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Abstract. Satellite systems are beginning to incorporate complex autono-
mous operations, which calls for rigorous reliability assurances. Human
operators usually plan satellite maneuvers in detail, but autonomous op-
eration will require software to make decisions using noisy sensor data
and problem solutions with numerical inaccuracies. For such systems, for-
mal verification guarantees are particularly attractive. This paper presents
automatic verification techniques for providing assurances in satellite ma-
neuvers. The specific reliability criteria studied are rendezvous and con-
junction avoidance for two satellites performing orbital transfers. Three
factors pose challenges for verifying satellite systems: (a) incommensurate
orbits, (b) uncertainty of orbital parameters after thrusting, and (c) nonlin-
ear dynamics. Three abstractions are proposed for contending with these
challenges: (a) quotienting of the state-space based on periodicity of the
orbital dynamics, (b) aggregation of similar transfer orbits, and (c) over-
approximation of nonlinear dynamics using hybridization. The method’s
feasibility is established via experiments with a prototype tool that com-
putes the abstractions and uses existing hybrid systems model checkers.

1 Introduction

As greater numbers of satellites are deployed and maintained in space, there
is a growing need for autonomy in their operation. Software-based control sys-
tems enable autonomy by performing routine tasks automatically and mini-
mize the need for human supervision. Given the high cost of space systems, a
high level of reliability assurance is crucial. To provide such assurances, formal
methods can complement traditional testing and simulation-based methods,
and can also help find defects early in the design process.
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Space Scholars Program at the Air Force Research Laboratory at Kirtland Air Force Base. The Illinois re-
searchers were also supported by NSF CAREER Grant 1054247.
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Fig. 1. Orbital transfer for two satellites: ν1 and ν2
are the angular positions of the passive and active
satellite, respectively, a is the semi-major axis (max dis-
tance from the ellipse center to the ellipse edge), and p
is the semi-latus rectum (distance from foci F to ellipse
in direction perpendicular to the semi-major axis).

Initial
ν̇1 = f(ν1, p1, e1)
ν̇2 = f(ν2, p2, e2)

Transfer
ν̇1 = f(ν1, p1, e1)
ν̇2 = f(ν2, p2, e2)

Rendezvous
ν̇1 = f(ν1, p1, e1)
ν̇2 = f(ν2, p2, e2)

Init: νl1 ≤ ν1 ≤ ν
u
1

Init: νl2 ≤ ν2 ≤ ν
u
2

Guard: GIT
Reset: ν′2, p

′
2, e
′
2 ⊆ RIT

Guard: GTR
Reset: ν′2, p

′
2, e
′
2 ⊆ RTR

Fig. 2. Hybrid automaton for a two-stage ren-
dezvous maneuver. The angular positions of the pas-
sive (ν1) and active (ν2) satellites evolve accord-
ing to the nonlinear dynamics ν̇i = f(νi, pi, ei) =√
µ/p3i (1 + ei cos νi)

2. Initial conditions are nonde-
terministically selected from the indicated ranges.

In this paper, we propose and validate a methodology for verifying auto-
nomous operations between a pair of satellites. To the best of our knowledge,
this is the first application of automatic verification to autonomously maneu-
vering satellite systems. The sound overapproximation approach presented in
this paper allows us to nondeterministically model inaccuracies due to sensor
measurements and numerical errors, which can cause serious errors in simu-
lations. A passive satellite moves in a specific orbit, and an active satellite per-
forms a software-controlled orbital transfer (see Fig. 1). Orbital transfers are
performed when, for example, one satellite services (refuels or repairs) another
satellite [9]. We aim to verify two properties: (A) conjunction avoidance: two
passive (non-thrusting) satellites do not come closer than a certain distance, and
(B) rendezvous: given a passive and an active satellite, the two satellites come
closer than a certain distance of each other during a specified interval of time.

Our approach for verification is first to compute the reach set of an abstrac-
tion of the system and then to check that this set satisfies the above properties.
Consider two satellites on different orbits with periods T1 and T2. The state of
the satellites on their orbits is completely specified by the angular positions ν1
and ν2. In verifying rendezvous or conjunction avoidance, we are interested in
computing the set of angular position pairs (ν1, ν2) that are reachable from a
given set of initial angular positions. However, we have to overcome the fol-
lowing technical challenges in computing the reach set.

First, we observe that for incommensurate orbits (orbits with an irrational ra-
tio of periods T1/T2) the unbounded-time reach set is dense in the set of all
possible relative angular positions, [0, 2π]2. This means that for incommensu-
rate orbits, all (ν1, ν2) pairs are eventually visited arbitrarily closely. Therefore,
we will focus on bounded-time versions of rendezvous or conjunction avoid-
ance. In conjunction avoidance, for example, it suffices to verify safety up to
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a certain time horizon because new ground-based measurements are available
that can be used as updated initial conditions.

Second, for the active satellite 2 to rendezvous with the passive satellite 1,
2 must burn its thrusters to enter a new orbit called a transfer orbit to intercept
1 (see Fig. 1). The transfer orbit 2 follows depends crucially on the position
where it burns its thrusters. The magnitude and direction of the thrusting are
determined by numerically solving a standard orbital dynamics problem called
Lambert’s problem. Due to such numerical methods and other sources of inaccu-
racy like sensor noise, there are uncertainties in the transfer orbit parameters.

