
© 2013 Taylor T. Johnson

UNIFORM VERIFICATION OF SAFETY FOR PARAMETERIZED NETWORKS OF
HYBRID AUTOMATA

BY

TAYLOR T. JOHNSON

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Assistant Professor Sayan Mitra, Chair

Professor Tarek F. Abdelzaher

Professor William H. Sanders

Associate Professor Mahesh Viswanathan

Abstract

Distributed cyber-physical systems (CPS) incorporate communicating agents with their own

cyber and physical states and transitions. Such systems are typically designed to accomplish

tasks in the physical world. For example, the objective of a robotic swarm may be to cover an

area while avoiding collisions. The combination of physical dynamics, software dynamics, and

communications leads these systems naturally to be modeled as networks of hybrid automata.

Hybrid automata are finite-state machines with additional real-valued continuous variables

whose dynamics may vary in different states. These networks are naturally parameterized

on the number of participants—processes, robots, vehicles, etc. The uniform verification

problem is to verify (prove) some property regardless of the number of participants. In

this dissertation, we develop a framework for formally modeling and automatically verifying

networks composed of arbitrarily many participants. Three methods are presented and

evaluated for proving safety properties—those that always hold throughout the evolutions

of the system.

The first method is a backward search from the set of unsafe states, which are those

that violate a desired safety property. The method computes the set of reachable states

for a parameterized network, and checks that the intersection of the reachable states and

unsafe states is empty. We apply this technique using the Model Checker Modulo Theories

(MCMT) verification tool to automatically verify safe separation of aircraft in a conceptual

air traffic landing protocol of the Small Aircraft Transportation System (SATS), regardless

of the number of aircraft involved in the protocol.

The Passel verification tool we develop as a part of this dissertation implements the next

two methods and can verify safety properties of parameterized networks of hybrid automata

with dynamics specified as rectangular differential inclusions. The second method computes

ii

the set of reachable states for networks composed of a finite number of participants. While

this method cannot in general prove safety regardless of the number of participants, it can be

used as a subroutine for other methods, such as synthesizing candidate inductive invariants

to perform uniform verification. It is also useful on its own as an initial sanity check prior

to attempting to prove properties regardless of the number of participants, which is harder

in general—in terms of decidability and complexity.

The third method—when it is successful—automates the traditionally deductive verifica-

tion approach of proving inductive invariants. This is accomplished by combining model

checking with theorem proving. An algorithm synthesizes candidate inductive invariants

by computing the reachable states of finite instantiations. The conditions for inductive

invariance are then checked for these candidates. If a small model theorem applies, finite in-

stantiations of the parameterized network can be checked, but in general, a theorem prover is

queried. In this case, the inductive invariance conditions are encoded as satisfiability checks,

for which it may be possible to discharge automatically. When these steps are successful, a

fully automatic verification of safety is achieved.

The main contributions of this thesis include (a) the modeling framework for parame-

terized networks of hybrid automata, (b) the first fully automatic uniform verification of

parameterized networks composed of hybrid automata with rectangular dynamics, such as

Fischer’s mutual exclusion protocol and SATS, (c) formalization of the SATS case study as

a uniform verification problem, (d) the Passel verification tool, (e) an extension of the invis-

ible invariants and split invariants approaches for invariant synthesis to networks of hybrid

automata, and (f) a small model theorem for checking inductive invariance conditions of

networks of rectangular hybrid automata.

iii

Acknowledgments

This dissertation would not have been possible without the help, support, and encouragement

of many others. I am indebted to my committee whose encouragement made possible,

and criticisms sharpened, all aspects of this work. My adviser Prof. Sayan Mitra has

been the most influential in every phase of this dissertation, from discussing preliminary

ideas on the blackboard, to late nights of careful reading and final editorial comments on

sentence structure and prose. I am extremely fortunate to have had Prof. Mitra as my

adviser throughout graduate school. Prof. Tarek Abdelzaher’s suggestions and feedback

helped shape the cyber-physical systems aspects. Prof. William Sanders instilled in me

an appreciation for the art of systems modeling. Prof. Mahesh Viswanathan’s detailed

understanding of the dissertation identified several problems in earlier drafts which has

greatly improved the dissertation.

My family has always supported all my endeavors and shaped me into who I am today, and

I am especially grateful to Mom, Dad, Brock, and Brenda. My parents sacrificed much for

my education—from moving to rural Texas and to west Texas—and I am deeply grateful for

them. Without my cousin Tommy’s support, I probably would not have stayed in graduate

school, so I am very thankful for his help. I’m thankful to have Ellen’s family as a part of

my extended family, and thank Bob, Gayden, Kate, Katherine, Liz, Lucy, and Mike. I have

been fortunate to have been surrounded by excellent fellow group mates during my time—

Sridhar, Zhenqi, Jeremy, Adam, Koushik, Karthik, Berenice, Hongxu, and Rob—from whom

I’ve learned much. I’ve also been fortunate to have spent five years in the Coordinated

Science Laboratory (CSL), where I’ve made many friends and learned much from Adel,

Ahmed, Alan, Danny, Debjit, June, Leonardo, Matt, Navid, Nanjun, Neal, Puskar, Ronald,

Sairaj, Shamina, Sobir, Yangmin, and so many others. I thank Profs. Marco Caccamo,

iv

Yih-Chun Hu, Rakesh Kumar, Steve LaValle, Michael Loui, Steve Lumetta, Madhusudan

Parthasarathy, Lui Sha, and Nitin Vaidya for teaching me and giving me advice. I am

grateful to Prof. Daniel Liberzon who taught me almost all the control theory I know through

several courses, and whose questions in the preliminary exam sharpened the remainder of

the research undertaken in this dissertation. Dr. Richard Scott Erwin of the Air Force

Research Lab (AFRL) has served as a valuable mentor and provided a different perspective

on verification work. The staff of CSL has helped me with innumerable requests, and I am

extremely thankful to have had the help of Carol, Jana, Linda, Lila, Ronda, and Angie.

I’ve enjoyed my five years in Champaign-Urbana due in part to friends like Alan, Seth

and Amanda, Jackson and Frances, Paul and Sarah, Rakesh, Stan and Xian, Freddy, and

Adrienne. I am grateful to the ECE Publications Office, particularly Jan Progen for care-

fully proofreading this dissertation, which has improved its consistency. I also thank the

anonymous reviewers who have critiqued the work in this dissertation that has already been

published. I am grateful to Cesar Muñoz for providing a PVS specification of SATS and to

Karthik Manamcheri for developing an UPAAAL model of it. I am grateful to the National

Science Foundation, the Air Force Office of Scientific Research, and The Boeing Company

for providing the financial support for this research. This dissertation is based upon our

papers [1–3], which were supported by the National Science Foundation under CAREER

Grant No. 1054247.

I am eternally grateful to my beautiful wife Ellen, who has quite literally taken care of me

during the past couple years, and especially the last year. Without Ellen I would not have

finished, nor would I be as happy as I am today, so with love, thank you. Finally, I would

like to thank everyone else with whom I interact, as I’m sure I’ve failed to mention everyone

explicitly.

v

Contents

Chapter 1 Introduction . 1
1.1 Motivation and Background . 1
1.2 Dissertation Summary and Contributions . 7
1.3 Literature Review . 11
1.4 Dissertation Outline . 18
1.5 Copyright Acknowledgments . 19

Chapter 2 A Modeling Framework for Hybrid Automata Networks 21
2.1 Introduction . 21
2.2 Informal Description of Hybrid Automata Networks 23
2.3 Syntax for Hybrid Automaton Template A(N , i) 24
2.4 Semantics of Hybrid Automata Networks . 37
2.5 Summary . 47

Chapter 3 Parameterized Reachability Analysis: A Case Study on Distributed
Air Traffic Control . 48
3.1 Introduction . 48
3.2 Formal Model of the Small Aircraft Transportation System 51
3.3 Verification by Backward Reachability . 57
3.4 Example: Finite State Automaton with Unreachable Illegal States 60
3.5 SATS Properties Verified . 62
3.6 Summary . 65

Chapter 4 Reachability Using Anonymized States for Finite Instantiations of Hy-
brid Automata Networks . 67
4.1 Introduction . 67
4.2 Anonymized State-Space Representation . 68
4.3 Reachability Using Anonymized States . 77
4.4 Analysis of Reachability Algorithm Using Anonymized States 88
4.5 Summary . 91

Chapter 5 Proving Inductive Invariants . 92
5.1 Introduction . 92
5.2 Small Model Theorem . 95
5.3 Applying the Small Model Theorem to Check Inductive Invariants 99
5.4 Summary . 102

vi

Chapter 6 Finding Inductive Invariants . 103
6.1 Introduction . 103
6.2 Synthesizing Inductive Invariants with the Project-and-Generalize Subroutine 105
6.3 Project-and-Generalize Example . 110
6.4 Inductive Invariant Synthesis Fixed-Point Procedure 114
6.5 Summary . 116

Chapter 7 Passel and Experimental Evaluation . 117
7.1 Introduction . 117
7.2 Overview . 118
7.3 Implementation . 119
7.4 Additional Examples . 122
7.5 Experimental Setup . 124
7.6 Experimental Results for Reachability Using Anonymized States 125
7.7 Experimental Results for Proving Inductive Invariants 130
7.8 Experimental Results for Finding Inductive Invariants 131
7.9 Summary . 134

Chapter 8 Conclusion . 136
8.1 Summary . 136
8.2 Future Work . 137

Bibliography . 140

vii

Chapter 1

Introduction

Cyber-physical systems (CPS) involve coordination of software and physics through the use of

control, computation, and communication. Distributed cyber-physical systems (DCPS) have

geographically distributed components, and therefore, issues like message delays, asynchrony,

and failures make their design and analysis challenging. Examples of DCPS arise in air traffic

control where aircraft communicate with one another and traffic controllers to safely take-off

and land, robotics where robots coordinate to solve some task in the physical world like

observing a region while avoiding collisions, and many other domains. To aid in the design

and development of such systems, we present algorithmic verification techniques for DCPS

in this dissertation.

1.1 Motivation and Background

In many engineering domains, cyber-physical systems (CPS) are becoming common as soft-

ware enables higher levels of autonomy. For instance, unmanned aerial vehicles are beginning

to share airspace with commercial and passenger air traffic [4], autonomous satellites will

soon service aging satellites [5], networked medical devices are being worn by and implanted

in humans [6], and cars may soon drive themselves [7]. As the autonomy of such systems

increases, we need methods for helping ensure their design correctness and safe operation,

as any of these safety-critical systems has the potential to cause catastrophic failure. Many

current and future CPS—such as in automotive and air traffic control protocols—involve a

complex interaction between software state of many independent agents to ensure physical

safety.

Hybrid systems modeling frameworks (e.g., hybrid automata [8, 9], and see more recent

1

proceedings of HSCC [10–12]) combine continuous and discrete evolution and have become

a standard formalism for modeling software systems interacting with the physical world. In

systems where many nearly identical automata interact, hybrid automata models parame-

terized by automaton identifiers preserve the symmetry arising from the repeated structure.

Systems exhibiting this pattern abound around us—from MAC protocols, air-traffic control

systems, and real-time distributed algorithms, to control systems for robotic swarms and cell

arrays in tissue. Additionally, each robot in a robotic swarm is naturally modeled as a hybrid

automaton, receiving messages from nearby neighbors to determine new control polices to

accomplish some global problem like covering a physical region. Each mote in a wireless

sensor network (WSN) can be modeled as a hybrid automaton, albeit the global task may be

to aggregate cyber states of physical measurements, instead of coordinating physical state.

Similarly, subcomponents of these systems like clock synchronization algorithms, mutual ex-

clusion algorithms, leader election protocols, analog-to-digital converters, digital-to-analog

converters, actuators, sensors, etc., can also be modeled as networks of hybrid automata,

and have their own correctness specifications that may be verified. We call such systems

distributed cyber-physical systems (DCPS) due to this distributed interaction of cyber and

physical state.

Uniform Verification for Parameterized Networks. In such parameterized models,

each automaton is an instance of a hybrid automaton template A(N , i) that interacts with

others only through shared discrete transitions (and not through continuous signals). Al-

though the specifications of all the automata in a system are identical, modulo their iden-

tifiers, in a given execution of the system, the automata may behave differently. The com-

posed network has both discrete and continuous dynamics, and the communication topology

between automata may itself evolve over time. When the number of participants in the

network is not fixed a priori, it is referred to as a parameterized network of instances of

the template A(N , i), and we denote the network AN . Many approaches can be used for

analyzing such networks, such as simulation to see if they violate some specification. The

specification describes what the network should or should not do, and we focus only on

safety properties—those that should always hold—in this dissertation. However, proving

2

that parameterized networks satisfy a safety property regardless of the number of partic-

ipants cannot in general be solved using simulation. In fact, proving that even a single

hybrid automaton satisfies a safety property cannot in general be solved using simulation for

a variety of reasons, such as uncountability of the reals. Thus, other techniques like manual

analysis, computer-aided analysis using interactive theorem provers, or model checking may

be employed. These techniques also have limitations as discussed shortly.

We address the following problem in this dissertation. Given an automaton template

A(N , i) and a property ζ(N), the uniform verification problem is to prove ∀N ∈ N that

the parameterized network AN ∆
= A1‖A2‖ . . . ‖AN satisfies ζ(N) [13, Ch. 15]. The uni-

form verification problem is an infinite state verification problem. Such a formulation allows

one to conclude—irrespective of the number of components N involved—whether a network

composed of N instances of A(i) satisfies the property ζ(N). For instance, in a realization

of the automated highway system, how could one automatically verify that any interaction

between an arbitrary number of cars does not result in a collision? A variety of other in-

teracting DCPS are naturally modeled as parameterized systems, such as automotive traffic

protocols [14], swarm robotics and coordination [15, 16], industrial systems [17], and net-

worked medical devices.

State-Space Explosion. One of the main challenges in applying automatic verification

techniques to (even purely discrete) systems is the state-space explosion problem [13]. For

concurrent systems like distributed algorithms, this problem is exacerbated since the growth

of the state-space is exponential in the number of components (processes). In general, the

composition of N processes each modeled with k states yields a product state-space with kN

elements.1

For example, consider Dijkstra’s classic mutual exclusion algorithm [18] in Figure 1.1.

This algorithm has a global variable k taking values in [N]⊥ (initially arbitrary), a local

variable l[i] of type [N]⊥ (initially arbitrary), two local Boolean variables b[i] and c[i] (both

initially true), and five program locations for each process. Even with a shared-memory

1Throughout this dissertation, we use [N]⊥
∆
= {1, . . . ,N} ∪ {⊥} for a process (or automaton) index set,

where ⊥ is a symbol not equal to any identifier. When the number of processes is not fixed—that is, when
considering arbitrarily many processes—the symbol N and set [N]⊥ are used.

3

remstart set check

loopcs

b[i] := 0 k 6= i; c[i] := 1

b[k]; k := i

¬b[k]

k = i
c[i] := 0; l[i] := 1

l[i] = i ∨ c[l[i]]
l[i] := l[i] + 1

l[i] 6= i ∧ ¬c[l[i]]

l[i] = N

b[i] := 1
c[i] := 1

Figure 1.1: Dijkstra’s mutual exclusion algorithm for process i ∈ [N] for illustrating the
state-space explosion problem for concurrent discrete-state systems.

model where event-ordering interleavings like message sends and receives are not considered,

this program’s purely discrete state-space has 22N(2(N + 1))N(5N)N elements, and for N = 4,

the state-space has over ten billion elements (> 233). A human designer would consider some

small number of these states, in part based on experience and ingenuity, and also by only

considering the subset of the state-space that may be reached. Much progress in computer-

aided verification over the last thirty-plus years has been to incorporate such human ingenuity

into clever abstractions, so algorithms need only explore small equivalence classes in these

huge spaces.

Verification of DCPS must cope with the complexities of large discrete state-spaces, along

with the additional modeling and computational complexity of physical state. Physical states

like positions and velocities are often naturally modeled as real variables that evolve according

to some ordinary differential equations (ODEs) or inclusions. Such modeling yields hybrid

systems representations of DCPS with combinations of continuous and discrete states and

transitions [9, 19–23]. Even relatively simple timed distributed mutual exclusion algorithms

like Fischer’s mutual exclusion algorithm [24] in Figure 1.2 have large discrete state-spaces.

Fischer uses a global variable g taking values in [N]⊥ (initially ⊥) and has four control

locations for each process, yielding (N + 1)(4N)N discrete states, along with one continuous

variable x[i] for each of the N processes. For N = 6, this is already over a billion discrete

4

rem
ẋ[i] = 1

start

try
ẋ[i] = 1
x[i] ≤ A

wait
ẋ[i] = 1

cs
ẋ[i] = 1

g = ⊥; x[i] := 0

g := i; x[i] := 0

g 6= i ∧ x[i] ≥ B
x[i] := 0

g = i ∧ x[i] ≥ B
x[i] := 0

g := ⊥

Figure 1.2: Fischer’s mutual exclusion algorithm (Fischer-Timed) for process i ∈ [N].

states (> 230) with a continuous state-space of R6.

DCPS are naturally modeled as interacting networks of hybrid automata. In this disserta-

tion, we develop a formal modeling framework for networks of hybrid automata in Chapter 2.

