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Abstract

Distributed cyber-physical systems (CPS) incorporate communicating agents with their own
cyber and physical states and transitions. Such systems are typically designed to accomplish
tasks in the physical world. For example, the objective of a robotic swarm may be to cover an
area while avoiding collisions. The combination of physical dynamics, software dynamics, and
communications leads these systems naturally to be modeled as networks of hybrid automata.
Hybrid automata are finite-state machines with additional real-valued continuous variables
whose dynamics may vary in different states. These networks are naturally parameterized
on the number of participants—processes, robots, vehicles, etc. The uniform verification
problem is to verify (prove) some property regardless of the number of participants. In
this dissertation, we develop a framework for formally modeling and automatically verifying
networks composed of arbitrarily many participants. Three methods are presented and
evaluated for proving safety properties—those that always hold throughout the evolutions
of the system.

The first method is a backward search from the set of unsafe states, which are those
that violate a desired safety property. The method computes the set of reachable states
for a parameterized network, and checks that the intersection of the reachable states and
unsafe states is empty. We apply this technique using the Model Checker Modulo Theories
(MCMT) verification tool to automatically verify safe separation of aircraft in a conceptual
air traffic landing protocol of the Small Aircraft Transportation System (SATS), regardless
of the number of aircraft involved in the protocol.

The Passel verification tool we develop as a part of this dissertation implements the next
two methods and can verify safety properties of parameterized networks of hybrid automata

with dynamics specified as rectangular differential inclusions. The second method computes
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the set of reachable states for networks composed of a finite number of participants. While
this method cannot in general prove safety regardless of the number of participants, it can be
used as a subroutine for other methods, such as synthesizing candidate inductive invariants
to perform uniform verification. It is also useful on its own as an initial sanity check prior
to attempting to prove properties regardless of the number of participants, which is harder
in general—in terms of decidability and complexity.

The third method—when it is successful—automates the traditionally deductive verifica-
tion approach of proving inductive invariants. This is accomplished by combining model
checking with theorem proving. An algorithm synthesizes candidate inductive invariants
by computing the reachable states of finite instantiations. The conditions for inductive
invariance are then checked for these candidates. If a small model theorem applies, finite in-
stantiations of the parameterized network can be checked, but in general, a theorem prover is
queried. In this case, the inductive invariance conditions are encoded as satisfiability checks,
for which it may be possible to discharge automatically. When these steps are successful, a
fully automatic verification of safety is achieved.

The main contributions of this thesis include (a) the modeling framework for parame-
terized networks of hybrid automata, (b) the first fully automatic uniform verification of
parameterized networks composed of hybrid automata with rectangular dynamics, such as
Fischer’s mutual exclusion protocol and SATS, (c) formalization of the SATS case study as
a uniform verification problem, (d) the Passel verification tool, (e) an extension of the invis-
ible invariants and split invariants approaches for invariant synthesis to networks of hybrid
automata, and (f) a small model theorem for checking inductive invariance conditions of

networks of rectangular hybrid automata.

il



Acknowledgments

This dissertation would not have been possible without the help, support, and encouragement
of many others. I am indebted to my committee whose encouragement made possible,
and criticisms sharpened, all aspects of this work. My adviser Prof. Sayan Mitra has
been the most influential in every phase of this dissertation, from discussing preliminary
ideas on the blackboard, to late nights of careful reading and final editorial comments on
sentence structure and prose. I am extremely fortunate to have had Prof. Mitra as my
adviser throughout graduate school. Prof. Tarek Abdelzaher’s suggestions and feedback
helped shape the cyber-physical systems aspects. Prof. William Sanders instilled in me
an appreciation for the art of systems modeling. Prof. Mahesh Viswanathan’s detailed
understanding of the dissertation identified several problems in earlier drafts which has
greatly improved the dissertation.

My family has always supported all my endeavors and shaped me into who I am today, and
I am especially grateful to Mom, Dad, Brock, and Brenda. My parents sacrificed much for
my education—from moving to rural Texas and to west Texas—and I am deeply grateful for
them. Without my cousin Tommy’s support, I probably would not have stayed in graduate
school, so I am very thankful for his help. I'm thankful to have Ellen’s family as a part of
my extended family, and thank Bob, Gayden, Kate, Katherine, Liz, Lucy, and Mike. I have
been fortunate to have been surrounded by excellent fellow group mates during my time—
Sridhar, Zhenqi, Jeremy, Adam, Koushik, Karthik, Berenice, Hongxu, and Rob—from whom
I've learned much. I've also been fortunate to have spent five years in the Coordinated
Science Laboratory (CSL), where I've made many friends and learned much from Adel,
Ahmed, Alan, Danny, Debjit, June, Leonardo, Matt, Navid, Nanjun, Neal, Puskar, Ronald,

Sairaj, Shamina, Sobir, Yangmin, and so many others. I thank Profs. Marco Caccamo,

v



Yih-Chun Hu, Rakesh Kumar, Steve LaValle, Michael Loui, Steve Lumetta, Madhusudan
Parthasarathy, Lui Sha, and Nitin Vaidya for teaching me and giving me advice. I am
grateful to Prof. Daniel Liberzon who taught me almost all the control theory I know through
several courses, and whose questions in the preliminary exam sharpened the remainder of
the research undertaken in this dissertation. Dr. Richard Scott Erwin of the Air Force
Research Lab (AFRL) has served as a valuable mentor and provided a different perspective
on verification work. The staff of CSL has helped me with innumerable requests, and I am
extremely thankful to have had the help of Carol, Jana, Linda, Lila, Ronda, and Angie.

I've enjoyed my five years in Champaign-Urbana due in part to friends like Alan, Seth
and Amanda, Jackson and Frances, Paul and Sarah, Rakesh, Stan and Xian, Freddy, and
Adrienne. I am grateful to the ECE Publications Office, particularly Jan Progen for care-
fully proofreading this dissertation, which has improved its consistency. I also thank the
anonymous reviewers who have critiqued the work in this dissertation that has already been
published. I am grateful to Cesar Mutioz for providing a PVS specification of SATS and to
Karthik Manamcheri for developing an UPAAAL model of it. I am grateful to the National
Science Foundation, the Air Force Office of Scientific Research, and The Boeing Company
for providing the financial support for this research. This dissertation is based upon our
papers [1-3], which were supported by the National Science Foundation under CAREER
Grant No. 1054247.

[ am eternally grateful to my beautiful wife Ellen, who has quite literally taken care of me
during the past couple years, and especially the last year. Without Ellen I would not have
finished, nor would I be as happy as I am today, so with love, thank you. Finally, I would
like to thank everyone else with whom I interact, as I’'m sure I've failed to mention everyone

explicitly.



Contents

Chapter 1 Introduction . . . . . . . . . .. ...
1.1 Motivation and Background . . . . . . ... ...
1.2 Dissertation Summary and Contributions . . . . . . .. ... ... ... ...
1.3 Literature Review . . . . . . . . . ..
1.4 Dissertation Outline . . . . . . . . ... ..
1.5 Copyright Acknowledgments . . . . . . . . . . ... .. ... ...

Chapter 2 A Modeling Framework for Hybrid Automata Networks . . . . . . . . ..
2.1 Introduction . . . . . . .. L
2.2 Informal Description of Hybrid Automata Networks . . . . . . .. ... ...
2.3 Syntax for Hybrid Automaton Template AN i) . . . . . .. ... ... ...
2.4 Semantics of Hybrid Automata Networks . . . . . . .. ... ... ... ...
2.5 SUIMMATY . . . v v v v e e e e e e

Chapter 3 Parameterized Reachability Analysis: A Case Study on Distributed
Air Traffic Control . . . . . . . . ...
3.1 Introduction . . . . . . . ..
3.2 Formal Model of the Small Aircraft Transportation System . . . . . . . . ..
3.3 Verification by Backward Reachability . . . . ... ... .. ... ... ...
3.4 Example: Finite State Automaton with Unreachable Illegal States . . . . . .
3.5 SATS Properties Verified . . . . . . . . .. ... .
3.6 Summary . . ...

Chapter 4 Reachability Using Anonymized States for Finite Instantiations of Hy-
brid Automata Networks . . . . . . . . . . .o
4.1 Introduction . . . . . . . . L
4.2  Anonymized State-Space Representation . . . . . . . .. ... ... ... ..
4.3 Reachability Using Anonymized States . . . . . . .. ... ... ... ....
4.4 Analysis of Reachability Algorithm Using Anonymized States . . . . .. ..
4.5 Summary ... e

Chapter 5 Proving Inductive Invariants . . . . . . . ... .. .. ... ... .....
5.1 Imtroduction . . . . . . . . ...
5.2 Small Model Theorem . . . . . . . .. .. ... ..
5.3  Applying the Small Model Theorem to Check Inductive Invariants . . . . . .
54 SUMMATY . . . . .o e

vi



Chapter 6 Finding Inductive Invariants . . . . . . . .. .. .. ... ... ... ... 103

6.1 Introduction . . . . . . . .. L 103
6.2 Synthesizing Inductive Invariants with the Project-and-Generalize Subroutine 105
6.3 Project-and-Generalize Example . . . . . . . .. ... o0 110
6.4 Inductive Invariant Synthesis Fixed-Point Procedure . . . . . . . . . . .. .. 114
6.5 Summary . . .o 116
Chapter 7 Passel and Experimental Evaluation . . . . . . .. .. ... ... ..... 117
7.1 Introduction . . . . . . . . 117
T2 OVEIVIEW . . . . . o v s s e e 118
7.3 Implementation . . . . . . . ... 119
7.4 Additional Examples . . . . . . . ... 122
7.5 Experimental Setup . . . . . .. ... 124
7.6 Experimental Results for Reachability Using Anonymized States . . . . . . . 125
7.7 Experimental Results for Proving Inductive Invariants . . . . . . . . .. ... 130
7.8 Experimental Results for Finding Inductive Invariants . . . . . . . .. .. .. 131
7.9 Summary ... ... e e 134
Chapter 8 Conclusion . . . . . . . . . . . e 136
8.1 Summary . . ... 136
8.2 Future Work . . . . . . . .. 137
Bibliography . . . . . . . . 140

vil



Chapter 1

Introduction

Cyber-physical systems (CPS) involve coordination of software and physics through the use of
control, computation, and communication. Distributed cyber-physical systems (DCPS) have
geographically distributed components, and therefore, issues like message delays, asynchrony,
and failures make their design and analysis challenging. Examples of DCPS arise in air traffic
control where aircraft communicate with one another and traffic controllers to safely take-off
and land, robotics where robots coordinate to solve some task in the physical world like
observing a region while avoiding collisions, and many other domains. To aid in the design
and development of such systems, we present algorithmic verification techniques for DCPS

in this dissertation.

1.1 Motivation and Background

In many engineering domains, cyber-physical systems (CPS) are becoming common as soft-
ware enables higher levels of autonomy. For instance, unmanned aerial vehicles are beginning
to share airspace with commercial and passenger air traffic [4], autonomous satellites will
soon service aging satellites [5], networked medical devices are being worn by and implanted
in humans [6], and cars may soon drive themselves [7]. As the autonomy of such systems
increases, we need methods for helping ensure their design correctness and safe operation,
as any of these safety-critical systems has the potential to cause catastrophic failure. Many
current and future CPS—such as in automotive and air traffic control protocols—involve a
complex interaction between software state of many independent agents to ensure physical
safety.

