanes is greater
than the total number of faults, NL > f , but it is also
satisfied with fewer lanes, provided the faulty agents are
sufficiently apart in space as stated. Progress will be guar-
anteed by observing that eventually any non-faulty agent
will use its left and right unsuspected neighbors for target
computations, which are non-faulty.

In what follows, we state and prove a sequence of lem-
mas that culminate in Theorem 3.1. Under the assump-
tions and analysis of this section, the following relation-
ships are satisfied:

NBM ⊂ FlockS ⊂ FlockW ⊂ Safety ⊂ SafetyR,

as previously shown in Figure 6.

3.1 Communication Neighbor Properties

The following lemma ensures that the variables Nbrsi, Li,
and Ri of agent i are well defined and match the defini-
tions of Nbrs(x, i), LS(x, i), and RS(x, i), respectively,
for any reachable state x.

Lemma 3.1. For any reachable state x, for all i ∈ ID,
x.Nbrsi = Nbrs(x, i), x.Li = LS(x), and x.Ri = RS(x).

The next lemma states that if the unsuspected neigh-
bor left of an agent i changes to some agent j, then the
unsuspected neighbor right of agent j becomes i; that is,
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the neighbors used in target computation switch symmet-
rically. This is used to establish safety upon non-faulty
agents no longer relying on suspected agents for target
computation. The proof follows by observing only suspect
or update modify LS , RS , or Nbrs, and then observing
that Nbrs is defined symmetrically.

Lemma 3.2. For any reachable state x, if x
a→ x′ for any

a ∈ A, ∀i, j ∈ ID, if the agent left of i is not j at state
x, but is j at state x′, then at state x, i is the agent right
of j, that is, if x.Li 6= j and x′.Li = j, then x′.Rj = i.

Next, we remark that there exist failures which do not
violate safety. Assume there are no faulty agents at a
state x, and consider a sequence of actuator faults which
causes every agent to move with the identical failure ve-
locity. Then, for any state xs appearing after x in an
execution, Safety(xs) holds, since for all future rounds
the agents will have moved at the same velocity and thus
the difference of their positions is constant.

Sharing Suspected Sets. The motivation for sharing
sets of suspected agents among neighbors in Figure 5,
Line 21, is illustrated by the following observation. We
give a failure configuration under which no movement is
possible and hence no progress can be made if the sets
of suspected agents are not shared. Assume that neigh-
bors do not share sets of suspected agents, so Line 21 in
Figure 5 is deleted. Let x be a fail-free reachable state
and let agents i ∈ ID \ Heads(x) be spaced evenly at a
distance greater than rf + δ

2 such that ¬FlockS (x), and
particularly

x.xi − x.xx.Li =x.xx.Ri − x.xi

=
...

=x.xT (x) − x.xx.LT (x)
> rf ±

δ

2
.

Let there be a non-faulty agent p which is located far-
ther than rc to the left of the last agent T (x) so that
p /∈ x.NbrsT (x). Consider an execution fragment starting
from x such that for every state x′ in the execution frag-
ment, F (x′) = ID \ {p} and x′.vfj = 0 for all j ∈ F (x′).
Then, for states x′′ reachable from x′, x′′.Suspp = ∅,
since only the last agent could be suspected and only
its neighbors suspect it, so that ∀j ∈ Nbrs(x′′, T (x′′)),
p ∈ x′′.Suspj , but p is not a neighbor. Hence no progress
is made as p never learns it must change lanes, so ∀i ∈ ID,
x′′.xi = x′.xi and no progress is made toward flocking or
the goal, but safety remains invariant.

3.2 Safety

First, we establish that System satisfies the safety part
of the safe flocking problem. The following lemma states
that any two agents move towards or away from one an-
other by at most 2vmax from one round to another. The

proof follows from the fact that in each round, each agent
moves by at most vmax, which follows immediately from
Figure 5, Line 37.

Lemma 3.3. For any reachable state x, if x
a→ x′

for any a ∈ A, ∀i, j ∈ ID such that i 6= j, then
|(x′.xi − x.xi)± (x′.xj − x.xj)| ≤ 2vmax.

The next lemma establishes that, upon changes in
which neighbors an agent i uses to compute its target
position, safety is not violated.

Lemma 3.4. For any reachable state x, if x
a→ x′ for

any a ∈ A, ∀i, j ∈ ID, if LS(x, i) 6= j and RS(x, j) 6= i
and LS(x′, i) = j and RS(x′, j) = i and x.xRS(x,j) −
x.xLS(x,i) ≥ c, then x′.xRS(x′,j) − x′.xLS(x′,i) ≥ c, for
any c > 0.

Proof. Only suspect and update modify LS(x, i), RS(x, i),
or xi for any i ∈ ID . By Lemma 3.1, we discuss L and
R. By Lemma 3.2, which states that neighbor switch-
ing occurs symmetrically, if x.Li 6= j and x′.Li = j,
then x′.Rj = i. It remains to be established that
x′.xx′.Rj

− x′.xx′.Li
≥ rs. For convenient notation, ob-

serve that x′.xx′.Rj
= x′.xi and x′.xx′.Li

= x′.xj , and let
a = x.Lj and b = x.Ri. Now,

x′.xj =
x.xa + x.xi

2
, and x′.xi =

x.xj + x.xb
2

,

and thus

x′.xi − x′.xj =
x.xj + x.xb

2
− x.xa + x.xi

2

=
x.xj − x.xa + x.xb − x.xi

2
.

Finally, by the hypothesis that x.xj−x.xa ≥ c and x.xb−
x.xi ≥ c, we have

x′.xi − x′.xj ≥
c+ c

2
≥ c.

The cases for i = N and j = 1 follow by similar analysis,
as does the case when x′.xm is quantized so that x.xm =
x′.xm for any m ∈ ID.

Invariant 3.2 states the spacing between any two non-
faulty agents in any lane is always at least rr, and the
spacing between any non-faulty agent and any other agent
in the same lane is at least rr. There is no result on the
spacing between any faulty agents—they may collide.

Invariant 3.2. For any reachable state x, SafetyR(x).

Proof. The proof is by induction over the length of any
execution of System. The base case follows by the as-
sumption that the initial state satisfies Safety and that
Safety ⇒ SafetyR. For the inductive case, for each tran-

sition a ∈ A, we show if x
a→ x′ and x ∈ SafetyR, then

x′ ∈ SafetyR. The faili(v), snapStarti, snapTermi, and
suspecti transitions do not modify any xi or ui, so SafetyR
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is preserved. For the update transition, the inductive hy-
pothesis gives that SafetyR is satisfied for the pre-state
x. For the remainder of the proof, let l = x.Li (the
unsuspected agent left of i), r = x.Ri (the unsuspected
agent right of i), and ll = x.Lx.Li

(the unsuspected agent
left of l). If these variables change between x and x′,
the result follows by Lemma 3.4. The remainder of the
proof is divided into two cases: the first case analyzes
the spacing between two non-faulty agents, and the sec-
ond case analyzes the spacing between any faulty agent
and non-faulty agent, which reside in the same lane. All
the following comes from Figure 5, Lines 28–32 and the
inductive hypothesis.

For the first case showing the spacing between any two
non-faulty agents, it is sufficient to show if ∀i ∈ F̄ (x),
x.ui − x.ul ≥ rr and x.xi − xl ≥ rr, then x′.ui − x′.ul ≥
rr. If i is any non-faulty middle agent, x′.ui − x′.ul =
x.xl−x.xll+x.xr−x.xi

2 ≥ rr. If i is the non-faulty tail, x′.ui−
x′.ul =

rf+x.xl−x.xll

2 ≥ rr. Since 0 ≤ xH(x), then by the
inductive hypothesis, x′.uH(x′) ≤ x.uH(x). Cases when
quantization changes any x′.ui in Line 34 follow by similar
analysis and are omitted for space. Thus, SafetyR(x′).

Next is the proof of the second case, that the spacing
between any non-faulty and any faulty agent which re-
side in the same lane is at least rr. For this, we must
consider further states in the executions, namely up to
the time at which detection occurs. For simplicity of
presentation, assume we are dealing with any fail-free
execution fragment starting with x, under which case,
the detection time until all faulty agents are detected is
kd. If we were not dealing with a fail-free execution, just
choose the maximum such kd and pick vmax as in The-
orem 3.1. For a faulty agent j, x′.xj = x.xj + x.vfj by
Line 36. Given the assumption that vmax ≤ rs−rr

2kd
, it is

the case that at round kd for the corresponding state xd,
xd.xj ≤ x.xj + kdvmax = x.xj + rs−rr

2 where we consid-
ered the case for x.vj > 0 and the negative failure velocity
case follows symmetrically. By the assumption that any
faulty agent is detected by round kd and by Lemma 3.3
and Figure 5, Line 37, any faulty agent j and any non-
faulty agent i have moved toward one another by at most
2kdvmax, and thus |xd.xj − xd.xi| ≥ 2kdvmax ≥ rr.