Third, satellite trajectories are described by nonlinear differential equations.
With orbital transfers, these differential equations change, and we obtain a sys-
tem description as a nonlinear hybrid automaton. The software tools available
for computing the reach set of such automata are limited, and thus, we resort to
overapproximating the reach set. To address these challenges, we present three
abstraction techniques.

Sequence of abstractions: Satellite orbits exhibit periodic motion, so the an-
gular position of the satellite can be bounded between 0 and 2π. The transfer
orbit parameters are determined by numerical methods and orbit determina-
tion measurements use noisy sensors. Thus, an exact transfer orbit may not
be known, so we develop an abstraction for parameter uncertainty. The con-
crete model nondeterministically specifies the movement of the satellite along
all (infinitely many) transfer orbits. That is, there may be infinitely many modes
of the concrete hybrid automaton. Since the active satellite stays in the transfer
orbit for a short period of time—an upper time bound is an input to Lambert’s
problem—we aggregate the motion along all such transfer orbits into a single
mode of the hybrid system where the continuous evolution is defined by dif-
ferential and algebraic equations. To accomplish this, we exploit monotonicity
of the transfer orbit dynamics. For computing overapproximations of the reach
set, nonlinear dynamics can be overapproximated by linear or rectangular hy-
brid automata. We employ the (now standard) hybridization technique [6, 10].
The state space of each mode of the original automaton is partitioned into a set
of zones Z , and within each zone Z ∈ Z , the nonlinear differential equation
ẋ = f(x) is abstracted by simpler dynamics.

Contributions: The abstraction methods we develop—particularly transfer
orbit aggregation—allow us to perform verification that compensates for nu-
merical errors in the methods used to solve problems without analytic solu-
tions that frequently arise in astrodynamics. We developed an automated ab-
straction tool to work on the class of periodic hybrid automata used to model
systems like the satellite case studies in this paper. The abstraction tool is fully
automatic, generating inputs to existing reachability tools for hybrid automata
(HyTech [15], PHAVer [12], and SpaceEx [13]), and allows us to automatically
verify time-bounded safety properties. Specifically for the case studies, we veri-
fied conjunction avoidance and rendezvous for several realistic examples, such
as non-coaxial orbits, non-coplanar orbits, low-earth orbits, medium earth or-
bits, geosynchronous orbits, and geostationary orbits. The experimental results
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demonstrate the utility of different approximation methods and their associ-
ated complexities. The abstractions we defined are useful by themselves and
can be applied independently or together for other systems that require hy-
bridization, are periodic, or are dependent on numerical solutions. Finally, we
believe that the family of nonlinear hybrid models presented here can serve as
realistic benchmarks for future verification research.

Related work: Most prior work on formal verification of satellite systems re-
quires manual reasoning, but we mention a couple of semi-automatic methods.
The algebraic framework based on Gröbner, described in [14] and extended
in [1], can be used to determine the global minimum and maximum separation
between two satellites. In contrast, our technique provides guarantees about all
reachable states up to a bounded time horizon. Other recent work uses veri-
fied integration methods and interval analysis for proving collision avoidance
of satellite systems [21]. None of these works handle orbital transfers.

There are a variety of hybrid systems reachability algorithms. We use the
hybridization method from [6], which was extended to handle larger classes of
nonlinear dynamics in [10]. Another hybridization method is developed in [2],
which was applied to a truck rollover example with nonlinear dynamics in [3].
There is some theoretical work on periodic hybrid systems [11], and some case
studies from circuits use reachability analysis for periodic hybrid systems [4].
Our work does not use an on-the-fly hybridization approach like some of the
works just referenced, but we believe this was reasonable due to the periodicity
of the examples studied.

2 Astrodynamics and Hybrid Systems Background

In this paper, a satellite is an object moving around the Earth under the influence
of the latter’s gravitational force. By Kepler’s first law, the orbit of a satellite is
an ellipse with the Earth at one of the foci, called the main focus, and thus the
satellite remains in the same plane in 3-dimensional space.4 Different orbits
may or may not be coplanar or coaxial. Given the masses of the Earth and the
satellite, and the relative position and velocity of the satellite (with respect to
Earth), the orbit is uniquely defined.

Fixing an orbit, a satellite’s motion in polar coordinates is given by the fol-
lowing equation, which captures Kepler’s law of equal areas:

ν̇ = f(ν, p, e) =

√
µ

p3
(1 + e cos ν)2, (1)

where ν is the angle of the satellite with respect to the major axis as measured
from the main focus (known as the true anomaly), e is the eccentricity, p = a(1−
e2) is called the semi-latus rectum, a is the semi-major axis, and µ is the geocentric
gravitational parameter. See Fig. 1 for a graphical depiction of these quantities.

