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In this paper, we describe a method for synthesizing inductive invariants for cyber-
physical aerospace systems that are parameterized on the number of participants, such as
the number of aircraft involved in a coordinated maneuver. The methodology is useful for
automating the traditionally manual process of deductive verification of safety properties,
such as collision avoidance, and establishes such properties regardless of the number of
participants involved in a protocol. We illustrate the methodology using a simplified model
of the landing protocol of the Small Aircraft Transportation System (SATS) as a case
study. Each participant (aircraft) in the protocol is modeled as a hybrid automaton with
both discrete and continuous states and potentially nondeterministic evolution thereof.
Discrete states change instantaneously according to transitions and continuous states evolve
according to rectangular differential inclusions. The invariant synthesis method enables a
fully automatic verification of the main safety property of SATS, namely, safe separation of
aircraft on approach to the runway. The method is implemented in a prototype verification
tool called Passel. We present promising experimental results using the methodology, which
has enabled a fully automatic proof of safe separation for the model of SATS.

Nomenclature

N Arbitrary number of participants
N Fixed number of participants
[N ] Set of arbitrary participant identifiers
[N] Set of fixed, finite number of participant identifiers
A(N , i) Hybrid automaton template specifying participant i ∈ [N ]
A(i) Shorthand for A(N , i) when N is clear from context
AN Parameterized network of hybrid automata
ζ(N ) Safety property
Γ(N ) Candidate inductive invariant
P Number of participants used in projection step of invariant synthesis
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I. Introduction

Since aerospace software systems require a high degree of assurance that they meet their specifications,
formal methods have been extensively applied during the development of such systems.41 When successful,
formal methods may prove that a model of a system meets its specification. This is unlike simulation or
testing-based approaches that can provide counterexamples if a system is not correct, but cannot generally
establish correctness if the system has a large (or infinite) state-space, like in virtually any cyber-physical
aerospace system. A variety of techniques for verifying aerospace systems have been applied, such as partially
manual, deductive verification approaches with automated theorem proving30,35,38,26 to automated methods
like reachability computations for model checking.43,42,8, 25,23

In this paper, we present preliminary results on combining deductive verification with model checking to
enable automatic verification of properties for parameterized cyber-physical aerospace systems. The class of
systems we consider are parameterized on the number of interacting systems, for instance, the number of
aircraft approaching a runway according to a landing protocol, the number of satellites in a constellation,
or the number of unmanned aerial vehicles in a flock. We model each participant as hybrid automaton, and
consider the composition of N such interacting automata, for an arbitrary choice of N ∈ N. Hybrid systems
modeling frameworks3,20,32,34,16,37,17 specify state machines with combinations of discrete and continuous
states and their evolution. State machines model discrete variables and discrete transitions, while real-
valued continuous variables evolve according to ordinary differential equations (ODEs), differential algebraic
equations (DAEs), or inclusions.14 We aim to verify that any number of interacting systems satisfies some
property, e.g., that no collisions occur for any number of aircraft attempting to land.

In networks of hybrid automata, automata communicate by reading one another’s state and through
globally shared variables. A hybrid automaton A(i) may read the variables of another hybrid automaton
A(j) by maintaining a pointer to A(j). A pointer is a variable that takes values in the set of automaton
identifiers or names. Pointer variables allow for modeling systems with dynamic communication topologies.
Many distributed protocols utilize this type of communication, such as traffic control protocols where vehicles
keep track of adjacent vehicles, swarm robotics protocols where robots keep track of neighbors, or routers
that keep track of successors.

One such aerospace system that is naturally modeled in this framework is the Small Aircraft Trans-
portation System (SATS).2,1, 35,45,25 We present the simplified model SATS analyzed in this paper in Fig-
ures 1 and 2. SATS incorporates a landing protocol that has had several properties formally verified in the
PVS theorem prover,35,44,45 as well as using model checking.25 In SATS, aircraft communicate by reading
the valuations of discrete variables and continuous positions using pointers. Before attempting the landing
procedure, each aircraft checks if any other aircraft already attempting to land are sufficiently far away—LG
distance—from the geographic start of the approach to the runway, measured along one-dimension. If so, an
aircraft may begin an approach to the runway. The aircraft travel along the approach to the runway with
velocities ẋ[i] ∈ [vL, vU ] for 0 < vL ≤ vU . After traversing the length LB of the distance to the runway, the
aircraft may either land, or return to a holding pattern. The main safety property in SATS safe separation,
which specifies that if any aircraft i is ahead of any other aircraft j, then the positions of the aircraft are
actually separated by at least LS distance:

∀i, j ∈ [N ]. (i 6= j ∧ q[i] = base ∧ q[j] = base ∧ x[i] > x[j])⇒ (x[i]− x[j] ≥ LS) . (1)

Here, [N ] is the set {1, 2, . . . ,N}, x[i] is the real position of some aircraft i, q[i] refers to the discrete location
of some aircraft i, and LS is a positive real constant. We aim to automatically prove safe separation regardless
of the number of aircraft, N . To prove safety properties, we follow the deductive verification approach of
finding and establishing inductive invariants.

To synthesize inductive invariants, we follow the process of invisible invariants,39,5 which was originally
developed for discrete systems, but that we have extended for hybrid automata. We first compute the set
of reachable states for a finite instantiation of the network, i.e., for N = 3, although we reiterate that our
aim is to prove properties for any choice of N . This yields a set of constraints ψ(1, 2, 3) describing the
possible values for the variables of automata 1, 2, and 3. Next, we discard the constraints on the variables of
automaton 3 by projecting to the variables of automaton 3, which yields a new constraint ψ(1, 2) over only the
variables of automata 1 and 2. Then, we generalize this constraint ψ(1, 2) by syntactically replacing 1 with
a symbol i and 2 with a symbol j. Finally, we create a new quantified constraint ∀i, j ∈ [N ].i 6= j ⇒ ψ(i, j).
While this is a heuristic method, it allows us to prove collision avoidance (Equation 1) for any choice of N
automatically.
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fly
ẋ[i] = 0

start
hold

ẋ[i] = 0

base
ẋ[i] ∈ [vL, vU ]
x[i] ≤ LB

runway
ẋ[i] = 0

last′ := i

∀j.q[j] 6= base ∨ last 6= ⊥ ⇒ x[last] ≥ LG
x′[i] := 0

x[i] ≥ LB
last′ := i

x[i] ≥ LB

Figure 1. Simplified SATS protocol for aircraft i ∈ [N ].