Hybrid systems modeling frameworks (e.g., hybrid automata [8,9], and see more recent



proceedings of HSCC [10-12]) combine continuous and discrete evolution and have become
a standard formalism for modeling software systems interacting with the physical world. In
systems where many nearly identical automata interact, hybrid automata models parame-
terized by automaton identifiers preserve the symmetry arising from the repeated structure.
Systems exhibiting this pattern abound around us—from MAC protocols, air-traffic control
systems, and real-time distributed algorithms, to control systems for robotic swarms and cell
arrays in tissue. Additionally, each robot in a robotic swarm is naturally modeled as a hybrid
automaton, receiving messages from nearby neighbors to determine new control polices to
accomplish some global problem like covering a physical region. Each mote in a wireless
sensor network (WSN) can be modeled as a hybrid automaton, albeit the global task may be
to aggregate cyber states of physical measurements, instead of coordinating physical state.
Similarly, subcomponents of these systems like clock synchronization algorithms, mutual ex-
clusion algorithms, leader election protocols, analog-to-digital converters, digital-to-analog
converters, actuators, sensors, etc., can also be modeled as networks of hybrid automata,
and have their own correctness specifications that may be verified. We call such systems
distributed cyber-physical systems (DCPS) due to this distributed interaction of cyber and
physical state.

Uniform Verification for Parameterized Networks. In such parameterized models,
each automaton is an instance of a hybrid automaton template A(N,¢) that interacts with
others only through shared discrete transitions (and not through continuous signals). Al-
though the specifications of all the automata in a system are identical, modulo their iden-
tifiers, in a given execution of the system, the automata may behave differently. The com-
posed network has both discrete and continuous dynamics, and the communication topology
between automata may itself evolve over time. When the number of participants in the
network is not fixed a priori, it is referred to as a parameterized network of instances of
the template A(N, i), and we denote the network A". Many approaches can be used for
analyzing such networks, such as simulation to see if they violate some specification. The
specification describes what the network should or should not do, and we focus only on

safety properties—those that should always hold—in this dissertation. However, proving



that parameterized networks satisfy a safety property regardless of the number of partic-
ipants cannot in general be solved using simulation. In fact, proving that even a single
hybrid automaton satisfies a safety property cannot in general be solved using simulation for
a variety of reasons, such as uncountability of the reals. Thus, other techniques like manual
analysis, computer-aided analysis using interactive theorem provers, or model checking may
be employed. These techniques also have limitations as discussed shortly.

We address the following problem in this dissertation. Given an automaton template
A(N i) and a property ((N), the uniform verification problem is to prove VN' € N that

the parameterized network AN = A;||Asl|... | Ay satisfies C(N) [13, Ch. 15]. The uni-

form verification problem is an infinite state verification problem. Such a formulation allows
one to conclude—irrespective of the number of components A involved—whether a network
composed of N instances of A(7) satisfies the property ((N). For instance, in a realization
of the automated highway system, how could one automatically verify that any interaction
between an arbitrary number of cars does not result in a collision? A variety of other in-
teracting DCPS are naturally modeled as parameterized systems, such as automotive traffic
protocols [14], swarm robotics and coordination [15, 16], industrial systems [17], and net-

worked medical devices.

State-Space Explosion. One of the main challenges in applying automatic verification
techniques to (even purely discrete) systems is the state-space explosion problem [13]. For
concurrent systems like distributed algorithms, this problem is exacerbated since the growth
of the state-space is exponential in the number of components (processes). In general, the
composition of N processes each modeled with k states yields a product state-space with kN
elements.

For example, consider Dijkstra’s classic mutual exclusion algorithm [18] in Figure 1.1.
This algorithm has a global variable k taking values in [N], (initially arbitrary), a local
variable [[i] of type [N], (initially arbitrary), two local Boolean variables b[i| and c[i] (both

initially true), and five program locations for each process. Even with a shared-memory

IThroughout this dissertation, we use [N], = {1,...,N} U {L} for a process (or automaton) index set,
where L is a symbol not equal to any identifier. When the number of processes is not fixed—that is, when
considering arbitrarily many processes—the symbol N and set [N] are used.



Figure 1.1: Dijkstra’s mutual exclusion algorithm for process i € [N] for illustrating the
state-space explosion problem for concurrent discrete-state systems.

model where event-ordering interleavings like message sends and receives are not considered,
this program’s purely discrete state-space has 22N(2(N + 1))N(5N)N elements, and for N = 4,
the state-space has over ten billion elements (> 233). A human designer would consider some
small number of these states, in part based on experience and ingenuity, and also by only
considering the subset of the state-space that may be reached. Much progress in computer-
aided verification over the last thirty-plus years has been to incorporate such human ingenuity
into clever abstractions, so algorithms need only explore small equivalence classes in these
huge spaces.

Verification of DCPS must cope with the complexities of large discrete state-spaces, along
with the additional modeling and computational complexity of physical state. Physical states
like positions and velocities are often naturally modeled as real variables that evolve according
to some ordinary differential equations (ODEs) or inclusions. Such modeling yields hybrid
systems representations of DCPS with combinations of continuous and discrete states and
transitions [9,19-23]. Even relatively simple timed distributed mutual exclusion algorithms
like Fischer’s mutual exclusion algorithm [24] in Figure 1.2 have large discrete state-spaces.
Fischer uses a global variable g taking values in [N], (initially L) and has four control
locations for each process, yielding (N + 1)(4N)N discrete states, along with one continuous

variable z[i] for each of the N processes. For N = 6, this is already over a billion discrete



Figure 1.2: Fischer’s mutual exclusion algorithm (Fischer-Timed) for process i € [N].

states (> 2%°) with a continuous state-space of R®.

DCPS are naturally modeled as interacting networks of hybrid automata. In this disserta-
tion, we develop a formal modeling framework for networks of hybrid automata in Chapter 2.
For example, a simplified model of each aircraft in the Small Aircraft Transportation System
(SATS) [2,25-27]—an aircraft landing protocol—is shown in Figure 1.3. In this protocol,
there is a global variable g taking values in [N]; that tracks the last aircraft to enter the
landing protocol, a variable nli] taking values in [N], used to track the aircraft immediately
ahead of aircraft ¢ (if any), and a continuous real variable z[i] measuring the distance of the
it" aircraft from the start of the base location. The parameters L and Lg are real con-
stants representing, respectively, the length of the base location and the minimum distance
any aircraft in the base location must have traveled prior to any subsequent aircraft being

allowed to enter the base location, where L¢ is chosen large enough to ensure no two aircraft

in the base location collide.

Undecidability. When uniform verification of safety properties for parameterized net-

works is approached with model checking, it is an infinite-state model checking problem and
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Figure 1.3: Simplified Small Aircraft Transportation System (SATS) aircraft landing protocol
(SSATS) for aircraft i € [N].

is undecidable, even when A(N, i) is a finite state automaton [28,29]. However, it has some
decidable subclasses as we review in more detail in Section 1.3. To remain decidable, restric-
tions must be placed on A(N i), the parallel composition operator || (and hence how the
A(N,i)’s may communicate), and the property ((N'). For general classes of hybrid systems,
checking if even a single A(N, ) satisfies ((N) is undecidable, but it also has several decid-
able subclasses [30], such as when restrictions are placed on the continuous dynamics—Ilike

in initialized rectangular hybrid automata (IRHA)—or on the discrete dynamics [31].



Advantages of the Uniform Verification Perspective. There are large classes of
DCPS and that can be expressed in the hybrid automata modeling framework, but the
state-space explosion problem is exacerbated for networks of such automata. This disser-
tation partially addresses the uniform verification problem for parameterized networks of
hybrid automata. The primary contributions of this dissertation are applications and ex-
tensions of existing uniform verification approaches developed for discrete systems to DCPS
that also have continuous evolution specified by ordinary differential equations and inclu-
sions. If successful, uniform verification proves a parameterized network satisfies a specifica-
tion regardless of the number of participants in the network. Since traditional automatic
verification—for example, model checking—of distributed computing systems requires pick-
ing a finite instantiation N, it is necessarily incomplete and cannot establish correctness for
any choice N .2

Uniform verification is also a way enable scalable verification and ameliorate the state-
space explosion problem. It may be infeasible to use traditional verification to verify the
largest realistic instantiation. For example, in Dijkstra’s mutual exclusion algorithm, the

2424 elements for N = 30, while it is reasonable that up to 30 processes or

state-space has >
threads actually need to access some shared resource. Thus, if uniform verification succeeds,

these large but finite instantiations need not be explicitly considered.

1.2 Dissertation Summary and Contributions

We present next a detailed summary of the dissertation, along with a summary of the

verification techniques and other contributions it makes.

1.2.1 Modeling Framework and the Passel Verification Tool

Chapters 2 and 7 present, respectively, a modeling framework for parameterized networks
of hybrid automata, and the Passel verification tool for automatically verifying safety prop-

erties of such systems. The modeling framework is a key contribution of this dissertation,

2Without additional analysis showing some particular finite choice Ny is sufficiently large, so that A" > Ng
need not be considered. This is one technique we exploit in this dissertation.



as it is the first such modeling framework for parameterized networks of hybrid automata
with a focus on being amenable to analysis, simulation, and transformation with automated
tools. Passel relies on the methods for proving safety properties of such networks as de-
scribed in Chapters 4, 5, and 6. Passel represents a large undertaking of the dissertation,
and is one of the main contributions.®> To the best of our knowledge, Passel is the only
tool for automatically verifying safety properties of parameterized networks of hybrid au-
tomata. However, MCMT [32,33] can be used for verifying parameterized networks of timed
automata, and theorem prover-based techniques may allow some or full automation for some
examples [34,35]. No other tools for verifying timed or hybrid automata—e.g., Charon [36],
HyTech [37], UPAAAL [38], PHAVer [39], SpaceEx [40], etc.—can solve the uniform verifi-
cation problem addressed in this dissertation. The methods Passel uses are summarized in

the next three subsections.

1.2.2  Reachability Using Anonymized States for Finite Instantiations of
Hybrid Automata Networks

Chapter 4 presents a method for computing the set of reachable states of finite instantia-
tions of N automata for parameterized networks AN. The method avoids computing all the
permutations of automata indices, and is able to speed and scale reachability computations
greatly in practice. The method is shown to be sound and to satisfy several invariants during
the computation of the efficiently represented reachable states. Experimental results using
the method implemented in Passel have enabled the computation of the reachable states for
networks with hundreds of processes, whereas existing hybrid systems model checkers like
PHAVer ran out of memory with at most tens of processes. Thus, the representation allows

for analyzing networks orders of magnitudes larger than existing approaches.

3The Passel verification tool, along with all the examples described in this dissertation and others, is avail-
able for download: https://publish.illinois.edu/passel-tool/. If this link ever becomes outdated,
please visit: http://www.taylortjohnson.com.


https://publish.illinois.edu/passel-tool/
http://www.taylortjohnson.com

1.2.3 Proving Inductive Invariants for Parameterized Networks of Hybrid
Automata

Chapter 5 presents a small model theorem for reducing the uniform verification problem to
checking finite instantiations, assuming an inductive invariant sufficient to establish a desired
safety property is provided. The theorem establishes a bound Ny—whose value is a function
of the protocol and the property to be verified—such that, if any instance of the network
AV of size N violates a safety property ¢(N), then an instantiation of size N < Ny must
also violate ((N). Thus, if no instance of size 1 < N < N violates ((N), one can conclude
¢(N) holds for all N € N.