4 Generally, an orbit is some conic section, but we assume orbits are circular or elliptical (the eccentricity e of
the orbit satisfies 0 ≤ e < 1).
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Fig. 3. Verification of conjunction
avoidance over a single period for
d = 5000km. The set Pd(o1, o2) of
(ν1, ν2) points where the distance
between the two orbits is at most
d is shown in black, and the time-
bounded reach set is in red. The or-
bits are described by the parameters
e1 = 0.05, p1 = 7074km, e2 =
0.10, and p2 = 7748km.
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Fig. 4. Visualization of abstract
system B. The polygons due to
the hybridization abstraction A3

partition the state space, and
green lines are transitions be-
tween partitions. Black lines be-
tween centers of partitions are
quotient transitions due to A1.
Partitions on the post-state of a
quotient transition are duplicated
(e.g., see blue triangle labeled 11).
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Fig. 5. ReachδB for a pair of ellip-
tical orbits with parameters e1 =
0.33, a1 = 2, e2 = 0.5, and
a2 = 1. Black arrows are a vec-
tor field of the nonlinear dynamics.
Error due to overapproximation of
dynamics grows with time. Parti-
tion size was 15× 15 degrees.

We refer the interested reader to [22, 8, 7] for derivations of this equation. Given
an angle ν, Cartesian coordinates of the satellite are specified by

r =
p

1 + e cos ν
, x = r cos ν, and y = r sin ν. (2)

We consider verification of pairs of satellites performing the rendezvous op-
eration (refer to Fig. 1). One passive and one active satellite each begin in respec-
tive initial orbits. In order to rendezvous with the passive satellite, when the
active satellite arrives at a certain pre-calculated angular position, it switches
(by firing its thrusters) to a transfer orbit. We will verify properties related to
the proximity of the two satellites measured by their Euclidean distance in 3-
dimensional space. Given two orbits o1, o2, and a distance threshold d, we de-
fine the set Pd(o1, o2) ⊆ R2 to be all (ν1, ν2) values at which the distance be-
tween the orbits is at most d. For coplanar orbits,

Pd(o1, o2)
∆
= {(ν1, ν2) : ||(x1, y1)− (x2, y2)|| ≤ d} (3)

where ||·|| is the 2-norm, and the Cartesian coordinates of each point on the orbit
are determined by (2). See Fig. 3 for an example of this set. For non-coaxial and
non-coplanar orbit pairs, the expression for Pd(o1, o2) is analogous, albeit more
complex.5

While thrusters typically actuate by burning over an interval of time, it is
standard practice to model the actuation as an instantaneous change in dynam-
ics due to the short duration of this burn time compared with the timescales
involved in orbital motion. However, we note that approaches have been for-
mulated to consider these finite-duration effects [20]. To rendezvous with the

5 Descriptions of non-coaxial and non-coplanar orbits require the introduction of more orbital parameters,
which for brevity we chose not to do, but we note that all the methods presented in this paper apply for
non-coaxial and non-coplanar orbits.



6

passive satellite, usually the active satellite performs two burns. The first burn
puts the active satellite on an intermediate transfer orbit that intersects the pas-
sive satellite’s orbit. This burn is modeled as an instantaneous switch from the
initial orbit parameters (eI , pI) to the transfer orbit parameters (eT , pT ), and
causes an instantaneous switch in the dynamics of ν̇2 in (1). The second burn
makes the active and passive satellites’ orbits coincide and is modeled by an-
other switch. One way to determine the transfer orbit parameters is by solving
a problem called Lambert’s problem, which is discussed in more detail in Sec-
tion 4. Next, we discuss how such orbital transfers can naturally be modeled in
the hybrid automata framework.

A hybrid automaton (HA) is a (possibly nondeterministic) state machine with
state that can evolve both instantaneously (through discrete transitions) and over
intervals of time (according to trajectories). In the satellite system model, the
continuous variables of the HA model the angular positions of the satellites,
and the discrete variables model the orbital parameters. The HA of Fig. 2 shows
a two-burn rendezvous maneuver described earlier. Informally, when the HA
is in a certain location (shown by the ellipses), the satellites move along specific
orbits. That is, their angular positions evolve according to the differential equa-
tions corresponding to that location. The discrete transitions (shown by arrows)
model the instantaneous burns.

The HA models the angular positions ν1, ν2 of two satellites. The passive
satellite (ν1) always moves along the same orbit specified by constant semi-
latus rectum p1 and eccentricity e1. The active satellite (ν2) begins in an initial
orbit specified by parameters pI and eI . If the guard predicate GIT is satisfied,
then the active satellite must execute a burn that puts it on a transfer orbit. The
transfer orbit is specified by the reset map RIT that changes the valuations of p2,
e2, and ν2. Resetting the variable ν2 is needed to model transfer orbits that are
not coaxial with the initial orbit. That is, the same point in Cartesian coordinates
may no longer correspond to the same polar coordinates because the transfer
orbit may not be coaxial with the initial orbit. The second burn is modeled in
an identical fashion, and sequences of burns can be modeled similarly.

Now we define the HA formally based on previous HA modeling frame-
works [5, 18, 16]. Variables are associated with types and are used as names for
state components, such as the angular positions and the orbital parameters. For
a set of variables V , a valuation v is a function that maps each variable v ∈ V
to a point in its type. The set of all possible valuations is val(V ). For a valuation
x, we use x.x to denote the value of the variable x ∈ V .