Outline. The formal framework for modeling and verifying cyber-physical aerospace systems as parame-
terized networks of hybrid automata is presented in Section II. The SATS case study is used as an example
throughout Section II for illustrating the syntax and semantics of the modeling framework. In Section III, we
present the inductive invariant synthesis method. In Section IV, we present a brief summary of experimental
results for SATS using the Passel verification tool. Section V concludes the paper and presents directions
for future work.

II. Formal Modeling Framework

In this section, we present the formal modeling framework for specifying and verifying parameterized
networks of hybrid automata. The framework22 generalizes and unifies the modeling frameworks developed
in our prior work.27,25,26 First, we present the syntax for specifying a hybrid automaton template. Next,
we define the semantics of networks composed of (a potentially unbounded number of) instances of the
template. Then, we formally define the uniform verification problem, which aims to establish properties for
any number of participants in the network. The template is used as input for our Passel verification tool.

Preliminaries. We use two symbols for referring to the number of automata in a network. Where we use
N, we mean a constant, numerical natural number, that is, a fixed natural number (e.g., N = 3). Where we
use N , we mean a symbolic natural number, that is, N is some arbitrary natural number. For a natural

number n, we define the set [n]
∆
= {1, . . . , n}, and we use the sets [N] and [N ] for indexing automata. For a

set S, we define S⊥
∆
= S ∪ {⊥}.

For any natural number N and i ∈ [N ], an individual hybrid automaton A(N , i) is a (possibly nonde-
terministic) state machine with finitely many discrete locations and variables of various types like reals and
indices.The state of A(N , i) can change instantaneously through discrete transitions and its real-valued vari-
ables can evolve continuously over time according to trajectories specified by ordinary differential equations
(ODEs) or inclusions.

A network of hybrid automata AN is a collection of N interacting instances of a template automaton
A(N , i), in which the transitions of each hybrid automaton can depend on the the state of certain other
hybrid automata. We aim to establish properties that hold for the network AN for any choice of the
natural number N . We drop the argument N from A(N , i) and write A(i) when N is clear from context.
In a network AN , the constituent automata may communicate over discrete transitions, but not through
trajectories. That is, a transition taken by A(N , i) can depend on and influence the the state of another
automaton A(N , j), but a trajectory of A(N , i) depends on and influences only the state of A(N , i).

The variables of the N automata in the network AN are described as arrays of length N of appropriate
types. Real-typed variable may be updated continuously and/or discretely, while variables of other types
are only updated discretely. Next, we introduce the syntax for specifying networks of hybrid automata by
specifying one template hybrid automaton A(N , i), and then introduce the semantics of the language to
show how networks AN composed of N interacting instances of the template are modeled.

A. Syntax for Hybrid Automaton Template A(N , i)

In this section, we define the syntax for specifying a hybrid automaton template A(N , i) used to construct
parameterized networks of hybrid automata. We begin with some preliminary definitions.
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Variables. A variable is a name used for referring to state. A variable v is associated with a type—denoted
type(v)—that defines a set of values the variable may take. The type of a variable may be:

(a) L: a finite set called the set of locations (defined below).

(b) [N ]⊥: the set of automaton indices (identifiers) with the special element ⊥ that is not equal to any
index. A variable of this type is called a pointer variable or a pointer in short.

(c) R: the set of real numbers.

A variable may be local with a name of the form variable name[i], or global, in which case the name does
not have the index [i]. For example, q[i] : L, p[i] : [N ]⊥, and x[i] : R respectively define location, pointer,
real, and typed local variables, while g : [N ]⊥ is a global variable of index type. For a local variable q[i], the
array of variables 〈q[1], q[2], . . ., q[N ]〉 is denoted by q̄N . We write q̄ when N is clear from context.

Terms, Formulas, and Passel Assertions. This section presents the syntax for formulas we use to
specify the various syntactic components of a hybrid automaton template A(N , i). Formulas are built-up
from constants, variables, and terms of several types. Formulas are used for specifying the initial states and
the state evolution of the network. The grammar for different types of terms is as follows:

ITerm ::= ⊥ | 1 | N | i | p[i]
DTerm ::= lc | q | q[ITerm]

RTerm ::= 0 | 1 | rc | x | x[ITerm]

An index term (ITerm) is either (a) one of the constants ⊥, 1, N , an index variable i, or (b) a local pointer
variable p referenced at an index variable i. The grammar does not allow arbitrary productions of recursive
ITerms by restricting ITerms from being produced by p[ITerm]—for example, p[p[i]] is not an allowed term.a

Discrete terms (DTerm) and real terms (RTerm) are defined as specified in the grammar. For discrete
terms, lc is constant from L, q is a discrete variable, and q[ITerm] is a discrete array referenced at an index
specified by an ITerm. For real terms, rc is a real-valued numerical constant, x is a real variable, and x[ITerm]
is a real array referenced at an index specified by an ITerm.

Real polynomials and constraints are built using the following grammar.

RPoly ::= RTerm | RPoly1 + RPoly2 | RPoly1 − RPoly2 | (RPoly1 ∗ RPoly2)

RAtom ::= RPoly < 0

RPoly1 and RPoly2 are shorter real polynomials joined by arithmetic operators—addition +, subtraction −,
or multiplication ∗—to obtain longer polynomials. RAtom are used for specifying real constraints. Other
comparison operators—like less than or equal (≤), greater than or equal (≥), greater than (>), and equality
(=)—will be expressed using negation (¬) and conjunction (∧) in the formulas we define next.

For a polynomial p generated by RPoly over n real variables x1, . . . , xn with k additive terms, p =
a1x

e1,1
1 ∗ . . . ∗ xen,1

n + . . .+ akx
e1,k
1 ∗ . . . ∗ xen,k

n , with real coefficients a1, . . . , ak and natural number exponents

e1,1, . . ., en,k, the degree of p is deg(p)
∆
= max1≤q≤k(

∑n
r=1 er,q). If deg(p) > 1, then p is nonlinear. If

deg(p) ≤ 1, then p is linear. The linear fragment is the subset of formulas where all polynomials have degree
at most one. We assume standard precedence of operators (e.g., ∗ before +, etc.).

Using these terms and constraints, formulas are defined next:

Atom ::= ITerm1 < ITerm2 | DTerm1 = DTerm2 | RAtom

Formula ::= Atom | ¬Formula | Formula1 ∧ Formula2 | ∃x Formula

Here, x is called a bound variable, and is a variable of one of the types. Formula1 and Formula2 are shorter
formulas that are joined by Boolean operators to obtain a longer formula. By combining the Boolean
operators ∧ and ¬ with the < operator, other comparison operators, such as =, 6=, ≤, >, and ≥, can
be expressed in formulas for indices and reals. For example, p1[i] = p2[j] can be written as ¬(p1[i] <
p2[j])∧¬(p2[j] < p1[i]). Universally quantified variables can be expressed by ¬∃x : Formula ≡ ∀x : ¬Formula.
Thus, we assume the language contains the standard quantifiers and Boolean operators, even if not explicitly

aThis restriction ensures that the theory is stratified.5
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specified by the grammar (e.g., universal quantification ∀, implication ⇒, disjunction ∨, less-than-or-equal
≤, non-equality 6=, etc.).