This implies at least SafetyR(xm) for any states xm in
any state in any execution between x and xd. It remains
to be established that SafetyR(x′d) for a state x′d reach-
able from state xd. By the detection time assumption,
any agent i will have j ∈ xd.Suspi, which changes LS(xd)
and RS(xd), but now applying Lemma 3.4 shows there
is at least rr distance between i and j. Finally, by Fig-
ure 5, Line 27, x′d.lanei 6= xd.lanej , since NL ≥ 2, and
by the non-blocking faults assumption of Theorem 3.1,
SafetyR(x′d) since the definition can only be violated if
agents reside on the same lane.

3.3 Progress Toward Flock Formation
and Goal

In the following progress analysis, we work with fail-free
execution fragments, beginning from an arbitrary state
that is reached after f faults. We define the set of states
which are reachable from initial states x0 ∈ Q0 after f
actuator faults as,

Xf
∆
= {x ∈ Reach(x0) : x0 ∈ Q0 and |F (x)| = f}.

In the remainder of this section, we fix αff to be an ar-
bitrary infinite fail-free execution fragment starting from
a state xf ∈ Xf . So, for any state x ∈ FFReach(Xf ),
F (x) = F (xf ). Thus, for any state x ∈ FFReach(Xf ),
we fix respectively the sets of faulty and non-faulty agent
identifiers as:

F
∆
= F (xf ) and F̄

∆
= F̄ (xf ).

Fail-free execution fragments are frequently used to show
convergence from an arbitrary state back to a stable
set [21], albeit we note that we are dealing with perma-
nent faults instead of transient ones. In our case, the
stable set eventually reached are states where Terminal
is satisfied.

Recall that f is assumed to be the number of actua-
tor faults which occur in Theorem 3.1, so Xf is the set
of reachable states for all possible actuator faults under
consideration. Under the assumptions of Theorem 3.1—
faults are detected sufficiently fast and are non-blocking—
by Invariant 3.2, we know that Xf ⊆ SafetyR, and
since this is an invariant, we have that FFReach(Xf ) ⊆
SafetyR.

Influence of Faulty Agents on Progress. First ob-
serve that, like safety, progress may be violated by faulty
agents. Any faulty agent with nonzero failure velocity
diverges, and therefore, cannot be a part of a flock that
comes to rest at the goal. This observation also highlights
why Flock is defined over unsuspected agents and not
the set of all non-faulty agents. Faulty agents with zero
velocity could also cause progress to be violated, where
a “wall” of faulty agents may prevent non-faulty agents
from making progress, but such situations are excluded
by non-blocking faults assumption of Theorem 3.1.

Progress along Fail-Free Execution Fragments.
In the remainder of this section, we show that once new
actuator faults cease occurring, System eventually reaches
a state satisfying Terminal . This is a convergence proof
and we will use a Lyapunov-like function to prove this
property.

The following descriptions of error dynamics are used
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in the analysis:

e(x, i)
∆
=

{
|x.xi − x.xx.Li

− rf | if i is a middle or tail,

0 otherwise, and

eu(x, i)
∆
=

{
|x.ui − x.ux.Li

− rf | if i is a middle or tail,

0 otherwise.

Here e(x, i) gives the error with respect to rf of Agenti and
its unsuspected left neighbor and eu(x, i), with respect to
target positions x.ui rather than physical positions x.xi.

Now, we make the simple observation from Line 37
of Figure 5 that if a non-faulty agent i moves in some
round in spite of quantization, then it moves by at least
a positive amount vmin. Observe that an agent may not
move in a round if the conditional in Figure 5, Line 34 is
satisfied, but this does not imply vmin = 0. The lemma
follows from Line 37 of Figure 5.

Lemma 3.5. For two adjacent rounds xk and xk+1

in FFReach(Xf ), for any non-faulty agent i, if
|xk,T .ui − xk.xi| > β, then

|xk+1.xi − xk.xi| ≥ vmin > 0,

where we recall that xk,T is the state obtained applying
the subroutines of the update transition through Target to
the state xk.

The next lemma states that from any reachable state
x outside NBM , the maximum error from flocking over
all non-faulty agents in non-increasing. This is shown
by first noting that only the update transition can cause
any change of e(x, i) or eu(x, i), and then analyzing the
change in value of eu(x, i) for each of the computations of
ui in the Target subroutine of the update transition. Then
it is shown that applying the Quant subroutine cannot
cause any eu(x, i) to increase, and finally computing xi
in the Move subroutine does not increase any e(x, i).

Lemma 3.6. For any fail-free reachable state x ∈
FFReach(Xf ), such that x

a→ x′ for some a ∈ A, and
¬NBM (x) is satisfied, then

max
i∈F̄

e(x′, i) ≤ max
i∈F̄

e(x, i).

Proof. Only an updatei changes any ui or xi, so we only
consider it, as in the other cases, equality follows. Target
and Quant are the only subroutines of updatei to modify
ui. Now, let xT = Target(x), and we have

max
i∈F̄

eu(xT , i) ≤ max
i∈F̄

eu(x, i),

which follows from eu(xT , i) being computed as convex
combinations of positions from x. In the following, we
refer to the unsuspected left and right neighbors of an

agent i, so let l = xT .Li and r = xT .Ri. Specifically the
convex combinations are,

i ∈ Heads(xT )⇒eu(xT , i) = 0,

i = xT .Rj for j ∈Heads(xT )⇒ eu(xT , i) =
eu(x, r)

2
,

i ∈ RMids(xT )⇒eu(xT , i) =
eu(x, l) + eu(x, r)

2
,

i ∈ Tails(xT )⇒eu(xT , i) =
eu(x, l) + eu(x, i)

2
.

Next, Quant sets xQ.ui = xT .ui or xQ.ui = xT .xi. In the
first case, when xQ.ui = xT .ui, the result follows by the
above reasoning. In the other case, when xQ.ui = xT .xi,
if ui and ul are each quantized, then ei does not change for
any i and the result follows. If, however, ui is quantized
and ul is not quantized, then ei is computed as

i ∈ Heads(xQ)⇒eu(xQ, i) = 0,

i = xQ.Rj for j ∈Heads(xQ)⇒ eu(xQ, i) = eu(x, i),

i ∈ RMids(xQ)⇒eu(xQ, i) =
eu(x, r) + eu(x, i)

2
,

i ∈ Tails(xQ)⇒eu(xQ, i) =
eu(x, i) + eu(x, l)

2
.

Similarly, if ul is quantized and ui is not quantized, then
ei is computed as

i ∈ Heads(xQ)⇒eu(xQ, i) = 0,

i = xQ.Rj for j ∈Heads(xQ)⇒

eu(xQ, i) =
eu(x, i) + eu(x, r)

2
,

i ∈ RMids(xQ)⇒eu(xQ, i) =
eu(x, l) + eu(x, i)

2
,

i ∈ Tails(xQ)⇒eu(xQ, i) =
eu(x, i)

2
.

Finally, by Figure 5, Line 37, the maximum error be-
tween actual positions and not just target positions is
non-increasing.

The next lemma shows that if the head agent does not
move, then NBM is a stable predicate, a state satisfying
NBM is reached, and gives an O(N) bound on the num-
ber of rounds required to reach such a state. Define a
candidate Lyapunov-like function at a state x as

V (x)
∆
=
∑
i∈F̄

e(x, i).

Lemma 3.7. For any fail-free reachable state xk ∈
FFReach(Xf ), if the head agent’s position is fixed and
¬NBM (xk) is satisfied, then the update transition de-
creases V (xk) by at least a positive constant ψ. Further-
more, there exists a state reachable from xk in a finite
c number of rounds, xc ∈ FFReach(xk, c), and there ex-
ists a constant σ ≥ 0, if V (xc) ≤ σ, then NBM (xc) and
k < c ≤ dV (xk − σ)/ψe, where ψ = vmin and c is O(N).
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Proof. First, V (xk) is nonnegative since it is a sum of
nonnegative terms. Since NBM (xk) is not satisfied, by
the definition of NBM (xk), there are some non-faulty
agents with control values and positions which do not sat-
isfy the quantization condition, so let this set of agents

be M
∆
= {j ∈ F̄ (x) : |xk,T .xj − xk.xj | > β}, where we re-

call that xk,T is the state obtained by applying the sub-
routines of the update transition to xk through Target .
Thus each j ∈ M will have a position at the next round
xk+1 which satisfies vmax ≥ |xk+1.xj − xk.xj | ≥ vmin
by the definition of position updates and by Lemma 3.5,
which says that if an agent moves, it moves by at least

a positive constant vmin > 0. Let ∆V (xk,xk+1)
∆
=

V (xk+1) − V (xk), and we show ∆V (xk,xk+1) < ψ for
some ψ < 0. By applying the same reasoning using
convex combinations from Lemma 3.6, we have that at
the very least, there is one agent j ∈ M , so we have
−vmin ≥ ∆V (xk,xk+1), and thus we fix ψ = vmin since

vmin > 0. Therefore a transition xk
update→ xk+1 causes

V (xk+1) to decrease by at least a positive constant vmin.