Such theorems were originally developed for enabling automatic deductive verification of
inductive invariants for purely discrete systems [41,42]. To enable verification of some prop-
erty ((N), a strong enough invariant I'(N') must be supplied that is inductive and implies
C(N). Usually, the process of strengthening I'(A) until it is inductive is a manual process,
but we next describe the methods we investigate in this dissertation for automatically finding

proofs of inductive invariance for parameterized networks.

1.2.4 Finding Inductive Invariants for Parameterized Networks of Hybrid
Automata

The weakness of the method of inductive invariance—even when a small model theorem for
the class of systems and properties is available—is that it requires coming up with an induc-
tive invariant strong enough to prove a desired safety property, which in general, requires
manual intervention. Thus, a method for coming up with candidate inductive invariants can

help automate the verification process.

Invisible and Split Invariants for Parameterized Networks of Hybrid Automata.
In [41,42], small model theorems were combined with the invisible invariant method, which is
a heuristic for doing such strengthening automatically. The weakness of this method is that
it is a heuristic and may fail to find a suitable candidate inductive invariant strong enough
to prove a desired safety property. In Chapter 6, an extension of the invisible invariant

method to timed and hybrid systems is presented, along with a more general procedure that



is guaranteed to generate the best candidate invariant of a particular class, described in more
detail in Section 6.4.

Abstractly, the procedure projects the reachable states onto a smaller space—the states of
AP a networked composed of P automata—then lifts them up to a larger space—the states
of AV, a network composed of an arbitrary number of automata. However, the procedure
is just a heuristic and hence incomplete [43], and fails to generate inductive invariants for
many protocols in practice [41,42]. It surprisingly succeeds in generating quantified inductive
invariants for some examples. A complete method—called the split invariant method—for
synthesizing the strongest inductive invariant is presented for discrete systems in [43]. The
method is based on the non-interference properties in compositional analysis [44].

We extend the invisible invariant method [41, 42, 45, 46] to hybrid automata networks
in Chapter 6 and implement it in Passel. We use the method to automatically verify several
timed and hybrid examples like Fischer’s mutual exclusion protocol, a part of the Small
Aircraft Transportation System (SATS) landing protocol [2,25,26], along with several other
timed examples as detailed in Section 7.8. We also successfully verify several safety properties
completely automatically in the purely discrete examples the method was originally applied
to in [41,42] as a sanity check. These experiments are—to the best of our knowledge—the
first fully automatic verification of parameterized networks of hybrid automata, beyond the
special subclass of timed automata [32,33,47-50].

Due to the theoretical and practical incompleteness of the invisible invariant method,
we explore in Chapter 6 the theoretical and practical benefits of using the split invariant
method [43] for hybrid automata networks. This method utilizes a fixed-point procedure to
compute candidate invariants. Like the invisible invariant method, this generates a formula
D(N) = Viy,...,ip € [N] 2 iy # ... # ip = &(i1,...,ip). It may generate an inductive

invariant that proves the desired safety property, and in practice, many protocols’ safety

properties can be proved with inductive invariants of the form Viy,...,ip € [N] :4; # ... #
ip = ¢(i1,...,ip). However, some protocols need assertions with quantifier alternation like
i € [N]Vj € [NV].

10



1.2.5 Parameterized Reachability Analysis: A Case Study on Distributed
Air Traffic Control

Chapter 3 describes a backward reachability semi-algorithm for verifying parameterized net-
works. This general methodology is widely used in a variety of research work and software
tools, such as UNDIP [51,52], MCMT [32,33,53,54], SAFARI [55], and Cubicle [56]. We
present a detailed summary of the method, along with its use in several examples, including
a slightly simplified version of the Small Aircraft Transportation System (SATS) landing
protocol [2,25,26]. We use the MCMT tool for analyzing SATS. The SATS protocol is sim-
plified in part due to limitations of available tools. For example, MCMT is the only available
tool that supports any form of continuous dynamics for parameterized networks, and it is
limited to timed dynamics [32,33], which are a special subclass of the rectangular differential
inclusion dynamics in the SATS protocol [25-27]. Such limitations are not only in available
tools, but also in the theoretical basis, which we have addressed partially in this dissertation
in Chapter 2 by developing a modeling framework allowing for more general dynamics. We
have addressed tool availability by developing and releasing the software tool Passel that
supports automatic verification of parameterized hybrid automata with continuous dynam-
ics specified as rectangular differential inclusions. The limitations of this method and the
restriction to timed dynamics serve as the motivations for the other methods we develop later
in this dissertation, such as the reachability method of Chapter 4, the inductive invariance

method of Chapter 5, and the invariant synthesis methods of Chapter 6.

1.3 Literature Review

Verification of cyber-physical systems (CPS) and hybrid models have enjoyed the attention of
several researchers over two decades (see, for example, the recent proceedings of HSCC [10-

12] for recent developments).
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1.3.1 Modeling and Verification of Distributed Cyber-Physical Systems

Several formalisms have been developed for modeling and verifying CPS, such as hybrid
automata [8, 19, 36], hybrid programs [14, 35,57, 58], and hybrid input/output automata
(HIOA) [9,23]. Generally speaking, automation of analysis—such as decidability of model
checking—is usually gained at the expense of less expressiveness. Thus, techniques either
focus on a restricted formalism such as initialized rectangular hybrid automata (IRHA) [30]
or require some level of human intervention.

Deductive verification of safety critical traffic protocols like those seen in automotive and
aerospace systems has been researched in [15,59-61]. For instance, techniques based on
optimal control are used for verification of conflict resolution maneuvers in [62,63] and
automatic landing systems in [64]. Using logical techniques, curved flight maneuvers have
also been verified in [58]. Automotive protocols like those that may play a role in the
automated highway system have been modeled and verified semi-automatically using theorem
provers [14].

Previous work on formally modeling and analyzing the Small Aircraft Transportation
System (SATS)—a distributed air traffic landing protocol—has relied on using verification
of purely discrete models [65-68]. Discrete abstractions capturing all behaviors of SATS are
created in [66,68]. The properties verified in these works include that there are at most
four aircraft on the approach to the runway, and similar properties limiting the number of
aircraft in certain zones. In [27], assuming this limited number of aircraft in the system,
the authors automatically generate a set of lemmas corresponding to every combination of
aircraft, and then discharge these lemmas semi-automatically in the PVS theorem prover,
thus verifying the separation assurance safety property of the hybrid system. A more detailed
hybrid systems model of SATS is developed and verified in [69].

Parts of these works relied on deductive verification, such as through the use of the in-
teractive theorem prover PVS [70], supplemented with some automatic state-space explo-
ration [27]. In [27], for example, it is first shown using PVS that SATS can have at most
four approaching aircraft, and then all automatic state exploration uses this fixed number

of aircraft. Traditional model checking would require the number of aircraft involved in the
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system to be fixed to a natural number prior to computing the composition. For example,
finite instances of a simplified version of the SATS protocol have been verified using HyTech
and HARE in [71]. In contrast, we present a parameterized model of a simplified version
of SATS in Chapter 3, Section 3.2 and automatically verify the key safety property of the
protocol regardless of the number of aircraft in the system. The techniques we use could help
scale verification of automated highways, peer-to-peer protocols, and other general aviation

systems, such as landing protocols for unmanned aerial vehicles (UAVs).

1.3.2  Uniform Verification of Discrete Parameterized Systems

Uniform verification of parameterized systems aims to prove properties regardless of the num-
ber of participating agents. An overview of automatic approaches for verification of discrete
parameterized systems appears in [13, Ch. 15] and the survey [72]. Most early works focused
on asynchronous models [73,74]. The uniform verification problem is in general undecidable,
even for networks of finite-state automata [28,29]. Due to these decidability results, many
works focus on incomplete, but sound, approaches for verifying parameterized systems. How-
ever, for restricted classes of systems under various communications constraints, the problem

has been shown to be decidable [75].

Counter and Environment Abstractions. Several papers present sound but incom-
plete methods for uniform verification of parameterized discrete systems. Much existing
work on uniform verification relies on computing abstractions of given system models. One
abstraction is called counter abstraction [13, Ch. 15]. For a network of finite automata,
the intuition is to count the number of processes in each discrete location, and instead of
keeping track of which process is in which discrete state, simply count the number of pro-
cesses in that state. Then for each counter, bound the number of processes to track, where
usually the domain will now be zero, one, two, or greater than two, instead of all natural
numbers, and a finite abstraction has been created. An alternative to bounding the counters
is to not specify a bound, as in [76], and use model checkers developed for infinite state
systems like HyTech [37]. These approaches have been used for verifying cache-coherence

protocols [76,77], which have received considerable attention from research on parameterized
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systems [53, 78].

However, these approaches limit the ability to check many liveness properties, as the indices
of processes have been abstracted, and we can no longer tell if some particular process is
doing something to make progress. An extension to this is known as the counter plus one
abstraction, which keeps track of the exact state of a single process in addition to using
the counter abstraction for all other processes describe above [79]. This allows checking for
liveness properties of that one process, such as if it is waiting to enter the critical section,
it eventually does so. A generalization of counter abstraction is environment abstraction,
which counts the number of processes satisfying some predicates instead of those in some
discrete state [80].

A generalization of counter abstraction is monotonic abstraction [81]. The intuition is
the same as counter abstraction, but also an ordering on any configurations is ensured
and guarantees termination of a fixed-point algorithm. This abstraction is what has been
employed in a counterexample-guided abstraction and refinement (CEGAR) technique for
parameterized systems [82]. The abstraction is defined in terms of the ordering, so when
the ordering is refined, the system changes and a counterexample is ensured to be removed,
yielding termination. Other approaches to model checking even more general classes of
discrete systems—of which discrete parameterized systems are a subclass—are regular model

checking [83] and omega regular model checking [84].

Network Invariants. Network invariants are an abstraction approach introduced in [85]
and studied extensively [49,86-92]. The idea is to abstract N’ — 1 of the processes into
one process Z—called the network invariant—that is independent of AN. When possible,
the problem of proving for all N' € N that AV = ((N) is reduced to proving A;||Z = ¢,
which may require modifying { according to the abstraction that defines Z as well. Network
invariants for real-time systems are developed in [92], and a formalization of process calculi
methods in timed CSP used in the Isabelle/HOL theorem prover [93] is developed in [94],
with more details on both available in the thesis [50]. Network invariants have also been

developed for parameterized networks of timed automata in [49].
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Invisible Invariants and Small Model Theorems. Finding invariants was automated
with the invisible invariants approach [41,42], which provides a heuristic method to auto-
matically compute inductive invariants, such as implemented in IIV [45]. Parameterized
verification of liveness properties has also been investigated using an extension of invisible
invariants [95-98] A small model theorem similar the one we present in Chapter 5—from
our paper [3]—was introduced in [41,42] for a class of discrete parameterized systems with
bounded data, but the main difference is that our result applies to hybrid and timed sys-
tems. We can view cutoffs—an instantiation of the network that has all the behaviors of
additional compositions—like those in [99-102] like small model results, in that it is suffi-
cient to check the composition of a protocol up to the cutoff or small model bound to verify
the parameterized specification. An alternative approach is [102], which computes cutoffs to
verify parameterized systems, where a cutoff is an instantiation of the system that has all
the behaviors of additional compositions, and it turns out that in practice, many systems
have finite cutoffs. The Golok tool [102] computes cutoffs to verify a class of parameter-
ized systems, where a cutoff is an instantiation of the system that has all the behaviors of

additional compositions, and it turns out that in practice, many systems have finite cutoffs.