If a variable in a formula is not bound, then it is called a free variable. If a formula does not contain any
quantifiers, then it is quantifier-free, but otherwise it is quantified. If a formula has no free variables, then it
is a sentence. If a formula is quantified and all the bound variables appearing in it are of index type, then
it is index-quantified. An index sentence is a formula with no free variables of index type.

Arithmetic operations on index terms (ITerm) are not allowed, and the allowed comparisons mean only
total orders may be specified. Only equality (or non-equality) comparisons are allowed for discrete terms.
If a formula is only composed of RTerms , then it is in the real polynomial subclass. A formula φ is in
disjunctive normal form (DNF) if and only if it is a disjunction of conjunctive clauses, where a conjunctive
clause is one or more conjunctions of one or more atoms. A formula φ is in conjunctive normal form (CNF)
if and only if it is a conjunction of disjunctive clauses, where a disjunctive clause is one or more disjunctions
of one or more atoms.

The Passel assertion language is the set of index-quantified formulas generated by the grammar just
defined. For a formula φ, let vars(φ) be the set of variables appearing in φ. For a formula φ, let ivars(φ)
be the set of distinct index variables appearing in φ. For a formula φ, let free(φ) be the set of free variables
appearing in φ. For a formula φ, let bound(φ) be the set of bound variables appearing in φ. For a quantified
formula φ, let body(φ) be the body of the quantifier, with all bound variables bound(φ) replaced with
universally instantiated variables with the same names. For a set of variable names V and a formula φ, if
free(φ) ⊆ V, then φ is over V. For a set of variable names V and a formula φ, if free(φ) = V, then φ is over
all V. For a Passel assertion over a set of variables V, we always assume that a countable set of symbolic
automaton indices are included in V for referencing different variables. Passel assertions over particular sets
of variables—along with further restrictions, such as being quantifier-free—will be used for specifying various
syntactic components of the hybrid automaton template A(N , i).

Hybrid Automaton Template. We next define a syntactic structure called a hybrid automaton tem-
plate, which we use to specify the behavior of a participant in a parameterized network.

Definition 1. For symbolic constants N ∈ N and i ∈ [N ], a hybrid automaton template A(N , i) is specified
by the following syntactic components:

(a) Vi: a finite set of variable names,

(b) L: a finite set of location names,

(c) Initi: an initial condition, which is a Passel assertion over Vi,

(d) Transi: a finite set of discrete transition statements, each of which is composed of a from-to pair
of locations, along with a guard, a universal guard, and an effect, which are quantifier-free Passel
assertions over Vi ∪ V′i, where V′i is the set of primed variable names corresponding to Vi, and

(e) Flowi: a finite set of trajectory statements, one for each element in L, each of which is composed of an
invariant, a stopping condition, and a flowrate, each of which are quantifier-free Passel assertions over
Vi ∪Vi dot, where Vi dot is the set of dotted variable names corresponding to the real-valued variables
in Vi.

The subscript i emphasizes that components may use the automaton’s index.

A hybrid automaton template A(N , i) is written A(i) when N is clear from context. Throughout this
section, we use an example specification of a simplified version of the Small Aircraft Transportation System
(SATS) to illustrate the language constructs available for specifying a hybrid automaton template A(i). The
specification of the protocol in this language is shown in Figure 2, and an equivalent graphical representation
appears in Figure 1.b

Specifying Locations. The set of location names L is specified by a list of location names. A loca-
tion name follows the keyword location name. In SSATS, the set of locations L is {fly, hold, base, runway}
(lines 12, 14, 16, and 20). Locations are depicted graphically as the circles in Figure 1. Each automaton
A(i) has a single local variable q[i] that takes values in L. A trajectory statement may follow each location
name, defined in detail in below.

bFigure 2 is marked-up for readability, but is essentially in Passel’s input language.
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1 parameter name=’L_B’ type=’real’ value = 28.0 // base zone length
parameter name=’L_S’ type=’real’ value = 7.0 // separation spacing

3 parameter name=’v_L’ type=’real’ value = 90.0 // minimum veloci ty
parameter name=’v_U’ type=’real’ value = 120.0 // maximum veloci ty

5 parameter name=’L_G’ type=’real’ value = L_S + (v_U - v_L) * ((L_B - L_S) / v_L) // guard spacing

7 automaton name=’SSATS’
variable name=’q[i]’ type=’L’ // location loca l variable

9 variable name=’x[i]’ type=’real’ // continuous loca l variable
variable name=’last’ type=’index’ // global lock variable

11
location name=’fly’

13 flowrate: x[i]_dot = 0.0
location name=’hold’

15 flowrate: x[i]_dot = 0.0
location name=’base’

17 inv: x[i] <= L_B
stop: x[i] = L_B

19 flowrate: x[i]_dot >= v_L and x[i]_dot <= v_U
location name=’runway’

21 flowrate: x[i]_dot = 0

23 transition from=’fly’ to=’hold’
eff : x[i]′ = 0.0 and last′ = i

25
transition from=’hold’ to=’base’

27 grd: last = i
ugrd: q[j] != base

29 eff : x[i]′ = 0.0

31 transition from=’hold’ to=’base’
grd: last != ⊥ and last != i and x[last] >= L_G

33 eff : x[i]′ = 0.0

35 transition from=’base’ to=’hold’
grd: x[i] >= L_B

37 eff : x[i]′ = 0 and last′ = i

39 transition from=’base’ to=’runway’
grd: x[i] >= L_B and last = i

41 eff : x[i]′ = 0 and last′ = ⊥

43 transition from=’base’ to=’runway’
grd: x[i] >= L_B and last != i

45 eff : x[i]′ = 0

47 initially: forall i (q[i] = fly and next[i] = ⊥ and last = ⊥)
property: forall i, j ( i != j and q[i] = base and q[j] = base and x[i] > x[j] )

49 implies (x[i] >= x[j] + L_S)

Figure 2. Passel input file specifying hybrid automaton A(i) for SSATS, a simplified SATS protocol.

Specifying Variables, Parameters, Initial Conditions, and Invariant Properties. The set of
variables Vi is specified by the list of variable names and types following the keywords variable name and
type. For a SATS template automaton with index i, the set of variables is specified by the list of variables
on lines lines 8 through 10. It has two local variables, q[i] and x[i], with types L and R, and a single global
variable last of type [N ]⊥.