The concrete HA is a tuple A ∆
= 〈V , Q, Θ, Edg, Grd, Rst, Flow, Inv〉, where:

(a) V ∆
= {X, loc, p1, e1, p2, e2}. V is a set of variables, where X ∆

= {ν1, ν2} are
real-valued continuous variables, p1, e1, p2, and e2 are real-valued discrete vari-
ables modeling the orbit parameters, and loc ∈ L is a discrete variable of type
L

∆
= {I, T,R}, where elements represent respectively the initial, transfer, and

rendezvous orbits. (b) Q ∆
= val(V ) is the set of states. For a state x ∈ Q, the

valuation of x.loc is called the location; along with the valuations of the discrete
variables p1, e1, p2, e2, it describes the discrete state. The valuation of the con-
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tinuous variables X , that is {x.x : x ∈ X}, is called the continuous state and is
referred to as x.X . (c) Θ ⊆ Q is a set of initial states. (d) Edg = {(I, T ), (T,R)}
is the set of edges. (e) Grd : Edg → Q is a function that associates a guard (a
valuation of V that must be satisfied) with each edge. The guards are shown
in Fig. 2. Grd((I, T )) ∆

= GIT (ν1, ν2) and Grd((T,R)) ∆
= GTR(ν1, ν2); that is, they

are left as parameters. (f) Rst : Edg → (Q → 2Q) is a function, called the re-
set map, associated with each edge. A reset map associates a set of states with
each edge: Rst((I, T )) ∆

= ν′2 = RIT (ν1, ν2) and Rst((T,R))
∆
= ν′2 = RTR(ν1, ν2).

(g) Flow : L → (Q → 2Q) associates a flow map with each location. Here, for
l ∈ L and where f is from (1), we have Flow(l) = [f(ν1, p1, e1); f(ν2, p2, e2)].
(h) Inv : L → 2Q associates an invariant with each location. Here we assume
urgency, so Inv(I) = R2 \Grd((I, T ))◦ and Inv(T ) = R2 \Grd((T,R))◦, where,
for a real-valued set R, R◦ is the interior of R.

The semantics of HA A are defined in terms of sets of transitions and tra-
jectories. The set of transitions D ⊆ Q × Q is defined as follows. We have
(v,v′) ∈ D if and only if for e = (v.loc,v′.loc), (a) e ∈ Edg, (b) v ∈ Grd(e),
and (c) v′ ∈ Rst(e)(v.X). A trajectory forA is a function τ : [0, t]→ Q that maps
an interval of time to states such that the following hold. (a) For all t′ ∈ [0, t],
τ(t′).loc = τ(0).loc, that is, the discrete state remains constant. (b) (τ ↓ X),
that is, the restriction of τ to X is a solution of the differential equation spec-
ified by the flow function Ẋ = Flow(τ(0).loc)(τ(0)). (c) For all t′ ∈ [0, t],
τ(t′) ∈ Inv(τ(0).loc). The set of all the trajectories of A is written T .

An execution ofA is a sequence α = τ0τ1 . . ., such that (a) each τi ∈ T , (b) for
each i, (τi(t), τi+1(0)) ∈ D, where t is the right endpoint of the domain of τi, and
(c) τ0 ∈ Θ0. The set of all executions of A is denoted by ExecsA. A state v ∈ Q
is said to be reachable if there exists a closed execution α that ends at v. The set
of all reachable states of A is denoted by ReachA. The set of states reachable
of A within δ time is denoted by ReachδA and is called the set of bounded-time
reachable states (see Fig. 5 as an example). We define ReachA(t) as the set of
states that are reachable by executions of A at exactly t time, and for t ≤ δ,
ReachδA(t) is defined analogously.

We writeDA, TA,RstA, VA, etc., for the components ofA if the automaton is
not clear from context. Similarly, when necessary to disambiguate components
of HA A from those of HA B, we use subscripts such as QA, InvA, RstB, etc.
Given a pair of HA A and B, B is said to be an abstraction for A if ExecsA ⊆
ExecsB. It follows that if B is an abstraction of A, then ReachA ⊆ ReachB. Also,
if B is safe with respect to some property (set), then so is A.

3 Abstractions and Analysis

To verify conjunction avoidance and rendezvous properties, we compute bou-
nded reach sets, which is difficult for nonlinear HA. In this section, we describe
three independent abstractions of periodic, nonlinear HA (quotienting, transfer
orbit aggregation, and hybridization), and then apply their composition.
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Quotienting: The quantities ν1 and ν2 model the angular position of the satel-
lites on their orbits, which are periodic with period 2π. We define a quotient HA
A1 based on an equivalence relation ∼:

x ∼ x′ ⇐⇒ ∃k1, k2, ∀ i ∈ {1, 2}, x.νi = x′.νi + ki2π.

Using ∼, we reduce the unbounded state space to a bounded one by adding
transitions to each mode of the concrete HAA. If some νi reaches the 2π bound-
ary, it is reset to 0. These are the only edges and resets we add, since ν̇1 > 0 and
ν̇2 > 0 (the angular positions are monotonically increasing), but in general, it
may be necessary to add transitions when νi = 0 if ν̇i < 0. A1 is bisimilar to A.

Transfer orbit aggregation: Solving the Lambert problem yields a unique trans-
fer orbit, where the trajectory of the active satellite would begin from a ν2 angle
called the burn point. There is also a constraint on the passive satellite’s angle so
that the two satellites can rendezvous, so the burn point is a pair of (ν1, ν2) val-
ues. However, the burn point is not known precisely, so a burn actually takes
place within a range of (ν1, ν2) values. Each (ν1, ν2) pair will place the active
satellite on a slightly different transfer orbit. Thus, the transfer mode must take
into account a set of different possible transfer orbits. The following abstraction
aggregates this set of transfer orbit parameters into a single location of the HA.