Next, we show for some constant σ > 0, for a state
xc reachable from xk, if V (xc) ≤ σ, then NBM (xc) is
satisfied. To accomplish this, we will bound the quanti-
zation constant β used to define NBM using σ. For the
following, we will discuss the unsuspected left and right
neighbors of some agent i, so let xc.Li = l and xc.Ri = r
for brevity, and likewise let the set of non-faulty middle
agents be M̄ = Mids(xc) ∩ F̄ . A sufficient condition for
V (xc) ≤ σ, is e(xc, i) ≤ σ

|F̄ | , for each non-faulty middle

or tail agent i, since each e(xc, i) is nonnegative.

We now derive a constraint on β using σ

|F̄ | which im-

plies NBM (xc) is satisfied. For each non-faulty middle
agent, we have from the definition of NBM and the Target
computation, that

∧
i∈M̄

∣∣∣∣xc.xl + xc.xr
2

− xc.xi

∣∣∣∣ ≤ β.
Now, rearranging terms and adding zero (by adding and
subtracting rf ), we have

∧
i∈M̄

∣∣∣∣xc.xr − xc.xi − rf − xc.xi + xc.xl + rf
2

∣∣∣∣ ≤ β,
each of which we see is a sum of error terms, so

∧
i∈M̄

∣∣∣∣e(xc, r)− e(xc, i)2

∣∣∣∣ ≤ β.
Since it could be the case that either of these terms are
zero, we assume without loss of generality that the first
term is zero to maximize the sum, and have

∧
i∈M̄

e(xc, i)

2
≤ β.

Finally, by the condition e(xc, i) ≤ σ

|F̄ | , we let β ≤ σ

2|F̄ |
and we have the desideratum∧

i∈M̄

e(xc, i) ≤ 2β.

The same reasoning we just applied for non-faulty
middle agents applies for a non-faulty tail agent
t ∈ Tails(xc), since we rewrite the consequent as∣∣∣xc.xt+xc.xl+rf

2 − xc.xt

∣∣∣ = e(xc, t) ≤ β. Thus by the

condition that e(xc, t) ≤ σ

|F̄ | , by letting β ≤ σ

2|F̄ | , then

we have e(xc, t) ≤ β as desired. Since every non-faulty
agent i ∈ F̄ satisfies |xc,T .ui − xc.xi| ≤ β, we have that
NBM (xc) is satisfied if V (xk) ≤ 2

∣∣F̄ ∣∣β ≤ σ, where we
recall that xc,T is the state obtained by applying the sub-
routines of the update transition to xc through Target .

By repeated application of the reasoning that V (xk)
decreases by at least vmin at round k + 1, there exists

such a c with k < c ≤
⌈
V (xk)−σ
vmin

⌉
such that NBM (xc)

is satisfied since V (xc) ≤ σ. To show c is O(N) rounds
from xk, we observe for the state xk that

V (xk) ≤
∑
i∈F̄

max
i∈F̄

e(xk, i) =
∣∣F̄ ∣∣max

i∈F̄
e(xk, i),

the value of e(xk, i) is not a function of N for any i ∈ F̄
(aside from being a projection), and F̄ ≤ N .

The previous lemma stated a bound on the time it
takes for System to reach the set of states satisfying NBM ,
which is linear in the number of non-faulty agents. For the
previous lemma to show that FlockS is eventually satis-
fied, we require that FlockS ⊇ NBM , and the next lemma
states a more general result using ε-flocking. The next
lemma follows from the analysis used to choose σ in the
proof of the previous lemma. This yields β ≤ δ

4N from
the δ/2 constant used in strong flocking, and that in any
reachable state, there are at most N non-faulty agents.

Lemma 3.8. For any fail-free reachable state x ∈
FFReach(Xf ), if β ≤ ε

2N , then NBM (x) ⊆ Flock(x, ε).

Furthermore, if β ≤ δ
4N , then NBM (x) ⊆ FlockS (x) ⊆

FlockW (x).

The next lemma states a bound on the Lyapunov-like
candidate V when supposing that ε-flocking is satisfied,
and also states the same result for the instantiated strong
and weak ε-flocks. Note that the converse of this lemma
is in general false.

Lemma 3.9. For any reachable state x, if Flock(x, ε),
then V (x) ≤ ε

∣∣F̄ ∣∣. Furthermore, if FlockW (x), then

V (x) ≤ δ
∣∣F̄ ∣∣, and if FlockS (x), then V (x) ≤ δ|F̄ |

2 .

Now we observe that for the single non-faulty com-
munication group being analyzed, FlockW is a stable
predicate—that is, once the group forms a weak flock, it
remains invariant. This result follows from analyzing the
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Target subroutine which computes the new targets for the
agents in each round. If FlockS holds, as learned from the
global snapshot algorithm, a head agent moves by at most
a fixed distance δ

2 , which guarantees that FlockW is main-
tained even though FlockS may be violated. When the
head agent does move, because of invariance of FlockW ,
a bound is given on the amount the Lyapunov candidate
V can increase. Recall from Section 2 that if the predi-
cates FlockW , FlockS , or NBM appear without a group
identifier, we assumed they refer to the single non-faulty
communication group being analyzed in this section; in
Section 3.5 we will analyze a similar property for multiple
non-faulty groups.

Lemma 3.10. For any fail-free reachable state x ∈
FFReach(Xf ), for a state x′ such that x

a→ x′ for some
a ∈ A, if FlockW (x), then FlockW (x′). Furthermore, if
FlockS (x) and ¬FlockS (x′), then V (x′) ≥ V (x) but also
V (x′) ≤

∣∣F̄ ∣∣ δ.
Proof. We show for any fail-free reachable state x ∈
FFReach(Xf ), for any state x′ such that x

a→ x′ for any
a ∈ A, if FlockW (x), then FlockW (x′). First, the only
action which modifies positions of agents is update, so it
is the only one considered. If FlockW (x), there are two
cases to consider based on whether the stronger property
FlockS (x) is satisfied or not.

In the first case, System satisfies FlockW (x) ∧ ¬
FlockS (x), then FlockW (x′) holds since level sets of the
Lyapunov candidate V (x) are invariant by Lemma 3.7,
and since the head agent only moves if FlockS (x) is satis-
fied, so by the target computation of the head agent, we
have x′.xH(x′) = x.xH(x′).

In the second case, System satisfies FlockW (x) ∧
FlockS (x). Upon termination of the global snapshot
algorithm the head agent learns of strong flocking be-
ing satisfied, and we assume without loss of generality
that the snapshot has terminated at state x, so we show
FlockW (x′); if it had not yet terminated, pick the round
at which it did terminate, since for every round before
that, weak flocking would be invariant by the next argu-
ment because the head would not move.

If the head is not at the goal, x.xH(x) 6= 0, then the
head computes x′.uH(x′) < x.uH(x) and applies this tar-
get, so x′.uH(x′) < x.uH(x). Otherwise, if the head is at
the goal x.xH(x) = 0 or if x.xH(x) ∈ [0, β] such that the
head agent’s target is quantized, then x′.xH(x′) = x.xH(x)

and the proof is complete since the head agent does not
move. If the head’s target is not quantized and was not
at the goal or not in the range [0, β], then the head will
compute a target no more than δ/2 to the left of its posi-
tion, so

∣∣x′.uH(x′) − x.uH(x)

∣∣ ≤ δ/2. Because FlockS (x),
we have for the agent right of the head, r = x.RH(x),

that
∣∣x.xH(x) − x.xr − rf

∣∣ ≤ δ/2, and now since the head

moved by at most δ/2,
∣∣x′.xH(x′) − x′.xr − rf

∣∣ ≤ δ, so
FlockW (x) is satisfied.

The bound V (x′) ≤
∣∣F̄ ∣∣ δ follows as it did in

Lemma 3.9, by summing the errors of all non-faulty

agents since FlockW (x′).

The following corollary states that if a head agent does
not move, then FlockS remains satisfied and follows by
Lemma 3.7.