1.3.3 Uniform Verification of Timed and Hybrid Parameterized Systems

There are several approached for uniform verification and timed and hybrid models that
require different degrees of human intervention [14,27,35,69,103,104]. There are several works
addressing uniform verification for networks of the special subclass of timed automata [32,
33,47-50,92,105,106]. Uniform verification of hybrid automata networks is useful to show,
for instance, that for arbitrarily many aircraft participating in a given distributed air traffic
control protocol like the Small Aircraft Transportation System (SATS), no two aircraft ever
collide [2,27,69].

Many techniques for verification of parameterized discrete systems have been applied to
parameterized timed networks. An abstraction for a discretized version of Fischer’s mutual
exclusion [107] is created in [108]. Uniform verification of parameterized timed networks

has been studied in [47,48,109], where a control-state reachability problem was shown to
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be decidable for a restricted class of timed parameterized systems. The method combines
counter abstraction with the clock regions of [110] to create a simulation relation between
regions of the continuous state-space and a finite state machine. If the timed automata
have more than a single real-valued clock, then checking safety properties is undecidable
using a reduction to two-counter machines [48]. However, if the clocks are discrete-valued,
each automaton may have any finite number of clocks. The previous undecidability result
prevents using the standard initialized rectangular hybrid automata (IRHA)-to-timed au-
tomata conversion algorithm [8,30] because it adds two clocks for every continuous variable
evolving with rectangular dynamics. However, decidability of parameterized verification for
IRHA could be argued using a reduction that does not involve creating multiple clocks for
every real-valued continuous variable, such as the discretization of time used in [111], and
combining decidability of parameterized networks with multiple discrete-valued clocks [48].

If the timed automata have urgent transitions, then checking safety properties is undecid-
able [47]. There are further restrictions on how the processes may communicate, as well as
on the allowable guards. While checking general liveness properties is undecidable for these
networks [47], some recent work develops methods for checking some liveness properties [33].
Bounded reachability methods are developed for timed parameterized systems in [32, 33],
and we applied these reachability techniques to a simplified model of an air traffic control
protocol in [2], reprinted in Chapter 3.

An alternative approach for uniform verification uses interactive theorem proving. The
system model and the properties are specified as a theory in the language of the theorem
prover, and then these properties are discharged by invoking theorem prover commands on
the proof goals. The granularity of these commands and the degree of automation varies from
one system to another, but proving sophisticated invariant properties requires significant
manual work. This approach has been successfully applied to verify: (a) protocols modeled
with timed automata [34,112] in PVS [70], (b) SATS [27,68,69] in PVS, (c) Fischer’s mutual
exclusion protocol [103] in SAL [113], (d) aircraft separation assurance in conflict avoidance
maneuvers [58] in KeYmaera [35,104], (e) automotive collision avoidance in adaptive cruise

control [14] in KeYmaera, and (f) timed parameterized systems such as an operating system

scheduler [50] in Isabelle/HOL [93].
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Quantified differential dynamic logic can be used to model parameterized systems, al-
though at the expensive of sometimes requiring manual intervention [35]. In addition, the
quantified differential invariants have the same shape as the class of assertions we are at-
tempting to automatically generate for hybrid automata networks [104]. Despite these tech-
niques using automated theorem provers being partially manual, the strengths of deductive
methods are that: (a) they may be able to handle nonlinear continuous dynamics and com-
plex discrete dynamics with data structures, and (b) they may be used to specify and verify

liveness properties.

1.3.4 Symmetry Methods and Efficient State-Space Representations

Analysis and state-space construction methods that exploit symmetries have been thoroughly
investigated for many classes of systems, as such methods ameliorate the state-space explo-
sion problem [114-122]. Several symmetry methods have been developed and implemented
for the Mury verification system [123] for discrete systems. The scalarset data structure,
which is a finite unordered set, is developed and added to Mury in [115], and was one of the
first approaches of automatically detecting and exploiting symmetries in model checking.
The repetitive id data structure is applied to several discrete parameterized systems like
cache coherence protocols in [124].

Advances in tools like UPAAAL [38] that exploit symmetries of the state-space to reduce its
size vastly have enabled scaling to larger instantiations. For instance, the scalar set technique
developed for Murp was extended for timed systems and implemented in UPAAAL [125,126].
Data structures like binary decision diagrams (BDDs) [127] and advances in satisfiability
(SAT) algorithms [128] have helped enable automatic verification of discrete systems with
large state-spaces. Analogously, data structures like difference bound matrices (DBMs) [129—-
131], difference decision diagrams (DDDs) [132], and zonotopes [133,134] have helped enable

automatic verification of systems with large continuous state-spaces.
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1.4 Dissertation Outline

We present a modeling framework for hybrid networks and a collection of verification tech-
niques for this framework that rely on computing reach sets, checking inductive invariants,
and exploiting small model properties of the specifications. The techniques are supported
in a software tool called Passel that we have developed. We have also performed detailed
experimental analysis of our techniques on several case studies and compared it with other
verification approaches and tools.

Chapter 2 develops a general formal modeling framework for parameterized networks of
hybrid automata. We also formalize the uniform verification problem for such networks. It
describes the syntax of a restricted class of first-order logic formulas used for specifying com-
ponents of a template automaton A(N,7), and specifies the semantics of finite compositions
AN of N automata and compositions AV of arbitrarily many automata. Several examples
are described that fit into this modeling framework, with their syntactic specifications de-
scribed using this restricted class of formulas in the Passel verification tool input syntax.
Chapter 2 is based in part on our previous work [1-3].

In Chapter 3, we utilize reachability techniques developed for array-based systems [53] to
parameterized networks of timed automata. We present a case study of the Small Aircraft
Transportation System (SATS) as a parameterized network, and automatically verify several
safety properties for it that were previously semi-manually verified in other works [27,69].
For this, we use an existing reachability tool called the Model Checker Modulo Theories
(MCMT) [32,135]. Chapter 3 is based in part on our previous work [2].

Chapter 4 presents a method for computing the set of reachable states of finite instanti-
ations of parameterized networks of hybrid automata. That is, the method computes the
reachable states of a fixed instance of a parameterized network, for example, N = 17. The
method exploits symmetry in the automaton specification and reachable states to avoid con-
sidering permutations of states that are equivalent modulo automaton indices. It has been
useful in scaling up reachability computations of fixed instances, e.g., for use in the invari-
ant synthesis procedure of Chapter 6 or for performing verification using the small model

theorem of Chapter 5.
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In Chapter 5, we present an extension of small model theorems developed for discrete
systems [41,42] to parameterized networks of timed and hybrid automata (&[i] € [a,b] for
real constants a < b). Small model theorems allow for verification of networks composed of
arbitrarily many participants using finite instantiations, and require the participants to be
syntactically specified in a restrictive syntax, as the theorems are technically about the size
of satisfying assignments (models) for syntactically restricted first-order logic formulas. We
apply the result to prove safety properties of several examples, such as the Fischer mutual
exclusion algorithm and SATS. Chapter 5 is based in part on our previous work [3].

Chapter 6 describes invariant synthesis procedures we develop and implement in Passel.
The methods are based on the invisible invariants technique [41-43,45,46], but extended to
networks of hybrid automata. The methods compute the set of reachable states for finite
instantiations of the network, then transform an assertion representing the reachable states
into a candidate inductive invariant for the parameterized (arbitrarily large) network.

Chapter 7 presents an overview of the Passel software tool for automatically verifying
DCPS using the methodology we present in this dissertation, along with some design and
implementation choices. Passel uses the satisfiability modulo theories (SMT) solver Z3 [136]
for checking satisfiability (and validity) of formulas. Passel implements the reachability
method of Chapter 4 that exploits symmetries in the automaton specification. Passel proves
safety properties by automatically checking inductive invariance conditions, as described
in Chapter 5. Passel implements the invariant synthesis procedures of Chapter 6, which
can enable fully automatic verification. We present experimental results of Passel using the
techniques of Chapters 4, 5, and 6 in Sections 7.6, 7.7, and 7.8, respectively.

Chapter 8 concludes the dissertation with a summary of the work and results, a brief

discussion, and directions for future research and potential applications.
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Chapter 2

A Modeling Framework for Hybrid Automata Networks

In this chapter, we present the formal modeling framework for specifying and verifying
parameterized networks of hybrid automata. The framework generalizes and unifies the
modeling frameworks developed in our prior work [1-3].! First, we present the syntax for
specifying a hybrid automaton template, and with illustrations of the expressive power and
limitations of the framework. Next, we define the semantics of networks composed of (a
potentially unbounded number of) instances of the template. Then, we formally define the
uniform verification problem, which aims to establish properties for any number of partic-
ipants in the protocol. We present methods to address the uniform verification problem

in Chapters 3, 4, 5, and 6.

2.1 Introduction

Distributed systems are naturally modeled as a collection of interacting building-blocks or
modules. For example, distributed computing systems are built from communicating com-
puting processes, distributed traffic control protocols involve the interaction of individual
vehicles, and neural networks arise from the interaction of neurons.

Hybrid systems modeling frameworks [9, 19,23, 30, 35,39, 40] specify state machines with
combinations of discrete and continuous states and their evolution. Networks composed
of hybrid automata [19, 30, 39] are useful for modeling a variety of systems, like network
protocols, robotic swarms where robot positions evolve according to some ODE with control
inputs determined by each robot in the swarm, and distributed vehicular traffic control

protocols. State machines model discrete variables and discrete transitions, while real-valued

IThis chapter is based in part on our prior work [1-3], portions of which are reprinted here with permission.
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continuous variables evolve according to ordinary differential equations (ODEs), differential
algebraic equations (DAEs), or inclusions [137].

In networks of hybrid automata, automata communicate by reading one another’s state
and through globally shared variables. A hybrid automaton A may read the variables of
another hybrid automaton B by maintaining a pointer to B. A pointer is a variable that
takes values in the set of automaton identifiers or names. Pointer variables allow for modeling
systems with dynamic communication topologies. Many distributed protocols utilize this
type of communication, such as traffic control protocols where vehicles keep track of adjacent
vehicles, swarm robotics protocols where robots keep track of neighbors, or routers that keep
track of successors.

One such distributed traffic control system we present later in this chapter—see Sec-
tion 2.3.8—is the Small Aircraft Transportation System (SATS) [25-27,69]. In SATS, air-
craft communicate by reading the valuations of discrete variables and continuous positions
using pointers. For another example, in an automated highway system, a car may only need
to keep track of the positions of the cars immediately ahead and behind it requiring two
pointer variables, and similar scenarios arise in robotic swarm protocols in one-dimensional
lanes [16]. However, at four-way intersections of single-lane roads, an autonomous car may
need to track the positions of cars coming from every other direction, requiring three pointer
variables. All of these scenarios fit into the communication model and verification framework
developed in this chapter. Additionally, the framework is general enough to allow model-
ing of other distributed algorithms, such as Fischer’s mutual exclusion algorithm, discrete

mutual exclusion algorithms, and cache coherence protocols.

Outline. In Section 2.2, we informally describe the class of systems under consideration.
Then in Section 2.3, we present the syntax for specifying a template hybrid automaton.
The template is used as input for the Passel verification tool developed as a part of this
dissertation, described in detail in Chapter 7. Section 2.4 describes the semantics of networks

composed of copies of this template hybrid automaton, and Section 2.5 concludes the chapter.
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Preliminaries. We use two symbols for referring to the number of automata in a network.
Where we use N, we mean a constant, numerical natural number, that is, a fixed natural
number (e.g., N = 3). Where we use N, we mean a symbolic natural number, that is, N is
some arbitrary natural number. For a natural number n, we define the set [n] = {1,...,n},

and we use the sets [N] and [N] for indexing automata. For a set S, we define S| = SU{L}.