The specification of A(i) may use a set of symbolic or numerical parameters (constants). Each parameter
is specified by its name, type, and, optionally, a quantifier-free Passel assertion that specifies constraints
that the parameters must satisfy. For SATS, there are five real-valued parameters, LB , LS , vL, vU , and LG
(lines 1, 2, 3, 4, and 5).

We denote the set of local variables by VL[i], the set of global variables by VG[i], and the set of parameters
by VP [i]. In the SATS example, VL[i] = {q[i], x[i]}, VG[i] = {last}, and VP [i] = {LS , LB , vL, vU , LG}. When
clear from context, we drop the index i and write VL, VG, and VP for VL[i], VG[i], and VP [i], respectively.

Initial Conditions. The initial condition assertion Initi is a universally index-quantified Passel assertion
following the keyword initially. In SATS, the initial condition assertion is (line 47):

∀i : (q[i] = fly ∧ x[i] = 0 ∧ last = ⊥),
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where i is implicitly quantified over [N ]. The initial condition assertion for SATS asserts that, for each
index i ∈ [N ], the variables of A(i) have the constraints q[i] = fly and x[i] = 0, and that the global variable
last = ⊥. If a variable v ∈ Vi is not specified in the initial condition, it is assumed that v is initially an
arbitrary value in its type type(v). Note that the Initi assertion may specify constraints over all automata
in the network using universally index-quantified Passel assertions.

Candidate Invariant Properties. Candidate invariant properties are specified as Passel assertions
following the keyword property. For example, the safe separation invariant property can be specified as
in Equation 1 (line 49).

Specifying Discrete Transitions. For any N ∈ N and any i ∈ [N ], the set of discrete transitions
Transi is specified by the list of transition statements following the keyword transition. Each transition
statement specifies a from-to pair of locations following the keywords from and to. If it exists, we denote a
transition from location src to location dest by t(src, dest) ∈ Transi, which is written as t when the from-to
locations are clear from context.

Each transition t ∈ Transi may specify a guard following the keyword grd, a universal guard following the
keyword ugrd, and an effect following the keyword eff . The guard, universal guard, and effect are quantifier-
free Passel assertions, and they are denoted by grd(t, i), ugrd(t, i), and eff(t, i) for A(i), respectively. If i is
clear from context, we drop it and write grd(t), ugrd(t), or eff(t). The universal guard is a quantifier-free
Passel assertion involving the variables Vj , for j 6= i, and we recall i is the index of the template A(N , i).
The universal guard specifies an assertion over the variables of other automata and global variables. Such
assertions over the variables of all the other automata in the network are useful for modeling broadcast-like
communications. The effect models the update of state, and is a quantifier-free Passel assertion over the
variables Vi ∪ V′i, where V′i concatenates a prime (′) to each variable name v in Vi. The effect specifies a
relation between the variables before (unprimed) and after (primed) the transition. The effect is not required
to specify variables that are not modified by the transition.

One of the transitions from hold to base for SATS with index i (line 26), where

grd : last = i,

eff : x[i]
′

= 0.0

specifies that automaton i may nondeterministically transition from a state where q[i] = hold to a state
where q[i]

′
= base, only if the global pointer variable last is equal to i. Further, if the automaton does make

this transition, then the effect specifies that x[i] is to be reset to 0. If the guard condition is omitted, then it
is assumed to be just the control location condition. For example, in SATS, the transition from fly to hold
is enabled when q[i] = fly.

Specifying Continuous Dynamics. The elements of the set of trajectory statements Flowi are listed
following the corresponding location names. Each location m ∈ L has a trajectory statement in Flowi.
The trajectory statement consists of an invariant condition following the keyword inv, a stopping condition
following the keyword stop, and a sequence of flow rates following the keyword flowrate. The invariant
condition of a location m ∈ L for automaton A(i) is denoted by inv(m, i), the stopping condition is denoted
by stop(m, i), and the flow rate for some real-valued variable x[i] ∈ Vi, is denoted by flowrate(m, x[i]).

The invariant and stopping conditions are Passel assertions involving only the real variables X[i] and
real parameters in VP [i]. The flow rate associates each real-valued variable in X[i] with ordinary differential
equations or inclusions specified as the real polynomial subclass of Passel assertions. The flow rate for a
variable name x[i] ∈ Vi is specified by concatenating dot to the variable name, for example x[i] dot.

Together, the components of a trajectory statement define how variables of A(i) behave over intervals of
time. For SATS, the trajectory statement for base is:

inv : x[i] ≤ LB
stop : x[i] = LB

flowrate : x[i] dot ≥ vL ∧ x[i] dot ≤ vU

In addition, the invariant requires that the automaton with index i can have q[i] = base only as long as
x[i] ≤ LB . The stopping condition requires that if x[i] = LB , then real time cannot continue to elapse. The
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flow rate specifies the special case of rectangular differential inclusions, where the time-derivative is specified
by an upper and a lower bound in terms of a numerical constant or a parameter name, in this case, lower
and upper velocity bounds (vL and vU , repsectively).

B. Semantics of Hybrid Automata Networks

The semantics of the hybrid automata network AN—where an arbitrary number N ∈ N of instances of the
template A(N , i) operate in parallel—is defined in this section. The semantics are defined in terms of a
transition system with a set of variables VN , a set of states QN , a set of initial states ΘN , and a transition
relation TN . For networks of hybrid automata, none of these sets is usually finite since variables may have
real types.

Definition 2 (Parameterized Network of Hybrid Automata). For any N ∈ N, a parameterized network of

hybrid automata is a tuple AN ∆
=
〈

VN , QN ,ΘN , TN
〉

, where

(a) VN are the variables of the network, VN
∆
= VG ∪

⋃N
i=1 VL[i],

(b) QN ⊆ val(VN ) is the state-space,

(c) ΘN ⊆ QN is the set of initial states, and

(d) TN ⊆ QN ×QN is the transition relation, which is partitioned into disjoint sets of discrete transitions
DN ⊆ QN ×QN and continuous trajectories T N ⊆ QN ×QN .

The transition system is said to be parameterized on N since fixing different values of N yield different
transition systems. This definition allows for proving an invariant property ζ for every network of hybrid
automata. For instance ∀N ∈ N :

(
AN |= ζ(N )

)
states that, for every choice of N ∈ N, the corresponding

network of hybrid automata AN satisfies the property ζ(N ).

