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Abstract—In this paper, we present the formal modeling
and automatic parameterized verification of a distributed air
traffic control protocol called the Small Aircraft Transportation
System (SATS). Each aircraft is modeled as a timed automaton
with (possibly unbounded) counters. SATS is then described as
the composition of N such aircraft, where N is a parameter
from the natural numbers. We verify several safety properties
for arbitrary N , the most important of which is separation
assurance, which ensures that no two aircraft may ever collide.
The verification methodology relies on computing the set of
backward reachable states from the set of unsafe states to a
fixed point, and checking emptiness of the intersection of these
reachable states and the initial set of states. We used the Model
Checker Modulo Theories (MCMT) tool, which implements
this technique.

I. INTRODUCTION

Many current and future cyber-physical systems (CPS)—
such as in automotive and air traffic control protocols—
involve a complex interaction between software state of
many independent agents to ensure physical safety. We call
such systems distributed cyber-physical systems (DCPS) due
to this distributed interaction of cyber and physical state.
This paper presents a parameterized model of a distributed
air traffic control protocol and automatically verifies sev-
eral non-trivial properties for arbitrarily many participating
aircraft. The Small Aircraft Transportation System (SATS)
was developed with the goal of increasing access to small
airports that potentially do not have control towers nor radar.
Instead, the aircraft rely on (a) receiving landing sequence
information from an automated airport management module
(AMM) located at the airport, and (b) communicating with
one another to determine landing orders and perform land-
ings. The overall operation must satisfy a variety of safety
properties—such as, between each aircraft, there is always
a sufficiently large physical separation.

Previous work on formally modeling and analyzing SATS
has relied on using verification of purely discrete models [1],
[2], [3] and hybrid models [4], [5], [6]. Parts of these works
relied on deductive verification, such as through the use
of the interactive theorem prover PVS [7], supplemented
with some automatic state space exploration [4]. In [4], for
example, it is first shown using PVS that SATS can have

at most four approaching aircraft, and then all automatic
state exploration uses this fixed number of aircraft. Tradi-
tional model checking would require the number of aircraft
involved in the system to be fixed to a natural number prior
to computing the composition. In contrast, we present a
parameterized model of a simplified version of SATS and
automatically verify the key safety property of the protocol
regardless of the number of aircraft in the system. The
techniques we use could help scale verification of automated
highways, peer-to-peer protocols, and other general aviation
systems, such as landing protocols for unmanned aerial
vehicles (UAVs).

Parameterized Model Checking: Consider an automa-
ton specification Ai, where i is a unique identifier chosen
from some set. The parametrized model checking problem
(PMCP) is, given a state transition system Ai and a temporal
formula φ, prove ∀N ∈ N that the composition AN ∆

=
‖i∈{1,...,N}Ai satisfies φ [8, Ch. 15]. Such a formulation
allows one to conclude—irrespective of the number of
components involved—whether a system composed of N
copies of Ai satisfies the property φ. The PMCP naturally
captures verification problems with arbitrarily many partic-
ipating components. For instance, in a realization of the
automated highway system, how could one automatically
verify that any interaction between an arbitrary number
of cars does not result in a collision? A variety of other
interacting DCPS are naturally modeled as parameterized
systems, such as automotive traffic protocols [9], swarm
robotics and coordination [10], [11], industrial systems [12],
and networked medical devices.

A non-parameterized automatic verification could com-
pose the system for increasing numbers of cars, say starting
with two, then three, etc., but this process will never end.
Eventually a state explosion barrier will be reached, which
depends on the complexity of the model of each car and
how they may interact (communications, sensing, etc.). If
parameterized verification is possible, then it verifies all such
instances at once. This enables scalable verification for such
DCPS that are increasingly being designed, built, and used.

One could argue that in physical scenarios there are physi-
cal and geometric restrictions preventing an arbitrary number



of cars or aircraft from interacting, and that instead at most
a fixed, finite natural number C may interact. While this is
true, parameterized verification enables scalable verification
of such systems, as it may be infeasible to perform the
composition of C such Ai due to the growth in the size
of the composed AN . In particular, we found that using
the approach implemented in traditional model checkers like
Uppaal, we could not scale beyond a few aircraft. For some
problems, a few Ai may suffice for verification, but what if
the number that can feasibly be verified is smaller than C?

The PMCP is an infinite-state model checking problem
and is undecidable, even when Ai is a finite state automa-
ton [13]. However, it has some decidable subclasses that we
review in more detail in Section IV. To remain decidable,
restrictions must be placed on Ai, the parallel composition
operator ‖ (and hence how the Ai’s may communicate),
and the property φ. We also note that for general classes of
hybrid systems, checking if even a single Ai satisfies φ is
undecidable, but it also has several decidable subclasses [14],
such as when restrictions are placed on the continuous
dynamics—like in initialized rectangular hybrid automata
(IRHA)—or on the discrete dynamics [15].

Contributions: After introducing the formal modeling
framework used to discuss the problem, we automatically
verify a simplified version of SATS, presented in Sec-
tion III. We modeled SATS in a new parameterized model
checking tool called the Model Checker Modulo Theories
(MCMT) [16] by manually translating the PVS specifica-
tion from [4] and applying some manual abstraction. In
particular, the model from [4] uses queues to record the
zone of SATS an aircraft physically resides in, while we
use individual control locations for each aircraft. A queue
is also used to track the arrival sequence of aircraft into the
system, but instead, for each aircraft, we keep track of only
the aircraft immediately ahead (if one exists).