2.2 Informal Description of Hybrid Automata Networks

For any natural number N and i € [N], an individual hybrid automaton A(N,i) is a
(possibly nondeterministic) state machine with finitely many discrete locations and variables
of various types like reals and integers. The state of A(N,i) can change instantaneously
through discrete transitions and its real-valued variables can evolve continuously over time
according to trajectories specified by ordinary differential equations (ODEs) or inclusions.
A network of hybrid automata A" is a collection of A interacting instances of a template
automaton A(N, ), in which the transitions of each hybrid automaton can depend on the
the state of certain other hybrid automata. We aim to establish properties that hold for
the network AV for any choice of the natural number A". We drop the argument N from
A(N i) and write A(7) when N is clear from context. In a network AV, the constituent
automata may communicate over discrete transitions, but not through trajectories. That is,
a transition taken by A(N, 7) can depend on and influence the the state of another automaton
A(N, j), but a trajectory of A(N,i) depends on and influences only the state of A(N,1).
The variables of the A" automata in the network A" are described as arrays of length N of
appropriate types. Real-typed variable may be updated continuously and/or discretely, while
variables of other types are only updated discretely. In the remainder of this chapter, we
introduce the syntax for specifying networks of hybrid automata by specifying one template
hybrid automaton A(N, i), and then introduce the semantics of the language to show how

networks A" composed of A interacting instances of the template are modeled.
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2.3 Syntax for Hybrid Automaton Template A(N, 1)

In this section, we define the syntax for specifying a hybrid automaton template A(N, ) used
to construct parameterized networks of hybrid automata. We begin with some preliminary

definitions.

2.3.1 Variables

A wariable is a name used for referring to state. A variable v is associated with a type—
denoted type(v)—that defines a set of values the variable may take. The type of a variable

may be:
(a) L: a finite set called the set of locations (defined in Section 2.3.4).

(b) [N]L: the set of automaton indices (identifiers) with the special element L that is not
equal to any index. A variable of this type is called a pointer variable or a pointer in

short.
(c) R: the set of real numbers.
(d) Z: the set of integers.

A variable may be local with a name of the form variable_nameli], or global, in which case
the name does not have the index [i]. For example, g[¢] : L, p[i] : [N]L, «[f] : R, and z[i] : Z
respectively define location, pointer, real, and integer typed local variables, while g : [N]
is a global variable of index type. For a local variable ¢[i], the array of variables (g[1], ¢[2],
..., q[N7]) is denoted by @. We write ¢ when N is clear from context.

2.3.2 Terms, Formulas, and Passel Assertions

This section presents the syntax for formulas we use to specify the various syntactic com-
ponents of a hybrid automaton template A(N, 7). Formulas are built-up from constants,

variables, and terms of several types. Formulas are used for specifying the initial states and
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the state evolution of the network. The grammar for different types of terms is as follows:

[Term == L |1 | N | i] p[d]
DTerm ::=1[. | ¢ | q[ITerm]
RTerm == 0| 1| r.| x| [ITerm]

ZTerm == 0| 1] 2. | z | z[ITerm]

An index term (ITerm) is either (a) one of the constants L, 1, A/, an index variable i, or
(b) a local pointer variable p referenced at an index variable i. The grammar does not
allow arbitrary productions of recursive ITerms by restricting ITerms from being produced
by p[lITerm]—for example, p[p[i]] is not an allowed term.?

Discrete terms (DTerm), real terms (RTerm), and integer terms (ZTerm) are defined as
specified in the grammar. For discrete terms, [. is constant from L, ¢ is a discrete variable,
and ¢[ITerm] is a discrete array referenced at an index specified by an ITerm. For real terms,
r. is a real-valued numerical constant, x is a real variable, and x[ITerm| is a real array
referenced at an index specified by an ITerm. For integer terms, z. is an integer-valued
numerical constant, z is an integer variable, and z[ITerm| is an integer array referenced at

an index specified by an ITerm.

Real and integer polynomials and constraints are built using the following grammar.

RPoly ::= RTerm | RPoly, + RPoly, |

RPoly, — RPoly, | (RPoly, % RPoly,)
RAtom ::= RPoly < 0
ZPoly ::= ZTerm | ZPoly, + ZPoly, |

ZPoly, — ZPoly, | (ZPoly, % ZPoly,)

ZAtom ::= ZPoly < 0

RPoly, and RPoly, (ZPoly, and ZPoly,) are shorter real (integer) polynomials joined by arith-

2This restriction ensures that the theory is stratified [41].
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metic operators—addition +, subtraction —, or multiplication *—to obtain longer polyno-
mials. RAtom (ZAtom) are used for specifying real (integer) constraints. Other comparison
operators—like less than or equal (<), greater than or equal (>), greater than (>), and
equality (=)—will be expressed using negation (—) and conjunction (A) in the formulas we
define next.

For a polynomial p generated by RPoly (ZPoly) over n real (integer) variables xy, ..., z,

with k& additive terms

p=a i ok at bl e
with real (integer) coefficients ay,...,a; and natural number exponents e; 1, ..., €,, the
degree of p is deg(p) = max;<,<i (32", €,.4). If deg(p) > 1, then pis nonlinear. If deg(p) < 1,
then p is linear. The linear fragment is the subset of formulas where all polynomials have
degree at most one. We assume standard precedence of operators (e.g., * before +, etc.).

Using these terms and constraints, formulas are defined next:

Atom ::= ITerm; < ITermy | DTerm; = DTerm, | RAtom | ZAtom

Formula ::= Atom | =Formula | Formula; A Formulas | 3z Formula

Here, x is called a bound variable, and is a variable of one of the types. Formula; and Formula,
are shorter formulas that are joined by Boolean operators to obtain a longer formula. By
combining the Boolean operators A and — with the < operator, other comparison operators,
such as =, #, <, >, and >, can be expressed in formulas for indices, reals, and integers.
For example, pi[i] = pa[j] can be written as —(p1[i] < pa[j]) A =(p2[j] < pi1[i]). Universally
quantified variables can be expressed by —dx : Formula = Vz : =Formula. Thus, we assume
the language contains the standard quantifiers and Boolean operators, even if not explicitly
specified by the grammar (e.g., universal quantification V, implication =, disjunction V,
less-than-or-equal <, non-equality #, etc.).

If a variable in a formula is not bound, then it is called a free variable. If a formula does

not contain any quantifiers, then it is quantifier-free, but otherwise it is quantified. If a
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formula has no free variables, then it is a sentence. For example,

Vo € R dr € R:x >0 is a sentence, but

Vi € [N]:z[i] — 0 > 0 is not.

If a formula is quantified and all the bound variables appearing in it are of index type,

then it is index-quantified. For example,

Vi € [N]3j € [N]: x[j] > z[i] is index-quantified, but
V6 € RVie [N]:z[i]+d > 0 is not.

An index sentence is a formula with no free variables of index type. For example,

Ji € [N]Vj € [N]: [j] > «ld],

Vi,j € NT:i#j = (qli] # LV qlj] # L), and
Vi € [N]: z[i] +6 > 0, are index sentences, but
x[i] + 9 > 0, and

Vi € [N]: (x[i] — x[j] > re) V (x[j] — z[i] > r.) are not index sentences.

Arithmetic operations on index terms (ITerm) are not allowed, and the allowed comparisons
mean only total orders may be specified. Only equality (or non-equality) comparisons are
allowed for discrete terms. If a formula is only composed of RTerms (ZTerms), then it is in
the real (integer) polynomial subclass.

A formula ¢ is in disjunctive normal form (DNF) if and only if it is a disjunction of
conjunctive clauses, where a conjunctive clause is one or more conjunctions of one or more
atoms. A formula ¢ is in conjunctive normal form (CNF) if and only if it is a conjunction
of disjunctive clauses, where a disjunctive clause is one or more disjunctions of one or more
atoms.

The Passel assertion language is the set of index-quantified formulas generated by the

grammar just defined. For a formula ¢, let vars(¢) be the set of variables appearing in
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¢. For a formula ¢, let ivars(¢) be the set of distinct index variables appearing in ¢. For
a formula ¢, let free(¢) be the set of free variables appearing in ¢. For a formula ¢, let
bound(p) be the set of bound variables appearing in ¢. For a quantified formula ¢, let
body(¢) be the body of the quantifier, with all bound variables bound(¢) replaced with
universally instantiated variables with the same names.  For a set of variable names V
and a formula ¢, if free(¢) C V, then ¢ is over V. For a set of variable names V and a

formula ¢, if free(¢) = V, then ¢ is over all V. For example, for the set of variable names

V = {i,j alil, qli], g}—where type(i) = [N, type(j) = [N], type(z[i]) = R, type(q[i]) = L,
and type(g) = [N].—the following specify:

g=1,

Vi € [N]:q[i] = cs = z[i] > 0, and

Vi, j € [N]: qli] = cs A qlj] = cs = x[i] > Ls A z[j] > 0 formulas over V, but
i # j = x[j] > x[i] and

i # j = pli] = j, are not formulas over V.

Here, 1, Lg, and cs are constants. For a Passel assertion over a set of variables V, we
always assume that a countable set of symbolic automaton indices are included in V for
referencing different variables. Passel assertions over particular sets of variables—along with
further restrictions, such as being quantifier-free—will be used for specifying various syntactic

components of the hybrid automaton template A(N, 7).

2.3.3 Hybrid Automaton Template

We next define a syntactic structure called a hybrid automaton template, which we use to

specify the behavior of a participant in a parameterized network.

Definition 2.1 For symbolic constants N € N and i € [N], a hybrid automaton template

A(N i) is specified by the following syntactic components:

(a) V;: a finite set of variable names,
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(b) L: a finite set of location names,
(¢) Init;: an initial condition, which is a Passel assertion over V,

(d) Trans;: a finite set of discrete transition statements, each of which is composed of a
from-to pair of locations, along with a guard, a universal guard, and an effect, which
are quantifier-free Passel assertions over V; UV, where V. is the set of primed variable

names corresponding to V;, and

(e) Flow;: a finite set of trajectory statements, one for each element in L, each of which
is composed of an invariant, a stopping condition, and a flowrate, each of which are
quantifier-free Passel assertions over V; U V,;_dot, where V;_dot is the set of dotted

variable names corresponding to the real-valued variables in V;.
The subscript i emphasizes that components may use the automaton’s index.

A hybrid automaton template A(N,7) is written A(¢) when A is clear from context.
Throughout this section, we use an example specification of Fischer’s mutual exclusion pro-
tocol Fischer to illustrate the language constructs available for specifying a hybrid automaton
template A(i). The specification of the protocol in this language® is shown in Figure 2.1,

and an equivalent graphical representation appears in Figure 2.2.

2.3.4 Specifying Locations

The set of location names L is specified by a list of location names. A location name
follows the keyword location name. In Fischer, the set of locations L is {rem, try, wait, cs}
(lines 11, 13, 17, and 19). Locations are depicted graphically as the circles in Figure 2.2
for Fischer. Each automaton .A(i) has a single local variable ¢[i] that takes values in L.
A trajectory statement may follow each location name, defined in detail in Section 2.3.7.
Locations are specified in this manner—instead of only using a variable of type L—to allow

for easily specifying continuous dynamics varying from one location to another.