State-Space and Semantics of Passel Assertions. Recall that Vi is the set of variable names for
the hybrid automaton template A(N , i) where i ∈ [N ]. A state x in QN of AN is defined in terms of the
valuations of all the variables of all its components. For each i ∈ [N ], the valuation of a variable v ∈ Vi is a
function that associates the variable name v to a value in its type type(v). Elements of the state-space QN

are called states and are denoted by boldface v, v′, etc.
At a state v, the valuation of a particular local variable x[i] ∈ VL[i] for automaton A(i) is denoted by

v.x[i], and v.g for some global variable g in VG[i]. We recall that we refer to the valuations of a local variable
v[i] ∈ VL of all N automata in the network AN as an array variable, and denote it v̄ which takes values in

type(v [i ])
N

. So, for a state v, the valuations of a local variable v[i] ∈ VL[i] for all i ∈ N is written v.v̄. The
valuation of all the local variables for automaton A(i) at state v is denoted by v.VL[i]. The valuation of all
the local variables for automaton A(i), as well as the global variables, at state v is denoted by v.Vi. The

state-space Qi corresponding to automaton A(N , i) in the network AN is defined as Qi
∆
= val(Vi).

Representing States with Assertions. Subsets of QN are often represented by assertions involving
the variables. If a state v satisfies a formula φ—that is, the corresponding variable valuations result in φ
evaluating to true—we write v |= φ. For such a formula φ, the corresponding states satisfying φ are denoted
by JφK. A model for an assertion provides interpretation to the elements appearing in the assertion.

Definition 3. An n-model M for an assertion ψ is denoted M(n, ψ) and provides an interpretation of each
the free variables in ψ as follows:

• the index constants ⊥, 1, and N are respectively assigned the values 0, 1, and n,

• each pointer variable is assigned a value in the set [n],

• each discrete variable is assigned a value in L,

• each real variable is assigned a value in R,

• each pointer, discrete, and real array is assigned respectively a {0, . . . , n}-valued, L-valued, or real-
valued array of length n.
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Given an assertion ψ and a model M(n, ψ), if ψ evaluates to true with the interpretations of the free
variables given by M(n, ψ), then M(n, ψ) is said to satisfy ψ. If there exist models that satisfy ψ, then the
assertion is said to be satisfiable. If all models of ψ satisfy it, then the assertion is said to be valid .

Initial States. The set of initial states ΘN ⊆ QN is defined as JInitiK, that is, the set of states satisfying

the Passel assertion Initi: ΘN
∆
= {v ∈ QN | v |= Initi}. In SATS (Figure 2), the set of initial states specified

by line 47 is:

ΘN
∆
= JInitiK = {x ∈ QN | ∀i ∈ [N ],x.q[i] = fly ∧ x.x[i] = 0.0 ∧ last = ⊥}.

Transitions and Trajectories. The evolution of the states ofAN are describing by a transition relation
TN ⊆ QN × QN . For a pair (v,v′) ∈ TN , we use the notation v → v′, where v is called the pre-state
and v′ is called the post-state. There are two ways state is updated by TN : discrete transitions DN model
instantaneous change of state and continuous trajectories T N model change of state after a time interval.

Discrete Transitions. Discrete transitions model atomic, instantaneous updates of state due to one
automaton in the network AN . There is a discrete transition v→ v′ ∈ DN iff:

∃i ∈ [N ] ∃t ∈ Transi : v.Vi |= grd(t, i) ∧ v′.Vi |= eff(t, i) ∧
(∀j ∈ [N ] : v.Vj |= ugrd(t, j) ∧ j 6= i⇒ v′.Vj = v.Vj).

From the pre-state v, any automaton in the network, with any transition satisfying the guard may update its
post-state according to transition effect, while the states of the other automata remain unchanged. Informally,
a discrete transition from pre-state v to post-state v′ models the discrete transition of one particular hybrid
automaton A(i) by some transition t ∈ Transi. The universal guard of transition t depends on the variables
in Vj for j 6= i.

We recall that the guard is a quantifier-free Passel assertion and specifies the enabling condition for the
transition, which is a condition that must evaluate to true to allow the transition to update the system
state. If the guard or universal guard are not specified, we assume they are true, which means a transition
t(src, dest) may only be taken by automaton A(i) if q[i] = src. We assume the identity relation for any
primed variable v′ ∈ V′i not specified in an effect. For example, if x[i]

′
is not specified in an effect, then we

assume the specified effect is conjuncted with x[i]
′

= x[i].
For the SATS example, the semantics for the discrete transition t(base, runway) (line 39) for some au-

tomaton A(i) are defined by:

(v,v′) |= ∃i ∈ [N ] : (q[i] = base ∧ last = i ∧ x[i] ≥ LB) ∧
(q[i]

′
= runway ∧ x[i]

′
= 0.0 ∧ last′ = ⊥) ∧

(∀j ∈ [N ] : j 6= i⇒ q[j]′ = q[j] ∧ x[j]
′

= x[j]).

This transition can occur from states v where v |= q[i] = base∧x[i] ≥ LB ∧ last = i. This transition updates
the location of A(i) to be q[i]

′
= runway, the real variable x[i]

′
= 0, and sets the global variable last to ⊥,

and additionally, the variables of no other automata A(j) are updated.

Continuous Trajectories. Continuous trajectories model update of state over intervals of time. There
is a trajectory v → v′ ∈ T N iff some amount of time—te—can elapse from v, such that, (a) the states
of all automata in the network AN are updated to v′ according to their trajectory statements, (b) while
ensuring the invariants of all automata along the entire trajectory, and (c) that if the stopping condition of
any automaton is satisfied, it is at the end of a trajectory. Formally, trajectories are defined as solutions of
differential equations or inclusions specified in the trajectory statements of A(i). The differential equation
ẋ = f(x) where x ∈ Rn and f : Rn → Rn has a solution for initial condition x0 ∈ Rn if there exists a
differentiable function γ(t) for γ : R≥0 → Rn such that γ(0) = x0 and, for every τ ∈ [0, t], γ̇(τ) = f(γ(τ)).
A differential inclusion is ẋ ∈ F (x) for x ∈ Rn, where F is a set-valued function from Rn to Rn, so that
F (x) ⊆ Rn. A solution for the differential inclusion with initial condition x0 is any differentiable function
γ(t) for γ : R≥0 → Rn such that γ(0) = x0 and, for every τ ∈ [0, t], γ̇(τ) ∈ F (γ(τ)). Sufficiently smooth
differential equations satisfying continuity conditions—such as Lipschitz continuity28—have unique solutions,
whereas differential inclusions have families of solutions.14,40
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Thus, to define trajectories for AN formally, we first define a set-valued function called flow(m,v.VL[i], t)
that returns the states of A(i) when q[i] = m that can be reached from v.VL[i] in t time. We suppose
flow(m,v.VL[i]) is set-valued, as this subsumes the case when flowrate(m, x[i]) specifies a differential equa-
tion for ẋ[i] instead of an inclusion.