Corollary 3.1. For any fail-free reachable state x ∈
FFReach(Xf ), for any x′ reachable from x, if FlockS (x)
and x.xH(x) = x′.xH(x′), then FlockS (x′).

The next lemma states that eventually no non-faulty
agent j ∈ F̄ believes any faulty agent i ∈ F is its left
or right neighbor, and thereby any faulty agents diverge
without colliding with non-faulty agents along their own
lanes if |x.vi| > 0.

Lemma 3.11. For any fail-free reachable state x ∈
FFReach(Xf ), for any faulty agent i ∈ F , there exists
a state x′ reachable in at most O(N) rounds from x, such
that ∀j ∈ F̄ , x′.Lj 6= i and x′.Rj 6= i.

The previous lemma—with the non-blocking faults as-
sumption of Theorem 3.1 that provides eventually a state
is reached such that non-faulty agents may pass faulty
agents—is sufficient to prove that Terminal is eventually
satisfied in spite of faults. In particular, after some faulty
agent j has been suspected by all its non-faulty neighbors,
the Mitigate subroutine of the update transition changes
all the non-faulty neighbors of j to be in a different lane
than the faulty agent j.

The following sequence convergence lemma is used to
show that System eventually satisfies the desired proper-
ties and terminates. The lemma essentially states that
for a lexicographically ordered tuple representing differ-
ent states of System, that if at least one component of the
tuple decreases in every step, and the other component
does not increase beyond some bound, then eventually
the sequence reaches a fixed-point and the components
of the tuple are within specified ranges. The argument
employed is similar in spirit to the average dwell-time
condition used to show stability of switched systems [22].

Lemma 3.12. Consider any infinite sequence of lexico-
graphically ordered pairs of nonnegative reals 〈a1, b1〉, . . .,
〈aj , bj〉, . . .. Suppose ∃c1 > 0, c2 > 0, c3 ≥ 0, c4 ≥ 0,
and c5 ≥ 0. If, for all j ≥ 1,

aj+1 = aj ⇒bj+1 ≤ bj − c1,
aj+1 < aj ⇒bj+1 ≤ c4,

aj > c3 ∧ bj ≤ c2 ⇒aj+1 ≤ max{0, aj − c1},
aj+1 = aj > c3 ∧ bj+1 = bj ⇒aj+c5 < aj .

Then, there exists t ≤
⌈
b1−c2
c1

⌉
+
⌈
a1c4c5
c21

⌉
such that for

all t′ ≥ t, 〈at, bt〉 = 〈at′ , bt′〉, at ∈ [0, c3], and bt ∈ [0, c2].

Proof. First, note that by assumption, for all j ≥ 2, aj is
bounded from above by aj−1 and below by 0. Likewise,
for all j ≥ 2, bj is bounded from above by the maximum
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of bj−1 and c4, and from below by 0. Now assume for the
purpose of contradiction that there exists a pair 〈ap, bp〉
where ap > c3 such that ∀p′ ≥ p, 〈ap′ , bp′〉 = 〈ap, bp〉.
Now we show there exists a q > p such that 〈ap, bp〉 >
〈aq, bq〉.

Without loss of generality, assume that bp > c2 initially.
Now, starting from 〈ap, bp〉, the next step in the sequence
is such that bp+1 ≤ bp− c1, since it must be the case that
ap = ap+1 as we assumed bp > c2. This process of bj
decreasing continues in the form of bn ≤ bp − nc1 where
n is the element in the sequence such that bn ≤ c2, thus

bn ≤ c2 ≤ bp − nc1 and n ≤
⌈
bp−c2
c1

⌉
. The observation

that n ≤ bp−c2
c1

establishes the
⌈
b1−c2
c1

⌉
term of the bound

on t. Within the next c5 elements from n in the sequence,
that is at element with index n+ c5, it must be the case
that an+c5 ≤ max{0, an − c1} since an = ap > c3 and
bn ≤ c2. If an+c5 = 0, then the result follows by letting
q = n + c5 > p and since 〈ap, bp〉 becomes smaller at a
larger step in the sequence, we reach the contradiction.
Otherwise, an+c5 = an − c1 < an and bn+c5 ≤ c4, but by
the lexicographic ordering of the tuples, 〈an+c5 , bn+c5〉 <
〈an, bn〉. Thus for q = n+ c5 > p, since 〈ap, bp〉 becomes
smaller at a larger step in the sequence, we reach the
contradiction to the assumption that 〈ap, bp〉 does not
decrease, and thus the components of the tuple eventually
lie in the desired ranges.

By repeatedly applying the previous arguments, we
bound such a t. In particular, the other term in the bound
on t follows since bj is bounded from above by c4 when

aj increases, we have that aj may decrease at most
⌈
a1

c1

⌉
times prior to lying in the range [0, c3], each of which
may be delayed by an additional c5 steps of no decrease.

Thus, bj would need to decrease from c4 at most
⌈
a1

c1

⌉
times, each of which may take at most

⌈
c4c5
c1

⌉
steps, and

multiplying these yields the bound. Finally, we then take
the ceiling function of these since indices in the sequence
are natural numbers, while these values are reals.

The next theorem shows that System eventually reaches
the goal as a strong flock, that is, there is a finite round
t such that Terminal(xt) and FlockS (xt). The theorem
also shows that System is self-stabilizing when combined
with a directional failure detector.

Theorem 3.3. For any fail-free reachable state x0 ∈
FFReach(Xf ), let a fail-free execution fragment starting

with state x0 be αff
∆
= x0,x1, . . .. Then, there exists

t ≤

⌈
V (x0)−

∣∣F̄ ∣∣ δ2
vmin

⌉
+

⌈
δ
∣∣F̄ ∣∣x0.xH(x0)O(N)

v2
min

⌉
,

such that for all t′ ≥ t:

(a) xt.xH(xt) = xt′ .xH(xt′ )
∈ [0, β],

(b) V (xt) = V (xt′) ≤
∣∣F̄ ∣∣ δ2 ,

(c) Terminal(xt), and

(d) FlockS (xt).

Proof. Corresponding to the fail-free execution frag-
ment αff , we consider the infinite sequence of tu-
ples

〈
x0.xH(x0), V (x0)

〉
,

〈
x1.xH(x1), V (x1)

〉
, . . .,〈

xt.xH(xt), V (xt)
〉
, . . .. The proof now follows from

Lemma 3.12 by instantiating (a) c1 = vmin, by
Lemma 3.5, that any agent which moves does so by
at least vmin > 0 and that this is the constant the
Lyapunov-like function V decreases by in the conver-
gence to NBM result, Lemma 3.7, (b) c2 =

∣∣F̄ ∣∣ δ2 , by
applying V (x) to any state x that satisfies FlockS (x)
and by Corollary 3.1, (c) c3 = β, by Figure 5, Line 34,
that agents do not move if their targets are not farther
than the quantization constant β from their current
positions, (d) c4 =

∣∣F̄ ∣∣ δ by computing the value of V (x)
for any state x that satisfies FlockW (x), by Lemma 3.10,
that FlockW is a stable predicate, and (e) c5 ≤ O(N),
from the O(N) termination time of the global snapshot
algorithm.

3.4 Directional Failure Detectors

First we give an overview of the directional failure detec-
tor (DFD) used by our flocking algorithm, which is en-
coded as the precondition of the suspect transition. Note
that the precondition assumes that i has access to some
of j’s shared variables, namely xj , xoj , uj and uoj . When
the precondition of suspecti(j) is satisfied, j is added to
Suspi. This precondition checks that either j moved when
it should not have due to being quantized, or that j’s
actual movement was in the opposite direction from its
target uj .

In Sections 3.1, 3.2, and 3.3, we proved safety and
progress of the flocking algorithm assuming that all actu-
ator faults are detected within a finite number of rounds.
Unfortunately, there exist faults which cannot be detected
at all by DFDs. A trivial example is the failure of a node
with zero velocity at a terminal state, that is, a state at
which all the agents are at the goal in a flock and there-
fore are static. Another example is a faulty agent not
connected to any non-faulty agent. While such faults are
undetectable in any number of rounds, these faults do
not violate Safety or Terminal . It turns out that only
faults which cause a violation of safety or progress may
be detected by DFDs.

Lower-Bound on Detection Time. We identify the
class of actuator faults that can be detected by DFDs
and show a lower-bound on detection time. The following
lower-bound applies for executions beginning from states
that do not a priori satisfy Terminal . It intuitively says
that a faulty agent mimicked the actions of its correct
non-faulty behavior in such a way that despite the failure,
System still progressed to NBM as was intended. From
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an arbitrary state, it takes O(N) rounds to converge to
a state satisfying NBM by Lemma 3.7. We show this by
establishing that there is an execution with faults which is
indistinguishable from a fail-free execution until at least
O(N) rounds have occurred.