The simplifications in our model are that we use timed
(ẋ = 1) instead of rectangular (ẋ ∈ [a, b]) dynamics and
did not model lateral entries. The results are that we were
able to automatically verify several discrete state properties
previously verified in a series of papers [1], [2], [5], as well
as the key physical safety property, separation assurance [4],
[6]. We believe that SATS can serve as a benchmark for
the verification of DCPS. The protocol has a complex
interaction of continuous and discrete dynamics. While both
the physical and cyber dynamics are modeled in a relatively
simple manner—clocks and counters—the combination of
the two yields interesting properties.

II. SMALL AIRCRAFT TRANSPORTATION SYSTEM

First we give an informal overview of the Small Aircraft
Transportation System (SATS). We discuss related work on
verifying other DCPS like air traffic control systems and
automotive systems and give an overview of the relevant
literature on the PMCP later in Section IV.

A. SATS Overview
In SATS, each aircraft i has a one-dimensional position

evolving with time, representing its distance from approach
to the runway. There is a single runway where the aircraft
need to land (see Figure 1 for an overhead view of the
landing area). There are two entry points to the runway,
coming from the left or right of it. Each aircraft begins
flying and may enter either the left or right cyclic holding
patterns called holding zones. In this step, an aircraft is
assigned a sequence number, which is the order in which
the aircraft should land. While in the holding pattern, the
aircraft are assumed to have a safe separation, and hence the
values of the continuous positions do not matter. However,
an aircraft may attempt an approach to the runway, at which
point it exits the holding zone, begins on a path toward the
runway, and the values of the continuous positions become
significant. Upon attempting to land, the aircraft may either
land on the runway and subsequently taxi away, or it may
miss the approach and return to a cyclic holding zone.

Communication and Sensing Requirements: Next we
present the aircraft and airport communication and sensing
requirements that will lead into our model of the operation
of SATS. The Airport Management Module (AMM) is a
ground-based automation system that would typically be
located at an airport and provides sequencing information
to pilots over a ground-to-air datalink [17]. The AMM is
the main centralized communication component of SATS,
and all other communication is decentralized and done either
(a) between pilots over voice radio, or (b) between aircraft
control software via air-to-air datalinks.

Each aircraft in SATS is required to have the following
sensing and communication capabilities [18]: (a) global
positioning system (GPS) receiver, (b) air-to-ground datalink
communication, for broadcast and receipt of AMM mes-
sages, (c) air-to-air datalink communication, (d) cockpit Dis-
play of Traffic Information, which provides a pilot the loca-
tion of his/her aircraft and other nearby aircraft, (e) software
to conduct the landing procedures, which informs a pilot
who to follow and where to go by displaying sequencing
information from AMM and uses Conflict Detection and
Alerting Algorithms, and (f) voice communication radio.

A variety of desired properties are defined for SATS
informally in the initial technical report describing the sys-
tem [17]. The main safety property is separation assurance,
that is, no two aircraft come closer than a pre-specified
distance from one another, and hence never collide. There
are also restrictions on the number of aircraft that may
simultaneously be approaching the runway.

SATS Operation: We describe the protocol from the
perspective of the ith aircraft (refer to Figure 2 for states
and refer to Subsection II-C for detailed definitions of the
transitions). For aircraft i, qi is its current mode. Aircraft
i starts in the flying mode (qi = fly). It decides to land
nondeterministically by entering the left or right holding
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Figure 1. SATS viewed from above, except the holding zones at different
elevations would be directly atop one another. There are two sides to
approach the runway from, left (L) and right (R), and right and left are
reversed in the image for the pilot’s orientation. The safe spacing property
matters when on the base, final, or missed zones, but not in other zones.

zone at 3000ft (qi ∈ {h3r,h3l}). Upon entry, i is assigned
a sequence number (0 if there are no other aircraft in the
system, or c + 1, where c is the value of the sequence
number assigned to the last aircraft attempting to land).
Subsequently, aircraft i may descend to the holding zone
at 2000ft (qi ∈ {h2r,h2l}). If there is enough spacing
between i and the aircraft with sequence number one less
than i’s (if one exists), then i transitions to either the base
left or right zone (qi ∈ {br,bl}). Aircraft i is never forced to
transition from a holding pattern to an approach toward the
runway. Rather, any aircraft may nondeterministically begin
the approach, so long as the spacing condition is satisfied.

After traveling down the base zone for enough distance
(xi ≥ B, where B is the length of the base zone), i
moves to the final approach zone (qi = fin). Finally, after
traversing the length of the final zone (xi ≥ F , where
F is the length of the final zone), an aircraft may either:
(i) land and go to the runway (qi = run), or (ii) miss
its approach (qi ∈ {mr,ml}). Then, after traversing the
length of the missed zone (xi ≥M , where M is the length
of the missed zone), i restarts the process of moving from
holding to final. If aircraft i misses its attempt to land, it
is assigned a new sequence number at the end. Allowing
aircraft to miss an approach is one reason that several of the
properties to be introduced below are non-trivial to verify.
The missed approach is initiated by the pilot if for any reason
a safe landing cannot be assured (e.g., due to unforeseen
weather changes, flying too fast to stop on the runway length,
unknown obstacles on the runway, etc.). Also observe that
the only locations where the continuous position xi matters
are the base, final, and missed zones.

B. Hybrid Automaton Model of an Aircraft

We first describe SATS using a hybrid automaton model
for a single aircraft, and then compose N ≥ 2 of the
automata to yield the parameterized system. We write [N ]

∆
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Figure 2. SATS Discrete Locations, Edges, and Invariants for an aircraft.
Continuous variables x only matter in states br, bl, fin, mr, and ml,
which correspond to when the aircraft is attempting to land on the runway
by reaching location run. Invariants for continuous variables in locations
are captured by, for instance, x ≤ B, etc., for some B > 0.

