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Abstract—In environments where electromechanical loads may
suffer from disturbances with large magnitude—such as in
sampling downhole reservoirs—stalling protection for the power
source of the alternator may be critical to prevent potentially
catastrophic system failure. First, a real-time estimation method
is described to determine the maximum available electrical power
produced by a turbo-alternator for a given volumetric flow rate
acting on the turbine. Next, the available-power estimate and
used electrical power measurement are used to prevent turbine
stalling by regulating an electromechanical load—in this case a
permanent magnet synchronous motor (PMSM)—to draw less
power. The stalling protection is implemented through an addi-
tional proportional-integral-derivative (PID) controller for load
power, which is cascaded outside already cascaded velocity and
torque PID controllers used for control of the PMSM. To ensure
fast tracking, the power PID controller implements integral
anti-windup. An experimental evaluation of the methodology is
presented.

Index Terms—adaptive control, alternator, system identifica-
tion, turbine, turbo-alternator, stalling

I. INTRODUCTION

Turbo-alternator stalling and subsequent loss or decrease
of electrical power could produce countless faults, from full
system power reset to unstable—or at least uncharacterized—
plant regulation. Stalling can occur if the electromechanical
load power required, PL, is too large a fraction of the turbo-
alternator’s maximum available power, Pmax, which is the
maximum power the turbine can provide for a given volumetric
flow rate Q. Physically, stalling for a turbo-alternator means
that the turbine is not receiving enough power from the fluid
flow driving it, thus the flow Q turning the turbine is too small
to spin the alternator fast enough to keep up with the power
demands. This Pmax corresponds to the maxima of each of the
three parabolas in the power-versus-angular velocity plots in
Fig. 1, which are distinct for three flow rates Q1 > Q2 > Q3.
As flow rate increases, there is roughly a cubic increase in
Pmax. This paper describes a method to prevent turbo-alternator
stalling by regulating the load power, PL, if it becomes near
the maximum available power, Pmax.

Unfortunately, in many systems, such as ours, the flow
rate Q is unobservable. Thus the first problem is system
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Fig. 1. Geometric problem description and cubic maximum power growth
for three flow rates, Q1 > Q2 > Q3, where Q1 corresponds to the black curve,
Q2 to the blue dashed one, and Q3 to the green dotted one.

identification [1], and geometrically we must determine the
parameters describing parabolas like those in Fig. 1. The
system identification problem, for an unknown volumetric flow
rate Q, a given load angular velocity measurement ωL—the
velocity with which the alternator spins for some load—, and a
given used power measurement PL, is to determine an estimate
P̂max of Pmax. Additionally, an estimate ω̂ f of alternator free-
spin angular velocity ω f is necessary to describe the parabolas
in Fig. 1, where ω f is the velocity the alternator would spin
at under no load. A point (ωL,PL) in Fig. 1 lies on the
parabola defined by the flow rate Q, so for a fixed flow
rate Q, a parabola is defined with a particular Pmax and
ω f , and the point (ωL,PL) will travel along this parabola
for varying electromechanical loads. However, to complicate
matters further, Q is time-varying, so the parabola changes
over time and thus a real-time estimation method is necessary.

The turbine is stalling for load power PL if ωL ≤
ω f
2 , that

is, if the point (ωL,PL) lies to the left of the midpoint of the
parabola, (ω f

2 ,Pmax), as shown by the stalling region shaded
for the black curve in Fig. 1. Intuitively, the regulation problem



to prevent stalling is to ensure that the point (ωL,PL) lies
on the right half of the parabola. Given an estimate P̂max,
the second problem is to regulate the electromechanical load
power PL to be at most some 0< ρ< 1 percentage of available
power (that is, ensure PL ≤ ρPmax), assuming that P̂max ≈ Pmax.
A proportional-integral-derivative (PID) controller regulates
the load power PL drawn by the permanent magnet syn-
chronous motor (PMSM) and its load to ensure PL ≤ ρP̂max,
and additionally integral anti-windup is used to ensure that
when not actively regulating PL, the integral error does not
accumulate. Assuming ωL initially is larger than half ω f —
which is reasonable when initializing the system under low
or no load—the regulation problem is to ensure PL does not
come too close to the maxima. This high-level estimation and
regulation scheme is described in Fig. 2.
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Fig. 2. High-level regulation problem

II. SYSTEM IDENTIFICATION AND POWER REGULATION

The system (parameter) identification problem is to esti-
mate, for an unknown flow rate Q, 1) the maximum available
power the alternator may produce Pmax and 2) the alternator
free-spin angular velocity ω f , which is the velocity with which
the alternator spins with no load. Note that we work in a
discrete-time framework in which time steps are indexed by
k, so a variable x[k] represents the (potentially vector) value
of variable x at time k, and the index k is dropped when
clear. Because of real-time performance requirements, exact
convergence is not required, and some small ε error from the
actual parameter values is tolerable, such that P̂max[k]≈Pmax[k]
and ω̂ f [k]≈ ω f [k] for all times k.