Lemma 3.13. There are actuator faults which cannot be
detected in fewer than O(N) rounds by a DFD.

Proof. Consider a fail-free execution fragment αf which
begins with a state where there is a single faulty agent i,
and a fail-free execution fragment αn which begins with
a state without any faulty agents. Let the initial state
x of both these executions be the same (except that the
head agent is faulty with zero failure velocity in αf ) and
satisfy ¬(Terminal(x) ∧ FlockS (x)). In both executions,
assume that any time the movement velocity of any agent
is nondeterministically chosen, it is chosen to be vmin.
We know that the computed target for the head node is
non-zero only if the state of the whole system satisfies
FlockS . From the convergence rate linear in N provided
by Lemma 3.7, there exists a state x′ such that NBM (x′)
is satisfied in each of the fail-free execution fragments αf
and αn that is at most c rounds away from x in each
of αf and αn where c is O(N). As was established by
Lemma 3.8, only once NBM (x′) is satisfied can it be
guaranteed that FlockS (x′) is satisfied. Once FlockS (x′)
is satisfied, a state x′′ is reached which is some d rounds
from x′ in each of αf and αn, will the head agent compute
a target such that uH(x′′) 6= 0, and d is O(N) by the O(N)
termination of the snapshot algorithm Figure 5, Line 29.
Thus, αf and αn are indistinguishable up to state x′′,
which is c+ d rounds from x, each of which are O(N), so
their sum is O(N).

Next we show that the the failure detection mechanism
incorporated in Figure 5 does not produce any false pos-
itives.

Lemma 3.14. In any reachable state x, ∀j ∈ x.Suspi ⇒
x.failed j.

Proof. Suppose ∃i, j ∈ ID such that j ∈ x.Suspi, then
the precondition for suspecti(j) must have been satisfied
at some round ks in the past when j was added to Suspi.
Let xs correspond to the state at round ks and x′s be the
subsequent state in the execution. At the round prior to
ks, there are two cases based on whether the target uj
is quantized or not for some j /∈ xks−1.Suspi (Figure 5,
Line 33).

We recall that the notation xs,T represents the state xs
after the Target subroutine has executed. The first case
occurs if the quantization constraint |xs,T .uj − xs.xj | ≤
β is not satisfied (Figure 5, Line 33), so agent j ap-
plies a velocity in the direction of sgn (uj − xj). If
sgn (x′s.xj − xs.xj) 6= sgn (xs.uj − xs.xj), then agent j
moved in the wrong direction, since it computed a target
xs.uj but in actuality applied a velocity that caused it
to move away from xs.uj instead of toward it. This is

possible only if sgn (x′s.uj − x′s.xj) 6= sgn (xs.uj − xs.xj),
implying that xs.vf j 6= 0, and thus xs.failed j = true.

The second case is when the quantization constraint
|xs,T .uj − xs.xj | ≤ β was satisfied (Figure 5, Line 33),
so |xs.uj − xs.xj | = 0 should have been observed, but in-
stead it was observed that agent j performed a move, such
that |x′s.xj − xs.xj | 6= 0. This implies that xs.failed j =
true since the only way |x′s.xj − xs.xj | 6= 0 is if xs.vf j 6=
0 so that x′s.xj = xs.xj + xs.vf j .

The next lemma shows a partial completeness prop-
erty [23] of DFDs. It upper-bounds the number of rounds
to detect any detectable fault—which recall is any actu-
ator fault which can be detected in a finite number of
rounds using a DFD. This shows also that eventually all
agents connected to some faulty agents know at least the
set of faulty agents with which they are connected. The
agents may know more faulty agents than those they are
connected to, as some faulty agents might have left the
communication group due to diverging.

Lemma 3.15. For any fail-free reachable state x ∈
FFReach(Xf ) such that ¬Terminal(x) is satisfied, there
exists a state x′ reachable from x such that, for any agent
i, x′.Suspi ⊇ (F ∩G(x′, i)), and the number of rounds be-
tween x and x′ is O(N).

Proof. Since ¬Terminal(x), either Goal(x) or NBM (x)
are not satisfied. If ¬NBM (x), then by Lemmata 3.7
and 3.8, we know that there exists a state x′ at most
O(N) rounds past x such that NBM (x′) and FlockS (x′).
Similarly, if ¬Goal(x) and NBM (x) are satisfied, then by
Lemma 3.8, we know that FlockS (x), and due to theO(N)
termination of the distributed global snapshot algorithm,
there exists a state x′ which is O(N) rounds from x at
which a head agent could make a movement toward a
state satisfying Goal . Since each of these states x′ are
O(N) rounds from x, we consider them simultaneously.

For both of these cases, we show that either at, before,
or a constant number of rounds after such a state x′, the
precondition of a suspecti(j) action (Lines 6–8 of Figure 5)
is satisfied for any faulty agent j and all its neighbors
i ∈ Nbrs(x′, j). By the above, at state x′, we have that
NBM (x′) is satisfied. So, at or prior to round x′, for any
faulty agent j and any agent i ∈ Nbrs(x′, j), we have that
the precondition of the suspecti(j) action is satisfied, since
for any of the faulty agents, either (a) a faulty middle or
tail j moves and violates NBM at the round following x′,
(b) a faulty middle or tail j did not move between states
x and x′ and prevented NBM from being satisfied at x′,
(c) a faulty head j did not move at the round after state
x′ upon learning FlockS (x′) held, or (d) a faulty head j
moved prior to FlockS being satisfied at state x′. Thus,
any agent i ∈ Nbrs(x′, j) has added by round x′ (or the
round following x′) any faulty agent j to the set x′.Suspi.

By the assumption that the communication group of
non-faulty agents cannot partition, we have that any non-
faulty agents i and j have shared their suspected sets
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within O(N) (Figure 5, Line 21), since in the worst case,
any two agents in the communication graph of agents are
separated by at most N − 2 agents, requiring O(N) com-
munication hops. Summing these O(N) bounds yields the
O(N) upper bound on the detection time of DFDs.

3.5 Generalization to Disconnected Sets
of Agents

In this section, we show that the proposed flocking algo-
rithm works (that is, Theorem 3.1 holds) even if faults
cause the communication graph of agents to become par-
titioned, or if the communication graph is partitioned at
an initial state. In Sections 3.2, 3.3, and 3.4, we proved
safety and progress with the assumption that the graph
of non-faulty agents always remains connected, which is
quite restrictive. With no connectivity assumption, we
will now establish Theorem 3.1. The theorem states that
eventually FlockS and Terminal are established for a sin-
gle communication group, and we will show that even-
tually there is a single group of agents satisfying these
properties. Outside of states satisfying Terminal , it will
be the case that several groups each satisfy FlockS and
NBM , as defined on their disjoint groups, but eventu-
ally a single group emerges satisfying FlockS , NBM , and
Goal . This formulation eliminates redefining Theorem 3.1
to state that eventually every non-faulty communication
group satisfies Terminal and FlockS , as we do not need
to state this if there is eventually a single non-faulty com-
munication group satisfying these properties.

Invariance of safety without faults and reduced safety
in the presence of faults are each straightforward due the
upper bound vmax on velocity. The next invariant states
that reduced safety is invariant for any reachable state
and extends Invariant 3.2 since we now have no connec-
tivity assumption. Intuitively, we just need to show that
agents communicate before they collide, which is already
ensured by the assumptions of Theorem 3.1, since by com-
bining the existing Assumptions III and IV, we have that
the communication radius rc > 2vmax.

Invariant 3.4. For any reachable state x, SafetyR(x).

Proof. We sketch the proof, as the proof of this invari-
ant is the same as the inductive invariance proof of In-
variant 3.2, except we need an additional case for when
faults have caused groups to partition and subsequently
merge. A case for when groups partition is unnecessary,
as the safe separation obviously follows since rr < rc—if
agents cannot communicate because they are farther than
rc apart, then clearly they are at least rr apart.

If any group of non-faulty agents merges with any other
group (composed of faulty and/or non-faulty agents),
we need to establish that the positions of all non-faulty
agents with all other agents are at least separated by rr.
We analyze the cases for when a non-faulty group and
a non-faulty group merge, and subsequently for when
a non-faulty group and an arbitrary group merge. If

two non-faulty groups g1, g2 ∈ GF̄ (x) merge, then since
SafetyR(x) is satisfied, either (a) a head of one group and
tail of another are neighbors after the merge, or (b) the
heads of both groups are neighbors after the merge, which
can occur if each group has a single member. In both of
these cases, the separation between any such non-faulty
agents follows by first applying Lemma 3.3, which states
that any two agents move toward one another with at
most speed 2vmax. Now from existing assumption that
rr > rs > rc > 2vmax, we have that any two non-faulty
agents communicate prior to violating rr since rc > rr,
and from the Target computation, they remain spaced
by at least rr based on the same case reasoning used for
each agent type (head, tail, middle) in the proof of In-
variant 3.2.