{1, . . . , N} and call it the index set. Our specification is a
translation of [4] with the following two exceptions. First,
we do not model lateral entry zones, where an aircraft could
go from a lateral entry zone state to the holding zone at
either 3000 or 2000ft, instead of having to start from the
vertical entry to the 3000ft holding zone. Second, we use
timed dynamics (ẋ = 1) instead of rectangular dynamics
(ẋ ∈ [a, b] for a ≤ b). Modeling and verifying lateral entry
zones would be relatively easy, but doing so for rectangular
dynamics would require significant additional work.

Next we define some notation. For a set of variables V ,
and each variable v ∈ V is associated with a type, which is
the set of all the values v can take. A valuation or a state of
a set of variables V is a function that maps each v ∈ V to a
value in its type, and is denoted by boldface x, v, etc. The
set of all possible states for a set of variables V is denoted
by val(V ). For a first-order logic formula φ, the valuation
of the variables (appearing in φ) is written JφK1. For some
T ∈ R≥0, a T trajectory is a function γ : [0, T ]→ val(V ),
i.e., a trajectory maps intervals of time to states. The domain
for a trajectory γ is denoted by γ. dom. We define γ. ltime
as the right endpoint of γ. dom, γ. lstate ∆

= γ(γ. ltime), and
γ. fstate

∆
= γ(0).

Next, we introduce the rest of the hybrid automata
modeling framework in an on-the-fly fashion for our case
study and refer the reader interested in additional technical
details to [19], [20]. We are concerned with systems where
a collection of hybrid automata evolve concurrently and
communicate by reading each others’ state variables. The
hybrid automaton representing aircraft i ∈ [N ] is a tuple

1We are abusing notation—technically JφK is the denotation, or semantic
value, of the formula φ. To relate valuations to denotations, we mean that
JφK is the restriction of JφK on the set of variables V (which are not
necessarily variables in the first-order logic sense appearing in φ). This is
necessary as JφK would assign a value to each symbol appearing in φ, for
instance, N = 2, i = 1, and j = 2.



Ai
∆
= 〈Vi, Qi, Θi, Edgi, Grdi, Rsti, Flowi, Invi〉, where:

(A) Vi is a set of variables, and each variable v ∈ Vi is
associated with a type. Recall a valuation (or state) of
a set of variables Vi is a function that maps each v ∈ Vi
to a value in its type, and is denoted by boldface xi,
vi, etc. to indicate the dependence on i. A variable is
either discrete or continuous. We write Xi ⊆ Vi for
the continuous variables. There are five variables: four
discrete variables qi, mi, si, and c, and one continuous
variable xi. First is a finite control location qi of type
Loc

∆
= {fly, h3r, h2r, h3l, h2l, br, bl, fin, mr, ml,

run, taxi}, where each represent:
(i) fly: the aircraft is flying,

(ii) h3r,h2r,h3l,h2l: the aircraft is in the holding
zone on the right side at 3000 feet (2000 feet right
side for h2r, and left for h3l and h2l),

(iii) br,bl: attempting to land in the base segment on
the right (left) side,

(iv) fin: on the final approach to the runway,
(v) mr,ml: missed or aborted the landing attempt and

on the right (left) side,
(vi) run: landed and on the runway, and

(vii) taxi: taxied off the runway to a gate.
The next variable is the missed approach mi of

type Side ∆
= {left , right} that indicates which side an

aircraft will go to if it aborts its landing attempt. We
abbreviate left as l and right as r when clear. The third
variable is the sequence number si of type N, which
represents the sequence in which aircraft should land
(where si = 1 would mean i should land first, and so
on). The last discrete variable is a shared variable c
of type N that is used as a counter tracking the last
sequence number of an aircraft entering the system2.

There is a single continuous variable xi of type
R that represents the one-dimensional distance aircraft
i has traveled from the physical location of a zone.
In Figure 1, this is the distance measured along one
dimension from the start of, to the end of, each of the
base region, final approach region, and missed approach
zones.

(B) Qi
∆
= val(Vi) is the set of states, which is the set of all

valuations of the variables.
(C) Θi is the set of initial states and is {xi ∈ Qi : qi =

fly ∧xi = 0∧ si = 0∧ c = 0}. The initial value of mi

is irrelevant, as it is updated before use.
(D) Edgi ⊆ Loc×Loc is a set of edges corresponding to the

discrete transitions of Ai. There are discrete transitions
between locations for SATS as shown in Figure 2.

(E) Rsti is called a reset function and it associates with
each edge a constant assignment for xi. The resets are

2We assume that all N automata have the same valuation of c, so we do
not index it with a subscript. This fits within the timed network framework
of [21], [22].

defined in detail in Subsection II-C.
(F) Grdi is called a guard function and associates with each

edge a predicate that defines the enabling condition
for the transition. The guards are defined in detail
in Subsection II-C. The guards for automaton Ai may
contain constraints involving not only the local variables
of Ai, but also those of other automata.

In our framework, these non-local guard constraints
are the normal mode of communication between au-
tomata. In order to express such guards, we use indexed
constraints, which are expressions with constraints over
indexed state variables (e.g., qi and xj), such that
all the indices are quantified and possibly constrained
by comparison with one another (e.g., i 6= j). Some
examples are,

(i) ∀ i, j ∈ [N ] (i 6= j ∧ xi = c)⇒ (xj 6= c) and
(ii) (∀ j ∈ [N ] (xj 6= c)) ∧ (∃ j ∈ [N ] (yj = d)).