For example, a simplified model of each aircraft in the Small Aircraft Transportation System

(SATS) [2, 25–27]—an aircraft landing protocol—is shown in Figure 1.3. In this protocol,

there is a global variable g taking values in [N]⊥ that tracks the last aircraft to enter the

landing protocol, a variable n[i] taking values in [N]⊥ used to track the aircraft immediately

ahead of aircraft i (if any), and a continuous real variable x[i] measuring the distance of the

ith aircraft from the start of the base location. The parameters LB and LG are real con-

stants representing, respectively, the length of the base location and the minimum distance

any aircraft in the base location must have traveled prior to any subsequent aircraft being

allowed to enter the base location, where LG is chosen large enough to ensure no two aircraft

in the base location collide.

Undecidability. When uniform verification of safety properties for parameterized net-

works is approached with model checking, it is an infinite-state model checking problem and

5

fly
ẋ[i] = 0

start

hold
ẋ[i] = 0

base
ẋ[i] ∈ [vmin, vmax]

x[i] ≤ LB

runway
ẋ[i] = 0

g := i ∧ n[i] := g

n[i] 6= ⊥ ⇒ x[n[i]] ≥ LG
x[i] := 0

x[i] ≥ LB ∧ ∀j ∈ [N] : n[j] = i⇒ n[j] := ⊥
x[i] := 0 ∧ g := i

x[i] ≥ LB ∧ (g = i⇒ g := ⊥)
x[i] := 0 ∧ n[i] := ⊥

Figure 1.3: Simplified Small Aircraft Transportation System (SATS) aircraft landing protocol
(SSATS) for aircraft i ∈ [N].

is undecidable, even when A(N , i) is a finite state automaton [28,29]. However, it has some

decidable subclasses as we review in more detail in Section 1.3. To remain decidable, restric-

tions must be placed on A(N , i), the parallel composition operator ‖ (and hence how the

A(N , i)’s may communicate), and the property ζ(N). For general classes of hybrid systems,

checking if even a single A(N , i) satisfies ζ(N) is undecidable, but it also has several decid-

able subclasses [30], such as when restrictions are placed on the continuous dynamics—like

in initialized rectangular hybrid automata (IRHA)—or on the discrete dynamics [31].

6

Advantages of the Uniform Verification Perspective. There are large classes of

DCPS and that can be expressed in the hybrid automata modeling framework, but the

state-space explosion problem is exacerbated for networks of such automata. This disser-

tation partially addresses the uniform verification problem for parameterized networks of

hybrid automata. The primary contributions of this dissertation are applications and ex-

tensions of existing uniform verification approaches developed for discrete systems to DCPS

that also have continuous evolution specified by ordinary differential equations and inclu-

sions. If successful, uniform verification proves a parameterized network satisfies a specifica-

tion regardless of the number of participants in the network. Since traditional automatic

verification—for example, model checking—of distributed computing systems requires pick-

ing a finite instantiation N, it is necessarily incomplete and cannot establish correctness for

any choice N .2

Uniform verification is also a way enable scalable verification and ameliorate the state-

space explosion problem. It may be infeasible to use traditional verification to verify the

largest realistic instantiation. For example, in Dijkstra’s mutual exclusion algorithm, the

state-space has > 2424 elements for N = 30, while it is reasonable that up to 30 processes or

threads actually need to access some shared resource. Thus, if uniform verification succeeds,

these large but finite instantiations need not be explicitly considered.

1.2 Dissertation Summary and Contributions

We present next a detailed summary of the dissertation, along with a summary of the

verification techniques and other contributions it makes.

1.2.1 Modeling Framework and the Passel Verification Tool

Chapters 2 and 7 present, respectively, a modeling framework for parameterized networks

of hybrid automata, and the Passel verification tool for automatically verifying safety prop-

erties of such systems. The modeling framework is a key contribution of this dissertation,

2Without additional analysis showing some particular finite choice N0 is sufficiently large, so that N > N0

need not be considered. This is one technique we exploit in this dissertation.

7

as it is the first such modeling framework for parameterized networks of hybrid automata

with a focus on being amenable to analysis, simulation, and transformation with automated

tools. Passel relies on the methods for proving safety properties of such networks as de-

scribed in Chapters 4, 5, and 6. Passel represents a large undertaking of the dissertation,

and is one of the main contributions.3 To the best of our knowledge, Passel is the only

tool for automatically verifying safety properties of parameterized networks of hybrid au-

tomata. However, MCMT [32,33] can be used for verifying parameterized networks of timed

automata, and theorem prover-based techniques may allow some or full automation for some

examples [34,35]. No other tools for verifying timed or hybrid automata—e.g., Charon [36],

HyTech [37], UPAAAL [38], PHAVer [39], SpaceEx [40], etc.—can solve the uniform verifi-

cation problem addressed in this dissertation. The methods Passel uses are summarized in

the next three subsections.

1.2.2 Reachability Using Anonymized States for Finite Instantiations of
Hybrid Automata Networks

Chapter 4 presents a method for computing the set of reachable states of finite instantia-

tions of N automata for parameterized networks AN. The method avoids computing all the

permutations of automata indices, and is able to speed and scale reachability computations

greatly in practice. The method is shown to be sound and to satisfy several invariants during

the computation of the efficiently represented reachable states. Experimental results using

the method implemented in Passel have enabled the computation of the reachable states for

networks with hundreds of processes, whereas existing hybrid systems model checkers like

PHAVer ran out of memory with at most tens of processes. Thus, the representation allows

for analyzing networks orders of magnitudes larger than existing approaches.

3The Passel verification tool, along with all the examples described in this dissertation and others, is avail-
able for download: https://publish.illinois.edu/passel-tool/. If this link ever becomes outdated,
please visit: http://www.taylortjohnson.com.

8

https://publish.illinois.edu/passel-tool/
http://www.taylortjohnson.com

1.2.3 Proving Inductive Invariants for Parameterized Networks of Hybrid
Automata

Chapter 5 presents a small model theorem for reducing the uniform verification problem to

checking finite instantiations, assuming an inductive invariant sufficient to establish a desired

safety property is provided. The theorem establishes a bound N0—whose value is a function

of the protocol and the property to be verified—such that, if any instance of the network

AN of size N violates a safety property ζ(N), then an instantiation of size N ≤ N0 must

also violate ζ(N). Thus, if no instance of size 1 ≤ N ≤ N0 violates ζ(N), one can conclude

ζ(N) holds for all N ∈ N.

Such theorems were originally developed for enabling automatic deductive verification of

inductive invariants for purely discrete systems [41,42]. To enable verification of some prop-

erty ζ(N), a strong enough invariant Γ(N) must be supplied that is inductive and implies

ζ(N). Usually, the process of strengthening Γ(N) until it is inductive is a manual process,

but we next describe the methods we investigate in this dissertation for automatically finding

proofs of inductive invariance for parameterized networks.

1.2.4 Finding Inductive Invariants for Parameterized Networks of Hybrid
Automata

The weakness of the method of inductive invariance—even when a small model theorem for

the class of systems and properties is available—is that it requires coming up with an induc-

tive invariant strong enough to prove a desired safety property, which in general, requires

manual intervention. Thus, a method for coming up with candidate inductive invariants can

help automate the verification process.

Invisible and Split Invariants for Parameterized Networks of Hybrid Automata.

In [41,42], small model theorems were combined with the invisible invariant method, which is

a heuristic for doing such strengthening automatically. The weakness of this method is that

it is a heuristic and may fail to find a suitable candidate inductive invariant strong enough

to prove a desired safety property. In Chapter 6, an extension of the invisible invariant

method to timed and hybrid systems is presented, along with a more general procedure that

9

is guaranteed to generate the best candidate invariant of a particular class, described in more

detail in Section 6.4.

Abstractly, the procedure projects the reachable states onto a smaller space—the states of

AP, a networked composed of P automata—then lifts them up to a larger space—the states

of AN , a network composed of an arbitrary number of automata. However, the procedure

is just a heuristic and hence incomplete [43], and fails to generate inductive invariants for

many protocols in practice [41,42]. It surprisingly succeeds in generating quantified inductive

invariants for some examples. A complete method—called the split invariant method—for

synthesizing the strongest inductive invariant is presented for discrete systems in [43]. The

method is based on the non-interference properties in compositional analysis [44].

We extend the invisible invariant method [41, 42, 45, 46] to hybrid automata networks

in Chapter 6 and implement it in Passel. We use the method to automatically verify several

timed and hybrid examples like Fischer’s mutual exclusion protocol, a part of the Small

Aircraft Transportation System (SATS) landing protocol [2,25,26], along with several other

timed examples as detailed in Section 7.8. We also successfully verify several safety properties

completely automatically in the purely discrete examples the method was originally applied

to in [41, 42] as a sanity check. These experiments are—to the best of our knowledge—the

first fully automatic verification of parameterized networks of hybrid automata, beyond the

special subclass of timed automata [32,33,47–50].

Due to the theoretical and practical incompleteness of the invisible invariant method,

we explore in Chapter 6 the theoretical and practical benefits of using the split invariant

method [43] for hybrid automata networks. This method utilizes a fixed-point procedure to

compute candidate invariants. Like the invisible invariant method, this generates a formula

Γ(N)
∆
= ∀i1, . . . , iP ∈ [N] : i1 6= . . . 6= iP ⇒ φ(i1, . . . , iP). It may generate an inductive

invariant that proves the desired safety property, and in practice, many protocols’ safety

properties can be proved with inductive invariants of the form ∀i1, . . . , iP ∈ [N] : i1 6= . . . 6=

iP ⇒ φ(i1, . . . , iP). However, some protocols need assertions with quantifier alternation like

∃i ∈ [N] ∀j ∈ [N].

10

1.2.5 Parameterized Reachability Analysis: A Case Study on Distributed
Air Traffic Control

Chapter 3 describes a backward reachability semi-algorithm for verifying parameterized net-

works. This general methodology is widely used in a variety of research work and software

tools, such as UNDIP [51, 52], MCMT [32, 33, 53, 54], SAFARI [55], and Cubicle [56]. We

present a detailed summary of the method, along with its use in several examples, including

a slightly simplified version of the Small Aircraft Transportation System (SATS) landing

protocol [2,25,26]. We use the MCMT tool for analyzing SATS. The SATS protocol is sim-

plified in part due to limitations of available tools. For example, MCMT is the only available

tool that supports any form of continuous dynamics for parameterized networks, and it is

limited to timed dynamics [32,33], which are a special subclass of the rectangular differential

inclusion dynamics in the SATS protocol [25–27]. Such limitations are not only in available

tools, but also in the theoretical basis, which we have addressed partially in this dissertation

in Chapter 2 by developing a modeling framework allowing for more general dynamics. We

have addressed tool availability by developing and releasing the software tool Passel that

supports automatic verification of parameterized hybrid automata with continuous dynam-

ics specified as rectangular differential inclusions. The limitations of this method and the

restriction to timed dynamics serve as the motivations for the other methods we develop later

in this dissertation, such as the reachability method of Chapter 4, the inductive invariance

method of Chapter 5, and the invariant synthesis methods of Chapter 6.

1.3 Literature Review

Verification of cyber-physical systems (CPS) and hybrid models have enjoyed the attention of

several researchers over two decades (see, for example, the recent proceedings of HSCC [10–

12] for recent developments).

11

1.3.1 Modeling and Verification of Distributed Cyber-Physical Systems

Several formalisms have been developed for modeling and verifying CPS, such as hybrid

automata [8, 19, 36], hybrid programs [14, 35, 57, 58], and hybrid input/output automata

(HIOA) [9, 23]. Generally speaking, automation of analysis—such as decidability of model

checking—is usually gained at the expense of less expressiveness. Thus, techniques either

focus on a restricted formalism such as initialized rectangular hybrid automata (IRHA) [30]

or require some level of human intervention.

Deductive verification of safety critical traffic protocols like those seen in automotive and

aerospace systems has been researched in [15, 59–61]. For instance, techniques based on

optimal control are used for verification of conflict resolution maneuvers in [62, 63] and

automatic landing systems in [64]. Using logical techniques, curved flight maneuvers have

also been verified in [58]. Automotive protocols like those that may play a role in the

automated highway system have been modeled and verified semi-automatically using theorem

provers [14].

Previous work on formally modeling and analyzing the Small Aircraft Transportation

System (SATS)—a distributed air traffic landing protocol—has relied on using verification

of purely discrete models [65–68]. Discrete abstractions capturing all behaviors of SATS are

created in [66, 68]. The properties verified in these works include that there are at most

four aircraft on the approach to the runway, and similar properties limiting the number of

aircraft in certain zones. In [27], assuming this limited number of aircraft in the system,

the authors automatically generate a set of lemmas corresponding to every combination of

aircraft, and then discharge these lemmas semi-automatically in the PVS theorem prover,

thus verifying the separation assurance safety property of the hybrid system. A more detailed

hybrid systems model of SATS is developed and verified in [69].

Parts of these works relied on deductive verification, such as through the use of the in-

teractive theorem prover PVS [70], supplemented with some automatic state-space explo-

ration [27]. In [27], for example, it is first shown using PVS that SATS can have at most

four approaching aircraft, and then all automatic state exploration uses this fixed number

of aircraft. Traditional model checking would require the number of aircraft involved in the

12

system to be fixed to a natural number prior to computing the composition. For example,

finite instances of a simplified version of the SATS protocol have been verified using HyTech

and HARE in [71]. In contrast, we present a parameterized model of a simplified version

of SATS in Chapter 3, Section 3.2 and automatically verify the key safety property of the

protocol regardless of the number of aircraft in the system. The techniques we use could help

scale verification of automated highways, peer-to-peer protocols, and other general aviation

systems, such as landing protocols for unmanned aerial vehicles (UAVs).

1.3.2 Uniform Verification of Discrete Parameterized Systems

Uniform verification of parameterized systems aims to prove properties regardless of the num-

ber of participating agents. An overview of automatic approaches for verification of discrete

parameterized systems appears in [13, Ch. 15] and the survey [72]. Most early works focused

on asynchronous models [73,74]. The uniform verification problem is in general undecidable,

even for networks of finite-state automata [28, 29]. Due to these decidability results, many

works focus on incomplete, but sound, approaches for verifying parameterized systems. How-

ever, for restricted classes of systems under various communications constraints, the problem

has been shown to be decidable [75].

Counter and Environment Abstractions. Several papers present sound but incom-

plete methods for uniform verification of parameterized discrete systems. Much existing

work on uniform verification relies on computing abstractions of given system models. One

abstraction is called counter abstraction [13, Ch. 15]. For a network of finite automata,

the intuition is to count the number of processes in each discrete location, and instead of

keeping track of which process is in which discrete state, simply count the number of pro-

cesses in that state. Then for each counter, bound the number of processes to track, where

usually the domain will now be zero, one, two, or greater than two, instead of all natural

numbers, and a finite abstraction has been created. An alternative to bounding the counters

is to not specify a bound, as in [76], and use model checkers developed for infinite state

systems like HyTech [37]. These approaches have been used for verifying cache-coherence

protocols [76,77], which have received considerable attention from research on parameterized

13

systems [53,78].

However, these approaches limit the ability to check many liveness properties, as the indices

of processes have been abstracted, and we can no longer tell if some particular process is

doing something to make progress. An extension to this is known as the counter plus one

abstraction, which keeps track of the exact state of a single process in addition to using

the counter abstraction for all other processes describe above [79]. This allows checking for

liveness properties of that one process, such as if it is waiting to enter the critical section,

it eventually does so. A generalization of counter abstraction is environment abstraction,

which counts the number of processes satisfying some predicates instead of those in some

discrete state [80].

A generalization of counter abstraction is monotonic abstraction [81]. The intuition is

the same as counter abstraction, but also an ordering on any configurations is ensured

and guarantees termination of a fixed-point algorithm. This abstraction is what has been

employed in a counterexample-guided abstraction and refinement (CEGAR) technique for

parameterized systems [82]. The abstraction is defined in terms of the ordering, so when

the ordering is refined, the system changes and a counterexample is ensured to be removed,

yielding termination. Other approaches to model checking even more general classes of

discrete systems—of which discrete parameterized systems are a subclass—are regular model

checking [83] and omega regular model checking [84].

Network Invariants. Network invariants are an abstraction approach introduced in [85]

and studied extensively [49, 86–92]. The idea is to abstract N − 1 of the processes into

one process I—called the network invariant—that is independent of N . When possible,

the problem of proving for all N ∈ N that AN |= ζ(N) is reduced to proving A1‖I |= ζ,

which may require modifying ζ according to the abstraction that defines I as well. Network

invariants for real-time systems are developed in [92], and a formalization of process calculi

methods in timed CSP used in the Isabelle/HOL theorem prover [93] is developed in [94],

with more details on both available in the thesis [50]. Network invariants have also been

developed for parameterized networks of timed automata in [49].