If a non-faulty group merges with an arbitrary group,
either the head and tail agents are non-faulty and the re-
sult follows by the same argument above, or one of the
head or tail of the arbitrary group is faulty. In this case,
by the detection time assumption of Theorem 3.1 that
any faulty agent is suspected within kd rounds by any
of its neighbors—which is regardless of whether they be-
gan in a group or merged into a group at a later state—
and vmax ≤ (rs − rr)/(2kd) from the hypothesis of The-
orem 3.1, we have that any agent in a non-faulty group
with nearby faulty agents has detected them, and subse-
quently switches lanes prior to violating the rr spacing,
which can be done due to the non-blocking faults assump-
tion of Theorem 3.1.

The following lemma states that communication groups
composed of non-faulty agents cannot partition (they may
however merge).

Lemma 3.16. For any two fail-free reachable states
x,x′ ∈ FFReach(Xf ) such that x

a→ x′ for some a ∈ A,
no non-faulty communication group partitions between x
and x′.

Proof. The only action a ∈ A to be analyzed is update,
as no other transition modifies the variable Nbrsi for
any agent i. There are two cases based on whether
the update transition moves agent positions so that any
groups merge. If no non-faulty communication group
merges, then the result follows by application of the
following extension to Lemma 3.6 for each non-faulty
communication group. For any communication group
g ∈ GF̄ (x), if ¬NBM (x, g) is satisfied, then

max
i∈g

e(x′, i) ≤ max
i∈g

e(x, i).

The previous claim follows by the same convex combi-
nation arguments used in Lemma 3.6. The claim of the
lemma now follows from the definition of connected.

If it is the case that NBM (x, g) is satisfied, then the
claim of the lemma follows since no non-faulty agent i ∈ g
makes a move, however head agents may move. In the
case that some head moves, one technical point must be
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noted due to the distributed global snapshot algorithm
used to detect FlockS . This algorithm can detect sta-
ble predicates, but upon groups merging or splitting, for
some group g ∈ GF̄ (x), FlockS (x, g) may not be stable
like FlockS (x, g) previously was when head agents are not
moving and there is a single group (Corollary 3.1). Thus,
a head agent may move even if ¬FlockS (x, g), however,
it would only move at most one time, since after moving
x.gsf H for H ∈ Heads(x) is set to false after a move, and
thus this will not cause a partitioning of GF̄ (x).

In the other case that group merges do occur, we need
to show that simultaneously no non-faulty groups parti-
tioned. So, for any communication groups g1, g2 ∈ GF̄ (x)
such that g1 and g2 have merged into a group g at state
x′, if ¬NBM (x, g1) and ¬NBM (x, g1) are satisfied, then

max
i∈g1

e(x′, i) ≤ max
i∈g1

e(x, i) and max
j∈g2

e(x′, j) ≤ max
j∈g2

e(x, j).

The previous claim again follows by the same convex com-
bination arguments used in Lemma 3.6, and by observing
that we have restricted our consideration to the agents
in the individual groups g1 and g2 both before and after
the merge. The claim of the lemma now follows from the
definition of connected.

If it is the case that either NBM (x, g1) or NBM (x, g2)
are satisfied, then the claim of the lemma follows again
since no non-faulty agents i, except possibly a head agent,
in whichever of g1 or g2 satisfied NBM will make a move.
If a head agent is involved, let us without loss of generality
say this is h1 ∈ g1, then we know from the reasoning used
in the proof of reduced safety for groups Invariant 3.4
that either a head h2 or a tail t2 from g2 was involved in
the merge. Now either h1 is a neighbor of h2 or h1 is a
neighbor of t2, and the result follows by the definition of
connected.

Progress is more difficult to establish than safety. We
begin by establishing properties of DFDs, including ac-
curacy, partial completeness, and finite-detection time of
detectable faults for groups as we did for the single com-
munication group in Section 3.4. Upon establishing these
properties, after failure detection we may restrict our fo-
cus to communication groups of non-faulty agents. The
accuracy property, Lemma 3.14, holds without modifica-
tion. The detection time lower-bound from Lemma 3.13 is
extended to say that for a state x and an individual group
g ∈ G(x), there exist actuator faults which cannot be de-
tected in fewer than O(|g|) rounds. Failure detection for
groups culminates in an extension to Lemma 3.15, that
every detectable faulty agent which remains in a group
with other agents is eventually suspected by those other
agents. This allows us to discuss only non-faulty com-
munication groups, as the next lemma establishes that
within O(N) time, all faulty agents in any communica-
tion group with other agents are suspected. The next
lemma follows by the same arguments used in the proof
of Lemma 3.15, completeness for a single group, except
where the reasoning was used that the single non-faulty

communication group does not partition, we instead rea-
son by Lemma 3.16 that no non-faulty communication
group partitions.

Lemma 3.17. For any fail-free reachable state x ∈
FFReach(Xf ), if ¬Terminal(x), then within O(N)
rounds a state x′ is reached such that for all agents i
connected to any faulty agents, x′.Suspi ⊇ (F ∩G(x′, i)).

Now, rather than defining a Lyapunov function for a
single communication group, a set of functions are de-
fined, one for each non-faulty communication group in
GF̄ (x), with a “composite” Lyapunov candidate defined
as a set containing these candidates. Then, establishing
that along any fail-free execution fragment αff either (a)
one of the Lyapunov candidates decreases by a constant
amount, or (b) the number of groups decreases because
groups merge, guarantees progress. For a fail-free reach-
able state x ∈ FFReach(Xf ), for each non-faulty commu-
nication group g ∈ GF̄ (x), define a Lyapunov candidate
as

Vg(x)
∆
=
∑
i∈g

e(x, i).

We define the set of Lyapunov functions at a state x as

Λ(x) = {Vg(x) : g ∈ GF̄ (x)}.

From Lemma 3.16, we do not have to consider parti-
tions of non-faulty groups, and hence |Λ(x)| is bounded
from above by the number of non-faulty groups at the fail-
free reachable state x. If two groups g1, g2 ∈ GF̄ (x) merge
to form a single group g at x′, the value of Vg defined at
state x′ potentially increases such that Vg > Vg1

+ Vg2
,

but it is bounded from above by δF̄ from Lemma 3.9—
where at its greatest this would correspond to the case
that there are no faulty agents and a single group g con-
taining all N agents has emerged at state x′.

The following theorem generalizes Theorem 3.3 to es-
tablish that eventually each non-faulty group g ∈ GF̄ (x)
either makes progress to states satisfying Terminal , or
merges with another non-faulty group, which decreases
the cardinality of Λ, and thus eventually there exists a
single group. The proof of the following also combines
the proof of eventually reaching NBM for each group,
that is, it also generalizes Lemma 3.7 to groups. We re-
iterate that if group merges occur, the new Lyapunov
candidate is still bounded from above by δF̄ .

Theorem 3.5. For any fail-free reachable state x ∈
FFReach(Xf ), there exists a state x′ reachable from x,
such that there is a single element in the set of commu-
nication groups GF̄ (x′), that is, there is a single group of
non-faulty agents.

Proof. For any fail-free reachable state x ∈
FFReach(Xf ), let

Gnbm(x)
∆
= {g ∈ GF̄ (x) : ¬NBM (x, g)}
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be the groups of non-faulty agents g ∈ GF̄ (x) that do not
satisfy NBM (x, g). We now break the proof into cases
based on whether the heads of each g ∈ Gnbm are fixed
and whether groups merge.

For the groups g ∈ Gnbm(x) with fixed head agent po-
sitions, and which do not merge, the update transition
decreases each of these Vg(x) by at least a positive con-
stant ψ. By the same reasoning used in the proof that
states satisfying NBM are eventually reached for a single-
group in Lemma 3.7, we let ψ = vmin, since none of
the groups with agents which move interact with other
groups. Also, there exists σg ≥ 0 for each group, such
that if Vg(x

′) ≤ σg, then NBM (x′, g), which is achieved
as in Lemma 3.7 by choosing β ≤ σg

2N .
Next, for the groups g ∈ Gnbm(x) where head agent po-

sitions may change, but which do not cause a merge, we
instantiate Lemma 3.12 as we did in the earlier proof of
termination (Theorem 3.1) with (a) c1 = vmin, (b) c2 =
|g| δ2 , (c) c3 = β, (d) c4 =

∣∣F̄ ∣∣ δ, and (e) c5 ≤ O(N).
and we have that any such groups make progress to-
wards states satisfying Goal and NBM , and since NBM ⊆
FlockS , also toward flocking. However, the bound on the
number of rounds from Lemma 3.12 does not necessarily
apply, since group merges will occur in the intermediary
states, but we have not yet considered merges; we do this
now.