3Formulas are as specified in Section 2.3.2, except quantifiers and operators with their text (parsing)
equivalents. For example, A is and, V is or, V is forall, 3 is exists, <is <=, > is >=, =is =, £ is | =,
= is implies, etc. Figure 2.1 is marked-up for readability, but is essentially in Passel’s input language.

29



1 parameter name=’A’ type=’real’ value = 5.0 // smaller timing parameter

parameter name=’B’ type=’real’ value = 35.0 // larger timing parameter
3 parameter name=’1lb’ type=’real’ value = 1.0 // lower clock rate
parameter name=’ub’ type=’real’ value = 2.0 // upper clock rate
5
automaton name=’Fischer’
7 variable name=’ql[il]l’ type=’L’> // control location local wvariable
variable name=’x[i]’ type=’real’ // continuous local wvariable
9 variable name=’g’ type=’index’ // global lock wvariable
11 location name=’rem’
flowrate: x[i] _dot = 0.0
13 location name=’try’
inv: x[i] <= A
15 stop: x[i] = A
flowrate: x[i]_dot >= 1b and x[i]_dot <= ub
17 location name=’wait’
flowrate: x[i]_dot >= 1b and x[i]_dot <= ub
19 location name=’cs’
flowrate: x[i]_dot = 0.0
21
transition from=’rem’ to=’try’
23 grd: g = L
eff: x[i]’ = 0.0
25 transition from=’try’ to=’wait’
eff: g/ = i and x[i]’ = 0.0
27 transition from=’wait’ to=’cs’
grd: g = i and x[i] >= B
29 eff: x[il’ = 0.0
transition from=’wait’ to=’rem’
31 grd: g != i and x[i] >= B
eff: x[i]’ = 0.0
33 transition from=’cs’ to=’rem’
eff: g = 1 and x[i]’ = 0.0
35

property: forall i j ((i !
37 initially: forall i (qlil

j and ql[i] = cs) implies (ql[j] != cs))
rem and x[i] = 0 and g = 1)

Figure 2.1: Hybrid automaton template specifying A(N,7) for Fischer’s mutual exclusion
algorithm Fischer, which is also used as the input to Passel.

2.3.5 Specifying Variables, Parameters, Initial Conditions, and Invariant
Properties

The set of variables V; is specified by the list of variable names and types following the
keywords variable name and type. For the Fischer automaton with index ¢ (Figure 2.1),
the set of variables is specified by the list of variables on lines lines 7 through 9. It has two
local variables, ¢[i] and x[i], with types L and R, and a single global variable g of type [N], .

The specification of A(:) may use a set of symbolic or numerical parameters (constants).
Each parameter is specified by its name, type, and, optionally, a quantifier-free Passel as-
sertion that specifies constraints that the parameters must satisfy. For the Fischer example,

there are four real-valued parameters, A, B, (b, and ub (lines 1, 2, 3, and 4).
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grd: g =1
eff: z[i] =0 try

x[i] € [Ib, ub
grd:

g#iNzli] > B
eff: z[i] =0

start —

eff: ¢ =inx[i] =0

grd: g=iAz[i]> B
eff: z[i]' =0

Figure 2.2: Graphical depiction of the hybrid automaton template A(N, ) from Figure 2.1
specifying Fischer’s mutual exclusion algorithm Fischer.

We denote the set of local variables by V[i], the set of global variables by V[i], and the
set of parameters by Vp[i]. In the Fischer example, V[i] = {¢[i], z[i]}, V¢[i] = {¢}, and
Vpli| = {A, B,lb,ub}. When clear from context, we drop the index i and write V, Vg, and

Vp for Vi[i], Vg[i], and Vpli], respectively.

Initial Conditions. The initial condition assertion Init; is a universally index-quantified
Passel assertion following the keyword initially. In Fischer, the initial condition assertion

is (line 37):

foralli : (q[¢{] = rem and z[i| =0 and g = 1),

where i is implicitly quantified over [N]. The initial condition assertion for Fischer asserts
that, for each index i € [N], the variables of A(i) have the constraints ¢[i] = rem and
x[i] = 0, and that the global variable g = L. If a variable v € V; is not specified in the initial
condition, it is assumed that v is initially an arbitrary value in its type type(v). Note that

the Init; assertion may specify constraints over all automata in the network using universally
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index-quantified Passel assertions.

Candidate Invariant Properties. Candidate invariant properties are specified as Pas-
sel assertions following the keyword property. For example, a mutual exclusion invariant

property can be specified as (line 36):

forall i,j : ((¢ ! = j and ¢[i] = cs) implies (¢[j] ! = cs)),

where ¢ and j are implicitly quantified over the set of indices [N7].

2.3.6  Specifying Discrete Transitions

For any N' € N and any ¢ € [N], the set of discrete transitions Trans; is specified by the
list of transition statements following the keyword transition. Each transition statement
specifies a from-to pair of locations following the keywords from and to. There is at most one
transition statement between each pair of locations. If it exists, we will denote a transition
from location src to location dest by t(src,dest) € Trans;, which is written as t when the
from-to locations are clear from context.

Each transition t € Trans; may specify a guard following the keyword grd, a universal
guard following the keyword ugrd, and an effect following the keyword eff. The guard,
universal guard, and effect are quantifier-free Passel assertions, and they are denoted by
grd(t, i), ugrd(t,?), and eff(t,7) for A(i), respectively. If i is clear from context, we drop it
and write grd(t), ugrd(t), or eff (t).

The universal guard is a quantifier-free Passel assertion involving the variables V;, for
j # 1, and we recall 7 is the index of the template A(N,7). The universal guard specifies
an assertion over the variables of other automata and global variables. Such assertions over
the variables of all the other automata in the network are useful for modeling broadcast-like
communications.

The effect models the update of state, and is a quantifier-free Passel assertion over the
variables V; UV, where V; concatenates a prime (/) to each variable name v in V;. The effect

specifies a relation between the variables before (unprimed) and after (primed) the transition.
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The effect is not required to specify variables that are not modified by the transition.

The transition from wait to cs for Fischer with index ¢ (line 28), where

grd: g =i and z[i] >= B,
eff : z[i] = 0.0

specifies that automaton i may nondeterministically transition from a state where ¢[i] = wait
to a state where q[i]' = cs, only if the global pointer variable ¢ is equal to i and the local real-
valued variable z[i] is at least as large as the parameter value B. Further, if the automaton
does make this transition, then the effect specifies that x[i] is to be reset to 0. If the
guard condition is omitted, then it is assumed to be just the control location condition. For

example, in Fischer, the transition from try to wait is enabled when ¢[i] = try.

2.3.7 Specifying Continuous Dynamics

The elements of the set of trajectory statements Flow; are listed following the corresponding
location names. Each location m € L has a trajectory statement in Flow;. The trajectory
statement consists of an invariant condition following the keyword inv, a stopping condition
following the keyword stop, and a sequence of flow rates following the keyword flowrate.
The invariant condition of a location m € L for automaton .A(¢) is denoted by inv(m, ), the
stopping condition is denoted by stop(m, ), and the flow rate for some real-valued variable
x[i] € V;, is denoted by flowrate(m, z[i]).

The invariant and stopping conditions are Passel assertions involving only the real variables
X[i] and real parameters in Vp[i]. The flow rate associates each real-valued variable in X[i]
with ordinary differential equations or inclusions specified as the real polynomial subclass of
Passel assertions. The flow rate for a variable name z[i] € V; is specified by concatenating
_dot to the variable name, for example x[i|_dot. For example, the trajectory statement for

a two-dimensional linear differential equation with an invariant and stopping condition is
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specified as:

inv : r1[i] <= ¢1 and z3fi] <= ¢y (2.1)
stop : x1[i] = 81 or i = s9
flowrate : xq[i]-dot = ayy * x1[i] + ar2 * x2[i] + by

I'Q[Z.],dot = Q91 * IE1[Z] + Q9o * 752[@] + b27

where ¢y, co, S1, So, Q11, Q12, Q21, G99, by, and by are real parameters. This specifies the

following ODE in matrix form,

.CIZ;l’i ajr Q12 Zl'li b1
‘ = 4 + . (2.2)

.TQ[Z} 21 A929 T [Z] b2

The following example specifies the special case of rectangular differential inclusions, where
the time-derivative is specified by an upper and a lower bound in terms of a numerical

constant or a parameter name:

flowrate : z1[t]-dot >=1b; and z;[i]-dot <= ub,

xali]_-dot >= lby and z,[i]_-dot <= ubs,

where [by < wb; and [by < uby are real parameters or numerical values. This yields the

following rectangular differential inclusions on 24 [i] and 25[i]:

.1’.1 [Z] [lbl, Ubl]

ZL:Q [Z] [lbg, Ubg]
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2.3.8 Example: Simple Small Aircraft Transportation System (SATS)
Landing Protocol

An essential part of the Small Aircraft Transportation System (SATS) [2,25-27,69]—a dis-
tributed air traffic control protocol we define completely in Chapter 3, Section 3.2—is used
as another example illustrating the specification language of a template automaton A(N, 7).
SATS was designed to increase throughput at small airports without air traffic controllers
by allowing aircraft to coordinate among themselves with minimal assistance from a central-
ized communication component [25,26,138]. Aircraft in SATS communicate by reading the
continuous position of any aircraft immediately ahead of it in the landing sequence, where
the aircraft immediately ahead is tracked using its index.

The hybrid automaton template specifying the essential behavior of SATS is shown in Fig-
ure 2.3, and its properties are shown in Figure 2.4. SATS is depicted graphically in Figure 1.3.
SATS is parameterized on the number of aircraft involved in the landing attempt, so each
aircraft is naturally specified as a hybrid automaton template A(N,i). The network AN
models a single airport and N flying aircraft that are attempting to land. After determining
the landing sequence order from a centralized airport management module (AMM )—which is
modeled with a global variable last—the remainder of the protocol is decentralized and each
aircraft communicates with the aircraft immediately ahead of it (if one exists) to determine
if it is safe to attempt landing.

All aircraft begin in the fly location, and when an aircraft is ready to attempt landing, it
initiates the approach to the airport by making a transition to the hold location. The hold
location physically represents that the aircraft is flying in a cyclic holding pattern, and it is
assumed that the aircraft maintain a safe separation in this location. On entering hold, an
aircraft is either designated as the first one in the landing sequence (and next[i] = L), or the
aircraft is assigned the index of the last aircraft that began its approach to the runway (and
next[i]’ = last). Subsequently, an aircraft may nondeterministically transition from the hold
location to the base location which represents that it is physically approaching the runway.