By UGi, we refer to any universally quantified enabling
condition corresponding to the edge, e.g., xj 6= c in the
previous example(Fii).

(G) Invi is called an invariant function and associates each
element of Loc a constraint (possibly empty) for xi. The
invariant function enforces a constraint on the value of
xi while qi remains equal to a certain location. The
non-empty invariants are shown for SATS in Figure 2
for the locations br, bl, fin, mr, and ml, and are used
to model the physical lengths of the base, final, and
missed zones.

(H) Flowi is called a flow function and associates each
element of Loc a differential assignment for xi. A
differential assignment for xi is an expression of the
form: ẋi := L, where L is a constant. The variables that
do not appear in a differential assignment are assumed
to remain unchanged over the trajectory. In our model
of SATS, ẋi = 1 in the locations br, bl, fin, mr, and
ml, and ẋi = 0 in the other locations.

The parameterized system, denoted by AN , is defined as
the composition of the automata A1‖A2‖ . . . ‖AN , written
in short as ‖i∈[N ]Ai. This composition is essentially the
same as N − 1 parallel compositions of Ai considered
in [19], [23]. Formally, AN is a tuple 〈V , Q, Θ, Edg, Grd,
Rst, Inv, Flow〉, where:

(A) V ∆
= ∪i∈[N ]Vi is the set of variables and X = ∪{xi} ⊂

V is the set of continuous variables (all the xi’s).
(B) Q ∆

= val(V ) is the set of states, that is, the valuations
for the variables of each i ∈ [N ] in the composition.

(C) Θ
∆
= ∧i∈[N ]Θi.

(D) Edg ⊆ LocN × LocN . For every edge e = (u, v) in
Edg, there exists a unique i ∈ [N ] such that, for all
other j ∈ [N ] \ {i}, uj = vj and (ui, vi) ∈ Edgi. The
unique component i for which the location changes is
given by the function trans : Edg → [N ], that is,
trans(e) = i.



(E) Grd, defined as for each e ∈ Edg, Grd(e)
∆
=

Grdi(e(i)), where i = trans(e).
(F) Rst is defined as, for any (u, v) ∈ Edg, Rst((u, v))

∆
=

Rsti((ui, vi)), where trans((u, v)) = i. For all j ∈ [N ]
where j 6= i, the variables remain unchanged.

(G) Inv is defined as, for any a ∈ LocN , Inv(a)
∆
=

∧{i∈[N ]:qi=ai}Invi(qi), where ai is the ith component
of the tuple a ∈ LocN . Note that this models whichever
location each i ∈ [N ] is in. For instance, for the tuple
a = 〈fly,h3r, run〉 and x.q = a, at state x, aircraft 1
is in fly, 2 is in h3r, and 3 is in run.

(H) Flow is defined as, for any a ∈ LocN , Flow(a)
∆
=

∧{i∈[N ]:qi=ai}Flowi(qi), where ai is again the ith

component of a.

To emphasize the dependence of these components on [N ],
we may denote them by ΘN , QN , EdgN , RstN , etc.

The semantics of AN is defined in terms of executions.
An execution fragment of AN is an alternating sequence
α = γ0, e1, γ1, . . ., where each γk is a trajectory for X and
each ek is an edge in Edg, such that the following conditions
are satisfied:

(i) For each i ∈ [N ], for each t ∈ γk.dom, γk(0).qi =
γk(t).qi, that is, the locations remain constant along
trajectories. Here γk.dom is the length of the kth

trajectory, and γk(t) is a function mapping times t to
Q, so γk(0) is the first state fstate of the kth trajectory
and γk(t) is the last state lstate.

(ii) For each i ∈ [N ], the derivative of xi along γk satisfies
the differential assignment Flowi(γk(0).qi).

(iii) γk. lstate .X ∈ JGrd(ek+1)KI , that is, the last state
of each non-final trajectory satisfies the guard of the
following edge. Recall that the notation JφK means the
valuation of the variables (appearing in φ) satisfying
the first-order logic formula φ.

(iv) For each i ∈ [N ], if i 6= trans(ek+1) then
γk+1. fstate .xi = γk. lstate .xi, otherwise
γk+1. fstate .xi ∈ JRst(ek+1)K = JRi(ei[k + 1])K.
That is, the first state of each non-initial trajectory
satisfies the reset associated with the preceding edge.
Since the edge ek+1 corresponds to a change in
location for a unique Ai, for which i = trans(ek+1),
this states that all the continuous variables in X \Xi

remain constant over the transition, and the continuous
variables in Xi are reset by Rsti(ei).

An execution fragment is an execution, if in addition
γ0. fstate ∈ Θ. A state in Q is said to be reachable if there
exists an execution terminating in it. The set of all reachable
states of AN is denoted by ReachAN , and if some state
x ∈ ReachAN , we say AN reaches x.

A parametric safety property φ is an indexed constraint.
For example, the safety property ∀i, j ∈ [N ] i 6= j ∧ qi =
fin ∧ qj = fin⇒ xi < b ∧ xj > c, asserts that for any two
distinct aircraft that are in the same location fin, there should

be some minimal separation between the valuations of their
continuous variables. Given a parametric safety property φ,
the composition AN is said to satisfy φ if, for all N ∈ N,
ReachAN ⊆ JφK, which is written as AN |= φ.