The general identification problem given an observed vari-
able y[k] is,

y[k] =φ1[k]θ0
1 +φ2[k]θ0

2 + . . .+φn[k]θ0
n (1)

=φ
T [k]θ0, (2)

where φT [k] = φ1[k], φ2[k], . . ., φn[k] are called the regression
variables and are known functions (such as measurements) that
may depend on other known variables, determine the initial
model parameters θ0 = θ0

1, θ0
2, . . ., θ0

n. Only estimates θ̂ of θ0

will be attainable, so at time step k, the estimation error is

e[k] = y[k]−φ
T [k]θ̂[k].

We begin with the particular system model we are working
with, the downhole turbo-alternator powered by drilling fluid

flow. For this system, the nonlinear problem is to solve the
vector-valued function (Pmax[k],ω f [k]) = f (PL[k],ωL[k],ωL[k−
1]), where

y[k] =PL[k]

=φ
T [k]θ̂[k]

=
4Pmax[k]

ω f [k]
ωL[k]−

(
4Pmax[k]
ω f [k]2

+
J[k]
2Ts

)
ωL[k]2

+
J[k]
2Ts

ωL[k−1]2, (3)

φ[k] =
(
ωL[k],ωL[k]2,ωL[k−1]2

)T
, and (4)

θ̂[k] =
(

4Pmax[k]
ω f [k]

,−
(

4Pmax[k]
ω f [k]2

+
J[k]
2Ts

)
,

J[k]
2Ts

)T

, (5)

where all variables except the sampling time Ts and inertia
J have been introduced, and the exponent T denotes the
transpose. An approximation of turbine power is

PL = Pmax−
4Pmax

ω2
f

(ωL−
ω f

2
)2.

The first estimation method is simple interpolation using
a cubic curve fit of the alternator measured speed ωL[k] to
estimate alternator maximum available power P̂max[k]. The
curve being fit is the red one in Fig. 1, which passes through
Pmax and is roughly cubic in ωL. The interpolation method is
simply

P̂max[k] = a3ωL[k]3 +a2ωL[k]2 +a1ωL[k]+a0,

where the ai coefficients are the parameters of a cubic fit to
the red line in Fig. 1.

Interpolation is always accurate in an absolute sense; that
is, the value it determines cannot diverge. However it likewise
cannot converge, resulting in steady-state error. The usefulness
of this method is thus to seed initial estimates for more
sophisticated methods which do converge, which may require
initialization to a value near the extrema [2].

From the interpolated estimate P̂max[k] and the known quan-
tities, the free-spin ω̂ f [k] and inertia Ĵ[k] are determined as

ω̂ f [k] =
2ωL[k]√

1− PL[k]
P̂max[k]

+1
, and (6)

Ĵ[k] =
8P̂max[k]ωL[k] (ω̂ f [k]−ωL[k])

ω̂2
f

(
ω2

L[k]−ω2
L[k−1]

) . (7)

These quantities are finally transformed to yield approxima-
tions of the estimation variables, θ̂[k], as

θ̂0[k] =
4Pmax[k]

ω f [k]
, (8)

θ̂1[k] =−
θ̂0[k]
ω f [k]

− J[k]
2

, and (9)

θ̂2[k] =
J[k]

2
, (10)

where θ̂i[k] is the ith entry of the vector θ̂ at time step k.



The second estimation method is recursive least squares
(RLS) [1], and is initialized with θ̂ defined in (8), (9), and (10).
The RLS algorithm with exponential forgetting is described as

θ̂[k] = θ̂[k−1]+K[k]
(
y[k]−φ[k]T θ̂[k−1]

)
, (11)

K[k] = P[k−1]φ[k]
(
λ+φ[k]T P[k−1]φ[k]

)−1
, and (12)

P[k] =
1
λ

(
I−K[k]φT [k]

)
P[k−1], (13)

where P is called the inverse correlation matrix, K is the gain,
and λ= e−h/Tf is the forgetting factor, where h is the sampling
period and Tf is the time constant for exponential forgetting.
RLS with exponential forgetting performs a least-squares fit
on a finite number of past data samples [3]. The alternator
model above is nonlinear. However, it is possible to use the
RLS algorithm on nonlinear models if the output y can be
written linearly in terms of measured variables φ and estimated
quantities θ̂, which is the case as shown in (3), (4), and (5).
The desired unknowns can then be solved for as