Let n = |X[i]| be the number of continuous local variables in the template A(i). Let Jflowrate(m,X[i])K :
Rn → Rn be the vector of differential inclusions (and/or equations) for all the continuous variables X[i]
of A(i), assumed to be ordered lexicographically by the variable names. For example, for SATS in base,
Jflowrate(base,X[i])K is vL ≤ ẋ[i] ≤ vU (Figure 2, line 19) since there is a single continuous variable x[i]
specified to evolve according to the rectangular differential inclusion with lower and upper bounds vL and
vU , respectively.

Here, v′.VL[i] = flow(m,v.VL[i], t) iff:c

(a) for each real local variable x[i] ∈ X[i], ẋ[i] with initial condition v.x[i] has a solution γ(t), v′.x[i] = γ(t),
and

(b) for each non-real local variable y[i] ∈ VL[i] \ X[i], v′.y[i] = v.y[i].

For the SATS example for base (Figure 2, line 16),d

flow(base,v.x[i], t) ∈ [v.x[i] + vL ∗ t,v.x[i] + vU ∗ t] .

Thus far, we have not included the invariant and stopping condition, so we include these to complete the
definition of trajectories. There is a trajectory v→ v′ ∈ T N iff:

∃te ∈ R≥0 ∀i ∈ [N ] ∃m ∈ L ∀tp ≤ te : flow(m,v.X[i], tp) |= inv(m, i) ∧
(flow(m,v.X[i], tp) |= stop(m, i)⇒ tp = te) ∧
v′.X[i] ∈ flow(m,v.X[i], te).

For each i ∈ [N ] and each real variable x[i] ∈ X[i], v.x[i] must evolve to the valuations v′.x[i], in exactly te
time in some location m ∈ L according to the flow rates allowed for x[i] in that location. All intermediate
states along the trajectory must also satisfy the invariant inv(m, i), and if an intermediate state satisfies
stop(m, i), then that state must be v′ (that is, the end of a trajectory).

If no flow rate is specified for some variable x[i] ∈ X[i], then x[i] is assumed to remain constant along the
trajectory (that is, ẋ[i] = 0). If no invariant is specified, then it is assumed to be true, which specifies that
the automaton may remain indefinitely in the corresponding location. If no stopping condition is specified,
it is assumed to be false, which specifies that real time may elapse indefinitely in the corresponding location.

Executions, Invariants, and Inductive Invariants. An execution of the network AN models a
particular behavior of all the automata in the network. An execution of AN is a sequence of states α =
v0,v1, . . . such that v0 ∈ ΘN , and for each index k appearing in the sequence (vk,vk+1) ∈ TN . A state x
is reachable if there is a finite execution ending with x. The set of reachable states for AN is Reach(AN ).
The set of reachable states for AN starting from a subset V0 ⊆ QN is Reach(AN ,V0).

An invariant for AN is any set of states that contains Reach(AN ). In general, any assertion over the
variables of the automata in AN defines a subset of QN . The dependence of such assertions on N is made
explicit by using names like ζ(N ). A network AN is safe with respect to an assertion ζ(N ) if all its reachable
states satisfy it, that is, Reach(AN ) ⊆ Jζ(N )K. Given a template hybrid automaton A(N , i) and a property
ζ(N ), we aim to prove for all N ∈ N, that every network is safe—that is, ∀N ∈ N, Reach(AN ) ⊆ Jζ(N )K.
To prove that AN is safe with respect to some unsafe set or property—that is, ¬ζ(N )—it suffices to find an
invariant Γ(N ) ⊆ QN such that JΓ(N )K ∩ J¬ζ(N )K = ∅.

Several subclasses of hybrid automata have been identified for which safety verification by computing
reachable sets is decidable—such as initialized rectangular hybrid automata (IRHA)40,20 and order-minimal
(o-minimal) hybrid automata29—and several automated model checking tools have been developed, such as
HyTech,19 PHAVer,16 and SpaceEx.17 However, the general model checking of even safety properties for
hybrid automata is undecidable, so a standard approach is to use overapproximations of reachable states

cWe have excluded continuous global variables to make the presentation clearer.
dThis is an overapproximation of the set of solutions of the rectangular differential inclusion, as it excludes the requirement

that the time derivative of any solution is in the differential inclusion ẋ[i] ∈ [vL, vU ].

10 of 16

American Institute of Aeronautics and Astronautics



for checking safety properties, such as the methods implemented in PHAVer for affine (linear) dynamics16

and SpaceEx for affine dynamics as well17 using the Le Geurnic-Girard (LGG) algorithm.18 An alternative
approach is to prove stronger inductive invariant assertions that imply a desired safety property, as originally
used in Floyd-Hoare proofs15,21 and the predicate transformers of Dijkstra.11

Definition 4. An assertion Γ(N ) is an inductive invariant for the parameterized network AN if, for all
N ∈ N, the following conditions hold:

(A) initiation: for each initial state v ∈ ΘN ⇒ v |= Γ(N ),

(B) transition consecution: for each transition (v,v′) ∈ DN , if v |= Γ(N ), then v′ |= Γ(N ), and

(C) trajectory consecution: for each trajectory (v,v′) ∈ T N , if v |= Γ(N ), then v′ |= Γ(N ).

Proving that a parameterized network satisfies a property is the uniform verification problem.

Definition 5. The uniform verification problem is proving for any N ∈ N, for a property ζ(N ) and param-
eterized network AN , that AN satisfies ζ(N ), written AN |= ζ(N ).

The problem of uniform verification of parameterized networks is over arbitrary compositions of po-
tentially infinite-state automata, so in general we may need to query a theorem prover to check con-
ditions (A), (B), and (C). The next standard theorem states that if an assertion Γ(N ) is an inductive
invariant—that is, Γ(N ) satisfies the conditions for inductive invariance (Definition 4)—then Γ(N ) is an
invariant.32,34,22

Theorem 5.1. If ∀N ∈ N, Γ(N ) is an inductive invariant, then it is also an invariant:

∀N ∈ N,Reach(AN ) ⊆ JΓ(N )K .

Theorem provers such as PVS have been augmented with support for verifying such networks.9,44,4 The
KeYmaera theorem prover also has support for verifying this type of networks.37,31 These environments
provide partially automatic means of proving inductive invariants of networks AN . It is well known that the
converse of Theorem 5.1 does not hold. If we can find an assertion Γ(N ) that is an inductive invariant and
implies some desired safety property ζ(N ), we say that Γ(N ) is sufficient to prove the safety property ζ(N ).