First, we define the set of possible transfer orbits that could be reached by
burning at different points.

Definition 1. For any setO of transfer orbit parameter pairs o ∆
= (p, e) ∈ O, consider

Ri ⊆ R for i ∈ {1, 2, . . . , k} such that ∪iRi = R, where ∀i ∈ {1, 2, . . . , k},

(i) ∃(pmin, emin) such that ∀o = (p, e) ∈ O, ∀ν2 ∈ Ri, we have fmin(ν2)
∆
=

f(ν2, pmin, emin) ≤ f(ν2, p, e), and
(ii) ∃(pmax, emax) such that ∀o = (p, e) ∈ O, ∀ν2 ∈ Ri, we have fmax(ν2)

∆
=

f(ν2, pmax, emax) ≥ f(ν2, p, e).

That is, fmin(ν2) and fmax(ν2) are lower and upper bounds of the ν̇2 dynamics for a
particular region Ri.

Given a collection {Ri} that satisfies the requirements in Definition 1, the
HA with transfer orbit aggregation is a tuple A2

∆
= 〈V , Q, Θ, Edg, Grd, Rst, Flow,

Inv〉, where: (a) V = VA, (b) Q = QA, (c) Θ = ΘA, (d) Edg = EdgA, (e) Grd :
GrdA, and (f) Rst : RstA, but now the guard and reset maps between modes
correspond to sets of ν1, ν2 values. (g) FlowA2

: Using the set of all (p, e) pairs
of O, the ν̇2 dynamics for the active satellite in the transfer mode are defined
piecewise over all Ri such that for each Ri, we have ν̇2 ∈ [fmin(ν2), fmax(ν2)].

The dynamics of A2 and A are identical except when the active satellite is
in the transfer mode. For that mode, the dynamics corresponding to any exe-
cution of A are contained within the dynamics of A2 by construction, since A2

creates piecewise upper and lower bounds on ν̇2. Thus we have that A2 is an
abstraction of A.

Hybridization: Our approach for both verification problems relies on com-
puting the reachable states ReachA of the HA A. Since the software tools for
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computing the reach set of nonlinear HA are not as well-developed as those
for linear and rectangular HA, we abstract the given nonlinear HA by a HA
with simpler dynamics. We employ the hybridization approach [6, 10], where the
state-space of A is partitioned into a finite number of zones (see the polygons
in Fig. 4). The nonlinear dynamics are conservatively approximated within each
zone with simpler dynamics—in our case either (a) rectangular or (b) linear
(affine) dynamics.

Given HA A and a partition function P that returns, for each location l ∈
L, a partition {I1, . . . , Ik} such that ∪kj=1Ij = Inv(l), we define the hybridiza-
tion abstraction as the tuple A3

∆
= 〈V , Q, Θ, Edg, Grd, Rst, Flow, Inv〉, where:

(a) V = VA ∪ zone, where zone is a discrete variable of type Zl = {1, . . . , k}
and identifies the partitions of each mode. (b) Q = val(VA3) is the set of states.
Now, for x ∈ Q, the valuations of x.loc, x.zone, and the orbit parameter vari-
ables describe the discrete state. (c) Θ ⊂ Q. (d) Edg ⊆ (L × Z) × (L × Z) is
defined as follows: ((l, z), (l′, z′)) ∈ Edg if and only if either (i) l′ = l and Iz′

is adjacent to Iz , or (ii) l′ 6= l and Iz is contained in Iz′ . (e) Grd : Edg → Q is
defined as Grd(((l, z), (l′, z′))) = InvA(l) ∩ Iz . (f) Rst : Edg → (Q → 2Q) is
defined as (i) if l = l′, then the reset is the identity, and (ii) RstA(l, l′), other-
wise. (g) Flow : (L × Z) → (Q → 2Q) is the flow map defined as follows. For
each satellite i ∈ {1, 2}, location l, and zone z, we associate either (i) rectangular
differential inclusions: ν̇i ∈ [ai, bi] for

ai = min
x.νi∈Iz

FlowA(l)(x) and bi = max
x.νi∈Iz

FlowA(l)(x),

or (ii) affine (linear) differential inclusions: ν̇ = Aν + b± ε, for

A = ∇FlowA(l)(x)|c · (ν − c), b = f(c), ε = max
x.ν∈Iz

||FlowA(l)(x)−Aν − b|| ,

where c ∈ R2 is the centroid of z, and∇FlowA(l)(x)|c is the Jacobian evaluated
at c of FlowA(l)(x). (h) Inv : (L× Z)→ 2val(X) is InvA3

(l, z)
∆
= Inv(l) ∩ Iz .

By construction, the dynamics of A are contained in the conservative over-
approximation, and a proof thatA3 is an abstraction ofA appears in [6]. Each of
the individual abstractions are sound and can be implemented independently
of one another. Thus, applying the abstractions A1, A2, and A3 sequentially to
A yields another HA called B (visualized in Fig. 4), which is an abstraction of
A, since the composition of abstractions is sound.