Suppose some non-faulty groups merge. Such merges
may occur either due to (a) head agents moving and
coming to be connected to some other non-faulty agents,
or (b) non-faulty groups move toward states satisfying
NBM , and we consider both of these cases together. De-
fine a lexicographically ordered tuple

T (x)
∆
= 〈|Λ(x)| , Vg1

(x), . . . , Vgn(x)〉 ,

where g1, . . . , gn correspond to n non-faulty groups, the
order of which is arbitrary, since we know that while the
corresponding Vg1

, . . . , Vgn may increase, when they do,
their values are bounded. Since |Λ(x)| is bounded from
above and non-faulty communication groups cannot par-
tition by Lemma 3.16, if a group merge occurs at the
next state x′, we have that |Λ(x′)| < |Λ(x)|, and thus
T (x′) < T (x), because the first component of T (x′) de-
creased and it is lexicographically ordered. After a merge
has occurred, reapply the above arguments for the cases
when merges do not occur until the next time a merge
occurs, then reapply this argument showing that the car-
dinality of Λ decreases. This process continues until there
is a single communication group of non-faulty agents, and
at such a state x′′, T (x′′) = 〈1, V (x′′)〉, where V (x′′) is
the Lyapunov-like function summing errors across all non-
faulty agents, since there is a single group.

Upon there being a single communication group of non-
faulty agents, all the progress results of Section 3.3 can
then be applied, thus eventually Terminal is established.
This yields Theorem 3.1 since we established SafetyR is

invariant and eventually Terminal and FlockS are satis-
fied, even when actuator faults have caused the communi-
cation group to partition, or if the communication graph
begins partitioned.

4 Related Work

Several works have studied distributed function computa-
tion, of which flocking is a special case [24, 3, 4, 5, 6, 7, 25]
(see also the recent books [8, 9, 10] for a comprehensive
treatment). An early investigation of flocking in com-
puter science appeared in [24], where the agents were po-
sitioned on a circle and became equally spaced by mov-
ing to the midpoints of their nearest neighbors. Another
early work on flocking in engineering was [12], where
the concern was to generate group behavior for com-
puter animations of movies, and this work uses double-
integrator dynamics combined and three control rules to
achieve flocking. Another model for flocking, but with
single-integrator dynamics of point particles, is the Vic-
sek model [11], where agents update orientations but oth-
erwise move with constant velocity magnitude. These
and the majority of the prior works on flocking are still
limited in that they have not considered either quanti-
zation or faults, and to the best of our knowledge, no
works have considered both, particularly while ensuring
agents do not collide. A few works have considered quan-
tization [13, 14], where in particular [14] uses similar
Lyapunov analysis as we do to bound convergence time.
There are several research articles that study the gen-
eral problem of coordinating mobile agents with different
kinds of failures. For example, [26, 20] present a repli-
cated state machine-based approach for handling failures
in distributed coordination.

However, very few papers have attempted to prove
avoidance of collisions in flocking. One such paper is [6],
upon which we based our model and algorithm. We found
an error in the flocking algorithm which allowed agents
to collide. The error was in the special dynamics of the
rightmost agent (a tail agent in our terminology), which
could cause it to collide with other agents. To fix the
error, we modified the algorithm as presented earlier in
this paper (Figure 5, Line 31), which had previously been
xN [k + 1] = xN−1 + rf .

Very recently some attention has been given to robust-
ness to agent faults in distributed averaging and flock-
ing [27, 28, 29, 30, 31, 32, 33, 34]. There is an extensive
body of work on crash faults. The earliest work on faults
in flocking we know of is [27], where agents may fail by
stopping—which in our framework would correspond to
a fault with zero failure velocity—but the method is im-
plemented on physical hardware.

One fault model considered in [28], “failure mode 3”,
considers byzantine-like behavior where a single faulty
agent sets its position xi[k + 1] to an arbitrary point on
the real line—which clearly generalizes the actuator faults
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considered here, where a faulty agent updates its position
as xi[k+1] = xi[k]+vfi for some constant failure velocity
vfi. However, this work does not consider any notion of
safety and defines robustness to be whether and how well
the non-faulty agents can compute some function.

A similar fault model to ours is considered in [29],
where motion probes are used in failure detection scenar-
ios, but no bounds are stated on detection time. Instead,
convergence was ensured assuming that failure detection
had occurred within some bounded time, while our work
states a detection time bound linear in the number of
agents in the system. This work also does not consider
safe separation between agents in spite of faults, and the
method is illustrated for a single fault.

A series of works has explored flocking first where
agents permanently crash [31], and then where agents
may fail due to memory corruption or permanently crash-
ing [32]. The most recent work in this series [34] is very
similar to our own work, which also establishes absence of
collisions in spite of faults, but the faults considered here
are crashes, which in our framework would correspond to
zero velocity faults, although unlike crashes, in our failure
model, agents continue to communicate after failing. A
fault model is considered in [33] where faulty agents are
malicious and may alter messages, but collision is not a
concern, only function computation.

An earlier version of some results in this paper ap-
peared as a master’s thesis [16], which was subsequently
presented at a conference [35]. Both [16, 35] assumed
that faults could not partition the underlying communi-
cation graph of non-faulty agents, but in practice this
could occur, so these works have been extended by re-
laxing this assumption as presented in Section 3.5. In
particular in this paper, rather than assuming that faults
cannot partition the communication graph of non-faulty
agents, we show that even if the communication graph of
agents partitions, then agents never collide and eventu-
ally there is a single communication graph of non-faulty
agents which satisfies the desired flocking properties. This
paper also improves upon the presentation of the results
of [16, 35]. Previously, switching topologies for commu-
nication graphs in flocking were studied in [36, 37, 38],
of which the partitioning of the communications graph
allowed in this paper is a case. Also in the context of
communication faults, it is shown in [39, 40] how con-
vergence of a general class of distributed algorithms over
asynchronous networks can be derived from convergence
of their synchronous counterparts.

Finally, we note that the Lyapunov function used in
Section 3.3 is similar to the one used in [41], as it is not
quadratic and is the sum of absolute values of the errors
of agent positions from flocking. It is also similar to the
one used in [39], which is the maximum of the sum of
absolute values of the errors.

5 Conclusion

This paper presented an algorithm for the safe flocking
problem—where the desired properties are safety invari-
ance, as well as eventual strong flock formation and desti-
nation reaching—in spite of permanent actuator faults. A
lower-bound linear in the number of agents in the system
was presented for the detection time of actuator faults for
the class of directional failure detectors (DFDs). Without
a means to detect faults in some way, such as through a
DFD, the system would not be able to maintain safety
as agents could collide, nor make progress to states satis-
fying flocking or the destination, since faulty agents may
diverge, causing their neighbors to follow and diverge as
well.

With the one-dimensional framework in this paper, it
would be interesting to study the problem in more com-
plicated lane scenarios, such as in finite-length lanes or
the lanes of a traffic roundabout. In the future, we would
like to establish collision avoidance in spite of actuator
and other fault classes for flocking models with double-
integrator dynamics in two and three-dimensions. An-
other interesting direction is whether it is possible to au-
tomatically establish safety properties of such systems,
while in general, progress seems difficult due to reliance
on existence of a Lyapunov-like function.
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[11] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
“Novel type of phase transition in a system of self-driven par-
ticles,” Phys. Rev. Lett., vol. 75, no. 6, pp. 1226–1229, Aug.
1995.

[12] C. W. Reynolds, “Flocks, herds and schools: A distributed be-
havioral model,” in SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques. New York, NY, USA: ACM, 1987, pp. 25–34.
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A Discrete-Time Switched Linear
System

The following is a view of the system as a discrete-time switched
system and displays that failures can be modeled as a combination
of an additive affine control and a switch to another system matrix.

Discrete-time switched systems can be described as x[k + 1] =
fp(x[k]) in general where x ∈ RN , p ∈ P for some index set P, such
as P = {1, 2, . . . ,m}, or as x[k + 1] = Apx[k] for linear discrete-
time switched systems [42]. For the following, assume that Figure 5,
Line 37 is deleted and replaced with x := u. This deletion removes
the nondeterministic choice of velocity with which to set position
x, and instead sets it to be the computed control value u. This
nondeterministic choice can be modeled through the use of a time-
varying system matrix A[k] as in [6], but we omit it for simplicity
of presentation.