14

Invisible Invariants and Small Model Theorems. Finding invariants was automated

with the invisible invariants approach [41, 42], which provides a heuristic method to auto-

matically compute inductive invariants, such as implemented in IIV [45]. Parameterized

verification of liveness properties has also been investigated using an extension of invisible

invariants [95–98] A small model theorem similar the one we present in Chapter 5—from

our paper [3]—was introduced in [41, 42] for a class of discrete parameterized systems with

bounded data, but the main difference is that our result applies to hybrid and timed sys-

tems. We can view cutoffs—an instantiation of the network that has all the behaviors of

additional compositions—like those in [99–102] like small model results, in that it is suffi-

cient to check the composition of a protocol up to the cutoff or small model bound to verify

the parameterized specification. An alternative approach is [102], which computes cutoffs to

verify parameterized systems, where a cutoff is an instantiation of the system that has all

the behaviors of additional compositions, and it turns out that in practice, many systems

have finite cutoffs. The Golok tool [102] computes cutoffs to verify a class of parameter-

ized systems, where a cutoff is an instantiation of the system that has all the behaviors of

additional compositions, and it turns out that in practice, many systems have finite cutoffs.

1.3.3 Uniform Verification of Timed and Hybrid Parameterized Systems

There are several approached for uniform verification and timed and hybrid models that

require different degrees of human intervention [14,27,35,69,103,104]. There are several works

addressing uniform verification for networks of the special subclass of timed automata [32,

33, 47–50, 92, 105, 106]. Uniform verification of hybrid automata networks is useful to show,

for instance, that for arbitrarily many aircraft participating in a given distributed air traffic

control protocol like the Small Aircraft Transportation System (SATS), no two aircraft ever

collide [2, 27, 69].

Many techniques for verification of parameterized discrete systems have been applied to

parameterized timed networks. An abstraction for a discretized version of Fischer’s mutual

exclusion [107] is created in [108]. Uniform verification of parameterized timed networks

has been studied in [47, 48, 109], where a control-state reachability problem was shown to

15

be decidable for a restricted class of timed parameterized systems. The method combines

counter abstraction with the clock regions of [110] to create a simulation relation between

regions of the continuous state-space and a finite state machine. If the timed automata

have more than a single real-valued clock, then checking safety properties is undecidable

using a reduction to two-counter machines [48]. However, if the clocks are discrete-valued,

each automaton may have any finite number of clocks. The previous undecidability result

prevents using the standard initialized rectangular hybrid automata (IRHA)-to-timed au-

tomata conversion algorithm [8,30] because it adds two clocks for every continuous variable

evolving with rectangular dynamics. However, decidability of parameterized verification for

IRHA could be argued using a reduction that does not involve creating multiple clocks for

every real-valued continuous variable, such as the discretization of time used in [111], and

combining decidability of parameterized networks with multiple discrete-valued clocks [48].

If the timed automata have urgent transitions, then checking safety properties is undecid-

able [47]. There are further restrictions on how the processes may communicate, as well as

on the allowable guards. While checking general liveness properties is undecidable for these

networks [47], some recent work develops methods for checking some liveness properties [33].

Bounded reachability methods are developed for timed parameterized systems in [32, 33],

and we applied these reachability techniques to a simplified model of an air traffic control

protocol in [2], reprinted in Chapter 3.

An alternative approach for uniform verification uses interactive theorem proving. The

system model and the properties are specified as a theory in the language of the theorem

prover, and then these properties are discharged by invoking theorem prover commands on

the proof goals. The granularity of these commands and the degree of automation varies from

one system to another, but proving sophisticated invariant properties requires significant

manual work. This approach has been successfully applied to verify: (a) protocols modeled

with timed automata [34,112] in PVS [70], (b) SATS [27,68,69] in PVS, (c) Fischer’s mutual

exclusion protocol [103] in SAL [113], (d) aircraft separation assurance in conflict avoidance

maneuvers [58] in KeYmaera [35,104], (e) automotive collision avoidance in adaptive cruise

control [14] in KeYmaera, and (f) timed parameterized systems such as an operating system

scheduler [50] in Isabelle/HOL [93].

16

Quantified differential dynamic logic can be used to model parameterized systems, al-

though at the expensive of sometimes requiring manual intervention [35]. In addition, the

quantified differential invariants have the same shape as the class of assertions we are at-

tempting to automatically generate for hybrid automata networks [104]. Despite these tech-

niques using automated theorem provers being partially manual, the strengths of deductive

methods are that: (a) they may be able to handle nonlinear continuous dynamics and com-

plex discrete dynamics with data structures, and (b) they may be used to specify and verify

liveness properties.

1.3.4 Symmetry Methods and Efficient State-Space Representations

Analysis and state-space construction methods that exploit symmetries have been thoroughly

investigated for many classes of systems, as such methods ameliorate the state-space explo-

sion problem [114–122]. Several symmetry methods have been developed and implemented

for the Murϕ verification system [123] for discrete systems. The scalarset data structure,

which is a finite unordered set, is developed and added to Murϕ in [115], and was one of the

first approaches of automatically detecting and exploiting symmetries in model checking.

The repetitive id data structure is applied to several discrete parameterized systems like

cache coherence protocols in [124].

Advances in tools like UPAAAL [38] that exploit symmetries of the state-space to reduce its

size vastly have enabled scaling to larger instantiations. For instance, the scalar set technique

developed for Murϕ was extended for timed systems and implemented in UPAAAL [125,126].

Data structures like binary decision diagrams (BDDs) [127] and advances in satisfiability

(SAT) algorithms [128] have helped enable automatic verification of discrete systems with

large state-spaces. Analogously, data structures like difference bound matrices (DBMs) [129–

131], difference decision diagrams (DDDs) [132], and zonotopes [133,134] have helped enable

automatic verification of systems with large continuous state-spaces.

17

1.4 Dissertation Outline

We present a modeling framework for hybrid networks and a collection of verification tech-

niques for this framework that rely on computing reach sets, checking inductive invariants,

and exploiting small model properties of the specifications. The techniques are supported

in a software tool called Passel that we have developed. We have also performed detailed

experimental analysis of our techniques on several case studies and compared it with other

verification approaches and tools.

Chapter 2 develops a general formal modeling framework for parameterized networks of

hybrid automata. We also formalize the uniform verification problem for such networks. It

describes the syntax of a restricted class of first-order logic formulas used for specifying com-

ponents of a template automaton A(N , i), and specifies the semantics of finite compositions

AN of N automata and compositions AN of arbitrarily many automata. Several examples

are described that fit into this modeling framework, with their syntactic specifications de-

scribed using this restricted class of formulas in the Passel verification tool input syntax.

Chapter 2 is based in part on our previous work [1–3].

In Chapter 3, we utilize reachability techniques developed for array-based systems [53] to

parameterized networks of timed automata. We present a case study of the Small Aircraft

Transportation System (SATS) as a parameterized network, and automatically verify several

safety properties for it that were previously semi-manually verified in other works [27, 69].

For this, we use an existing reachability tool called the Model Checker Modulo Theories

(MCMT) [32,135]. Chapter 3 is based in part on our previous work [2].

Chapter 4 presents a method for computing the set of reachable states of finite instanti-

ations of parameterized networks of hybrid automata. That is, the method computes the

reachable states of a fixed instance of a parameterized network, for example, N = 17. The

method exploits symmetry in the automaton specification and reachable states to avoid con-

sidering permutations of states that are equivalent modulo automaton indices. It has been

useful in scaling up reachability computations of fixed instances, e.g., for use in the invari-

ant synthesis procedure of Chapter 6 or for performing verification using the small model

theorem of Chapter 5.

18

In Chapter 5, we present an extension of small model theorems developed for discrete

systems [41, 42] to parameterized networks of timed and hybrid automata (ẋ[i] ∈ [a, b] for

real constants a ≤ b). Small model theorems allow for verification of networks composed of

arbitrarily many participants using finite instantiations, and require the participants to be

syntactically specified in a restrictive syntax, as the theorems are technically about the size

of satisfying assignments (models) for syntactically restricted first-order logic formulas. We

apply the result to prove safety properties of several examples, such as the Fischer mutual

exclusion algorithm and SATS. Chapter 5 is based in part on our previous work [3].

Chapter 6 describes invariant synthesis procedures we develop and implement in Passel.

The methods are based on the invisible invariants technique [41–43,45,46], but extended to

networks of hybrid automata. The methods compute the set of reachable states for finite

instantiations of the network, then transform an assertion representing the reachable states

into a candidate inductive invariant for the parameterized (arbitrarily large) network.

Chapter 7 presents an overview of the Passel software tool for automatically verifying

DCPS using the methodology we present in this dissertation, along with some design and

implementation choices. Passel uses the satisfiability modulo theories (SMT) solver Z3 [136]

for checking satisfiability (and validity) of formulas. Passel implements the reachability

method of Chapter 4 that exploits symmetries in the automaton specification. Passel proves

safety properties by automatically checking inductive invariance conditions, as described

in Chapter 5. Passel implements the invariant synthesis procedures of Chapter 6, which

can enable fully automatic verification. We present experimental results of Passel using the

techniques of Chapters 4, 5, and 6 in Sections 7.6, 7.7, and 7.8, respectively.

Chapter 8 concludes the dissertation with a summary of the work and results, a brief

discussion, and directions for future research and potential applications.

1.5 Copyright Acknowledgments

We include the following required copyright statements for permission to reprint portions

of [1–3].

� For portions of [3] reproduced in this dissertation, we acknowledge the IFIP copyright:

19

© 2012 IFIP. Reprinted, with permission, from Taylor T. Johnson and Sayan Mitra,

“A small model theorem for rectangular hybrid automata networks,” in Proceedings

of the IFIP International Conference on Formal Techniques for Distributed Systems,

Joint 14th Formal Methods for Open Object-Based Distributed Systems and 32nd For-

mal Techniques for Networked and Distributed Systems (FORTE/FMOODS 2012), ser.

LNCS. Springer, Stockholm, Sweden, June 2012, vol 7273, pp. 18–34.

� For portions of [2] reproduced in this dissertation, we acknowledge the IEEE copyright:

© 2012 IEEE. Reprinted, with permission, from Taylor T. Johnson and Sayan Mitra,

“Parameterized verification of distributed cyber-physical systems: An aircraft landing

protocol case study,” in Proceedings of the 3rd ACM/IEEE International Conference

on Cyber-Physical Systems (ICCPS 2013), Beijing, China, Apr. 2012, pp. 161–170.

� For portions of [1] reproduced in this dissertation, we acknowledge the IEEE copyright:

© 2011 IEEE. Reprinted, with permission, from Taylor T. Johnson, Sayan Mitra, and

Cedric Langbort, “Stability of digitally interconnected linear systems,” in Proceedings

of the 50th IEEE Conference on Decision and Control and European Control Confer-

ence (CDC-ECC 2011), Orlando, Florida, USA, Dec. 2011, pp. 2687–2692.

20

Chapter 2

A Modeling Framework for Hybrid Automata Networks

In this chapter, we present the formal modeling framework for specifying and verifying

parameterized networks of hybrid automata. The framework generalizes and unifies the

modeling frameworks developed in our prior work [1–3].1 First, we present the syntax for

specifying a hybrid automaton template, and with illustrations of the expressive power and

limitations of the framework. Next, we define the semantics of networks composed of (a

potentially unbounded number of) instances of the template. Then, we formally define the

uniform verification problem, which aims to establish properties for any number of partic-

ipants in the protocol. We present methods to address the uniform verification problem

in Chapters 3, 4, 5, and 6.

2.1 Introduction

Distributed systems are naturally modeled as a collection of interacting building-blocks or

modules . For example, distributed computing systems are built from communicating com-

puting processes, distributed traffic control protocols involve the interaction of individual

vehicles, and neural networks arise from the interaction of neurons.

Hybrid systems modeling frameworks [9, 19, 23, 30, 35, 39, 40] specify state machines with

combinations of discrete and continuous states and their evolution. Networks composed

of hybrid automata [19, 30, 39] are useful for modeling a variety of systems, like network

protocols, robotic swarms where robot positions evolve according to some ODE with control

inputs determined by each robot in the swarm, and distributed vehicular traffic control

protocols. State machines model discrete variables and discrete transitions, while real-valued

1This chapter is based in part on our prior work [1–3], portions of which are reprinted here with permission.

21

continuous variables evolve according to ordinary differential equations (ODEs), differential

algebraic equations (DAEs), or inclusions [137].

In networks of hybrid automata, automata communicate by reading one another’s state

and through globally shared variables. A hybrid automaton A may read the variables of

another hybrid automaton B by maintaining a pointer to B. A pointer is a variable that

takes values in the set of automaton identifiers or names. Pointer variables allow for modeling

systems with dynamic communication topologies. Many distributed protocols utilize this

type of communication, such as traffic control protocols where vehicles keep track of adjacent

vehicles, swarm robotics protocols where robots keep track of neighbors, or routers that keep

track of successors.

One such distributed traffic control system we present later in this chapter—see Sec-

tion 2.3.8—is the Small Aircraft Transportation System (SATS) [25–27, 69]. In SATS, air-

craft communicate by reading the valuations of discrete variables and continuous positions

using pointers. For another example, in an automated highway system, a car may only need

to keep track of the positions of the cars immediately ahead and behind it requiring two

pointer variables, and similar scenarios arise in robotic swarm protocols in one-dimensional

lanes [16]. However, at four-way intersections of single-lane roads, an autonomous car may

need to track the positions of cars coming from every other direction, requiring three pointer

variables. All of these scenarios fit into the communication model and verification framework

developed in this chapter. Additionally, the framework is general enough to allow model-

ing of other distributed algorithms, such as Fischer’s mutual exclusion algorithm, discrete

mutual exclusion algorithms, and cache coherence protocols.

Outline. In Section 2.2, we informally describe the class of systems under consideration.

Then in Section 2.3, we present the syntax for specifying a template hybrid automaton.

The template is used as input for the Passel verification tool developed as a part of this

dissertation, described in detail in Chapter 7. Section 2.4 describes the semantics of networks

composed of copies of this template hybrid automaton, and Section 2.5 concludes the chapter.

22

Preliminaries. We use two symbols for referring to the number of automata in a network.

Where we use N, we mean a constant, numerical natural number, that is, a fixed natural

number (e.g., N = 3). Where we use N , we mean a symbolic natural number, that is, N is

some arbitrary natural number. For a natural number n, we define the set [n]
∆
= {1, . . . , n},

and we use the sets [N] and [N] for indexing automata. For a set S, we define S⊥
∆
= S∪{⊥}.

2.2 Informal Description of Hybrid Automata Networks

For any natural number N and i ∈ [N], an individual hybrid automaton A(N , i) is a

(possibly nondeterministic) state machine with finitely many discrete locations and variables

of various types like reals and integers. The state of A(N , i) can change instantaneously

through discrete transitions and its real-valued variables can evolve continuously over time

according to trajectories specified by ordinary differential equations (ODEs) or inclusions.

A network of hybrid automata AN is a collection of N interacting instances of a template

automaton A(N , i), in which the transitions of each hybrid automaton can depend on the

the state of certain other hybrid automata. We aim to establish properties that hold for

the network AN for any choice of the natural number N . We drop the argument N from

A(N , i) and write A(i) when N is clear from context. In a network AN , the constituent

automata may communicate over discrete transitions, but not through trajectories. That is,

a transition taken byA(N , i) can depend on and influence the the state of another automaton

A(N , j), but a trajectory of A(N , i) depends on and influences only the state of A(N , i).

The variables of the N automata in the network AN are described as arrays of length N of

appropriate types. Real-typed variable may be updated continuously and/or discretely, while

variables of other types are only updated discretely. In the remainder of this chapter, we

introduce the syntax for specifying networks of hybrid automata by specifying one template

hybrid automaton A(N , i), and then introduce the semantics of the language to show how

networks AN composed of N interacting instances of the template are modeled.

23

2.3 Syntax for Hybrid Automaton Template A(N , i)

In this section, we define the syntax for specifying a hybrid automaton template A(N , i) used

to construct parameterized networks of hybrid automata. We begin with some preliminary

definitions.

2.3.1 Variables

A variable is a name used for referring to state. A variable v is associated with a type—

denoted type(v)—that defines a set of values the variable may take. The type of a variable

may be:

(a) L: a finite set called the set of locations (defined in Section 2.3.4).

(b) [N]⊥: the set of automaton indices (identifiers) with the special element ⊥ that is not

equal to any index. A variable of this type is called a pointer variable or a pointer in

short.

(c) R: the set of real numbers.

(d) Z: the set of integers.

A variable may be local with a name of the form variable name[i], or global, in which case

the name does not have the index [i]. For example, q[i] : L, p[i] : [N]⊥, x[i] : R, and z[i] : Z

respectively define location, pointer, real, and integer typed local variables, while g : [N]⊥

is a global variable of index type. For a local variable q[i], the array of variables 〈q[1], q[2],

. . ., q[N]〉 is denoted by q̄N . We write q̄ when N is clear from context.