Impossibility of unbounded model checking: Consider two arbitrary orbits o1
and o2 with periods T1 and T2. These two orbits are said to be relatively periodic if
T1

T2
is rational; otherwise, they are said to be incommensurate. For circular orbits,

the right-hand side of (1) reduces to a constant, and consequently, the reach set
can be computed exactly. However, if the ratio of the orbits’ periods is irrational,
this is impossible. The proof of this follows from the mathematical result that
the reach set of a point with irrational slope on the unit torus (or the unit square
with billiards reflections at edges) is dense [19].
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Fig. 7. Transfer orbit calculation:
Lambert burn vector ∆V applied
to the original burn angle νT2 and
neighboring point ν̂2. Resulting ve-
locity vectors and transfer orbits
shown.

4 6 8 10 12 14
64

66

68

70

72

74

76

ν
1

ν 2

Fig. 8. Example verification of ren-
dezvous for d = 500km. Blue
set is the distance set Γd. Red set
is the time intersection reach set,
Reach∆B (t) for t = TR, the ren-
dezvous time.

4 Computation of Abstractions

In this section, we describe how the transfer orbit aggregation abstraction is
computed in our abstraction tool. We use boldface to indicate vectors.

First, we summarize how an ideal thrust vector∆V is computed by numer-
ically solving Lambert’s problem. Then, we show how∆V is applied to points
nearby the original burn point. This yields uncountably infinitely many trans-
fer orbits, each denoted by oi, where i ∈ O for an uncountably infinite index set
O. We collapse this set of transfer orbits to a single mode by overapproximating
the dynamics to include all possible transfer orbits.

Computation of ideal thrust vector ∆V : To calculate the orbit of the active
satellite following a burn, we use an equivalent representation of the orbit
dynamics—the position and velocity of the satellite in 3-dimensional Cartesian
space. Recall that a satellite’s orbit is completely described by (1) with param-
eters p, e, and angular position ν. In Cartesian coordinates, the satellite is de-
scribed by a position vector r and velocity vector V . We will use both of these
representations in the following procedure to calculate the transfer orbit.

Let TL be the time when the (instantaneous) burn occurs, and let the an-
gular positions of the two satellites at TL be (ν1(TL), ν2(TL)). Let the time-to-
rendezvous be TR. The next sequence of steps describes how to compute the
magnitude and direction of force that the burn applies to the active satellite.
(a) ri(TL) and V i(TL) are computed at the passive and active satellites’ initial
positions νi(TL). (b) Given the time of transfer TR, ν1(TL + TR) is computed by
numerical integration of (1), and then the rendezvous location, r1(TL + TR), is
computed using ν1(TL+TR). (c) The active satellite’s states r2(TL) and V 2(TL),
and desired position for rendezvous r2(TL + TR) = r1(TL + TR), are used
to solve Lambert’s problem to determine the velocity V ′2(TL) that defines the
transfer orbit. We then convert this velocity V ′2(TL) to the transfer orbit param-
eters eT and pT needed to achieve rendezvous.

From the transfer orbit parameters, the required change in velocity at TL
is ∆V = V ′2(TL) − V 2(TL). In reality, the time of and angular positions at
burning are not known exactly, and as a result, the calculated ∆V puts the
active satellite on one of a collection of transfer orbits.
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Expanding the Lambert burn angle to a range of angles: To construct A2 for ren-
dezvous, we have to instantiate GrdIT . Consider a point representing the min-
imum energy burn in the ν1, ν2 state space. Uncertainties in initial conditions,
measurements, and numerical errors in position estimation cause the concrete
system to have a larger guard. Thus, this is also incorporated into the abstract
system. As a result, a given execution of the automaton may perform the burn
within a set of different angular positions (and velocities). Also, the partition-
ing scheme around this minimum burn point must be adjusted to accommodate
the larger guard, as shown in Fig. 6. Next, we outline the details of calculating
transfer orbits ofO for points within a small neighborhood of an ideal Lambert
burn point. Let (νT1 , νT2 ) = GIT be the ideal Lambert burn point. In general,
we will add ∆V to neighboring points to obtain a new V and then convert
to the equivalent angular representation as shown in Fig. 7. The following cal-
culations pertain only to the active satellite for some ν̂2 location. Hence, we
denote all initial orbit quantities with subscript I and transfer orbit quantities
with subscript T , so V 2(TL) = V I and V ′2(TL) = V T .

(a) Determine nearby points within guard set of the active satellite: ν̂2 ∈ Λ
∆
=

[νT2 − ε, νT2 + ε]. (b) For ν̂2, calculate the position and velocity vectors in Carte-
sian coordinates using the orbital parameters of the initial orbit. For converting
between the angular representation and Cartesian representation, we introduce
an eccentricity vector eI and angular momentum vector hI [22]. The vectors eI
and hI give direction with respect to the axes of the elliptical orbit. We write eI ,
hI , etc., without vector boldface, as the magnitude of the corresponding vec-
tor. The conversion is done by computing: pI = aI(1 − e2I), eI = [eI ; 0; 0],
hI = [0; 0;

√
µpI ], and

V I =
µ

h2
I

hI × (eI + [cos(ν̂2); sin(ν̂2); 0]),

rI =
pI

1 + eI cos(ν̂2)
, and rI = rI [cos(ν̂2); sin(ν̂2); 0].