C. SATS Transitions and Trajectories

We now go through each of the transitions in the operation
of SATS. The specification below is simplified for presen-
tation (e.g., we use counters tracking the number of aircraft
in certain zones), but the specification files showing these
details are available on request. All aircraft begin flying,
and may enter the system by transitioning from fly to the
left or right holding zone at 3000ft. We drop the subscript i
in all the following definitions of Grd, Rst, etc. for brevity,
but they correspond to aircraft i. For aircraft i, for an edge
from fly to h3r (and symmetrically for h3l), we have:

Grd(fly,h3r)
∆
=qi = fly,

Rst(fly,h3r)
∆
=q′i = h3r ∧ s′i = c+ 1 ∧ c′ = c+ 1,

UG(fly,h3r)
∆
=qj 6= h3r ∧ (j 6= i⇒ q′j = qj ∧ s′j = sj).

Note that we simplify notation and not write identity resets
for any variable not appearing in a reset, although these
must appear in the formulas (e.g., we dropped m′j = mj

and x′j = xj from UG(fly,h3r) and x′i = xi from Rst).
A first-order logic formula is obtained using quantifiers
as: ∃i ∈ [N ].(Grd(fly,h3r) ∧ Rst(fly,h3r) ∧ ∀j ∈
[N ].UG(fly,h3r)), where we observe that UG is a function
of i. This is equivalent to the formula used by MCMT:

τfly→h3l
∆
=∀j ∈ [N ].(qj 6= h3r) ∧ ∃i ∈ [N ].(qi = fly∧
q′ = λj.(if j = i then h3r else qj) ∧ s′ =

λj.(if j = i then c+ 1 else sj) ∧ c′ = c+ 1),

where the λj notation is equivalent to ∀j and is used to
ensure every component of (the vectors) q and s are defined.

We now describe the remaining transitions without going
through this syntactic translation. Once in a (left or right)
holding zone at 3000ft, an aircraft may descend to the
holding zone on the same side at 2000ft. For the right side
(and symmetrically for the left), this is described as:

Grd(h3r,h2r)
∆
=qi = h3r, Rst(h3r,h2r)

∆
= q′i = h2r,

UG(h3r,h2r)
∆
=qj 6= h2r ∧ (j 6= i⇒ q′j = qj).

Once in a (left or right) holding zone at 2000ft, an aircraft
may begin the approach to the runway by transitioning to
the base zone on the same side. For the right side (and
symmetrically for the left), this is defined as:

Grd(h2r,br)
∆
=qi = h2r ∧ (si = 1 ∨ (sh = si − 1∧
xh − xi ≥ S)),

Rst(h2r,br)
∆
=q′i = br ∧ x′i = 0,

UG(h2r,br)
∆
=(j 6= i⇒ q′j = qj).



In this transition, the identifiers i and h are both existentially
quantified, but observe the variables of h are not reset.

Once an aircraft on the left or right base and on approach
to the runway has traveled the length B of the base zone, it
must enter the final approach zone. This must requirement
makes this an urgent transition. The transition from the right
(and symmetrically, left) is:

Grd(br,fin)
∆
=qi = br ∧ xi ≥ B,

Rst(br,fin)
∆
=q′i = fin ∧ x′i = 0,

UG(br,fin)
∆
=(j 6= i⇒ q′j = qj ∧ x′j = xj).

Once an aircraft on final approach travels the length F
of the final approach zone, it must either miss the approach
and enter the missed approach zone on the appropriate side,
or it may land on the runway. Note that the side the aircraft
misses to is defined by the value of the variable mi, and is
not necessarily the same side on which the aircraft initiated
the approach to the final zone. The transition from the final
approach to the right missed zone (and analogously, left) is:

Grd(fin,mr)
∆
=qi = fin ∧ xi ≥ F ∧mi = r,

Rst(fin,mr)
∆
=q′i = mr ∧ x′i = 0,

UG(fin,mr)
∆
=(j 6= i⇒ q′j = qj ∧ x′j = xj).

The transition from the final approach to the runway is:

Grd(fin, run)
∆
=qi = fin ∧ xi ≥ F ∧mi = r,

Rst(fin, run)
∆
=q′i = mr ∧ x′i = 0,

UG(fin, run)
∆
=qj 6= run ∧ (j 6= i⇒ q′j = qj ∧ x′j = xj).

An aircraft on the runway may then taxi away, defined as:

Grd(run, taxi)
∆
=qi = run,

Rst(run, taxi)
∆
=q′i = taxi,

UG(run, taxi)
∆
=(j 6= i⇒ q′j = qj).

After traveling the length M of the missed zone, an
aircraft must transition to the lowest altitude holding zone
without any aircraft in it on the same side as the missed zone.
For the right missed approach zone (and symmetrically, left),
this is defined by two transitions:

Grd(mr,h3r)
∆
=qi = mr ∧ xi ≥M,

Rst(mr,h3r)
∆
=q′i = h3r ∧ x′i = 0 ∧ s′i = c,

UG(mr,h3r)
∆
=qj 6= h3r ∧ (j 6= i⇒
q′j = qj ∧ x′j = xj ∧ s′j = sj − 1),

Grd(mr,h2r)
∆
=qi = mr ∧ xi ≥M,

Rst(mr,h2r)
∆
=q′i = h2r ∧ x′i = 0 ∧ s′i = c,

UG(mr,h2r)
∆
=qj 6= h3r ∧ qj 6= h2r ∧ (j 6= i⇒
q′j = qj ∧ x′j = xj ∧ s′j = sj − 1).

In the previous, we modeled the update values of mi

nondeterministically, which departs from the actual SATS
specification. Also, observe that we use UG to decrease the
value of the sequence numbers of the other aircraft.