2.3.2 Terms, Formulas, and Passel Assertions

This section presents the syntax for formulas we use to specify the various syntactic com-

ponents of a hybrid automaton template A(N , i). Formulas are built-up from constants,

variables, and terms of several types. Formulas are used for specifying the initial states and

24

the state evolution of the network. The grammar for different types of terms is as follows:

ITerm ::= ⊥ | 1 | N | i | p[i]

DTerm ::= lc | q | q[ITerm]

RTerm ::= 0 | 1 | rc | x | x[ITerm]

ZTerm ::= 0 | 1 | zc | z | z[ITerm]

An index term (ITerm) is either (a) one of the constants ⊥, 1, N , an index variable i, or

(b) a local pointer variable p referenced at an index variable i. The grammar does not

allow arbitrary productions of recursive ITerms by restricting ITerms from being produced

by p[ITerm]—for example, p[p[i]] is not an allowed term.2

Discrete terms (DTerm), real terms (RTerm), and integer terms (ZTerm) are defined as

specified in the grammar. For discrete terms, lc is constant from L, q is a discrete variable,

and q[ITerm] is a discrete array referenced at an index specified by an ITerm. For real terms,

rc is a real-valued numerical constant, x is a real variable, and x[ITerm] is a real array

referenced at an index specified by an ITerm. For integer terms, zc is an integer-valued

numerical constant, z is an integer variable, and z[ITerm] is an integer array referenced at

an index specified by an ITerm.

Real and integer polynomials and constraints are built using the following grammar.

RPoly ::= RTerm | RPoly1 + RPoly2 |

RPoly1 − RPoly2 | (RPoly1 ∗ RPoly2)

RAtom ::= RPoly < 0

ZPoly ::= ZTerm | ZPoly1 + ZPoly2 |

ZPoly1 − ZPoly2 | (ZPoly1 ∗ ZPoly2)

ZAtom ::= ZPoly < 0

RPoly1 and RPoly2 (ZPoly1 and ZPoly2) are shorter real (integer) polynomials joined by arith-

2This restriction ensures that the theory is stratified [41].

25

metic operators—addition +, subtraction −, or multiplication ∗—to obtain longer polyno-

mials. RAtom (ZAtom) are used for specifying real (integer) constraints. Other comparison

operators—like less than or equal (≤), greater than or equal (≥), greater than (>), and

equality (=)—will be expressed using negation (¬) and conjunction (∧) in the formulas we

define next.

For a polynomial p generated by RPoly (ZPoly) over n real (integer) variables x1, . . . , xn

with k additive terms

p = a1x
e1,1
1 ∗ . . . ∗ xen,1n + . . .+ akx

e1,k
1 ∗ . . . ∗ xen,kn ,

with real (integer) coefficients a1, . . . , ak and natural number exponents e1,1, . . ., en,k, the

degree of p is deg(p)
∆
= max1≤q≤k(

∑n
r=1 er,q). If deg(p) > 1, then p is nonlinear. If deg(p) ≤ 1,

then p is linear. The linear fragment is the subset of formulas where all polynomials have

degree at most one. We assume standard precedence of operators (e.g., ∗ before +, etc.).

Using these terms and constraints, formulas are defined next:

Atom ::= ITerm1 < ITerm2 | DTerm1 = DTerm2 | RAtom | ZAtom

Formula ::= Atom | ¬Formula | Formula1 ∧ Formula2 | ∃x Formula

Here, x is called a bound variable, and is a variable of one of the types. Formula1 and Formula2

are shorter formulas that are joined by Boolean operators to obtain a longer formula. By

combining the Boolean operators ∧ and ¬ with the < operator, other comparison operators,

such as =, 6=, ≤, >, and ≥, can be expressed in formulas for indices, reals, and integers.

For example, p1[i] = p2[j] can be written as ¬(p1[i] < p2[j]) ∧ ¬(p2[j] < p1[i]). Universally

quantified variables can be expressed by ¬∃x : Formula ≡ ∀x : ¬Formula. Thus, we assume

the language contains the standard quantifiers and Boolean operators, even if not explicitly

specified by the grammar (e.g., universal quantification ∀, implication ⇒, disjunction ∨,

less-than-or-equal ≤, non-equality 6=, etc.).

If a variable in a formula is not bound, then it is called a free variable. If a formula does

not contain any quantifiers, then it is quantifier-free, but otherwise it is quantified. If a

26

formula has no free variables, then it is a sentence. For example,

∀δ ∈ R ∃x ∈ R : x ≥ δ is a sentence, but

∀i ∈ [N] : x[i]− δ ≥ 0 is not.

If a formula is quantified and all the bound variables appearing in it are of index type,

then it is index-quantified. For example,

∀i ∈ [N] ∃j ∈ [N] : x[j] > x[i] is index-quantified, but

∀δ ∈ R ∀i ∈ [N] : x[i] + δ > 0 is not.

An index sentence is a formula with no free variables of index type. For example,

∃i ∈ [N] ∀j ∈ [N] : x[j] > x[i],

∀i, j ∈ [N] : i 6= j ⇒ (q[i] 6= lc ∨ q[j] 6= lc), and

∀i ∈ [N] : x[i] + δ > 0, are index sentences, but

x[i] + δ > 0, and

∀i ∈ [N] : (x[i]− x[j] > rc) ∨ (x[j]− x[i] > rc) are not index sentences.

Arithmetic operations on index terms (ITerm) are not allowed, and the allowed comparisons

mean only total orders may be specified. Only equality (or non-equality) comparisons are

allowed for discrete terms. If a formula is only composed of RTerms (ZTerms), then it is in

the real (integer) polynomial subclass.

A formula φ is in disjunctive normal form (DNF) if and only if it is a disjunction of

conjunctive clauses, where a conjunctive clause is one or more conjunctions of one or more

atoms. A formula φ is in conjunctive normal form (CNF) if and only if it is a conjunction

of disjunctive clauses, where a disjunctive clause is one or more disjunctions of one or more

atoms.

The Passel assertion language is the set of index-quantified formulas generated by the

grammar just defined. For a formula φ, let vars(φ) be the set of variables appearing in

27

φ. For a formula φ, let ivars(φ) be the set of distinct index variables appearing in φ. For

a formula φ, let free(φ) be the set of free variables appearing in φ. For a formula φ, let

bound(φ) be the set of bound variables appearing in φ. For a quantified formula φ, let

body(φ) be the body of the quantifier, with all bound variables bound(φ) replaced with

universally instantiated variables with the same names. For a set of variable names V

and a formula φ, if free(φ) ⊆ V, then φ is over V. For a set of variable names V and a

formula φ, if free(φ) = V, then φ is over all V. For example, for the set of variable names

V
∆
= {i, j, x[i], q[i], g}—where type(i) = [N], type(j) = [N], type(x [i]) = R, type(q [i]) = L,

and type(g) = [N]⊥—the following specify:

g = ⊥,

∀i ∈ [N] : q[i] = cs⇒ x[i] ≥ 0, and

∀i, j ∈ [N] : q[i] = cs ∧ q[j] = cs⇒ x[i] ≥ LS ∧ x[j] ≥ 0 formulas over V, but

i 6= j ⇒ x[j] > x[i] and

i 6= j ⇒ p[i] = j, are not formulas over V.

Here, ⊥, LS, and cs are constants. For a Passel assertion over a set of variables V, we

always assume that a countable set of symbolic automaton indices are included in V for

referencing different variables. Passel assertions over particular sets of variables—along with

further restrictions, such as being quantifier-free—will be used for specifying various syntactic

components of the hybrid automaton template A(N , i).

2.3.3 Hybrid Automaton Template

We next define a syntactic structure called a hybrid automaton template, which we use to

specify the behavior of a participant in a parameterized network.

Definition 2.1 For symbolic constants N ∈ N and i ∈ [N], a hybrid automaton template

A(N , i) is specified by the following syntactic components:

(a) Vi: a finite set of variable names,

28

(b) L: a finite set of location names,

(c) Initi: an initial condition, which is a Passel assertion over Vi,

(d) Transi: a finite set of discrete transition statements, each of which is composed of a

from-to pair of locations, along with a guard, a universal guard, and an effect, which

are quantifier-free Passel assertions over Vi∪V′i, where V′i is the set of primed variable

names corresponding to Vi, and

(e) Flowi: a finite set of trajectory statements, one for each element in L, each of which

is composed of an invariant, a stopping condition, and a flowrate, each of which are

quantifier-free Passel assertions over Vi ∪ Vi dot, where Vi dot is the set of dotted

variable names corresponding to the real-valued variables in Vi.

The subscript i emphasizes that components may use the automaton’s index.

A hybrid automaton template A(N , i) is written A(i) when N is clear from context.

Throughout this section, we use an example specification of Fischer’s mutual exclusion pro-

tocol Fischer to illustrate the language constructs available for specifying a hybrid automaton

template A(i). The specification of the protocol in this language3 is shown in Figure 2.1,

and an equivalent graphical representation appears in Figure 2.2.

2.3.4 Specifying Locations

The set of location names L is specified by a list of location names. A location name

follows the keyword location name. In Fischer, the set of locations L is {rem, try,wait, cs}

(lines 11, 13, 17, and 19). Locations are depicted graphically as the circles in Figure 2.2

for Fischer. Each automaton A(i) has a single local variable q[i] that takes values in L.

A trajectory statement may follow each location name, defined in detail in Section 2.3.7.

Locations are specified in this manner—instead of only using a variable of type L—to allow

for easily specifying continuous dynamics varying from one location to another.

3Formulas are as specified in Section 2.3.2, except quantifiers and operators with their text (parsing)
equivalents. For example, ∧ is and, ∨ is or, ∀ is forall, ∃ is exists, ≤ is <=, ≥ is >=, = is =, 6= is ! =,
⇒ is implies, etc. Figure 2.1 is marked-up for readability, but is essentially in Passel’s input language.

29

1 parameter name=’A’ type=’real’ value = 5.0 // s ma l l e r t iming parameter
parameter name=’B’ type=’real’ value = 35.0 // l a r g e r t iming parameter

3 parameter name=’lb’ type=’real’ value = 1.0 // lower c l o c k r a t e
parameter name=’ub’ type=’real’ value = 2.0 // upper c l o c k r a t e

5
automaton name=’Fischer’

7 variable name=’q[i]’ type=’L’ // c o n t r o l l o c a t i o n l o c a l v a r i a b l e
variable name=’x[i]’ type=’real’ // continuous l o c a l v a r i a b l e

9 variable name=’g’ type=’index’ // g l o b a l l o c k v a r i a b l e

11 location name=’rem’

flowrate: x[i]_dot = 0.0

13 location name=’try’
inv: x[i] <= A

15 stop: x[i] = A

flowrate: x[i]_dot >= lb and x[i]_dot <= ub

17 location name=’wait’
flowrate: x[i]_dot >= lb and x[i]_dot <= ub

19 location name=’cs’
flowrate: x[i]_dot = 0.0

21
transition from=’rem’ to=’try’

23 grd: g = ⊥
eff : x[i]′ = 0.0

25 transition from=’try’ to=’wait’
eff : g′ = i and x[i]′ = 0.0

27 transition from=’wait’ to=’cs’
grd: g = i and x[i] >= B

29 eff : x[i]′ = 0.0

transition from=’wait’ to=’rem’

31 grd: g != i and x[i] >= B

eff : x[i]′ = 0.0

33 transition from=’cs’ to=’rem’

eff : g′ = ⊥ and x[i]′ = 0.0

35
property: forall i j ((i != j and q[i] = cs) implies (q[j] != cs))

37 initially: forall i (q[i] = rem and x[i] = 0 and g = ⊥)

Figure 2.1: Hybrid automaton template specifying A(N , i) for Fischer’s mutual exclusion
algorithm Fischer, which is also used as the input to Passel.

2.3.5 Specifying Variables, Parameters, Initial Conditions, and Invariant
Properties

The set of variables Vi is specified by the list of variable names and types following the

keywords variable name and type. For the Fischer automaton with index i (Figure 2.1),

the set of variables is specified by the list of variables on lines lines 7 through 9. It has two

local variables, q[i] and x[i], with types L and R, and a single global variable g of type [N]⊥.

The specification of A(i) may use a set of symbolic or numerical parameters (constants).

Each parameter is specified by its name, type, and, optionally, a quantifier-free Passel as-

sertion that specifies constraints that the parameters must satisfy. For the Fischer example,

there are four real-valued parameters, A, B, lb, and ub (lines 1, 2, 3, and 4).

30

rem
ẋ[i] = 0

start

try
ẋ[i] ∈ [lb, ub]
inv: x[i] ≤ A

wait
ẋ[i] ∈ [lb, ub]

cs
ẋ[i] = 0

grd: g = ⊥
eff : x[i]′ = 0

eff : g′ = i ∧ x[i]′ = 0

grd:
g 6= i ∧ x[i] ≥ B

eff : x[i]′ = 0

grd: g = i ∧ x[i] ≥ B
eff : x[i]′ = 0

eff : g′ = ⊥

Figure 2.2: Graphical depiction of the hybrid automaton template A(N , i) from Figure 2.1
specifying Fischer’s mutual exclusion algorithm Fischer.

We denote the set of local variables by VL[i], the set of global variables by VG[i], and the

set of parameters by VP [i]. In the Fischer example, VL[i] = {q[i], x[i]}, VG[i] = {g}, and

VP [i] = {A,B, lb, ub}. When clear from context, we drop the index i and write VL, VG, and

VP for VL[i], VG[i], and VP [i], respectively.

Initial Conditions. The initial condition assertion Initi is a universally index-quantified

Passel assertion following the keyword initially. In Fischer, the initial condition assertion

is (line 37):

forall i : (q[i] = rem and x[i] = 0 and g = ⊥),

where i is implicitly quantified over [N]. The initial condition assertion for Fischer asserts

that, for each index i ∈ [N], the variables of A(i) have the constraints q[i] = rem and

x[i] = 0, and that the global variable g = ⊥. If a variable v ∈ Vi is not specified in the initial

condition, it is assumed that v is initially an arbitrary value in its type type(v). Note that

the Initi assertion may specify constraints over all automata in the network using universally

31

index-quantified Passel assertions.

Candidate Invariant Properties. Candidate invariant properties are specified as Pas-

sel assertions following the keyword property. For example, a mutual exclusion invariant

property can be specified as (line 36):

forall i, j : ((i ! = j and q[i] = cs) implies (q[j] ! = cs)),

where i and j are implicitly quantified over the set of indices [N].

2.3.6 Specifying Discrete Transitions

For any N ∈ N and any i ∈ [N], the set of discrete transitions Transi is specified by the

list of transition statements following the keyword transition. Each transition statement

specifies a from-to pair of locations following the keywords from and to. There is at most one

transition statement between each pair of locations. If it exists, we will denote a transition

from location src to location dest by t(src, dest) ∈ Transi, which is written as t when the

from-to locations are clear from context.

Each transition t ∈ Transi may specify a guard following the keyword grd, a universal

guard following the keyword ugrd, and an effect following the keyword eff . The guard,

universal guard, and effect are quantifier-free Passel assertions, and they are denoted by

grd(t, i), ugrd(t, i), and eff(t, i) for A(i), respectively. If i is clear from context, we drop it

and write grd(t), ugrd(t), or eff(t).

The universal guard is a quantifier-free Passel assertion involving the variables Vj, for

j 6= i, and we recall i is the index of the template A(N , i). The universal guard specifies

an assertion over the variables of other automata and global variables. Such assertions over

the variables of all the other automata in the network are useful for modeling broadcast-like

communications.

The effect models the update of state, and is a quantifier-free Passel assertion over the

variables Vi∪V′i, where V′i concatenates a prime (′) to each variable name v in Vi. The effect

specifies a relation between the variables before (unprimed) and after (primed) the transition.

32

The effect is not required to specify variables that are not modified by the transition.

The transition from wait to cs for Fischer with index i (line 28), where

grd : g = i and x[i] >= B,

eff : x[i]′ = 0.0

specifies that automaton i may nondeterministically transition from a state where q[i] = wait

to a state where q[i]′ = cs, only if the global pointer variable g is equal to i and the local real-

valued variable x[i] is at least as large as the parameter value B. Further, if the automaton

does make this transition, then the effect specifies that x[i] is to be reset to 0. If the

guard condition is omitted, then it is assumed to be just the control location condition. For

example, in Fischer, the transition from try to wait is enabled when q[i] = try.

2.3.7 Specifying Continuous Dynamics

The elements of the set of trajectory statements Flowi are listed following the corresponding

location names. Each location m ∈ L has a trajectory statement in Flowi. The trajectory

statement consists of an invariant condition following the keyword inv, a stopping condition

following the keyword stop, and a sequence of flow rates following the keyword flowrate.

The invariant condition of a location m ∈ L for automaton A(i) is denoted by inv(m, i), the

stopping condition is denoted by stop(m, i), and the flow rate for some real-valued variable

x[i] ∈ Vi, is denoted by flowrate(m, x[i]).