ω̂ f [k] =−
θ̂0[k]

θ̂1[k]+ θ̂2[k]
, and (14)

P̂max[k] =
ω f [k]θ̂0[k]

4
. (15)

Under suitable assumptions (see, for instance [1]), the RLS
method ensures convergence of θ̂[k] to θ0 as k → ∞. This
means that with the previous transformation of θ̂[k] to P̂max[k]
and ω̂ f [k] in (15) and (14) respectively, that for any error ε> 0,
∃N > 0 such that

∣∣P̂max[N]−Pmax[N]
∣∣ < ε. Thus, it is reason-

able to assume that for a sufficiently large k, P̂max[k]≈ Pmax[k].
Power Regulation: Given P̂max[k] and assuming P̂max[k]≈

Pmax[k], the regulation problem is to ensure that the power con-
sumed by the system, PL[k]—primarily the PMSM and its load,
but also various power electronics—does not exceed some ρ

fraction of P̂max[k], guaranteeing PL[k]≤ ρP̂max[k] for all time
k. Complications may arise from the electromechanical load,
which like the flow rate, may also experience time-varying
disturbances. The PMSM is in a three-phase Y-configuration.
The PMSM is controlled with cascaded velocity and torque
PIDs as shown in Fig. 3. While not completely indicated in
the figure for simplicity of presentation, it is controlled using
standard field-oriented control [4] and eventually pulse-width
modulation (PWM). In Fig. 3 we have shown the alternator
load angular velocity ωL as being an output of the PMSM,
but this was in part for presentation. In actuality, ωL is a
measurement from the alternator as described above for the
estimation, but is also a function of the load on the PMSM,
since as the load varies, ωL will also vary by traveling along
a given parabola as described earlier in Fig. 1.

We have not indicated the load in the diagram, but it is a
pump interacting with the outside environment and is subject
to disturbance. Because of the disturbances, the load on the
pump may require anywhere from a small fraction of available
power, to a large fraction of available power (or potentially all
available power, which could induce a stall).

A PID was added as shown in Fig. 3 to regulate power
PL ≤ ρP̂max, and the output of this PID is then used as an input

PMSMPWM
+

-
PID-

+ PID

+
-

τs

τmωm

ωs τlimωlim

PL

RLSρPmax ωL, PLPlim

PIDAW

Fig. 3. PMSM control loop, where ωlim indicates the limiter for motor speed,
τlim is the limiter for motor torque, Plim is the limiter for available power, ωs
is the PMSM velocity set-point, ωm is the PMSM velocity measurement, τm
is the PMSM torque measurement, τs is the PMSM torque set-point, the RLS
block represents the estimation scheme previously described, and the PIDAW
block represents the power PID controller with anti-windup.

to the velocity PID via the speed limiter ωlim. Standard PID
regulation can ensure PL = ρP̂max[k] if PL ≥ ρP̂max[k], but if the
system is consuming power such that PL[k]< ρP̂max[k], then no
regulation is necessary. With a standard PID implementation,
however, integral error may accumulate, so our PID includes
integral anti-windup. Essentially, when not regulating, the
integral term for power regulation is ignored, and the PMSM
velocity set-point ωs is used instead.

III. EXPERIMENTAL SETUP AND RESULTS

The experimental setup is shown in Fig. 4, where another
PMSM is configured to drive the alternator and serve as a
flow-rate simulator. Rather than using an actual volumetric
fluid flow Q, as shown in Fig. 4, an additional PMSM was
configured as a flow rate simulator to drive the alterna-
tor at speeds corresponding to time-varying flow rates Q[k]
with power PQ[k] = Pm[k]. A simple National Instruments
LabWindows/CVI program was written to interface with the
motor controller of the flow-simulator PMSM; particularly,
the program reads a speed provided by the PMSM resolver,
then generates the desired torque command corresponding
to the desired flow rate. The system identification and PID
controllers for the load PMSM are implemented on a digital
signal processor (DSP) as indicated in Fig. 4. Using the speed
measurement from a resolver interfaced with the PMSM, along
with a given desired flow rate to simulate, a torque was
calculated to drive the motor along the corresponding power
parabola, like those in Fig. 1.