Definition 6. For any N ∈ N, an assertion Γ(N ) is sufficient to prove a safety property ζ(N ) if Γ(N ) is
an inductive invariant and Γ(N )⇒ ζ(N ), so that Jζ(N )K ⊆ JΓ(N )K.

III. Synthesizing Inductive Invariants

In this section, we describe a method for finding candidate inductive invariants for parameterized net-
works of hybrid automata. The invariant synthesis method generates quantified inductive invariants by
transforming the set of reachable states of finite instantiations of the network. This is an extension to hybrid
automata of the invisible invariants method for synthesizing inductive invariants for parameterized networks
of discrete automata.5,39,6, 7, 36,12,33 These candidate inductive invariants are then checked for the conditions
of Definition 4, and prove the safety property of interest if the inductive invariants imply the safety property.

For finding candidate inductive invariants for hybrid networks, our approach builds upon the invisible
invariant method used for discrete transition systems.5,39,7, 36,33 The invisible invariants method combines
the standard inductive invariance proof method—recall Definition 4—with reachability computations to
automatically perform uniform verification of safety, that is, to prove a safety property ζ(N ) for any network
AN of any size N (Definition 5). The invisible invariant method starts by computing the set of reachable
states for a small instantiation of the network. Say for N = 3, the reach set (or its approximation) for the

network A3 ∆
= A(1)‖A(2)‖A(3) is computed. Then this set is projected onto a smaller instance of size P < N.

Finally, this projected subset is generalized to produce a candidate invariant for a network of arbitrary size.
The user’s choice of P determines the shape of the generated invariant. For P = 1 the invariant asserts
properties about the variables of a single automaton, for P = 2 the properties may include linear inequalities
involving pairs of automata, and so forth. In our methodology, the user may choose the projection to be
made onto a subset of the variables of the automata in the P-sized network, such as only the real or discrete
variables. This choice proves to be crucial in some of the case studies. If the generated candidate invariant is
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1 function inductiveInvariance(A(N , i), ζ(N ), Init, N, P) {
// synthesize candidate inductive invariants from f i n i t e instances

3 Γ(N ) ← pg(A(N, i), Init, N, P)

5 // inductive invariance check for any N
if (∀N ∈ N Init(N )⇒ Γ(N ) is valid and // per Definition 4 (A)

7 ∀N ∈ N transitionConsecution(A(N , i), N , Γ(N )) is valid and // per Definition 4 (B)
∀N ∈ N trajectoryConsecution(A(N , i), N , Γ(N )) is valid and // per Definition 4 (C)

9 ∀N ∈ N Γ(N )⇒ ζ(N ) is valid) { // per Definition 6
return ζ(N ) is invariant for all N

11 }
else {

13 return potential counterexample
}

15 }

Figure 3. Inductive invariance proof method with inductive invariant synthesis. The inputs are an automaton
specification A(N , i), a desired safety property ζ(N ), an initial condition assert Init, and two constants, N and
P. The output is either a proof of the safety property ζ(N ) for all N ∈ N, or a potential counterexample. The
latter either indicates A(N , i) has a bug and does not satisfy ζ(N ) or that the synthesized invariants are not
strong enough to prove ζ(N ).

inductive and sufficient to prove some safety property ζ(N ), then a completely automatic inductive invariance
proof is obtained.

The project-generalize method is incomplete even for discrete systems.39 The candidate invariants gen-
erated by our method may not be inductive nor are they guaranteed to prove ζ(N ). However, we have
found the heuristic to be practically useful for several examples, such as SATS. We implement the method in
Passel to yield the first fully automatic proof of correctness for several nontrivial hybrid networks. Notable
among these is the core of the SATS landing protocol.2,1, 35,44,45,25 The synthesis method finds non-trivial
inductive invariants sufficient to prove safe separation for SATS. In the following, N and P are fixed natural
numbers with P < N and N ≥ 2 (e.g., P = 2, N = 3), and we recall N is a symbol denoting an arbitrary
natural number.

A. Synthesizing Inductive Invariants with the Project-and-Generalize Method

This section describes methods for synthesizing inductive invariants for parameterized networks of hybrid
automata. If a safety property ζ(N ) itself is not an inductive invariant for AN , as is often the case, then we
attempt to find stronger inductive invariants that imply ζ(N ).

The overall methodology of finding and checking inductive invariants is described by the pseudocode
of Figure 3. Either a user must supply a sufficiently strong candidate inductive invariant to prove a safety
property, or the verification tool may try to come up with one. The project-and-generalize method is shown
in Figure 4. This method takes two input parameters N and P. The method first computes the reachable
states of a network AN of size N, and then through a sequence of transformations generates a candidate
inductive invariant with P universally quantified index variables for a network AN of arbitrary size N .

Reachability Computation (line 4). The reach set Reach(AN) or its overapproximation is computed
for the hybrid network AN with N automata. For general hybrid automata, computing the exact reach set is
undecidable, however, there are several tools available for computing bounded-time overapproximations like
HyTech,19 PHAVer,16 or SpaceEx.17 This step can use any such tool. In the results presented in this paper
(see Section IV), Passel uses PHAVer.16 The output of this step is Reach(AN) as a disjunctive normal form
(DNF) formula over the variables of A(1), . . ., A(N).

Assumption 7. For a given hybrid automaton template A(i) and natural number N, the reachability com-
putation of the network AN (Definition 2) at line 4 terminates and is exact, yielding Reach(AN).

Projection of Reach(AN) (loop lines 5 through 18). The loop iterates over each of the clauses r ∈
Reach(AN).e Given a clause r in Reach(AN), we project away the variables of any automata with indices
greater than P. Recall that P specifies the number of universally quantified index variables in the invariant
to be synthesized. Passel computes the projection using quantifier elimination procedures—represented by

eSince existential quantification distributes over disjunction, we consider each clause at a time.
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1 function pg(A(N , i), Init, N, P) {
V ← ∪i∈[N]\[P]Vi

3 AN ← A1‖A2‖ . . . ‖AN

R ← Reach(AN, Init(N)) // assume in DNF: R = r1 ∨ r2 ∨ . . .
5 foreach r in R {

// project onto variables of processes 1, 2, . . . ,P
7 QF [r] ← QuantElim(∃V : r)

// syntact ica l ly subst i tute 1, 2, . . . ,P to symbols i1, . . . , iP
9 foreach n in {1, 2, . . . ,P} {

QF [r] ← Substitute(QF [r], "n", "in")
11 }

// abstract index−valued variable valuations that are > P
13 foreach variable v in Vi with type(v) = [N]⊥ {

foreach n in {P + 1,P + 2, . . . ,N} {
15 QF [r] ← Substitute(QF [r], "v = n", "v 6= i1 ∧ . . . ∧ v 6= iP")