The invariant and stopping conditions are Passel assertions involving only the real variables

X[i] and real parameters in VP [i]. The flow rate associates each real-valued variable in X[i]

with ordinary differential equations or inclusions specified as the real polynomial subclass of

Passel assertions. The flow rate for a variable name x[i] ∈ Vi is specified by concatenating

dot to the variable name, for example x[i] dot. For example, the trajectory statement for

a two-dimensional linear differential equation with an invariant and stopping condition is

33

specified as:

inv : x1[i] <= c1 and x2[i] <= c2 (2.1)

stop : x1[i] = s1 or x2[i] = s2

flowrate : x1[i] dot = a11 ∗ x1[i] + a12 ∗ x2[i] + b1

x2[i] dot = a21 ∗ x1[i] + a22 ∗ x2[i] + b2,

where c1, c2, s1, s2, a11, a12, a21, a22, b1, and b2 are real parameters. This specifies the

following ODE in matrix form,

 ẋ1[i]

ẋ2[i]

 =

 a11 a12

a21 a22


 x1[i]

x2[i]

+

 b1

b2

 . (2.2)

The following example specifies the special case of rectangular differential inclusions, where

the time-derivative is specified by an upper and a lower bound in terms of a numerical

constant or a parameter name:

flowrate : x1[i] dot >= lb1 and x1[i] dot <= ub1

x2[i] dot >= lb2 and x2[i] dot <= ub2,

where lb1 ≤ ub1 and lb2 ≤ ub2 are real parameters or numerical values. This yields the

following rectangular differential inclusions on ẋ1[i] and ẋ2[i]:

 ẋ1[i]

ẋ2[i]

 ∈
 [lb1, ub1]

[lb2, ub2]

 . (2.3)

34

2.3.8 Example: Simple Small Aircraft Transportation System (SATS)
Landing Protocol

An essential part of the Small Aircraft Transportation System (SATS) [2, 25–27,69]—a dis-

tributed air traffic control protocol we define completely in Chapter 3, Section 3.2—is used

as another example illustrating the specification language of a template automaton A(N , i).

SATS was designed to increase throughput at small airports without air traffic controllers

by allowing aircraft to coordinate among themselves with minimal assistance from a central-

ized communication component [25, 26, 138]. Aircraft in SATS communicate by reading the

continuous position of any aircraft immediately ahead of it in the landing sequence, where

the aircraft immediately ahead is tracked using its index.

The hybrid automaton template specifying the essential behavior of SATS is shown in Fig-

ure 2.3, and its properties are shown in Figure 2.4. SATS is depicted graphically in Figure 1.3.

SATS is parameterized on the number of aircraft involved in the landing attempt, so each

aircraft is naturally specified as a hybrid automaton template A(N , i). The network AN

models a single airport and N flying aircraft that are attempting to land. After determining

the landing sequence order from a centralized airport management module (AMM)—which is

modeled with a global variable last—the remainder of the protocol is decentralized and each

aircraft communicates with the aircraft immediately ahead of it (if one exists) to determine

if it is safe to attempt landing.

All aircraft begin in the fly location, and when an aircraft is ready to attempt landing, it

initiates the approach to the airport by making a transition to the hold location. The hold

location physically represents that the aircraft is flying in a cyclic holding pattern, and it is

assumed that the aircraft maintain a safe separation in this location. On entering hold, an

aircraft is either designated as the first one in the landing sequence (and next [i]′ = ⊥), or the

aircraft is assigned the index of the last aircraft that began its approach to the runway (and

next [i]′ = last). Subsequently, an aircraft may nondeterministically transition from the hold

location to the base location which represents that it is physically approaching the runway.

The position of the ith aircraft is modeled using a single continuous variable (x[i]) of real

type, representing the position along a line measured starting from the geographic location

of the cyclic holding zone (that is, the beginning of the base region). This transition is only

35

1 parameter name=’L_B’ type=’real’ value = 120.0 // base zone l e n g t h
parameter name=’L_S’ type=’real’ value = 5.0 // separa t ion spacing

3 parameter name=’v_min’ type=’real’ value = 1.0 // minimum v e l o c i t y
parameter name=’v_max’ type=’real’ value = 2.0 // maximum v e l o c i t y

5
automaton name=’SSATS’

7 variable name=’q[i]’ type=’L’ // l o c a t i o n l o c a l v a r i a b l e
variable name=’next[i]’ type=’index’ // next a i r c r a f t (i f any)

9 variable name=’x[i]’ type=’real’ // continuous l o c a l v a r i a b l e
variable name=’last’ type=’index ’ // g l o b a l l o c k v a r i a b l e

11
location name=’fly’

13 flowrate: x[i]_dot = 0.0

location name=’hold’
15 flowrate: x[i]_dot = 0.0

location name=’base’
17 inv: x[i] <= L_B

stop: x[i] = L_B

19 flowrate: x[i]_dot >= v_min and x[i]_dot <= v_max

location name=’runway’
21 flowrate: x[i]_dot = 0

23 transition from=’fly’ to=’hold’
eff : next[i]′ = last and x[i]′ = 0.0 and last′ = i

25
transition from=’hold’ to=’base’

27 grd: next[i] != ⊥ implies (q[next[i]] = base and x[next[i]] >= L_S)

eff : x[i]′ = 0.0

29
transition from=’base’ to=’hold’

31 grd: x[i] >= L_B and next[i] = ⊥
eff : x[i]′ = 0 and (last != i implies next ′[i] = last) and last ′ = i

33 ugrd: next[j] = i implies next[j]′ = ⊥

35 transition from=’base’ to=’runway’
grd: x[i] >= L_B and next[i] = ⊥

37 eff : (last = i implies last ′ = ⊥)
ugrd: next[j] = i implies next[j]′ = ⊥

39
initially: forall i (q[i] = fly and next[i] = ⊥ and last = ⊥)

Figure 2.3: Passel input file specifying hybrid automaton A(i) for SSATS, a simplified SATS
protocol.

enabled for aircraft i if there is at least LS distance between its position x[i] and the position

of the aircraft ahead of it, x[next [i]] (if one exists). Once in the base location, the aircraft is

approaching the runway and after traversing LB distance, the aircraft may either (a) cancel

the landing attempt and return to the cyclic holding pattern in location hold, in which case

it becomes the last aircraft in the sequence, or (b) the aircraft may succeed in landing and

set its location to runway.

We use Passel to automatically prove the properties in lines 1 through 7 for SSATS,

with memory and time required as presented in Chapter 7. These properties represent an

inductive invariance proof of safe separation—that aircraft are always at least LS distance

36

property: forall i q[i] = fly implies last != i

2 property: forall i, j next[j] = i implies q[i] != fly
property: forall i, j (q[i] = hold and next[j] = i) implies q[j] = hold

4 property: forall i, j (q[i] = base and q[j] = base and next[j] = i)

implies x[i] >= L_S + (v_max - v_min)(L_B - x[j]) / v_min

6 property: forall i, j (i != j and q[i] = base and q[j] = base and

next[j] = i) implies x[i] - x[j] >= L_S

Figure 2.4: Passel input file specifying properties for SSATS, a simplified SATS protocol.

apart, which we define formally in Section 2.4.

2.4 Semantics of Hybrid Automata Networks

The semantics of the hybrid automata network AN—where an arbitrary number N ∈ N of

instances of the template A(N , i) operate in parallel—is defined in this section.

2.4.1 Parameterized Network of Hybrid Automata

The semantics are defined in terms of a transition system with a set of variables VN , a set of

states QN , a set of initial states ΘN , and a transition relation TN . For networks of hybrid

automata, none of these sets is usually finite since variables may have real types.

Definition 2.2 (Parameterized Network of Hybrid Automata) For any N ∈ N, a

parameterized network of hybrid automata is a tuple AN ∆
=
〈

VN , QN ,ΘN , TN
〉
, where

(a) VN are the variables of the network,

VN
∆
= VG ∪

N⋃
i=1

VL[i],

(b) QN ⊆ val(VN) is the state-space,

(c) ΘN ⊆ QN is the set of initial states, and

(d) TN ⊆ QN × QN is the transition relation, which is partitioned into disjoint sets of

discrete transitions DN ⊆ QN ×QN and continuous trajectories T N ⊆ QN ×QN .

37

The transition system is said to be parameterized on N since fixing different values of N

yield different transition systems. This definition allows for proving an invariant property ζ

for every network of hybrid automata. For instance ∀N ∈ N :
(
AN |= ζ(N)

)
states that,

for every choice of N ∈ N, the corresponding network of hybrid automata AN satisfies the

property ζ(N).

2.4.2 State-Space and Semantics of Passel Assertions

Recall that Vi is the set of variable names for the hybrid automaton template A(N , i) where

i ∈ [N]. A state x in QN of AN is defined in terms of the valuations of all the variables of

all its components. For each i ∈ [N], the valuation of a variable v ∈ Vi is a function that

associates the variable name v to a value in its type type(v). Elements of the state-space

QN are called states and are denoted by boldface v, v′, etc.

At a state v, the valuation of a particular local variable x[i] ∈ VL[i] for automaton A(i)

is denoted by v.x[i], and v.g for some global variable g in VG[i]. We recall that we refer to

the valuations of a local variable v[i] ∈ VL of all N automata in the network AN as an array

variable, and denote it v̄ which takes values in type(v [i])N . So, for a state v, the valuations

of a local variable v[i] ∈ VL[i] for all i ∈ N is written v.v̄. The valuation of all the local

variables for automaton A(i) at state v is denoted by v.VL[i]. The valuation of all the local

variables for automaton A(i), as well as the global variables, at state v is denoted by v.Vi.

The state-space Qi corresponding to automaton A(N , i) in the network AN is defined as

Qi
∆
= val(Vi).

Representing States with Assertions. Subsets of QN are often represented by asser-

tions involving the variables. If a state v satisfies a formula φ—that is, the corresponding

variable valuations result in φ evaluating to true—we write v |= φ. For such a formula φ,

the corresponding states satisfying φ are denoted by JφK. A model for an assertion provides

interpretation to the elements appearing in the assertion.

Definition 2.3 An n-model M for an assertion ψ is denoted M(n, ψ) and provides an

interpretation of each the free variables in ψ as follows:

38

• the index constants ⊥, 1, and N are respectively assigned the values 0, 1, and n,

• each pointer variable is assigned a value in the set [n],

• each discrete variable is assigned a value in L,

• each real variable is assigned a value in R,

• each integer variable is assigned a value in Z, and

• each pointer, discrete, real, and integer array is assigned respectively a {0, . . . , n}-

valued, L-valued, real-valued, or integer-valued array of length n.

Given an assertion ψ and a model M(n, ψ), if ψ evaluates to true with the interpretations

of the free variables given by M(n, ψ), then M(n, ψ) is said to satisfy ψ. If there exist models

that satisfy ψ, then the assertion is said to be satisfiable. If all models of ψ satisfy it, then

the assertion is said to be valid .

Initial States. The set of initial states ΘN ⊆ QN is defined as JInitiK, that is, the set of

states satisfying the Passel assertion Initi:

ΘN
∆
= {v ∈ QN | v |= Initi}.

In Fischer (Figure 2.1), the set of initial states specified by line 37 is

ΘN
∆
= JInitiK = {x ∈ QN | ∀i ∈ [N],x.q[i] = rem ∧ x.x[i] = 0.0 ∧ g = ⊥}

= {x ∈ QN | x |= ∀i ∈ [N], q[i] = rem ∧ x[i] = 0.0 ∧ g = ⊥},

where we have indicated equivalent ways of writing the set of initial states using the notations

introduced earlier in this section, each of which are useful in different contexts.

2.4.3 Transitions and Trajectories

The evolution of the states of AN are describing by a transition relation TN ⊆ QN × QN .

For a pair (v,v′) ∈ TN , we use the notation v → v′, where v is called the pre-state and v′

39

is called the post-state. There are two ways state is updated by TN : discrete transitions DN

model instantaneous change of state and continuous trajectories T N model change of state

after a time interval.

Discrete Transitions. Discrete transitions model atomic, instantaneous updates of state

due to one automaton in the network AN . There is a discrete transition v→ v′ ∈ DN iff:

∃i ∈ [N] ∃t ∈ Transi : v.Vi |= grd(t, i) ∧ v′.Vi |= eff(t, i) ∧

(∀j ∈ [N] : v.Vj |= ugrd(t, j) ∧ j 6= i⇒ v′.Vj = v.Vj).

From the pre-state v, any automaton in the network, with any transition satisfying the

guard may update its post-state according to transition effect, while the states of the other

automata remain unchanged. Informally, a discrete transition from pre-state v to post-state

v′ models the discrete transition of one particular hybrid automaton A(i) by some transition

t ∈ Transi. The universal guard of transition t depends on the variables in Vj for j 6= i.

We recall that the guard is a quantifier-free Passel assertion and specifies the enabling

condition for the transition, which is a condition that must evaluate to true to allow the

transition to update the system state. If the guard or universal guard are not specified, we

assume they are true, which means a transition t(src, dest) may only be taken by automaton

A(i) if q[i] = src. We assume the identity relation for any primed variable v′ ∈ V′i not

specified in an effect. For example, if x[i]′ is not specified in an effect, then we assume the

specified effect is conjuncted with x[i]′ = x[i].

For the Fischer example, the semantics for the discrete transition t(wait, cs) (line 27) for

some automaton A(i) are defined by:

(v,v′) |= ∃i ∈ [N] : (q[i] = wait ∧ x[i] ≥ B ∧ g = i) ∧

(q[i]′ = cs ∧ x[i]′ = 0.0 ∧ g′ = g) ∧

(∀j ∈ [N] : j 6= i⇒ q[j]′ = q[j] ∧ x[j]′ = x[j]).

This transition can occur from states v where v |= q[i] = wait ∧ x[i] ≥ B ∧ g = i. This

40

transition updates the location of A(i) to be q[i]′ = cs, the real variable x[i]′ = 0, and does

not change the global variable g, and additionally, the variables of no other automata A(j)

are updated. Together, this is defined by all states v′ |= q[i]′ = cs ∧ x[i]′ = 0.0 ∧ g′ = g∧

(∀j ∈ [N] : j 6= i⇒ q[j]′ = q[j] ∧ x[j]′ = x[j]).

Continuous Trajectories. Continuous trajectories model update of state over intervals

of time. There is a trajectory v → v′ ∈ T N iff some amount of time—te—can elapse from

v, such that,

(a) the states of all automata in the network AN are updated to v′ according to their

individual trajectory statements,

(b) while ensuring the invariants of all automata along the entire trajectory, and

(c) that if the stopping condition of any automaton is satisfied, it is at the end of a

trajectory.

Formally, trajectories are defined as solutions of differential equations or inclusions specified

in the trajectory statements of A(i). The differential equation ẋ = f(x) where x ∈ Rn and

f : Rn → Rn has a solution for initial condition x0 ∈ Rn if there exists a differentiable

function γ(t) for γ : R≥0 → Rn such that γ(0) = x0 and, for every τ ∈ [0, t], γ̇(τ) = f(γ(τ)).

A differential inclusion is ẋ ∈ F (x) for x ∈ Rn, where F is a set-valued function from Rn

to Rn, so that F (x) ⊆ Rn. A solution for the differential inclusion with initial condition

x0 is any differentiable function γ(t) for γ : R≥0 → Rn such that γ(0) = x0 and, for every

τ ∈ [0, t], γ̇(τ) ∈ F (γ(τ)). Sufficiently smooth differential equations satisfying continuity

conditions—such as Lipschitz continuity [139]—have unique solutions, whereas differential

inclusions have families of solutions [111,137].

Thus, to define trajectories for AN formally, we first define a set-valued function called

flow(m,v.VL[i], t) that returns the states of A(i) when q[i] = m that can be reached from

v.VL[i] in t time. We suppose flow(m,v.VL[i]) is set-valued, as this subsumes the case when

flowrate(m, x[i]) specifies a differential equation for ẋ[i] instead of an inclusion.

Let n = |X[i]| be the number of continuous local variables in the template A(i). Let

Jflowrate(m,X[i])K : Rn → Rn be the vector of differential inclusions (and/or equations)

41

for all the continuous variables X[i] of A(i), assumed to be ordered lexicographically by

the variable names. For example, for Fischer in wait, Jflowrate(wait,X[i])K is lb ≤ ẋ[i] ≤ ub

(Figure 2.1, line 18) since there is a single continuous variable x[i] specified to evolve according

to the rectangular differential inclusion with lower and upper bounds lb and ub, respectively.

Here, v′.VL[i] = flow(m,v.VL[i], t) iff4

(a) for each real local variable x[i] ∈ X[i], ẋ[i] with initial condition v.x[i] has a solution

γ(t) v′.x[i] = γ(t), and

(b) for each non-real local variable y[i] ∈ VL[i] \ X[i], v′.y[i] = v.y[i].

For the Fischer example for wait (Figure 2.1, line 17),5

flow(wait,v.x[i], t) ∈ v.x[i] + [lb ∗ t, ub ∗ t]

∈ [v.x[i] + lb ∗ t,v.x[i] + ub ∗ t] , equivalently,

v.x[i] + lb ∗ t ≤v′.x[i] ≤ v.x[i] + ub ∗ t.

Thus far, we have not included the invariant and stopping condition, so we include these

to complete the definition of trajectories. There is a trajectory v→ v′ ∈ T N iff

∃te ∈ R≥0 ∀i ∈ [N] ∃m ∈ L ∀tp ≤ te :

flow(m,v.X[i], tp) |= inv(m, i) ∧

(flow(m,v.X[i], tp) |= stop(m, i)⇒ tp = te) ∧

v′.X[i] ∈ flow(m,v.X[i], te).

For each i ∈ [N] and each real variable x[i] ∈ X[i], v.x[i] must evolve to the valuations

v′.x[i], in exactly te time in some location m ∈ L according to the flow rates allowed for x[i]

in that location. All intermediate states along the trajectory must also satisfy the invariant

inv(m, i), and if an intermediate state satisfies stop(m, i), then that state must be v′ (that

is, the end of a trajectory).