Trajectories are defined according to the following first-
order logic formula,

∃ε ∈ R≥0∀j ∈ [N ].Tj ∧ x′j = xj + ε, where

Tj
∆
=(qj ∈ {br,bl} ⇒ xj ≤ B) ∧ (qj = fin⇒ xj ≤ F )

∧ (qj ∈ {mr,ml} ⇒ xj ≤M).

Here Tj captures urgency. This formula models that time
elapses in the same amount ε for every aircraft, and thus
their continuous positions evolve according to trajectories of
the same length. Observe that this models many trajectories.

III. VERIFICATION OF SATS

Given a set U of unsafe states, an automaton A is said
to be safe with respect to U if it is never reached by A.
Sometimes the complement of the unsafe set U is specified
as a formula involving the variables of A and it is called
a safety property P . For SATS, one such safety property is
separation assurance—that is, no two aircraft ever come too
close together—which can be written as:

P
∆
= ∀i, j ∈ [N ].i 6= j ∧ si = sj − 1⇒ xi − xj ≥ S,

where si = sj−1 indicates that aircraft i is ahead of aircraft
j in the landing sequence, and S > 0 is the minimum
separation desired between aircraft i and j.

The general methodology for establishing that an automa-
ton A is safe with respect to a property P is to show that
the set P is invariant, that is, P contains all the reachable
states of the system. Alternatively, one can define the unsafe
property as the negation ¬P , which for separation assurance
would assert that there are two aircraft too close together.
Then one can prove safety by showing that the set of
executions leading to this bad set of states cannot begin
in the set of initial states. Thus, to prove a safety property
automatically, it suffices to take the negation of the safety
property, and ensure the set of backward reachable states
have an empty intersection with the initial set of states. This
is the method used by the verification tool we used, the
Model Checker Modulo Theories (MCMT) [24], [16], [22],
[25]. If the intersection of the backward reachable states
and the initial states is empty and the backward reachability
process terminates—that is, the backward reachability com-
putation reaches a fixed point and no new states are added
on a preimage computation—then the system is proven safe.

Under the assumption that the desired safety property is
an indexed constraint, the preimage computation from the set
of unsafe states is not much different than that for a non-
parameterized system. For instance, consider the negation of
the separation assurance property, which states there are two



k := 0
φk := φB , for φB ≡ ¬φS
ρk := φk
σk := ∅

while true
if ρk ∧φI satisfiable // safety check

return unsafe ∧σk counterexample
k := k + 1
for each χ ∈ τ(x,x′)
φk := φk ∪ Preχ(φk−1) ≡ φk ∪ ∃x′.

(
τχ(x,x

′) ∧ φk−1(x
′)
)

σk(χ) := σk(χ) ∪ τχ // keep tree of valid executions
end
ρk := ρk−1 ∨φk

if ¬ (ρk =⇒ ρk−1) unsatisfiable // fixed point check
return safe

end

Figure 3. Basic backward reachability algorithm used by MCMT.

aircraft less than the safety distance apart,

¬P ∆
= ∃i, j ∈ [N ].i 6= j ∧ si = sj − 1 ∧ xi − xj < S.

Observe that ¬P is defined in terms of two aircraft being in
a particular state. The preimage computation will return a
formula with the same existential quantifiers3. For instance,
the preimage of the formula ∃i ∈ [N ].qi = run is roughly—
we omit some details to present the intuition—the formula
∃i ∈ [N ].qi = fin, since the only way for an aircraft to reach
the runway is from the final approach zone fin. Observe
that this does not increase the number of quantified index
variables appearing in the formula—that is, the preimage of
∃i ∈ [N ].Q(i) is not of the form ∃i, j ∈ [N ].Q(i, j).

The main complication is ensuring that the sequence
of preimage computations terminates. A detailed theory of
when this preimage computation will terminate has been
developed for parameterized systems [27], [26], and parame-
terized timed systems [21], [28]. Our formulation of SATS is
undecidable—that is, a fixed point may not be reached—for
two main reasons. First, we model urgent trajectories, that is,
we prevent trajectories from continuing once some condition
becomes true [21]. Second, we use universally quantified
index variables in some transition guards [29].

Now, why should we expect this process to ever reach
a fixed point? For instance, why is it not possible for new
aircraft to continually enter the system? For example, ob-
serve that the unsafe property is of the form ∃i ∈ [N ].P (i).
With this form of property, all that matters is whether
there is some aircraft in the system satisfying P (i). Again,
observe that the preimage computation will return a formula
like ∃i ∈ [N ].Q(i). It is essential for termination that
the preimage computation does not always add existentially
quantified index variables to the formula. If the preimage
is ∃i ∈ [N ].Q(i), where Q(i) corresponds to a formula
not implied by P (i) (or any of the formulas corresponding
to already reached states), then we cannot terminate, but

3In general this is not true, but see [26] for when it is.

otherwise we can. Likewise, if the property is of the form
∃i, j ∈ [N ].P (i, j), then all that matters is whether there are
two processes satisfying the formula, etc.

MCMT takes four inputs: the initial set of states, the
unsafe set of states, the transition rules for one automaton
Ai, and some auxiliary axioms that hold for the param-
eterized system AN (which are useful for asserting data
type constraints and already proved safety properties). These
inputs are essentially specified as formulas in a restricted
subclass of first-order logic. For example, a safety property
of SATS is that there is never more than a single aircraft in
the left holding zone at 3000ft, h3l, and hence the unsafe
states are those where there are two or more aircraft in h3l.
More formally, the parametric safety property is ∀i, j ∈
[N ].i 6= j ⇒ (qi 6= h3l ∨ qj 6= h3l, and the parametric
unsafe property is ∃i, j ∈ [N ].i 6= j ∧ qi = h3l ∧ qj = h3l.
The initial set of states are those where all aircraft are
flying and have not yet entered the approach to the runway,
∀i.qi = fly ∧ xi = 0 ∧ si = ⊥. The representation of the
transition rules and trajectories as first-order logic formulas
was presented previously in Subsection II-C.