In downhole drilling scenarios, mud-pulse telemetry is used
to communicate with downhole computers via downlinks by
encoding a rectangular pulse train on top of the normal drilling
fluid flow Q, resulting in a decrease of Q’s magnitude by
5% to 25%, creating a time-varying flow-rate Q[k]. During
a downlink, the total flow rate typically ranges between 300
gallons per minute (GPM) and 600 GPM, with 400 GPM
being the most common. For instance, assuming the flow rate
is 400 GPM, the downlink may vary the flow rate down to
between 300 to 380 GPM. Observe that the high side of a
downlink, say at 400 GPM, may satisfy PL[k]< ρP̂max[k], but
the low side of the downlink may not, where, for instance, at
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300 GPM, PL[k] > ρP̂max[k], which could induce a stall. For
fast tracking, even if the power PID is not regulating, error
accumulation (integral windup) must not occur when PL is
not reaching the desired output of the power PID, as regulation
may be necessary at the next time instant due to variation in
Q, which can decrease Pmax and cause PL ≥ ρP̂max. The flow-
rate simulator was then configured to simulate this downhole
mud-pulse telemetry by varying the flow-rate magnitude.

Without anti-windup, experiments showed the power regu-
lator had to decrement the large integral error term that had
accumulated due to not regulating for a long period, resulting
in slow power tracking and an inability to prevent stalling.
All below experiments show time steps corresponding to the
discrete time steps k from earlier, which have a period of 62.5
milliseconds. Also, notice that the occasional, roughly periodic
large drops in used power PL[k] in several plots below are due
to load variation (in particular, the load PMSM reversing).

Fig. 5 illustrates power regulation while varying ρ such
that at different times more or less than ρ of P̂m is desired.
For stalling protection, ρ would be chosen a priori, and the
comparison to ρ is done by defining the actual ratio achieved,

ρa
∆
=

PL[k]
P̂m[k]

. (16)

This plot shows that the method can handle varying flow rates
and load variations when the load power requirement is such
that at some times PL requires regulation, but at other times
does not.

Fig. 6 illustrates the anti-windup and fast regulation to
prevent stalling when the low side of the downlink at 300 GPM
yields Pm such that PL > ρP̂m while at 325 GPM, regulation
is not needed since PL ≤ ρP̂m. Note how quickly the power
PID regulates PL upon a high-to-low flow-rate transition (for
instance, see ρa at about time steps 1299 and 2833), which is
what is needed for stalling protection. Note that some drops
in PL are due to the time-varying electromechanical load.
Thus, Fig. 6 illustrate that the power PID achieves reasonable
tracking and avoids integral windup.

Finally, we illustrate an example of actual stalling protection
in Figs. 7 and 8 using choices of ρ = 0.8 and ρ = 0.85,
respectively, which were empirically determined. For the
remaining plots, the square-wave downlink simulation had
a period of 16 seconds. The load was again configured to
illustrate anti-windup, that is, the load is such that the high side
of the downlink simulating 330 GPM does not require power
regulation, whereas the low side at 300 GPM does require
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Fig. 5. Power regulation from 240 GPM to 270 GPM, where ρ is in red, ρa
in purple, P̂m in blue, and PL in green.
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regulation. During a stall, potentially uncontrolled operation of
the system can occur because, as the turbine slows, alternator
output voltage will drop, causing a cascade of power losses to
different subsystems, such as the electromechanical load being
regulated. Because of the interaction of the cascaded control
loops, a stall is not catastrophic in this system, but instead
induces oscillations on the load, because the load increases
with PMSM speed, as seen by the red line in Fig. 9, which is
the rectified alternator voltage in a stall. In Fig. 9, the red line
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shows the alternator voltage for ρ = 0.95, which oscillates as
the turbine simulator cannot provide enough power on the low
side of a downlink. This is also clearly seen between time steps
371 and 704 in the power plot of Fig. 10, which corresponds
to the same experiment. Thus, because of load fluctuations,
ρ = 0.95 does not prevent stalling, so we settled on a lower
value.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a system identification method to
estimate the maximum available power a turbo-alternator pro-
duces for some unknown volumetric flow rate, and then uses
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Fig. 10. Stall due to too high choice of ρ at 0.95, with downlink from 300
GPM to 330 GPM, where ρ is in red, ρa in purple, P̂m in blue, and PL in
green.

this estimate in stalling prevention. To ensure robustness, the
method described in this paper should be tested in a real flow
loop, rather than simulated in the experimental setup described
in Fig. 4. Modern methods for varying the forgetting factor of
the RLS algorithm from the literature could be employed to
see if they improve tracking performance (see for instance,
[3]). We could see try to improve estimation by either using
more special-purpose least-squares algorithms such as [5],
[6], [7] or a nonlinear formulation of the problem [8] with
higher-order terms of the alternator plant model. While not
reported here, we performed a limited study of numerical
stability of our implementation of the recursive methods, but
more work is needed [9]. A formalized stability analysis of
the interaction of the various saturations and the anti-windup



would be interesting, perhaps using the tools of [10], [11],
and we could perhaps improve our anti-windup technique
using [12].
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