The effect of an update transition on the position variables of
all agents in System can be represented by the difference equation
x[k + 1] = Apx[k] + bp where for a state xk at round k,

x[k] =


xk.xH(xk)

xk.xx.RH(xk)

...

xk.xT (xk)

 , bp =


b1
...

bN

 , and

Ap =



a1,1 0 0 0 0 . . .

a2,1 a2,2 a2,3 0 0 . . .

0
. . .

. . .
. . . 0 . . .

0 . . . ai,i−1 ai,i ai,i+1 . . .

0 0 0
. . .

. . .
. . .

0 0 0 0 aN,N−1 aN,N


.

The following are the family of matrices Ap and vectors bp that
are switched among based on the state of System, and we describe
them assuming there is a single communication group; refer to Fig-
ure 5 for the following referenced line numbers. From Line 29,
for H(xk), if FlockS (xk), then either (a) if xk.xH(xk) ≥ δ, then

a1,1 = 1 and b1 = − δ
2

, otherwise (b) a1,1 = 0 and b1 = 0. From
Line 30, if ¬FlockS (xk), then a1,1 = 1 and b1 = 0. From Line 32,
for i ∈ Mids(xk), ai,i = 0, ai,i−1 = 1

2
, ai,i+1 = 1

2
, and bi = 0.

Finally, from Line 31, for T (xk), aN,N−1 = 1
2

, aN,N = 1
2

, and

bN =
rf
2

.
Next, all coefficients in the matrix can change due to the quan-

tization law in Line 33. If the conditional on Line 33 is satisfied for
agent i ∈ Mids(xk), then ai,i = 1, ai,xk.Li

= 0, ai,xk.Ri
= 0, and

bi = 0, for agent i = H(xk), then ai,i = 1 and bi = 0, and for agent
i = T (xk), then ai,xk.Li

= 0, ai,i = 1, and bi = 0.
Failures also cause a switch of system matrices, and cause us to

update which neighbors agent i uses to compute its control, so a new
family of matrices Aq needs to be defined, where all coefficients not
specified are 0. The actuator stuck-at failures being modeled are
representative of an additive error term in the bp vector [43]. From
Line 36, for i ∈ Mids(xk), ai,i = 1, ai,xk.Li

= 0, ai,xk.Ri
= 0, and

bi = xk.vf i, for i = H(xk), ai,i = 1 and b1 = xk.vfH(xk), and for

i = T (xk), aN,N−1 = 0, aN,N = 1, and bN = xk.vfT (xk). Finally,
we have omitted that non-faulty agents would also change which
neighbors they would eventually use for target computation.

B Simulations
Simulation studies were performed, where flocking convergence time
(as by Lemma 3.7), goal convergence time (as by Theorem 3.3), and
failure detection time (as by Lemma 3.15) were of interest. Unless

otherwise noted, the parameters are chosen as N = 6, NL = 2,
rs = 20, rf = 40, δ = 10, β = δ/(4N), vmin = β

2
, vmax = β, the

head agent starts with position at rf , and the goal is chosen as the
origin.

We first mention Figures 7 and 8, which show an execution of
the system where the non-faulty agents are progressing (reaching
the origin as a flock) while detecting and avoiding a faulty agent
by switching lanes. After suspecting that agent 6 is faulty, agents
1 through 5 move to lane 2 at approximately round 375 to avoid
collision with the faulty agent.
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Figure 7: System progressing: eventually the agents have
formed a flock and the faulty agent 6 with nonzero veloc-
ity has diverged.
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Figure 8: System progressing: illustrating that non-faulty
agents have avoided faulty agent 6 by changing lanes.

Figure 9 shows System without failures “expanding” [6] to form a
strong flock prior to moving towards the goal, and Figure 10 shows
the value of the Lyapunov-like function, V , and maximum agent
error from flocking, emax = max

i∈F̄
e(x, i), during this simulation.

The initial state is that each agent is spaced by rs from its left
neighbor. Observe that while moving towards the goal, FlockS is
repeatedly satisfied and violated, with invariance of FlockW .

Figure 11 shows that for a fixed value of vmin, the time to con-
vergence to NBM is linear in the number of agents. This choice of
fixed vmin must be for the largest number of agents, 12 in this case,
as vmin is upper bounded by β = δ

4N
which is a function of N . As

vmin is varied the inverse relationship with N is observed, resulting
in a roughly quadratic growth of convergence time to NBM . This
illustrates linear convergence time as well as linear detection time,
as this is bounded by the convergence time from Lemma 3.15. The
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initial state was for expansion, so each agent was spaced at rs from
its left neighbor.

0 100 200 300 400
0

50

100

150

200

250

Rounds

A
g

en
t 

P
o

si
ti

o
n

s 
(x

i)

 

 
x

1

x
2

x
3

x
4

x
5

x
6

Figure 9: Agent expansion simulation showing agent po-
sitions, xi. Observe that first the agents form a flock by
expanding and then move toward the goal.
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Figure 10: Expansion simulation showing max error emax,
Lyapunov function value V , with weak and strong flock-
ing constants.
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Figure 11: Rounds k (upper bounded by ku) to reach
Terminal versus number of agents N with fixed and vary-
ing values of vmin (i.e., as a function of N or not).

Figure 12 shows the values of the maximum agent error emax
along with the Lyapunov function V , and displays that FlockS is
not a stable predicate, while FlockW is a stable predicate, since V
is bounded by Nδ

2
. The simulation began with System satisfying

FlockS , which was then invalidated as the head agent learned this
through the global snapshot protocol and made a move toward the
goal.
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Figure 12: Invariance of FlockW and repeated entry to
NBM and FlockS .
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Figure 13: Simulating f zero velocity failures at round 0
from initial state of 2rf inter-agent spacing.

Figure 13 shows the detection time with varying N and f from a
fixed initial condition of inter-agent spacings at 2rf . The fAvg = i
lines show the total detection time divided by f . Failures were
fixed with vfi = 0, failing each combination of agents, so for f = 2
and N = 3, each combination of {1, 2}, {1, 3}, {2, 3} were failed
individually, and the detection time is the average over the number
of these combinations for each choice of f and N . The detection
time averaged over the number of failure indicates that the detection
time to detect any failure in a multiple failure scenario is on the same
order as that in the single failure case. However, the detection time
not averaged over the number of failures indicates that the detection
time to detect all failures increases linearly in f and on the order
of N , as predicated by Lemma 3.15.

Figure 14 shows the detection time as a function of which agent
fails with what failure velocity from three different types of initial
states. In all single-failure simulations, a trend was observed on
the detection time. When failing each agent individually, and with
all else held constant (initial conditions, round of failure, etc.), only
one of the detection times for failure velocities of −vmax, 0, or vmax
is ever larger than one round. The frequent occurrence of a single
round detection is interesting. For instance, in the expansion case,
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each failed agent i except the tail are detected in one round when
vf i 6= 0 since a violation of safety occurs. However, detecting that
the head agent has failed with zero velocity requires convergence of
the system to a strong flock prior to detection, as does detecting
that the tail agent failed with vmax, as this mimics the desired ex-
pansive behavior up to the point where the tail moves beyond the
flock. In the contraction case, each failed agent i except the tail is
detected in one round when vfi 6= 0, since they are at the center of
their neighbors positions, while the tail agent failing with −vmax
takes many rounds to detect, since it should be moving towards
its left neighbor to cause the contraction. Thus the observation
is, for a reachable state x, if |F (x)| = 1, let the identifier of the
failed agent be i, and consider the three possibilities of x.vf i = 0,
x.vf i ∈ (0, vmax], and x.vf i ∈ [−vmax, 0). Then along a fail-free
execution fragment starting from x, for one of these choices of vf i,
the detection time is greater than 1, and for the other two, the
detection time is 1. This illustrates there is only one potentially
“bad” mimicking action which allows maintenance of both safety
and progress and takes more than one round to detect. The other
two failure velocity conditions violate either progress or safety im-
mediately and lead to an immediate detection.

Expansion Contraction Mixed

Id −vmax 0 vmax −vmax 0 vmax −vmax 0 vmax

1 1 228 1 1 487 1 1 64 1

2 1 26 1 1 28 1 1 1 49

3 1 18 1 1 19 1 34 1 1

4 1 9 1 1 9 1 1 1 34

5 1 4 1 1 4 1 49 1 1

6 1 1 138 308 1 1 1 1 22

Figure 14: Detection time when a single agent i fails at
round 0 with velocity −vmax, 0, or vmax from an expan-
sion, contraction, and mixed initial state.
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