}
17 }

}
19 ψ(i1, . . . , iP) ←

∨
r∈RQF [r]

return ∀̇i1, . . . , iP ∈ [N ] : ψ(i1, . . . , iP)
21 }

Figure 4. Inductive invariant synthesis method. The input arguments are a hybrid automaton template A(N , i),
an initial condition assertion Init, a constant natural number N, and a constant natural number P, where P < N.
The method computes the set of reachable from Init for a network of N automata, then transforms this reach set
into an assertion ψ(i1, . . . , iP) over the variables of automata with (symbolic) indices i1, i2, . . ., iP. The output
of the method is a universally quantified candidate inductive invariant ψ(i1, . . . , iP).

function QuantElim (line 7)—over the types of the variables Vi. These formulas (predicates over Booleans,
linear real arithmetic, bounded integers, and their combinations) admit quantifier elimination. Based on the

value of P, the quantifier elimination on line 7 is applied to QF [r]
∆
= ∃ ∪i∈[N]\[P] Vi : r, which projects away

the variables of all automata with indices higher than P. In general, Passel projects away some subset of
the variables Vi, for example, onto only the variables with discrete types or real types.

For example, in SATS, one of the clauses in Reach(AN) is:

r
∆
= (q[1] = base ∧ q[2] = base ∧ 3x[2] > 4x[1] + 56 ∧ last = 3 ∧ 28 ≥ x[2] ≥ 21). (2)

For P = 1, after executing QuantElim, the variables of automaton 2 are eliminated to yield:f

QF [r]
∆
= ∃V2 : r ≡ ∃q[2] ∈ L,∃x[2] ∈ R : r ≡ (q[1] = base ∧ 7 ≥ x[1] ≥ 0 ∧ last = 3). (3)

Generalization of Projected Clauses (lines 9 through 17). Next, the Substitute function syn-
tactically substitutes expressions in QF [r]. The generalization syntactically replaces all valuations of index
variables equal to a value in [P] with fresh index symbols i1, i2, . . . , iP (lines 9 through 11). Continuing with
the r from the Equation 3 example, the index 1 is replaced with i1 yielding:

QF [r]
∆
= (q[i1] = base ∧ 7 ≥ x[i1] ≥ 0 ∧ last = 3). (4)

The valuations of index-valued variables in Reach(AN) that exceed P are transformed to be not equal to any
of the symbols i1, . . ., iP (lines 13 through 17). In the example, QF [r] has index 3 for valuations of the
index-valued global variable last after projection and replacing 1 with i1. We abstract such valuations by
looking at each index-valued variable v, if the valuation v = k where k ≤ P, then set v = ik, and otherwise
for k > P or k = ⊥, set v 6= i1 ∧ . . . ∧ v 6= iP. Continuing the example r from Equation 4, we have:

QF [r]
∆
= (q[i1] = base ∧ 7 ≥ x[i1] ≥ 0 ∧ last 6= i1),

which contains symbolic indices i1, . . ., iP, but no numerical indices.

Combining Clauses. Following these transformations of all r’s, we take the disjunction of QF [r] for all
r ∈ R (line 19). This is the formula ψ(i1, . . . , iP). A quantified formula is then created as (line 20):

∀̇i1, i2, . . . , iP ∈ [N] : ψ(i1, i2, . . . , iP),

fWe note that q[2] and x[2] are constants for the quantifier elimination and not functions mapping indices to their types, as
otherwise this would fall into second-order logic.
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where ∀̇ indicates that all the quantified indices are distinct. However, for an arbitrary N like in the inductive
invariance checks in Figure 3, Passel uses the quantifiers as in Figure 3, line 3.

Summary. This section presents a method for finding candidate inductive invariants for parameterized
networks of hybrid automata. The project-and-generalize method pg—inspired directly from the original
works on finding invariants for discrete networks using the invisible invariants method5,39—computes the
reachable states for small instantiations of the network, then transforms this set by projecting and general-
izing it to a candidate invariant with a certain shape of quantification for the parameterized network. The
function pg computes the reach set Reach(AN)—a subset of the state-space QN—then projects this onto a
smaller state-space QP, and then lifts this back to QN. Although our description above is in terms of the
syntactic objects and logical formulas, these operations can be described in terms of mappings between the
subsets of QN and QP. The method is necessarily incomplete, in that it fails to generate candidate invariants
for networks even of a particular, restricted shape of quantification (for example, all universally quantified
indices, ∀i1, i2, . . .). We implement this method in the Passel verification tool. We experimentally evaluate
the method in Section IV, where we show it to enable fully automatic safety verification for aerospace case
studies such as SATS.

IV. Experimental Results Using the Passel Verification Tool

We have implemented the synthesis procedure described in Section III in a software tool called Passel,
which relies on the Z3 satisfiability modulo theories (SMT) solver version 4.110 and PHAVer for reachability
computations.16 We previously implemented an automatic way to check the inductive invariance conditions
(Definition 4) in Passel.26 Thus, the extension to Passel we present in this paper is in automatically
finding inductive invariants (recall Figure 3). The runtime for the entire procedure to verify safe separation
(Equation 1) for SATS (Figure 2) was under 6.5 minutes, executed on a modern laptop running Ubuntu
with an Intel Core i7 processor and 4GB RAM.

Passel synthesized 202 candidate invariants for SATS, and proved 119 of these candidates to satisfy
the conditions of Definition 4. These inductive invariants were sufficient to establish collision of avoidance
(Equation 1) for any choice of the number of interacting aircraft (i.e., ∀N ∈ N) automatically. The heuristic
enabled a fully automatic verification of safe separation for SATS. Additionally, we have experimented with
other formulations of SATS and have had success in proving safe separation for these as well.g

V. Conclusion

In this paper, we have described our preliminary results in automatically verifying parameterized cyber-
physical aerospace systems, using a simplified model of SATS as a case study. Our method relies on synthe-
sizing candidate assertions and then checking if these candidates are inductive invariants using our software
tool Passel. The experimental results are promising, such as allowing for fully automatic verification of
safe separation for a simplified model of SATS. There are several challenges to overcome to extend these
results for systems with more complex continuous dynamics. For instance, to be able to model some flocking
algorithms, we would need to allow linear dynamics,24 or to be able to model conflict resolution maneuvers,
we would likely use nonlinear dynamics.43,42 As the autonomy of such safety-critical aerospace systems
continues to increase, methods such as the ones developed in this paper will become more critical to analyze
their complex behaviors. Alternatively, the class of properties under consideration could be expanded, such
as to stability or liveness properties.13
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