4We have excluded continuous global variables to make the presentation clearer.
5This is an overapproximation of the set of solutions of the rectangular differential inclusion, as it excludes

the requirement that the time derivative of any solution is in the differential inclusion ẋ[i] ∈ [lb, ub].

42

If no flow rate is specified for some variable x[i] ∈ X[i], then x[i] is assumed to remain

constant along the trajectory (that is, ẋ[i] = 0). If no invariant is specified, then it is assumed

to be true, which specifies that the automaton may remain indefinitely in the corresponding

location. If no stopping condition is specified, it is assumed to be false, which will specify

allowing real time to elapse indefinitely in the corresponding location.

Together, the components of a trajectory statement define how variables of A(i) behave

over intervals of time. For Fischer, the trajectory statement for try is:

inv : x[i] <= A

stop : x[i] = A

flowrate : x[i] dot >= lb and x[i] dot <= ub

which specifies the same differential inclusion on x[i] as in the location wait, but while

q[i] = try. In addition, the invariant requires that the automaton with index i can have

q[i] = try only as long as x[i] ≤ A. The stopping condition requires that if x[i] = A, then

real time cannot continue to elapse.6

2.4.4 Executions, Invariants, and Inductive Invariants

An execution of the network AN models a particular behavior of all the automata in the

network. An execution of AN is a sequence of states α = v0,v1, . . . such that v0 ∈ ΘN , and

for each index k appearing in the sequence (vk,vk+1) ∈ TN . A state x is reachable if there

is a finite execution ending with x. The set of reachable states for AN is Reach(AN). The

set of reachable states for AN starting from an arbitrary subset V0 ⊆ QN is Reach(AN ,V0).

An invariant for AN is any set of states that contains Reach(AN). In general, any assertion

over the variables of the automata in AN defines a subset of QN . The dependence of such

assertions on N is made explicit by using names like ζ(N). A network AN is safe with

respect to an assertion ζ(N) if all its reachable states satisfy it, that is, Reach(AN) ⊆ Jζ(N)K.
6In this example, the stopping condition is redundant. However, if the flow equations allow time to elapse

while the continuous state remains at the boundary of the invariant condition, the stopping condition allows
for modeling urgent transitions. The stopping condition can force time to stop, which can force transitions
to occur.

43

Given a template hybrid automaton A(N , i) and a property ζ(N), in this dissertation, we

develop techniques for proving for all N ∈ N, that every network is safe—that is, ∀N ∈ N,

Reach(AN) ⊆ Jζ(N)K. To prove thatAN is safe with respect to some unsafe set or property—

that is, ¬ζ(N)—it suffices to find an invariant Γ(N) ⊆ QN such that JΓ(N)K∩J¬ζ(N)K = ∅.

Several subclasses of hybrid automata have been identified for which safety verification

by computing reachable sets is decidable—such as initialized rectangular hybrid automata

(IRHA) [30, 111] and order-minimal (o-minimal) hybrid automata [140]—and several auto-

mated model checking tools have been developed, such as HyTech [37], PHAVer [39], and

SpaceEx [40]. However, the general model checking of even safety properties for hybrid

automata is undecidable, so a standard approach is to use overapproximations of reachable

states for checking safety properties, such as the methods implemented in PHAVer for affine

(linear) dynamics [39] and SpaceEx for affine dynamics as well [40] using the Le Geurnic-

Girard (LGG) algorithm [141]. An alternative approach is to prove stronger inductive in-

variant assertions that imply a desired safety property, as originally used in Floyd-Hoare

proofs [142,143] and the predicate transformers of Dijkstra [144].

Definition 2.4 An assertion Γ(N) is an inductive invariant for the parameterized network

AN if, for all N ∈ N, the following conditions hold:

(A) initiation: for each initial state v ∈ ΘN ⇒ v |= Γ(N),

(B) discrete transition consecution: for each discrete transition (v,v′) ∈ DN , if v |=

Γ(N), then v′ |= Γ(N), and

(C) continuous trajectory consecution: for each trajectory (v,v′) ∈ T N , if v |=

Γ(N), then v′ |= Γ(N).

Proving that a parameterized network satisfies a property is the uniform verification problem.

Definition 2.5 The uniform verification problem is proving for any N ∈ N, for a property

Γ(N) and parameterized network AN , that AN satisfies Γ(N), written AN |= Γ(N).

44

The problem of uniform verification of parameterized networks is over arbitrary compositions

of potentially infinite-state automata, so in general we may need to query a theorem prover

to check conditions (A), (B), and (C).

The next standard theorem states that if an assertion Γ(N) is an inductive invariant—that

is, Γ(N) satisfies the conditions for inductive invariance (Definition 2.4)—then Γ(N) is an

invariant [9, 23].

Theorem 2.6 If ∀N ∈ N, Γ(N) is an inductive invariant, then it is also an invariant:

∀N ∈ N,Reach(AN) ⊆ JΓ(N)K .

Proof : Fix an arbitrary N ∈ N and consider any reachable state x ∈ Reach(AN). By

definition of reachable state, there exists some execution α with the last state in the execution

ending in x, so α = x0,x1, . . . ,x. The proof continues by induction along the sequence states

in the execution α.

In the base case, x0 is an initial state, so x0 ∈ ΘN , and thus x0 ∈ JΓ(N)K by the initiation

condition (Definition 2.4, (A)). Consider an arbitrary state x ∈ α, and the induction step

is composed of two cases, considering either any discrete transition or any trajectory. If

(x,x′) ∈ DN , then by the inductive hypothesis, we have that x ∈ JΓ(N)K, and applying the

transition consecution condition (Definition 2.4, (B)), we have x′ ∈ JΓ(N)K. Otherwise, if

(x,x′) ∈ T N , then by the inductive hypothesis, we have that x ∈ JΓ(N)K, and applying the

trajectory consecution condition (Definition 2.4, (C)), we have x′ ∈ JΓ(N)K.

Theorem provers such as PVS have been augmented with support for verifying such net-

works in [34, 68, 145]. The KeYmaera theorem prover also has support for verifying this

type of networks [14,35]. These environments provide partially automatic means of proving

inductive invariants of networks AN .

It is well known that the converse of Theorem 2.6 does not hold. We next illustrate this

with a counterexample using the Fischer example (Figure 2.1).

Counterexample 2.7 Mutual exclusion is specified as φ(N)
∆
= ∀i, j ∈ [N] : i 6= j ⇒ (q[i] 6=

45

cs ∨ q[j] 6= cs). Suppose that φ(N) is an invariant of Fischer,7 and we will show that it is

not an inductive invariant.

We construct a state x ∈ Jφ(N)K as follows. Let i be the index of an automaton with

local variable valuations satisfying x.q[i] = cs. Let j be the index of an automaton with local

variable valuations satisfying x.q[j] 6= cs, specifically suppose x.q[j] = wait. Consider the

transition t from wait to cs, and we have x |= grd(t, j), so the transition t is enabled and

may be taken by automaton j. The effect eff(t, j) sets x′.q[j] = cs while leaving x′.q[i] =

x.q[i] = cs, so there are two automata in the critical section which violates the invariant

φ(N). Therefore, φ(N) is not an inductive invariant since transition consecution is violated

(Definition 2.4, (B)).

If we can find an assertion Γ(N) that is an inductive invariant and implies some desired

safety property ζ(N), we say that Γ(N) is sufficient to prove the safety property ζ(N).

Definition 2.8 For any N ∈ N, an assertion Γ(N) is sufficient to prove a safety property

ζ(N) if Γ(N) is an inductive invariant and Γ(N)⇒ ζ(N), so that Jζ(N)K ⊆ JΓ(N)K.

For Fischer, the following inductive invariant is sufficient to prove that mutual exclusion

is an invariant.

∀i ∈ [N] : q[i] = try⇒ x[i] ≤ A ∧ (2.4)

∀i, j ∈ [N] : (q[i] = wait ∧ g = i ∧ q[j] = try)⇒ (B − A) > (x[i]− x[j]) ∧ (2.5)

∀i, j ∈ [N] : q[i] = cs⇒ (g = i ∧ q[j] 6= try). (2.6)

When trying to prove a safety property by coming up with an inductive invariant, one

usually reasons in reverse as follows. Why is it that mutual exclusion is not inductive for

Fischer? As described in Counterexample 2.7, it is because, when assuming only knowledge

that mutual exclusion is satisfied, the guard of the transition t(wait, cs) can be enabled, since

mutual exclusion does not explicitly specify that g 6= j. What information—constraints

on states—is required to prevent the transition t(wait, cs) from being able to occur? By

7Mutual exclusion is in fact an invariant of Fischer, but we assume it is an invariant here simply to show
that an invariant is not necessarily inductive.

46

considering each transition in Transi, we see that χ = ∀i, j ∈ [N] : (q[i] = cs) ⇒ (g =

i ∧ q[j] 6= try) is sufficient to prove mutual exclusion. However, this process repeats, since

χ itself is not an inductive invariant. By repeating this process of reasoning backward, one

may8 be able to come up with the conditions of Equation 2.6 that are sufficient to prove

that the mutual exclusion safety property is invariant.

This manual refinement process may be useful, but it does require human intervention,

and is not guaranteed to produce useful invariants. We introduce methods for automatically

finding inductive invariants in Chapter 6.

2.5 Summary

In this chapter, we describe a modeling framework for analyzing parameterized networks of

hybrid automata. We informally introduce the class of systems in Section 2.2, the syntactic

structure of a template hybrid automaton A(N , i) was specified in Section 2.3. The formal

semantics of parameterized networks composed of copies of the template are defined next

in Section 2.4, along with definitions of safety properties and an overview of the inductive

invariance proofs for establishing safety properties. Using the template A(N , i) as input,

Passel represents the semantics of the hybrid automaton network AN composed of arbitrarily

many copies ofA(N , i), although Passel never explicitly computes this composition, and only

encodes the formulas describing the semantics of the discrete transitions and continuous

trajectories (see Chapter 7 for more details).

8This is not guaranteed to find an inductive invariant sufficient to prove a property.

47

Chapter 3

Parameterized Reachability Analysis: A Case Study on
Distributed Air Traffic Control

In this chapter, we present the formal modeling and automatic parameterized verification

of a distributed air traffic control protocol called the Small Aircraft Transportation System

(SATS). A simplified version of SATS was presented earlier in Chapter 2, Section 2.3.8. The

verification methodology relies on computing the set of backward reachable states from the

set of unsafe states to a fixed-point, and checking emptiness of the intersection of these

reachable states and the initial set of states. We use the Model Checker Modulo Theories

(MCMT) tool [54] to implement this methodology for the case study.1

3.1 Introduction

This chapter presents a distributed cyber-physical system (DCPS), namely a distributed air

traffic control protocol, for which we automatically verify several non-trivial properties for

arbitrarily many participating aircraft. The Small Aircraft Transportation System (SATS)

was developed with the goal of increasing access to small airports that potentially do not

have control towers nor radar. Instead, the aircraft rely on (a) receiving landing sequence

information from an automated airport management module (AMM) located at the airport,

and (b) communicating with one another to determine landing orders and perform landings.

The overall operation must satisfy a variety of safety properties—such as, between each

aircraft, there is always a sufficiently large physical separation.

The model presented in this chapter differs from the one presented in Section 2.3.8 (Fig-

ure 2.3). In particular, the model we present next uses counters instead of pointers and has

timed dynamics instead of rectangular differential inclusions. These choices were made to

1This chapter is based in part on prior work [2], portions of which are reprinted here with permission.

48

encode the model in the Model Checker Modulo Theories (MCMT) tool [32, 54] that im-

plements the backward reachability method we describe in this chapter. We discuss related

work on verifying other DCPS like air traffic control systems and automotive systems and

give an overview of the relevant literature on uniform verification in Section 1.3.

3.1.1 SATS Overview

In SATS, each aircraft i has a one-dimensional position evolving with time, representing its

distance from approach to the runway. Consider an automaton template A(N , i) for some

i ∈ [N]. Recall that we denote A(N , i) as A(i) when N is clear from context. There is a

single runway where the aircraft need to land. Refer to Figure 3.1 for an overhead view of the

landing area. There are two entry points to the runway, coming from the left or right of it.

Each aircraft begins flying and may enter either the left or right cyclic holding patterns called

holding zones . In this step, an aircraft is assigned a sequence number , which is the order

in which the aircraft should land. While in the holding pattern, the aircraft are assumed

to have a safe separation, and hence the values of the continuous positions do not matter.

However, an aircraft may attempt an approach to the runway, at which point it exits the

holding zone, begins on a path toward the runway, and the values of the continuous positions

become significant. Upon attempting to land, the aircraft may either land on the runway

and subsequently taxi away, or it may miss the approach and return to a cyclic holding zone.

Communication and Sensing Requirements. Next we present the aircraft and airport

communication and sensing requirements that will lead into our model of the operation of

SATS. The Airport Management Module (AMM) is a ground-based automation system that

would typically be located at an airport and provides sequencing information to pilots over a

ground-to-air datalink [25,26]. The AMM is the main centralized communication component

of SATS, and all other communication is decentralized and done either (a) between pilots

over voice radio, or (b) between aircraft control software via air-to-air datalinks.

Each aircraft in SATS is required to have the following sensing and communication ca-

pabilities [138]: (a) global positioning system (GPS) receiver, (b) air-to-ground datalink

communication, for broadcast and receipt of AMM messages, (c) air-to-air datalink commu-

49

������� �	
��� �

������	������

��������
���� �	������

��������
�������������� �������������������� ����������
��
��� �������

Figure 3.1: SATS viewed from above, except the holding zones at different elevations would
be directly atop one another. There are two sides to approach the runway from, left (L) and
right (R), and right and left are reversed in the image for the pilot’s orientation. The safe
spacing property matters when on the base, final, or missed zones, but not in other zones.

nication, (d) cockpit Display of Traffic Information, which provides a pilot the location of

his/her aircraft and other nearby aircraft, (e) software to conduct the landing procedures,

which informs a pilot who to follow and where to go by displaying sequencing information

from AMM and uses Conflict Detection and Alerting Algorithms, and (f) voice communica-

tion radio.

Several desired properties are defined for SATS informally in the technical reports describ-

ing the system [25, 26]. The main safety property is separation assurance, that is, no two

aircraft come closer than a pre-specified distance from one another, and hence never collide.

There are also restrictions on the number of aircraft that may simultaneously be approaching

the runway.

Outline. In Section 3.2, we present a formal model of SATS as a template hybrid au-

tomaton A(N , i). In Section 3.3, we introduce a general backward reachability method that

we use to verify safety properties for the network AN for any N ∈ N. In Section 3.4, we

describe a simple example to illustrate the reachability method and the conditions under

which it terminates. In Section 3.5, we define and verify several safety properties for SATS

using the Model Checker Modulo Theories (MCMT) [54] tool that implements this backward

reachability method, and we conclude in Section 3.6.

50

3.2 Formal Model of the Small Aircraft Transportation System

In this section, we present a formal model of SATS.

We describe the protocol followed by the ith aircraft, which is modeled as hybrid automaton

template A(N , i) (recall Definition 2.1). Refer to Figure 3.2 for states of SATS and refer

to Section 3.2.2 for detailed definitions of the transitions. For aircraft i, q[i] is its current flight

mode. Aircraft i starts in the flying mode (q[i] = fly). It decides to land nondeterministically

by entering the left or right holding zone at 3000 feet (q[i] ∈ {h3r,h3l}). Upon entry, i is

assigned a sequence number (0 if there are no other aircraft in the system, or c + 1, where

c is the value of the sequence number assigned to the last aircraft attempting to land).

Subsequently, aircraft i may descend to the holding zone at 2000 feet (q[i] ∈ {h2r,h2l}). If

there is enough spacing between i and the aircraft with sequence number one less than i’s (if

one exists), then i transitions to either the base left or right zone (q[i] ∈ {br,bl}). Aircraft

i is never forced to transition from a holding pattern to an approach toward the runway.

Rather, any aircraft may nondeterministically begin the approach, so long as the spacing

condition is satisfied.

After traveling down the base zone for enough distance (x[i] ≥ LB, where LB is the length

of the base zone), i moves to the final approach zone (q[i] = fin). Finally, after traversing the

length of the final zone (x[i] ≥ LF , where LF is the length of the final zone), an aircraft may

either: (a) land and go to the runway (q[i] = run), or (b) miss its approach (q[i] ∈ {mr,ml}).

Then, after traversing the length of the missed zone (x[i] ≥ LM , where LM is the length of

the missed zone), i restarts the process of moving from holding to final. If aircraft i misses

its attempt to land, it is assigned a new sequence number at the end. Allowing aircraft to

miss an approach is one reason that several of the properties to be introduced below are

non-trivial to verify. The missed approach is initiated by the pilot if for any reason a safe

landing cannot be assured (e.g., due to unforeseen weather changes, flying too fast to stop

on the runway length, unknown obstacles on the runway, etc.). The only locations where

the continuous position x[i] matters are the base, final, and missed zones.

51

fly

h3r h3l

h2r h2l

br bl

fin

run taxi

mr ml

Figure 3.2: SATS locations, transitions, and invariants for aircraft i. The continuous variable
x[i] only matters in states br, bl, fin, mr, and ml, which correspond to when i is attempting
to land on the runway by reaching location run. Invariants for continuous variables in
locations are captured by, for instance, x[i] ≤ LB, etc., for some LB > 0.