Next we describe how this procedure is implemented by
MCMT in the algorithm shown in Figure 3. The parameter-
ized system AN evolves according to the set of transition
rules τ(x,x′), where the pre-state is x and post-state is
x′. The state x can be thought of as a vector of length
N ≥ 2, with corresponding state values x.xi for say the
continuous variable xi of aircraft i. We previously showed
how to syntactically convert the Grd and Rst functions for
SATS to the τ transition rules in Subsection II-C. The entire
transition relation τ(x,x′) is defined as the disjunction of
all transitions (e.g., τfly→h3r ∪ τfly→h3l ∪ . . .) from Subsec-
tion II-C. The algorithm implemented in MCMT processes
first-order logic formulas that describe sets of states. For
backwards reachability, the first formula describes a bad
(that is, unsafe or illegal) set of states, denoted by φB . For
each N ≥ 2, consider the composition AN , then we have
xB ≡ JφBK.

The system will be safe if the algorithm reaches a fixed
point and the constraints describing that set of states which
may reach xB do not intersect with the initial set of states,
described by φI . Let xI ≡ JφIK for any N ≥ 2. Let
ρk be the sequence of formulas starting from φB . Defined
inductively, ρ0

∆
= φB and ρk

∆
= ρk−1 ∨ Pre(φk−1). Pre

is the preimage of a formula, defined as Preχ(φk−1) ≡
∃x′. (τχ(x,x′) ∧ φk−1(x′)) for each transition χ ∈ τ . Thus,
ρk represents the set of states that can reach the bad set of
states in k iterations of the algorithm.

It is desired that a fixed point is eventually reached, that is,
so that ρk ≡ ρk−1. The problem is in general undecidable, so
it may be the case that no fixed point is reached. To check if a
fixed point has been reached, one checks if JρkK ⊆ Jρk−1K.
This is equivalent to checking satisfiability of ¬(ρk =⇒
ρk−1). Conditions for decidability of the safety and fixed



point checks are given in [26], as are conditions for when a
fixed point is guaranteed to exist.

A. Properties Verified

SATS has previously been manually verified, and we
specify and verify several of the same safety properties [4],
[5]. We leave out a couple regarding lateral entry that we
are not modeling. The initial states are specified as the first-
order formula φI

∆
= ∀i.qi = fly ∧mi ∈ {left , right} ∧ xi =

0 ∧ si = 0 ∧ c = 0. Observe that all of the properties
verified are in essence mutual exclusion properties. Some
properties state that are no more than a single aircraft in a
state, while others specify no more than two are in a state,
etc. Separation assurance can be viewed as a sort of physical
mutual exclusion property.

We describe all properties as parametric (or indexed)
safety properties.

(A) There are no more than four aircraft attempting to land,
that is, the total number of aircraft in any states besides
flying and landed is 4 (but there may be arbitrarily many
aircraft flying or landed). Let T = {fly, taxi}, and let
F = Loc \ T be the set of discrete locations without
the flying or taxi states, then the property is specified
as:

φS
∆
=∀i, j, k, l,m.(i 6= j 6= k 6= l 6= m ∧ qi ∈ F∧
qj ∈ F ∧ qk ∈ F ∧ ql ∈ F ) =⇒ qm ∈ T.

In the implementation, we actually use counters to track
this property, e.g., we count the number of aircraft in the
system and verify this counter is bounded from above
by 4. We note that the SATS specification allows only
4 aircraft to be on approach at a given time [17], but
the number of aircraft involved in the protocol could
potentially be expanded by adding additional “sides”
with corresponding holding, base, and missed zones
(e.g., SATS is designed to have only left and right sides,
but one can imagine a system with more entry points).

(B) The main property we are interested in is separation
assurance, that two aircraft on approach to the runway
are separated by a safety spacing S > 0. Let F =
{br,bl,fin,mr,ml}, and the property is:

φS
∆
=∀i, j. (i 6= j ∧ qi ∈ F ∧ qj ∈ F ∧ si = sj − 1)

⇒ xi − xj ≥ S.

(C) No more than two aircraft are actually on either side
(left or right). Let T l be all the locations on the left side,
T l = {h3l,h2l,bl,ml} and T r be all the locations on
the right side, and let F r = Loc\T l and F l = Loc\T r
be the other states. The property for the left side (and

symmetrically, right) is:

φS
∆
=∀i, j, k.(i 6= j 6= k ∧ qi ∈ T l ∧ qj ∈ T l)⇒
qk ∈ F r.

(D) At most one aircraft is in each of the holding zones, for
h2r (and defined analogously for h3r, h3l, and h2l)
this is:

φS
∆
=∀i, j.(i 6= j ∧ qi = h2r)⇒ qj 6= h2r.

We actually could not verify the property for h3l or h3r

due to a spurious execution from the stopping failures
abstraction [16], so we assumed these two cases, and
were able to establish the property for the others.

(E) No more than two aircraft are on a missed approach fix,
for the right (and defined analogously for left), this is:

φS
∆
=∀i, j, k.(i 6= j 6= k ∧ qi = mr ∧ qj = mr)⇒
qk 6= mr.

Additionally, there is a liveness property proven in [4],
but unfortunately, MCMT cannot verify liveness properties,
only safety ones. The property would state that all aircraft
eventually land and that they land in order according to their
sequence numbers. Some very recent work attempts to allow
verification of some classes of liveness properties [25], but
general liveness properties for parameterized timed systems
were shown to be undecidable in [21].