The position of the i’ aircraft is modeled using a single continuous variable (x[i]) of real
type, representing the position along a line measured starting from the geographic location

of the cyclic holding zone (that is, the beginning of the base region). This transition is only
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1 parameter name=’L_B’ type=’real’ value = 120.0 // base zone length
parameter name=’L_S’ type=’real’ value = 5.0 // separation spacing
3 parameter name=’v_min’ type=’real’ value = 1.0 // minimum wvelocity
parameter name=’v_max’ type=’real’ value = 2.0 // mazimum velocity
5
automaton name=’SSATS’
7 variable name=’q[i]’ type=’L’ // location local wvariable
variable name=’next[i]’ type=’index’ // next aircraft (if any)
9 variable name=’x[i]’ type=’real’ // continuous local wvariable
variable name=’last’ type=’index’ // global lock wariable
11
location name=’fly’
13 flowrate: x[i]_dot = 0.0
location name=’hold’
15 flowrate: x[i]_dot = 0.0
location name=’base’
17 inv: x[i] <= L_B
stop: x[i] = L_B
19 flowrate: x[i]_dot >= v_min and x[i]_dot <= v_max
location name=’runway’
21 flowrate: x[i]_dot = 0
23 transition from=’fly’ to=’hold’
eff: next[i]’ = last and x[i]’ = 0.0 and last/ = i
25

transition from=’hold’ to=’base’
27 grd: next[i] != 1 implies (qlnext[i]] = base and x[next[i]] >= L_S)
eff: x[i]l’ = 0.0

29
transition from=’base’ to=’hold’

31 grd: x[i] >= L_B and next[i] = L

eff: x[i]’ = 0 and (last != i implies next’[i] = last) and last’ = i
33 ugrd: next[j] = i implies next[jl’ = L
35 transition from=’base’ to=’runway’

grd: x[i] >= L_B and next[i] = L
37 eff: (last = i implies last’ = 1)

ugrd: next[j] = i implies next[jl’ = L
39

initially: forall i (ql[il = fly and next[i]l = 1 and last = 1)

Figure 2.3: Passel input file specifying hybrid automaton A(7) for SSATS, a simplified SATS
protocol.

enabled for aircraft 7 if there is at least Lg distance between its position z[i] and the position
of the aircraft ahead of it, x[next[i]] (if one exists). Once in the base location, the aircraft is
approaching the runway and after traversing Lp distance, the aircraft may either (a) cancel
the landing attempt and return to the cyclic holding pattern in location hold, in which case
it becomes the last aircraft in the sequence, or (b) the aircraft may succeed in landing and
set its location to runway.

We use Passel to automatically prove the properties in lines 1 through 7 for SSATS,
with memory and time required as presented in Chapter 7. These properties represent an

inductive invariance proof of safe separation—that aircraft are always at least Lg distance
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property: forall i ql[i] = fly implies last != i
2 property: forall i, j next[j] = i implies ql[i] != fly
property: forall i, j (qlil hold and next[j]l = i) implies ql[j]l = hold
4 property: forall i, j (qlil base and q[j] = base and next[j]l = i )
implies x[i] >= L_S (v_max - v_min)(L_B - x[j]) / v_min
6 property: forall i, j ( i !'= j and ql[i] = base and q[j] = base and
next[j] = i ) implies x[i] - x[j] >= L_S

+ non

Figure 2.4: Passel input file specifying properties for SSATS, a simplified SATS protocol.

apart, which we define formally in Section 2.4.

2.4 Semantics of Hybrid Automata Networks

The semantics of the hybrid automata network AV -—where an arbitrary number A € N of

instances of the template A(N, i) operate in parallel—is defined in this section.

2.4.1 Parameterized Network of Hybrid Automata

The semantics are defined in terms of a transition system with a set of variables VN, aset of
states QV, a set of initial states ©V, and a transition relation 7. For networks of hybrid

automata, none of these sets is usually finite since variables may have real types.

Definition 2.2 (Parameterized Network of Hybrid Automata) For any N' € N, a

parameterized network of hybrid automata is a tuple AV = <VN QN eN TN >, where

(a) VN are the variables of the network,
N
VMV 2 Ve U Ve,
i=1
(b) QN C val(VV) is the state-space,

(c) ON C QN is the set of initial states, and

(d) TN C QN x QV is the transition relation, which is partitioned into disjoint sets of

discrete transitions DV C QN x QN and continuous trajectories TV C QN x QV.
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The transition system is said to be parameterized on N since fixing different values of A/
yield different transition systems. This definition allows for proving an invariant property (
for every network of hybrid automata. For instance VA" € N : (AV |= ((N)) states that,

for every choice of N € N, the corresponding network of hybrid automata AV satisfies the

property ((N).

2.4.2 State-Space and Semantics of Passel Assertions

Recall that V; is the set of variable names for the hybrid automaton template A(N, i) where
i € [N]. A state x in QV of AV is defined in terms of the valuations of all the variables of
all its components. For each i € [N], the valuation of a variable v € V; is a function that
associates the variable name v to a value in its type type(v). Elements of the state-space
Q" are called states and are denoted by boldface v, v/, etc.

At a state v, the valuation of a particular local variable z[i] € V[i] for automaton A(7)
is denoted by v.z[i], and v.g for some global variable g in V[i]. We recall that we refer to
the valuations of a local variable v[i] € V, of all A automata in the network A" as an array
variable, and denote it v which takes values in type(v[i])N. So, for a state v, the valuations
of a local variable v[i] € V[i] for all i € N is written v.0. The valuation of all the local
variables for automaton A(4) at state v is denoted by v.V[i]. The valuation of all the local
variables for automaton A(7), as well as the global variables, at state v is denoted by v.V;.
The state-space @); corresponding to automaton A(N,i) in the network AN is defined as
Qi = val(V;).

Representing States with Assertions. Subsets of QV are often represented by asser-
tions involving the variables. If a state v satisfies a formula ¢—that is, the corresponding
variable valuations result in ¢ evaluating to true—we write v |= ¢. For such a formula ¢,
the corresponding states satisfying ¢ are denoted by [¢]. A model for an assertion provides

interpretation to the elements appearing in the assertion.

Definition 2.3 An n-model M for an assertion v is denoted M (n,v) and provides an

interpretation of each the free variables in v as follows:
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e the index constants L, 1, and N are respectively assigned the values 0, 1, and n,
e cach pointer variable is assigned a value in the set [n],

e cach discrete variable 1s assigned a value in L,

e cach real variable is assigned a value in R,

e cach integer variable is assigned a value in Z, and

e cach pointer, discrete, real, and integer array is assigned respectively a {0,... ,n}-

valued, L-valued, real-valued, or integer-valued array of length n.

Given an assertion ¢ and a model M (n, ), if 1 evaluates to true with the interpretations
of the free variables given by M (n, ), then M (n, ) is said to satisfy 1. If there exist models
that satisfy v, then the assertion is said to be satisfiable. If all models of 1 satisfy it, then

the assertion is said to be walid.

Initial States. The set of initial states @ C QV is defined as [Init;], that is, the set of

states satisfying the Passel assertion Init;:
N = {ve V| vk i)
In Fischer (Figure 2.1), the set of initial states specified by line 37 is

OV £ [Init;] = {x € QV | Vi € [N],x.q[i] = rem Ax.z[i] = 0.0 A g = L}

—{xe@V |xEVie[N],gli=remAz[i] =00Ag= 1},

where we have indicated equivalent ways of writing the set of initial states using the notations

introduced earlier in this section, each of which are useful in different contexts.

2.4.3 'Transitions and Trajectories

The evolution of the states of A" are describing by a transition relation 7% C QV x Q.

For a pair (v,v') € TV, we use the notation v — v', where v is called the pre-state and v’
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is called the post-state. There are two ways state is updated by T%: discrete transitions DV
model instantaneous change of state and continuous trajectories 7V model change of state

after a time interval.

Discrete Transitions. Discrete transitions model atomic, instantaneous updates of state

due to one automaton in the network AY. There is a discrete transition v — v/ € DV iff:

Ji € [N] 3t € Trans; : v.V; = grd(t, i) A V.V, | eff(t,i) A

(Vj e N|:v.V; Eugrd(t,j) Aj#i= V.V, =v.V)).

From the pre-state v, any automaton in the network, with any transition satisfying the
guard may update its post-state according to transition effect, while the states of the other
automata remain unchanged. Informally, a discrete transition from pre-state v to post-state
v’ models the discrete transition of one particular hybrid automaton .A(i) by some transition
t € Trans;. The universal guard of transition t depends on the variables in V; for j # 1.

We recall that the guard is a quantifier-free Passel assertion and specifies the enabling
condition for the transition, which is a condition that must evaluate to true to allow the
transition to update the system state. If the guard or universal guard are not specified, we
assume they are true, which means a transition t(src, dest) may only be taken by automaton
A(7) if qli] = src. We assume the identity relation for any primed variable v' € V; not
specified in an effect. For example, if z[i]" is not specified in an effect, then we assume the
specified effect is conjuncted with z[i]" = x[d].

For the Fischer example, the semantics for the discrete transition t(wait, cs) (line 27) for

some automaton A(7) are defined by:

(v,V)EF € [N] : (qi] =wait Azx[i] > BAg=1) A
(q[if =csAz[i) =00Ag =g) A

(Vi € N] 1 j #i=qlj] = ali] Aals] = 2j]).

This transition can occur from states v where v |= ¢[i] = wait A z[i] > B A g = i. This
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transition updates the location of A(i) to be q[i]' = cs, the real variable z[i]' = 0, and does
not change the global variable ¢, and additionally, the variables of no other automata A(j)
are updated. Together, this is defined by all states v/ = ¢[i] = cs A z[i] = 0.0 A ¢’ = gA

(Vi € W]« j#i=qlj) = ali]l Aals] = 2[j]).

Continuous Trajectories. Continuous trajectories model update of state over intervals
of time. There is a trajectory v — v/ € TV iff some amount of time—t,—can elapse from

v, such that,

(a) the states of all automata in the network A" are updated to v’ according to their

individual trajectory statements,
(b) while ensuring the invariants of all automata along the entire trajectory, and

(c) that if the stopping condition of any automaton is satisfied, it is at the end of a

trajectory.

Formally, trajectories are defined as solutions of differential equations or inclusions specified
in the trajectory statements of A(:). The differential equation & = f(z) where x € R™ and
f : R™ — R" has a solution for initial condition xy € R™ if there exists a differentiable
function v(t) for v : R>g — R™ such that v(0) = z( and, for every 7 € [0,t], (1) = f(y(7)).
A differential inclusion is & € F(x) for z € R", where F is a set-valued function from R"
to R™, so that F'(z) C R". A solution for the differential inclusion with initial condition
xo is any differentiable function ~(¢) for v : Rso — R™ such that v(0) = x¢ and, for every
T € [0,t], (1) € F(y(r)). Sufficiently smooth differential equations satisfying continuity
conditions—such as Lipschitz continuity [139]—have unique solutions, whereas differential
inclusions have families of solutions [111,137].

Thus, to define trajectories for AV formally, we first define a set-valued function called
flow(m,v.V[i],t) that returns the states of A(i) when ¢[i] = m that can be reached from
v.V[i] in ¢ time. We suppose flow(m, v.V[i]) is set-valued, as this subsumes the case when
flowrate(m, x[i]) specifies a differential equation for z[i] instead of an inclusion.

Let n = |X[¢]| be the number of continuous local variables in the template A(7). Let

[lowrate(m, X[i])] : R™ — R™ be the vector of differential inclusions (and/or equations)
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for all the continuous variables X[i] of \A(i), assumed to be ordered lexicographically by
the variable names. For example, for Fischer in wait, [flowrate(wait, X[i])] is (b < @[i] < ub
(Figure 2.1, line 18) since there is a single continuous variable z[i] specified to evolve according
to the rectangular differential inclusion with lower and upper bounds (b and ub, respectively.

Here, v'.V.[i] = flow(m,v.V[i], ) iff*

(a) for each real local variable x[i] € X[i], Z[i] with initial condition v.z[i] has a solution

v(t) v'.z[i] = y(t), and
(b) for each non-real local variable y[i] € V[i] \ X[i], v'.y[i] = v.y[i].

For the Fischer example for wait (Figure 2.1, line 17),°

flow (wait, v.x[i],t) € v.z[i] + [Ib*t,ub * t]
€ [v.z[i] + lbxt,v.z[i] + ub * t] ,equivalently,

v.fi] + b xt <v'.x[i] < v.x[i] + ubx*t.