3.2.1 Hybrid Automaton Template of Aircraft i in SATS

We specify a single aircraft in SATS as a hybrid automaton template A(N , i), which is

used to define the semantics of the network AN (recall Section 2.4). The specification is

a translation of the PVS model used in [27], with the following two exceptions. First, we

do not model lateral entry zones, where an aircraft could go from a lateral entry zone state

to the holding zone at either 3000 or 2000 feet, instead of having to start from the vertical

entry to the 3000 foot holding zone. Second, we use timed dynamics (ẋ = 1) instead of

rectangular dynamics (ẋ ∈ [a, b] for a ≤ b). Modeling and verifying lateral entry zones

would be relatively easy, but doing so for rectangular dynamics would require significant

additional work.

There are four local variables (lines 7 through 10) and one global variable (line 11). Four

of these are discrete variables q[i], m[i], s[i], and c, and one is a continuous variable x[i]. The

control location q[i] has type:

L
∆
= {fly,h3r,h2r,h3l,h2l,br,bl,fin,mr,ml, run, taxi}.

The elements of L represent:

52

(a) fly: the aircraft is flying,

(b) h3r,h2r,h3l,h2l: the aircraft is in the holding zone on the right side at 3000 feet

(2000 feet right side for h2r, and left for h3l and h2l),

(c) br,bl: attempting to land in the base segment on the right (left) side,

(d) fin: on the final approach to the runway,

(e) mr,ml: missed or aborted the landing attempt and on the right (left) side,

(f) run: landed on the runway, and

(g) taxi: taxied off the runway to a gate.

The next variable is the missed approach m[i] of type Side
∆
= {left , right} that indicates

which side an aircraft will go to if it aborts its landing attempt.2 We abbreviate left as l

and right as r when clear. The third variable is the sequence number s[i] of type N, which

represents the sequence in which aircraft should land (where s[i] = 1 would mean i should

land first, and so on). The last discrete variable is a global variable c of type N, which is a

counter tracking the last sequence number of an aircraft entering the system.3

There is a single continuous variable x[i] of type R that represents the one-dimensional

distance aircraft i has traveled from the physical starting point of a zone. In Figure 3.1, this

is the distance measured along one dimension from the start of, to the end of, each of the

base region, final approach region, and missed approach zones.

The initial assertion is:

Initi
∆
= ∀i ∈ N : (q[i] = fly ∧ x[i] = 0 ∧ s[i] = 0 ∧ c = 0).

The initial value ofm[i] is irrelevant, as it is updated before use. There are discrete transitions

between locations for SATS as shown in Figure 3.2.

2This is modeled as a Boolean variable where left = 0 and right = 1, each of which are written in short
as l and r, respectively.

3We assume that all N automata have the same valuation of c, so we do not index it with a subscript.
This fits within the timed network framework of [32,47].

53

1 parameter name=’L_B’ type=’real’ // base zone l e n g t h
parameter name=’L_F’ type=’real’ // f i n a l zone l e n g t h

3 parameter name=’L_M’ type=’real’ // missed zone l e n g t h
parameter name=’L_S’ type=’real’ // separa t ion spacing

5
automaton name=’SATS’

7 variable name=’q[i]’ type=’L’ // l o c a t i o n l o c a l v a r i a b l e
variable name=’s[i]’ type=’integer ’ // sequence number

9 variable name=’m[i]’ type=’boolean ’ // missed approach zone
variable name=’x[i]’ type=’real’ // continuous l o c a l v a r i a b l e

11 variable name=’c’ type=’integer ’ // g l o b a l counter v a r i a b l e

13 location name=’fly’
location name=’h3r’

15 location name=’h3l’

location name=’h2r’

17 location name=’h2l’

location name=’br’

19 inv: x[i] <= L_B

flowrate: x[i]_dot = 1.0

21 location name=’bl’

inv: x[i] <= L_B

23 flowrate: x[i]_dot = 1.0

location name=’fin’

25 inv: x[i] <= L_F

flowrate: x[i]_dot = 1.0

27 location name=’mr’

inv: x[i] <= L_M

29 flowrate: x[i]_dot = 1.0

location name=’ml’

31 inv: x[i] <= L_M

flowrate: x[i]_dot = 1.0

33 location name=’run’

location name=’taxi’
35

initially: forall i (q[i] = fly ∧ x[i] = 0 ∧ s[i] = 0 ∧ c = 0)

Figure 3.3: Portion of Passel input file with the variables, locations, and initial assertions of
the hybrid automaton template A(i) specifying SATS.

3.2.2 SATS Transitions and Trajectories

We now go through each of the transitions in the operation of SATS.

All aircraft begin flying, and may enter the system by transitioning from fly to the left

or right holding zone at 3000 feet. For aircraft i, for a transition t from fly to h3r (and

symmetrically for h3l) is specified on line 1. Note that we simplify notation and do not write

identity resets for any variable not appearing in a reset, although these must appear in the

formulas defining the semantics (recall Section 2.4.3), as must be specified in the input for

MCMT. For example, we dropped m[j]′ = m[j] and x[j]′ = x[j] from ugrd(t) and x[i]′ = x[i]

from eff(t). We recall that the semantics from Section 2.4.3 of the transitions are encoded as

first-order logic formula using quantifiers as: ∃i ∈ [N] : grd(t)∧ eff(t)∧∀j ∈ [N] : ugrd(t).

54

transition from=’fly’ to=’h3r’

2 eff : s[i]′ = c+ 1 ∧ c′ = c+ 1
ugrd: q[j] 6= h3r

4
transition from=’h3r’ to=’h2r’

6 ugrd: q[j] 6= h2r

8 transition from=’h2r’ to=’br’

eff : x[i]′ = 0
10 ugrd: s[i] 6= 1⇒ s[j] = s[i]− 1⇒ x[j]− x[i] ≥ LS

12 transition from=’br’ to=’fin’

eff : x[i]′ = 0
14 grd: x[i] ≥ LB

16 transition from=’fin’ to=’mr’

eff : x[i]′ = 0
18 grd: x[i] ≥ LF ∧m[i] = r

20 transition from=’fin’ to=’run’

eff : x[i]′ = 0
22 grd: x[i] ≥ LF ∧m[i] = r

ugrd: q[j] 6= run
24

transition from=’run’ to=’taxi’
26

transition from=’mr’ to=’h3r’

28 eff : x[i]′ = 0 ∧ s[i]′ = c
grd: x[i] ≥ LM

30 ugrd: q[j] 6= h3r ∧ (j 6= i⇒ s[j]′ = s[j]− 1)

32 transition from=’mr’ to=’h2r’

eff : x[i]′ = 0 ∧ s[i]′ = c
34 grd: x[i] ≥ LM

ugrd: q[j] 6= h3r ∧ q[j] 6= h2r ∧ (j 6= i⇒ s[j]′ = s[j]− 1)

Figure 3.4: Portion of Passel input file with the transitions of the hybrid automaton template
A(i) specifying SATS. Only the transitions for the right side are shown, and the left side
transitions are specified analogously by substituting r for l.

This is equivalent to the following formula used by MCMT:

τfly→h3l
∆
= ∀j ∈ [N] : (q[j] 6= h3r) ∧ ∃i ∈ [N] : (q[i] = fly∧

q′ = λj.(if j = i then h3r else q[j])∧

s′ = λj.(if j = i then c+ 1 else s[j]) ∧ c′ = c+ 1),

where the λj notation is equivalent to ∀j and is used to ensure every component of (the

vectors) q and s are defined.

We now describe the remaining transitions without going through this syntactic transla-

tion. Once in a (left or right) holding zone at 3000 feet, an aircraft may descend to the

holding zone on the same side at 2000 feet. For the right side (and symmetrically for the

55

left), this is described as as a transition t from h3r to h2r (and symmetrically for h3r to

h2r) on line 5.

Once in a (left or right) holding zone at 2000 feet, an aircraft may begin the approach to

the runway by transitioning to the base zone on the same side. For the right side (and sym-

metrically for the left), this is defined as the transition t from h2r to br (and symmetrically,

h2l to bl) on line 8.

Once an aircraft on the left or right base and on approach to the runway has traveled the

length LB of the base zone, it must enter the final approach zone. This must requirement

makes this an urgent transition. This is specified for the right side (and symmetrically, left)

br to fin by the transition on line 12.

Once an aircraft on final approach travels the length LF of the final approach zone, it

must either miss the approach and enter the missed approach zone on the appropriate side,

or it may land on the runway. Note that the side the aircraft misses to is defined by the

value of the variable m[i], and is not necessarily the same side on which the aircraft initiated

the approach to the final zone. This is specified by the transition from the final approach

fin to the right missed zone mr (and symmetrically, left missed zone ml) on line 16.

After traveling the length LM of the missed zone, an aircraft must transition to the lowest

altitude holding zone without any aircraft in it on the same side as the missed zone. The

right missed approach zone (and symmetrically, left) to the holding zone is specified with

two transitions. First, is the transition t from mr to h3r on line 27. Second, is the transition

t from mr to h2r on line 32. For the miss transitions, we model the update values of m[i]

nondeterministically, which departs from the actual SATS specification, but is an abstraction.

Also, observe that we use the universal guard to decrease the value of the sequence numbers

of the other aircraft.

Alternatively, if aircraft i does not miss, then the transition t from the final approach fin

to the runway run is specified on line 20. An aircraft on the runway may then taxi away,

defined as the transition t from run to taxi on line 25.

Since this model of SATS utilizes timed dynamics, trajectories are defined according to

56

the following first-order logic formula,

∃te ∈ R≥0 ∀j ∈ [N] : x[j]′ = x[j] + te∧

(q[j] ∈ {br,bl} ⇒ x[j]′ ≤ LB)∧

(q[j] = fin⇒ x[j]′ ≤ LF)∧

(q[j] ∈ {mr,ml} ⇒ x[j]′ ≤ LM).

This formula models that time elapses in the same amount te for every aircraft, and thus their

continuous positions evolve according to trajectories of the same length. Recall the semantics

of trajectories defined in Section 2.4.3, and observe that this models many trajectories.

3.3 Verification by Backward Reachability

Given a set Jυ(N)K of unsafe states, an automaton network AN is said to be safe with respect

to υ(N) if the set is never reached by AN , that is, Jυ(N)K ∩ Reach(AN) = ∅. Equivalently,

the safety property ζ(N) = ¬υ(N) is satisfied by AN if ¬υ(N) contains the reachable states

Reach(AN) (recall Section 2.4.4). To establish that an automaton network AN is safe with

respect to a property ζ(N), we can show that the set Jζ(N)K is invariant, that is, ζ(N)

contains all the reachable states Reach(AN).

For SATS, one safety property is separation assurance—that is, no two aircraft ever come

too close together—which can be written as:

ζ(N)
∆
= ∀i, j ∈ [N] : i 6= j ∧ s[i] = s[j]− 1⇒ x[i]− x[j] ≥ LS,

where s[i] = s[j] − 1 indicates that aircraft i is ahead of aircraft j in the landing sequence,

and LS > 0 is the minimum separation desired between aircraft i and j. We can can define

the unsafe property as the negation ¬ζ(N), which for separation assurance would assert

that there are two aircraft too close together. In general, to prove a safety property ζ(N)

automatically, it suffices to take the negation of the safety property, and check that the set

of backward reachable states from J¬ζ(N)K has an empty intersection with the initial set of

57

1 k := 0
φk := υ(N), where υ(N) ≡ ¬ζ(N)

3 ρk := φk
σk := ∅

5
while true {

7 if ρk ∧ Initi satisfiable // s a f e t y check
return unsafe and σk counterexample

9 k := k + 1
for each t ∈ Transi {

11 φk := φk ∨ Pret(φk−1) ≡ φk ∨ ∃V′i. (t(Vi,V
′
i) ∧ φk−1(V′i))

σk(t) := σk(t) ∪ t // keep t r e e o f v a l i d e x e c u t i o n s
13 }

ρk := ρk−1 ∨ φk
15

if ¬ (ρk ⇒ ρk−1) unsatisfiable // f i x e d−po in t check
17 return safe

}

Figure 3.5: Backward reachability algorithm used by MCMT.

states, JInitiK. This is the method used by the verification tool we use, the Model Checker

Modulo Theories (MCMT) [32,33,53,54]. If the intersection of the backward reachable states

and the initial states is empty and the backward reachability process terminates—that is,

the backward reachability computation reaches a fixed-point and no new states are added

on a preimage computation—then AN satisfies ζ(N) for any N ∈ N.

Under the assumption that the desired safety property is an index quantified Passel as-

sertion, the preimage computation from the set of unsafe states is not much different than

that for a non-parameterized system. For instance, consider the negation of the separation

assurance property, which states there are two aircraft less than the safety distance apart,

¬ζ(N)
∆
= ∃i, j ∈ [N] : i 6= j ∧ s[i] = s[j]− 1 ∧ x[i]− x[j] < LS.

Observe that ¬ζ(N) is defined in terms of two aircraft being in a particular state. The

preimage computation will return a formula with the same existential quantifiers.4 For

instance, the preimage of the formula ∃i ∈ [N] : q[i] = run is roughly—we omit some details

to present the intuition—the formula ∃i ∈ [N] : q[i] = fin, since the only way for an aircraft

to reach the runway is from the final approach zone fin. Observe that this does not increase

the number of quantified index variables appearing in the formula—that is, the preimage of

∃i ∈ [N] : Q(i) is not of the form ∃i, j ∈ [N] : Q(i, j).

4In general this is not true, but see [135] for when it is.

58

The main complication is ensuring that the sequence of preimage computations terminates.

A detailed theory of when this preimage computation will terminate has been developed for

parameterized systems [135,146], and parameterized timed systems [47,48]. Our formulation

of SATS is undecidable—that is, a fixed-point may not be reached—for two main reasons.

First, we model urgent trajectories, that is, we prevent trajectories from continuing once

some condition becomes true [47]. Second, we use universally quantified index variables in

some transition guards [51].

Now, why should we expect this process to ever reach a fixed-point? For instance, why

is it not possible for new aircraft to continually enter the system? Observe that the unsafe

property is of the form ∃i ∈ [N] : ϕ(i). With this form of property, all that matters

is whether there is some aircraft in the system satisfying ϕ(i). Again, observe that the

preimage computation will return a formula of the form ∃i ∈ [N] : Q(i). It is essential

for termination that the preimage computation does not always add existentially quantified

index variables to the formula. If the preimage is ∃i ∈ [N] : Q(i), where Q(i) corresponds

to a formula not implied by ϕ(i) (or any of the formulas corresponding to already reached

states), then we cannot terminate, but otherwise we can. Likewise, if the unsafe property

is of the form ∃i, j ∈ [N] : ϕ(i, j), then all that matters is whether there are two processes

satisfying the formula, etc.

The semi-algorithm takes four inputs: an initial formula Initi, a formula representing the

unsafe set of states υ(N), the transition rules for one automaton template A(i), and some

auxiliary axioms that hold for the parameterized system AN (which are useful for asserting

data type constraints and already proved safety properties). These inputs are essentially

specified as formulas in a restricted subclass of first-order logic. For example, a safety

property of SATS is that there is never more than a single aircraft in the left holding zone

at 3000 feet, h3l, and hence the unsafe states are those where there are two or more aircraft

in h3l. More formally, the safety property is ∀i, j ∈ [N] : i 6= j ⇒ (q[i] 6= h3l ∨ q[j] 6= h3l),

and the unsafe property is ∃i, j ∈ [N] : i 6= j ∧ q[i] = h3l ∧ q[j] = h3l.

Next, we describe how this procedure is implemented by MCMT in the pseudocode shown

in Figure 3.5. The parameterized network AN evolves according to the set of transitions

Transi. The algorithm implemented in MCMT processes first-order logic formulas that de-

59

scribe sets of states. For backwards reachability, the first formula describes a bad (that is,

unsafe or illegal) set of states, denoted by υ(N).

For N ≥ 2, the network AN will be safe if the algorithm reaches a fixed-point and the

constraints describing the set of states that may reach Jυ(N)K do not intersect with the initial

set of states, described by JInitiK. Recall ΘN
∆
= JInitiK for any N ≥ 2. Let ρk be the sequence

of formulas starting from υ(N). Defined inductively, ρ0
∆
= υ(N) and ρk

∆
= ρk−1 ∨Pre(φk−1).

Pre is the preimage of a formula, defined as Pret(φk−1) ≡ ∃V′i. (t(Vi,V
′
i) ∧ φk−1(V′i)) for each

transition t ∈ Transi. Here, (Vi,V
′) highlights that t is over the variables Vi and their primed

versions, V′i. The notation φk−1(V′i) means all variables from Vi appearing in φk−1 have been

replaced with their primed versions. Thus, ρk represents the set of states that can reach the

bad set of states in k iterations of the algorithm. Sets of formulas are denoted by φk for the

kth iteration of the backwards reachability.

It is desired that a fixed-point is eventually reached, that is, so that ρk ≡ ρk−1. The

problem is in general undecidable [28, 29, 47], so it may be the case that no fixed-point is

reached. To check if a fixed-point has been reached, one checks if JρkK ⊆ Jρk−1K. This

is equivalent to checking satisfiability of ¬(ρk ⇒ ρk−1). Conditions for decidability of the

safety and fixed-point checks are given in [135], as are conditions for when a fixed-point is

guaranteed to exist.