We used version 1.1.1 of MCMT and version 1.0.32 of
Yices for the verification. MCMT has some capability to
generate invariants, and we enabled the full invariant search
for our verification (we used the options -I and -S3). All
runtimes of verification attempts are reported in Table I, and
were measured on a modern laptop with 8GB main memory
and an Intel Core i7 quad-core processor running at 2.0GHz.
However, we ran the verification in a virtual machine under
Ubuntu, limited to the use of two cores and 1.5GB memory.
We used the memtime utility from Uppaal [30] to measure
runtimes and memory usage. We used an existing model of
the system in Uppaal to verify some properties in a non-
parameterized version for N = 2, 3, 4, 5 aircraft and to help
us understand the protocol. We do not report verification
runtimes for Uppaal, as we primarily used Uppaal as a
simulation tool prior to encoding the SATS protocol in
MCMT, but we could not verify beyond five aircraft in the
system.

The order in which the properties are proved is important,
as our process was first to attempt proving a property, and
if it was established as an invariant, we would assume it
as a lemma and continue the verification process. We used
a Python script to automatically call MCMT and assert
lemmas. Finally, we note that we also performed some sanity
checks to see if certain states are reachable (e.g., there are
3 aircraft in the system, although this could be spurious due
to the stopping failures abstraction).



Property Runtime (s) Memory Usage (MB)

A 25.95 10.19

B 283.08 32.49

C 24.50 5.80

D 0.81 4.56

E 491.61 274.44

Table I
RUNTIME IN SECONDS AND MAXIMUM MEMORY USAGE IN MEGABYTES

REQUIRED TO VERIFY PROPERTIES OF SATS IN MCMT.

IV. RELATED WORK

Verification of safety critical traffic protocols like those
seen in automotive and aerospace systems has been done
for quite some time. For instance, techniques based on
optimal control are used for verification of conflict resolution
maneuvers in [31], [32] and automatic landing systems
in [33]. Curved flight maneuvers have also been verified
in [34]. Automotive protocols like those that may play a
role in the automated highway system have been modeled
and verified semi-automatically [9].

With regard to SATS, discrete abstractions capturing all
behaviors of SATS are created in [2], [5]. The properties
verified in these works include that there are at most
four aircraft on the approach to the runway, and similar
properties limiting the number of aircraft in certain zones
of SATS. In [4], assuming this limited number of aircraft
in the system, the authors automatically generated a set
of lemmas corresponding to every combination of aircraft,
and then discharged these lemmas semi-automatically, thus
verifying the separation assurance safety property of the
hybrid system. However, a more detailed hybrid systems
model of SATS is developed in [6].

Parameterized Verification: There is a large amount of
related work on automating the parameterized verification
problem. The book [8, Ch. 15] includes an overview, and a
nice survey is [35]. Some of the earliest works on parame-
terized verification appeared in [36], [37]. The verification
of such compositions is also known as uniform verifica-
tion [35]. We stated in the introduction that this problem is
in general undecidable [13]. However, for restricted classes
of systems under various communications constraints, the
problem has been shown to be decidable.

For instance, the PMCP is decidable for safety properties
of the networks of timed automata considered in [21], [22],
where each automaton has a single real-valued clock. If
the timed automata have more than a single real-valued
clock, then checking safety properties is undecidable [28].
However, if the clocks are discrete-valued, each automaton
may have any finite number of clocks. If the timed automata
have urgent transitions, then checking safety properties is
undecidable [21]. While checking general liveness properties
is undecidable for these networks [21], some recent work de-
velops methods for checking some liveness properties [25].

An alternative approach for parameterized verification
uses interactive theorem proving. The system model and the
properties are specified as a theory in the language of the
theorem prover, and then these properties are discharged by
invoking theorem prover commands on the proof goals. The
granularity of these commands and the degree of automation
varies from one system to another, but proving sophisticated
invariant properties requires significant manual work. This
approach has been successfully applied to verify (a) timed
automata [38], [39] in PVS [7], (b) SATS [4], [5], [6]
in PVS, (c) Fischer’s mutual exclusion protocol [40] in
SAL, (d) aircraft separation assurance in conflict avoidance
maneuvers [34] in KeYmaera [41], [42], (e) automotive
collision avoidance in adaptive cruise control [9] in KeY-
maera, (f) and many other systems and tools. Despite these
techniques using automated theorem provers being partially
manual, we believe the strengths of deductive methods are
that (a) they can handle nonlinear continuous dynamics and
complex discrete dynamics with data structures, and (b) they
could be used to specify and verify liveness properties.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we automatically verified several safety
properties of a distributed air traffic landing protocol, regard-
less of the number of aircraft involved in that protocol. The
air traffic protocol is a nontrivial distributed cyber-physical
system (DCPS), and for this reason, we believe it could
serve as a standard benchmark in the verification of DCPS.
We believe other DCPS under development, like networks
of autonomous vehicles or medical devices, can and should
be verified using this approach to increase the assurance
of reliability that the complex interaction of software and
physical processes does not yield catastrophic failure for
some instantiations of the system. While we were successful
in the verification in this paper—in part because there exists
a cutoff on the number of aircraft in the system as shown
through the verification approach used in [4]—we are inter-
ested in investigating abstractions for solving this problem.
For instance, the environment abstraction approach [43]
tracks the number of processes satisfying some predicates,
perhaps even abstracting the continuous variables in this
way, and may provide a more tractable approach for some
classes of DCPS.
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