(c) Now, add the Lambert burn vector ∆V corresponding to the angle νT2 to
the velocity vector V I at ν̂2, V T = V I + ∆V . (d) From the position (note
that rI = rT ) and resultant velocity vectors at ν̂2, calculate the corresponding
transfer orbit parameters:

hT =V T × rT , eT =
1

µ
(V T × hT )−

rT
rT
, aT =

hT
µ

(1− e2T ),

pT =aT (1− e2T ), and ν′2 =arctan

(
eT [2]

eT [1]

)
,

where for a vector x, the notation x[j] accesses the jth component of that vector.
Here, ν′2 is the reset value for ν2, which corresponds to the angular shift in the
coordinate frame of a single transfer orbit. Since there is a transfer orbit for each
ν̂2 ∈ Λ, the reset for ν2 will be in a range defining the reset RIT .

Now that we can calculate transfer orbits for points from Λ, there are two
issues to address. First, the dynamics of the transfer mode in the abstractionA2

must include all possible transfer orbit dynamics. To address this, we revisit (1).
The parameters eT and pT for the transfer orbit are now defined in terms of
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ν̂2 for ν̂2 ∈ Λ. That is, p(ν̂2) and e(ν̂2) are functions representing all possible
transfer orbit parameters. Thus, the nonlinear differential inclusion describing
all transfer orbits of the active satellite is ν̇2 =

√
µ/p(ν̂2)3(1 + e(ν̂2) cos(ν2))

2.
In general, the definition of A2 requires the dynamics to be described by a
function with upper and lower bounds. Thus, rectangular dynamics satisfy this
definition, although we could use any appropriate upper and lower bounded
function, e.g., the linear overapproximation used in hybridization. We construct
rectangular dynamics for A2 by solving the following optimization problem:

ν̇2min = min
ν2∈Ri ∧ ν̂2∈Λ

f(ν2, p(ν̂2), e(ν̂2)), ν̇2max = max
ν2∈Ri ∧ ν̂2∈Λ

f(ν2, p(ν̂2), e(ν̂2)).

For a particular partition in the transfer mode, we first minimize or maximize
cos(ν̂2). Now, replacing cos(ν2) with this optimized value in ν̇2 will allow opti-
mization over the single variable ν̂2.

The second issue is that since there are a continuum of possible transfer
orbits, we must generalize the distance threshold set Pd from (3) that was pre-
viously defined for a single pair of orbits. If the active satellite is on one of many
possible transfer orbits, then to ensure the rendezvous property is satisfied, the
satellites must be within d for each of these possible orbits. We ensure this by
calculating a distance set Γd that holds for every transfer orbit. The active satel-
lite’s position is defined in terms of the functions p(ν̂2), e(ν̂2) such that:

Γd
∆
= {(ν1, ν2) : ||(x1, y1)− (x2(p(ν̂2), e(ν̂2)), y2(p(ν̂2), e(ν̂2)))|| ≤ d} . (4)

In practice, we form this as an optimization problem by maximizing the norm
from (4) over ν̂2 for any particular point (ν1, ν2) in the state space. If this max-
imum distance is within the threshold d, then for any transfer orbit, the active
satellite at that point is within d of the passive satellite. For both of these issues,
when there is not an analytic solution to the optimization, we can introduce
an error bound ε to the function being optimized to preserve soundness. For
instance, if ε is the maximum error in the optimization of the distance equa-
tion, we would compute Γd−ε to ensure that any potential verified rendezvous
satisfies the actual distance threshold d.

We now summarize the procedure for verifying rendezvous maneuvers.
With a set of initial conditions for ν1, ν2, initial orbits o1, o2, and a Lambert
burn point, the abstract HA B is computed as just described. Next, using B as
input to HyTech, PHAVer, or SpaceEx, calculate ReachδB for a bounded time δ.
Then, take a time intersection ReachδB(t) for a possible rendezvous time t < δ. If
ReachδB(t) ⊆ Γd, then the reachable set of states at time t is within the distance
threshold d. An example ReachδB(t) and Γd are shown in Fig. 8.

5 Experimental Results

We present experimental results for verifying conjunction avoidance and ren-
dezvous using the three abstractions applied to the original system.

Once the abstract system B is constructed using our tool, the conjunction
avoidance and rendezvous properties can be verified by computing ReachδB for
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Table 1. Rendezvous experiments for d = 500km, ε = 0.25 for guard Λ, and partition size 20 × 20 degrees.
AT is abstraction run time (sec). PT is PHAVer run time (sec). RT is the time interval of rendezvous (sec), with the
burn occurring in time at the lower bound of this interval. The underline and overlined parameters eT or pT are
respectively the min and max of the nondeterministic parameter values.