Thus far, we have not included the invariant and stopping condition, so we include these

to complete the definition of trajectories. There is a trajectory v — v/ € TV iff

Jt, € Rog Vi € [N] Ime LWt <t
flow(m, v.X[i],t,) = inv(m,i) A
(How(m, v.X[i],t,) = stop(m,i) =t, =1t.) A

v' X[i] € flow(m, v.X[i], t.).

For each ¢ € [N] and each real variable z[i] € X[i], v.z[i] must evolve to the valuations
v'.z[i], in exactly t. time in some location m € L according to the flow rates allowed for x|i]
in that location. All intermediate states along the trajectory must also satisfy the invariant
inv(m,i), and if an intermediate state satisfies stop(m, i), then that state must be v’ (that

is, the end of a trajectory).

4We have excluded continuous global variables to make the presentation clearer.
5This is an overapproximation of the set of solutions of the rectangular differential inclusion, as it excludes
the requirement that the time derivative of any solution is in the differential inclusion &[i] € [Ib, ub].
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If no flow rate is specified for some variable z[i] € X[i], then z[i] is assumed to remain
constant along the trajectory (that is, &[i] = 0). If no invariant is specified, then it is assumed
to be true, which specifies that the automaton may remain indefinitely in the corresponding
location. If no stopping condition is specified, it is assumed to be false, which will specify
allowing real time to elapse indefinitely in the corresponding location.

Together, the components of a trajectory statement define how variables of A(7) behave

over intervals of time. For Fischer, the trajectory statement for try is:

inv : zfi] <= A
stop : z[i] = A

flowrate : x[i]_dot >= b and z[i]_dot <= ub

which specifies the same differential inclusion on z[i] as in the location wait, but while
q[i] = try. In addition, the invariant requires that the automaton with index i can have
q[i] = try only as long as x[i] < A. The stopping condition requires that if z[i] = A, then

real time cannot continue to elapse.’

2.4.4 Executions, Invariants, and Inductive Invariants

An execution of the network AV models a particular behavior of all the automata in the
network. An ezecution of AV is a sequence of states o = v, vy, ... such that vy € OV, and
for each index k appearing in the sequence (v, vii1) € TV. A state x is reachable if there
is a finite execution ending with x. The set of reachable states for A" is Reach(A"). The
set of reachable states for AV starting from an arbitrary subset Vo C QV is Reach(.AN , Vo).

An invariant for AV is any set of states that contains Reach(.A"). In general, any assertion
over the variables of the automata in A" defines a subset of Q. The dependence of such
assertions on N is made explicit by using names like ((N). A network AV is safe with
respect to an assertion ¢(N) if all its reachable states satisfy it, that is, Reach(AV) C [¢(N)].

6Tn this example, the stopping condition is redundant. However, if the flow equations allow time to elapse
while the continuous state remains at the boundary of the invariant condition, the stopping condition allows
for modeling urgent transitions. The stopping condition can force time to stop, which can force transitions
to occur.
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Given a template hybrid automaton A(N,7) and a property ((N), in this dissertation, we
develop techniques for proving for all N’ € N, that every network is safe—that is, VA € N,
Reach(AVN) C [¢(N)]. To prove that A" is safe with respect to some unsafe set or property—
that is, =((N')—it suffices to find an invariant I'(N') € Q" such that [['(N)]N[~¢(N)] = 0.

Several subclasses of hybrid automata have been identified for which safety verification
by computing reachable sets is decidable—such as initialized rectangular hybrid automata
(IRHA) [30,111] and order-minimal (o-minimal) hybrid automata [140]—and several auto-
mated model checking tools have been developed, such as HyTech [37], PHAVer [39], and
SpaceEx [40]. However, the general model checking of even safety properties for hybrid
automata is undecidable, so a standard approach is to use overapproximations of reachable
states for checking safety properties, such as the methods implemented in PHAVer for affine
(linear) dynamics [39] and SpaceEx for affine dynamics as well [40] using the Le Geurnic-
Girard (LGG) algorithm [141]. An alternative approach is to prove stronger inductive in-
variant assertions that imply a desired safety property, as originally used in Floyd-Hoare

proofs [142,143] and the predicate transformers of Dijkstra [144].

Definition 2.4 An assertion T'(N) is an inductive invariant for the parameterized network

AN if, for all N € N, the following conditions hold:
(A) initiation: for each initial state v e OV = v = T'(N),

(B) discrete transition consecution: for each discrete transition (v,v') € DV, if v =

L'(N), then v =ET(N), and

(C) continuous trajectory consecution: for each trajectory (v,v') € TV, if v |=

L'(N), then v/ = T(N).

Proving that a parameterized network satisfies a property is the uniform verification problem.

Definition 2.5 The uniform verification problem is proving for any N' € N, for a property
D(N) and parameterized network AV, that AN satisfies T(N), written AN = T(N).
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The problem of uniform verification of parameterized networks is over arbitrary compositions
of potentially infinite-state automata, so in general we may need to query a theorem prover
to check conditions (A), (B), and (C).

The next standard theorem states that if an assertion I'(N) is an inductive invariant—that
is, I'(N) satisfies the conditions for inductive invariance (Definition 2.4)—then T'(N) is an

invariant [9,23].

Theorem 2.6 IfVN € N, I'(N) is an inductive invariant, then it is also an invariant:
VAN € N,Reach(AV) C [T(MV)].

Proof: Fix an arbitrary N~ € N and consider any reachable state x € Reach(AV). By
definition of reachable state, there exists some execution o with the last state in the execution
ending in X, so @ = Xy, X1, . . ., X. The proof continues by induction along the sequence states
in the execution «.

In the base case, X is an initial state, so xo € ", and thus x, € [I'(A)] by the initiation
condition (Definition 2.4, (A)). Consider an arbitrary state x € «, and the induction step
is composed of two cases, considering either any discrete transition or any trajectory. If
(x,x') € DV, then by the inductive hypothesis, we have that x € [I'(AV)], and applying the
transition consecution condition (Definition 2.4, (B)), we have x’ € [I'(N)]. Otherwise, if
(x,x') € TV, then by the inductive hypothesis, we have that x € [I'(N)], and applying the

trajectory consecution condition (Definition 2.4, (C)), we have x’ € [T'(N)]. u

Theorem provers such as PVS have been augmented with support for verifying such net-
works in [34, 68, 145]. The KeYmaera theorem prover also has support for verifying this
type of networks [14,35]. These environments provide partially automatic means of proving
inductive invariants of networks AV

It is well known that the converse of Theorem 2.6 does not hold. We next illustrate this

with a counterexample using the Fischer example (Figure 2.1).

Counterexample 2.7 Mutual exclusion is specified as p(N) = Vi, j € [N] i # j = (q[i] #
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cs V qlj] # cs). Suppose that ¢(N) is an invariant of Fischer,” and we will show that it is
not an inductive invariant.

We construct a state x € [¢(N)] as follows. Let i be the index of an automaton with
local variable valuations satisfying x.q[i] = cs. Let j be the index of an automaton with local
variable valuations satisfying x.q[j] # cs, specifically suppose x.q|j| = wait. Consider the
transition t from wait to cs, and we have x |= grd(t, j), so the transition t is enabled and
may be taken by automaton j. The effect eff(t, ) sets x'.q[j] = cs while leaving x'.q[i] =
x.q[i] = cs, so there are two automata in the critical section which violates the invariant
d(N). Therefore, $(N') is not an inductive invariant since transition consecution is violated

(Definition 2.4, (B)).

If we can find an assertion I'(N') that is an inductive invariant and implies some desired

safety property ((N'), we say that T'(NV) is sufficient to prove the safety property (N).

Definition 2.8 For any N € N, an assertion T'(N) is sufficient to prove a safety property
CN) if T(N) is an inductive invariant and T(N') = ((N), so that [¢(N)] C [T(N)].

For Fischer, the following inductive invariant is sufficient to prove that mutual exclusion

1s an Invariant.

Vie [N]:qli] =try = z[i] < AN (2.4)
Vi,j € [N]: (qli] =wait Ag=iAq[j] =try) = (B—A) > (z[i] — z[j]) A (2.5)
Vi, j € [N]: qli] = cs = (g =i A qlj] # try). (2.6)

When trying to prove a safety property by coming up with an inductive invariant, one
usually reasons in reverse as follows. Why is it that mutual exclusion is not inductive for
Fischer? As described in Counterexample 2.7, it is because, when assuming only knowledge
that mutual exclusion is satisfied, the guard of the transition t(wait, cs) can be enabled, since
mutual exclusion does not explicitly specify that g # j. What information—constraints

on states—is required to prevent the transition t(wait,cs) from being able to occur? By

"Mutual exclusion is in fact an invariant of Fischer, but we assume it is an invariant here simply to show
that an invariant is not necessarily inductive.
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considering each transition in Trans;, we see that x = Vi,j € [N] : (¢qi] = ¢s) = (g =
i A qlj] # try) is sufficient to prove mutual exclusion. However, this process repeats, since
X itself is not an inductive invariant. By repeating this process of reasoning backward, one
may® be able to come up with the conditions of Equation 2.6 that are sufficient to prove
that the mutual exclusion safety property is invariant.

This manual refinement process may be useful, but it does require human intervention,
and is not guaranteed to produce useful invariants. We introduce methods for automatically

finding inductive invariants in Chapter 6.

2.5 Summary

In this chapter, we describe a modeling framework for analyzing parameterized networks of
hybrid automata. We informally introduce the class of systems in Section 2.2, the syntactic
structure of a template hybrid automaton A(N, ) was specified in Section 2.3. The formal
semantics of parameterized networks composed of copies of the template are defined next
in Section 2.4, along with definitions of safety properties and an overview of the inductive
invariance proofs for establishing safety properties. Using the template A(N, ) as input,
Passel represents the semantics of the hybrid automaton network AV composed of arbitrarily
many copies of A(N, 1), although Passel never explicitly computes this composition, and only
encodes the formulas describing the semantics of the discrete transitions and continuous

trajectories (see Chapter 7 for more details).

8This is not guaranteed to find an inductive invariant sufficient to prove a property.
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Chapter 3

Parameterized Reachability Analysis: A Case Study on
Distributed Air Traffic Control

In this chapter, we present the formal modeling and automatic parameterized verification
of a distributed air traffic control protocol called the Small Aircraft Transportation System
(SATS). A simplified version of SATS was presented earlier in Chapter 2, Section 2.3.8. The
verification methodology relies on computing the set of backward reachable states from the
set of unsafe states to a fixed-point, and checking emptiness of the intersection of these
reachable states and the initial set of states. We use the Model Checker Modulo Theories
(MCMT) tool [54] to implement this methodology for the case study.!

3.1 Introduction

This chapter presents a distributed cyber-physical system (DCPS), namely a distributed air
traffic control protocol, for which we automatically verify several non-trivial properties for
arbitrarily many participating aircraft. The Small Aircraft Transportation System (SATS)
was developed with the goal of increasing access to small airports that potentially do not
have control towers nor radar. Instead, the aircraft rely on (a) receiving landing sequence
information from an automated airport management module (AMM) located at the airport,
and (b) communicating with one another to determine landing orders and perform landings.
The overall operation must satisfy a variety of safety properties—such as, between each
aircraft, there is always a sufficiently large physical separation.

The model presented in this chapter differs from the one presented in Section 2.3.8 (Fig-
ure 2.3). In particular, the model we present next uses counters instead of pointers and has

timed dynamics instead of rectangular differential inclusions. These choices were made to

!This chapter is based in part on prior work [2], portions o