Initial Guard Initial Orbit Transfer Orbit AT PT RT

(ν1, ν2) (νT1 , ν
T
2 ) (e1, p1[km], eI , pI [km]) (eT , eT , pT

[km], pT [km]) (s) (s) (s)

(270, 267.5) (330, 330) (0, 6718, 0.05, 7340) (0.05849, 0.05853, 6766, 6769) 811 3.01 (950, 1200)

(250, 246.5) (330, 330) (0, 6718, 0.05, 7340) (0.05849, 0.05853, 6766, 6769) 811 3.23 (1050, 1300)

(300, 299) (333, 333) (0.05, 7074, 0.10, 7748) (0.06468, 0.06486, 7114, 7116) 801 3.4 (500, 1250)

(300, 299) (327, 327) (0, 6718, 0.10, 7748) (0.06186, 0.06202, 6982, 6984) 834 3.37 (440, 990)

some bounded time δ. Our prototype tool is written in Matlab and experiments
were carried out on a modern laptop running Windows 7 with 4GB RAM and a
2.0GHz dual-core Intel i5 processor. We used PHAVer [12] and SpaceEx [13] for
verification of B.6 SpaceEx runs in a virtual machine, and we also ran HyTech
and PHAVer in an Ubuntu virtual machine. Overall, our results using HyTech,
PHAVer, and SpaceEx suggest that tools allowing for relatively complex dis-
crete dynamics and large numbers of locations need to be complemented with
more scalable continuous reachability methods. We previously showed con-
junction avoidance verification for one set of parameters in Fig. 3. Our test cases
included Low Earth Orbits (LEO, altitude below 2000km), Medium Earth Or-
bits (MEO, 2000km to 35,786km), Geo Stationary (GEO), and Geo Synchronous
(GSO) orbits with varying eccentricities. We were able to verify rendezvous for
LEOs with eccentricities between 0 and 0.1.

Table 1 shows some successful rendezvous test cases, which used a ren-
dezvous distance d = 500km, rectangular overapproximation of dynamics, and
PHAVer. The first column is the initial state of the continuous variables. The
second column is the ideal guard GIT around which the abstracted guard Λ
is built. The initial orbit parameters are shown as well as the parameter ranges
that define the continuum of transfer orbits in the second mode. The RT column
shows the time intersection of the reach set where the rendezvous was satisfied.
To verify smaller rendezvous distances, smaller partitioning sizes can be used.
This will minimize the error accumulated in the approximation, but will result
in increased abstraction and reach set computation time. The bounded reach
set, ReachδB, is not completely contained in Γd, and only its intersection for a
range of times (ReachδB(t) for t ∈ [TR − ρ, TR + ρ]) is completely contained.
For instance, one input to Lambert’s problem is the time TR for rendezvous to
occur, and we can verify rendezvous for a range of times ρ around TR.

Table 2 compares different hybridization schemes—rectangular versus lin-
ear overapproximations of dynamics—for conjunction avoidance. We fix the
partitioning of the hybridization and are comparing only rectangular versus
linear dynamics for the same partition shape and size. Usually, the reach sets
from linear overapproximation are smaller than rectangular. However, the sup-
port function algorithm implemented in SpaceEx allows the user to configure
the amount of error in the overapproximation. Lower error comes at the cost

6 We found HyTech [15] to be unusable for elliptical orbits due to numerical overflows.



14

Table 2. Reachability experiments for different overapproximation techniques. Initial condition is (ν1, ν2) =
(0, 0). RA and AA columns are the abstraction times in seconds for rectangular and affine dynamics, respectively.
PR, SR, and SA columns are, respectively, the run time in seconds of PHAVer with rectangular dynamics, SpaceEx
with rectangular dynamics, and SpaceEx with affine (linear) dynamics. The number subscript for the SpaceEx
runs determine the sampling time used in the reachability algorithm. These experiments ran until the time bound
T equal to the satellite period.

Parameters (e1, p1[km], e2, p2[km]) Partition Size RA AA PR SR20 SR100 SA20 SA100

[0.05, 7056, 0.10, 7670] 60 x 60 4.42 5.89 0.26 979 249 193 140

[0.10, 7467, 0.10, 7670] 60 x 60 9.8 9.92 0.35 1076 263 384 191

of higher runtime, and we summarize runtime comparisons in Table 2. We can
decrease this runtime cost by configuring SpaceEx, but this may come at the
expense of the rectangular overapproximation being as good, if not better, than
the linear overapproximation.

6 Conclusion and Future Work

In this paper, we developed abstraction techniques used to enable automatic
verification of bounded-time safety properties for nonlinear satellite systems.
The abstractions account for uncertainties in observation times, sensor mea-
surements, and thrusting. We also showed that the unbounded model-checking
of incommensurate orbits is impossible. However, the reach set for circular
commensurate orbits can be computed exactly. While we do not have space
to present it here, we (a) can verify unbounded properties of eccentric com-
mensurate orbits by using forward and backward reachability techniques, and
(b) have verified time-bounded safety properties for nearby satellites using the
Clohessy-Wiltshire-Hill (CWH) dynamics in the ellipsoidal toolbox [17].

One of the primary roadblocks for analyzing more eccentric elliptical or-
bits or multiple-transfer satellite maneuvers is the granularity with which we
are able to partition the state space. If we are able to approximate the dynam-
ics over smaller intervals, we will be better equipped to analyze these more
complex systems. An important feature yet to be taken advantage of is that
the dynamics between the satellites is loosely coupled. A new approach we are
exploring is to decompose the multi-satellite system into individual satellite
automata, which would allow for much finer partitioning. With each automata
containing a synchronized clock variable, we are developing algorithmic tech-
niques that act on the individual reach sets to enable compositional verification
of the global safety properties.
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