Observe that it is sufficient to consider transitions that we know occur, that is, the ones for

which we know the guards are satisfied, as otherwise it will be trivially unsatisfiable, so we

exclude these. In an implementation, a tree would be constructed of the disjunctions of the

t transitions and those which are unsatisfiable would be pruned from the search path [135].

Next, we will run the reachability algorithm on a simple example by hand to elucidate

termination.

3.4 Example: Finite State Automaton with Unreachable Illegal

States

We take a brief diversion to illustrate the algorithm used in MCMT with a much simpler

example of a parameterized network of finite state automata (FSA) that can be worked out

60

automaton name=’FSA’

2 variable name=’q[i]’ type=’L’ // l o c a t i o n l o c a l v a r i a b l e

4 location name=’b0’
location name=’b1’

6 location name=’b2’

8 transition from=’b1’ to=’b0’

10 transition from=’b1’ to=’b1’

12 transition from=’b2’ to=’b2’

14 initially: forall i (q[i] = b2)

16 property: forall i (q[i] 6= b0)

Figure 3.6: Passel input file with the variables, locations, and initial assertions of the au-
tomaton template A(i) specifying the FSA example.

Table 3.1: Safety and fixed-point checks for FSA example.
k φk ρk ρk ∧ Initi ¬(ρk ⇒ ρk−1)

0 ∃i : qi = b0 ∃i : qi = b0
∃i : qi = b0∧
∀i : qi = b2

undefined

1

Pre(∃i : qi = b0) ≡ ∃q′t(q, q′) ∧ φ0(q
′
)

≡∃q′
(
∃i1 : qi1 = b1 ∧ q

′
= λj.

(if j = i1 ⇒ b0 else qj) ∧ ∃i2 : q
′
i2

= b0

)
≡∃i : qi = b1

∃i : qi = b0 ∨ ∃i : qi = b1

(∃i : qi = b0∨
qi = b1)

∧ ∀i : qi = b2

≡unsatisfiable

(∃i : qi = b0 ∧ ∀i : qi 6= b0)

∨ (∃i : qi = b1 ∧ ∀i : qi 6= b0)

≡satisfiable

2

Pre(∃i : qi = b1) ≡ ∃q′t(q, q′) ∧ φ1(q
′
)

≡∃q′
(
∃i1 : qi1 = b1 ∧ q

′
= λj.

(if j = i1 ⇒ b1 else qj) ∧ ∃i2 : q
′
i2

= b1

)
≡∃i : qi = b1

∃i : qi = b0 ∨ ∃i : qi = b1

∨ ∃i : qi = b1

≡∃i : qi = b0 ∨ ∃i : qi = b1

(∃i : qi = b0∨
qi = b1)

∧ ∀i : qi = b2

≡unsatisfiable

¬ (∃i : qi = b0 ∨ ∃i : qi = b1

⇒ ∃i : qi = b0 ∨ ∃i : qi = b1)

≡unsatisfiable

by hand. To illustrate the safety and fixed-point checks, consider a nondeterministic finite

state automaton (NFA) with three states shown in Figure 3.6. Observe that from b2 each of

b0 and b1 are unreachable and vice versa. Let

υ(N)
∆
= ∃i ∈ [N] : q[i] = b0, and Initi

∆
= ∀i ∈ [N] : q[i] = b2,

so that the illegal state b0 is unreachable from the initial state. The initial states are un-

reachable, which we will illustrate unsatisfiability in the safety check ρk ∧ Initi. As there

are three transitions in each NFA, there are three rules describing the transitions in the

parameterized network. The individual transition rules are specified in Figure 3.6. The

backwards reachability algorithm from Figure 3.5 with safety and fixed-point checks for the

FSA example is executed and shown in Table 3.1. We replace the bracket notation [i] with

underscore notation i in the FSA example for brevity. We can see that the safety check,

61

ρk ∧ Initi is unsatisfiable for all k. Since the fixed-point check, ¬(ρk ⇒ ρk−1) is unsatisfiable

for k = 2, the algorithm terminates and returns that the system is safe.

3.5 SATS Properties Verified

We specify and verify several of the same safety properties verified for SATS using PVS [27,

68]. We leave out properties regarding lateral entry that we are not modeling. The initial

states are specified as the formula:

Initi
∆
= ∀i ∈ N : q[i] = fly ∧m[i] ∈ {left , right} ∧ x[i] = 0 ∧ s[i] = 0 ∧ c = 0.

Observe that all of the properties verified are in essence mutual exclusion properties. Some

properties state that are no more than a single aircraft in a state, while others specify no

more than two are in a state, etc. Separation assurance can be thought of as a sort of

physical mutual exclusion property.

The safety properties are specified as index-quantified Passel assertions.

(A) There are no more than four aircraft attempting to land, that is, the total number of

aircraft in any states besides flying and landed is four (but there may be arbitrarily

many aircraft flying or landed). Let F = L \ {fly, taxi} be the set of discrete locations

without the flying or taxi states, then the property is specified as:

ζ(N)
∆
= ∀̇i, j, k, l,m ∈ [N] : (q[i] ∈ F ∧ q[j] ∈ F ∧ q[k] ∈ F ∧ q[l] ∈ F)

⇒ q[m] ∈ {fly, taxi},

where we recall ∀̇ means all quantified variables are distinct (i.e., here i 6= j 6= k 6= l 6=

m). In the MCMT model, we actually use counters to track this property, e.g., we count

the number of aircraft in the system and verify this counter is bounded from above by

four. It is prohibitively expensive to use too many index variables in a formula. We

note that the SATS specification allows only four aircraft to be on approach at a given

time [25, 26], but the number of aircraft involved in the protocol could potentially be

62

expanded by adding additional “sides” with corresponding holding, base, and missed

zones (e.g., SATS is designed to have only left and right sides, but one can imagine a

system with more entry points).

(B) The main property we are interested in is separation assurance, that two aircraft on

approach to the runway are separated by a safety spacing LS > 0. Formally, the

property is:

ζ(N)
∆
= ∀̇i, j ∈ [N] :

(
q[i] ∈ {br,bl,fin,mr,ml} ∧ q[j] ∈ {br,bl,fin,mr,ml}

∧s[i] = s[j]− 1)⇒ x[i]− x[j] ≥ LS.

(C) No more than two aircraft are actually on either side (left or right). The property for

the left side (and symmetrically, right) is:

ζ(N)
∆
= ∀̇i, j, k ∈ [N] : (q[i] ∈ {h3l,h2l,bl,ml} ∧ q[j] ∈ {h3l,h2l,bl,ml})

⇒ q[k] ∈ L \ {h3l,h2l,bl,ml}.

(D) At most one aircraft is in each of the holding zones, for h2r (and defined analogously

for h3r, h3l, and h2l) this is:

ζ(N)
∆
= ∀̇i, j ∈ [N] : (q[i] = h2r)⇒ q[j] 6= h2r.

We could not verify the property for h3l or h3r due to a spurious execution from the

stopping failures abstraction [54], so we assumed these two cases, and were able to

establish the property for h2l and h2r.

(E) No more than two aircraft are on a missed approach fix, for the right (and defined

analogously for left), this is:

ζ(N)
∆
= ∀̇i, j, k ∈ [N] : (q[i] = mr ∧ q[j] = mr)⇒ qk 6= mr.

Additionally, there is a liveness property proven in [27], but MCMT cannot verify liveness

63

properties, only safety ones. The property would state that all aircraft eventually land

and that they land in order according to their sequence numbers. Some very recent work

attempts to allow verification of some classes of liveness properties [33], but general liveness

properties for parameterized timed systems were shown to be undecidable in [47].

Experimental Setup for MCMT. We use version 1.1.1 of MCMT, which uses version

1.0.32 of the SMT solver Yices [147]. MCMT has some capability to generate invariants,

and we enabled the full invariant search for our verification (we used the options -I and

-S3). All runtimes of verification attempts are reported in Table 3.2, and are measured on

a modern laptop with 8 GB main memory and an Intel Core i7 quad-core processor running

at 2.0 GHz. However, we ran the verification in a virtual machine under Ubuntu, limited to

the use of two cores and 1.5 GB memory. We use the memtime utility from UPAAAL [38] to

measure runtimes and memory usage. We use an existing model of the system in UPAAAL

to verify properties of finite instantiations AN for N ∈ {2, 3, 4, 5} aircraft. We do not report

verification runtimes for UPAAAL, as we primarily use UPAAAL as a simulation tool prior

to encoding the SATS protocol in MCMT, but we could not verify beyond five aircraft in

the system.

The order in which the properties are proved is important, as our process was first to

attempt proving a property, and if it was established as an invariant, we would assume it as

a lemma and continue the verification process. We used a Python script to automatically

call MCMT and assert lemmas. It may seem surprising that the total number of aircraft

property (A) takes a short amount of runtime. The intuition behind this was established

in the manual inductive invariant proofs done in [68]: property (A) is itself an inductive

invariant (Definition 2.4) without refinement. Finally, we note that we also perform some

sanity checks to see if certain states are reachable. For example, we show there are three

aircraft allowed in the system, although this could be spurious due to the stopping failures

abstraction used by MCMT [148].

64

Table 3.2: Runtime in seconds and maximum memory usage in megabytes required to verify
properties of SATS using MCMT.

Property Runtime (s) Memory Usage (MB)

(A) 25.95 10.19

(B) 283.08 32.49

(C) 24.50 5.80

(D) 0.81 4.56

(E) 491.61 274.44

3.6 Summary

In this chapter, we describe a backward reachability method for uniform verification of

safety properties for parameterized networks of timed automata. Using this method as

implemented in MCMT, we automatically verify several safety properties of a distributed air

traffic landing protocol, regardless of the number of aircraft involved in the protocol. One

could argue that in physical scenarios there are physical and geometric restrictions preventing

an arbitrary number of cars or aircraft from interacting, and that instead at most a fixed,

finite natural number N may interact. While this is true, uniform verification may enable

scalable verification, as it may be infeasible to perform the composition of N such A(i) due to

the growth in the size of the composed AN. In particular, we found that using the approach

implemented in model checkers like UPAAAL, we could not scale beyond a few aircraft. A

small network AN may suffice for verification, but what if the number N that can feasibly be

verified is smaller than the number one may expect in the network?

The air traffic protocol is a nontrivial distributed cyber-physical system (DCPS), and

for this reason, we believe it could serve as a standard benchmark in the verification of

DCPS. We believe other DCPS under development, like networks of autonomous vehicles or

medical devices, can and should be verified using this approach to increase the assurance

of reliability that the complex interaction of software and physical processes does not yield

catastrophic failure for some instantiations of the system. While we were successful in

the verification in this chapter—in part because there exists a cutoff on the number of

aircraft in the system as shown through the verification approach used in [27]—it would be

65

interesting to investigate abstractions for solving this problem. For instance, the environment

abstraction approach [80] tracks the number of processes satisfying some predicates, perhaps

even abstracting the continuous variables in this way, and may provide a more tractable

approach for some classes of DCPS.

66

Chapter 4

Reachability Using Anonymized States for Finite
Instantiations of Hybrid Automata Networks

In this chapter, we present a method for computing the set of reachable states of finite instan-

tiations of parameterized networks of hybrid automata. The method utilizes a symmetry-

reduced representation of the set of reachable states (modulo the automata indices), which

makes it scalable. Rather than explicitly enumerating all the automaton indices in formulas

representing states, the symmetry-reduced representation tracks only: (a) the classes of au-

tomata, which are the states of automata represented with formulas over symbolic indices,

and (b) the number of automata in each of the classes. We present an algorithm for overap-

proximating the reachable states by computing state transitions in this symmetry-reduced

representation.

4.1 Introduction

While, in general, computing reachable sets of finite instantiations cannot be used for uni-

form verification of parameterized networks of hybrid automata—that is, verification of

properties of the network AN for any N ∈ N (see Definition 2.5)—it may be useful in

methods for performing such verification. For example, such reachability computations are

used as subroutines in the methods for synthesizing quantified candidate inductive invari-

ants of Chapter 6. In addition, a designer may want to verify finite instantiations prior to

verifying the general parameterized network, which is usually harder. Symmetry has long

been studied in model checking, as it is one approach to alleviate the state-space explosion

problem [114–118,120,124–126].

Satisfiability-modulo-theories (SMT) solvers generalize the classical Boolean satisfiability

(SAT) problem to allow for constants of additional sorts, like reals, arrays, and integers.

67

Many solvers also have support for quantified theories, allowing for quantified sentences,

such as the quantified theory of real linear arithmetic (RLA). Recent advances in quantified

Boolean formula (QBF) solvers—often integrated within SMT solvers—have enabled QBF

formulations of the bounded model checking problem, instead of the usual SAT formula-

tion [149]. Such formulations allow for encoding in SMT solvers like Z3 [136, 150], as we

do in this chapter. Bounded model checking using SMT solvers has been successfully used

in analyzing timed systems for some time [151, 152]. The current state-of-the-art in using

SMT solvers for BMC of timed systems is outlined in [153–155]. SMT-based reachability

techniques have also been developed for hybrid systems with fairly general dynamics. For in-

stance, [155] allows rectangular differential inclusions (ẋ ∈ [a, b]), and the SAT-modulo-ODE

methods allow general dynamics [156–158].

Outline. Section 4.2 describes the anonymized (symmetry-reduced) state-space represen-

tation. Section 4.3 describes an on-the-fly algorithm for computing the reachable states in

the anonymized representation. Section 4.4 analyzes the reachability algorithm and estab-

lishes its soundness. Section 4.4.1 gives an example with anonymized reachable states that are

independent of the choice of N. Section 4.5 summarizes the anonymized state-space represen-

tation, reachability algorithm, and results. The experimental results using the reachability

algorithm with anonymized states implemented in Passel appear in Chapter 7, Section 7.6

4.2 Anonymized State-Space Representation

Consider a hybrid automaton template A(N , i) for some i ∈ [N]. For any fixed N ∈ N, the

composed automaton modeling a network of size N is AN and it is defined by Definition 2.2.

Throughout this chapter, we fix AN and present an algorithm for computing Reach(AN) that

takes advantage of the symmetries in its hybrid automaton template A(i). More specifically,

we present an efficient representation of Reach(AN) that is anonymized, so numerical au-

tomaton indices—1, 2, . . ., N—are not explicitly enumerated and are instead modeled using

symbolic indices—i1, i2, . . ., iN.

Recall from Definition 2.2 that the state-space ofAN isQN. For illustrating the anonymized

68

idlestart

start

cs

grd:x == 1
eff : x′ = 0

eff : x′ = 1

Figure 4.1: MUX-SEM mutual exclusion algorithm for automaton A(i) for illustrating the
anonymized state-space representation.

automaton name=’MUX-SEM’

2 variable name=’q[i]’ type=’L’ // l o c a t i o n l o c a l v a r i a b l e
variable name=’x’ type=’boolean ’ // g l o b a l mutex v a r i a b l e

4
location name=’idle’

6 location name=’start’
location name=’cs’

8
transition from=’idle’ to=’start’

10 transition from=’start’ to=’cs’
grd: x = 1

12 eff : x′ = 0

transition from=’cs’ to=’idle’
14 eff : x′ = 0

16 property: forall i, j (i != j and q[i] = cs) implies (q[j] != cs)
initially: forall i (q[i] = idle and x = 1)

Figure 4.2: Passel input file specifying automaton template A(i) for mutual exclusion algo-
rithm MUX-SEM.

representation of the state-space, we use the MUX-SEM mutual exclusion example shown

graphically in Figure 4.1 and as a Passel specification in Figure 4.2. MUX-SEM has one

local variable q[i] with type Loc
∆
= {idle, start, cs} and one global variable x of Boolean B

type.1 For N = 3, the product of the types is Loc3 × B which has 2
∣∣Loc3

∣∣ = 54 elements,

which is the number of elements in the state-space of A3. For A3, the reachable states are

1While the Passel language defined in Section 2.3.2 does not allow for Boolean-typed variables, we model
them as bounded integer-typed variables. That is, a variable specified with a Boolean type is syntactic sugar
for an integer variable with an axiom that it takes values 0 or 1 only. Variables of bitvector type with length
b are modeled as integers with axioms specifying they range 0 through 2b−1.

69

encoded as the DNF formula:

(q[1] = idle ∧ q[2] = idle ∧ q[3] = idle ∧ x = 1) ∨ (4.1)

(q[1] = start ∧ q[2] = idle ∧ q[3] = idle ∧ x = 1) ∨ (4.2)

(q[1] = idle ∧ q[2] = start ∧ q[3] = idle ∧ x = 1) ∨ (4.3)

(q[1] = idle ∧ q[2] = idle ∧ q[3] = start ∧ x = 1) ∨ (4.4)

(q[1] = start ∧ q[2] = start ∧ q[3] = idle ∧ x = 1) ∨ (q[1] = start ∧ q[2] = idle ∧ q[3] = start ∧ x = 1) ∨

(q[1] = idle ∧ q[2] = start ∧ q[3] = start ∧ x = 1) ∨ (q[1] = start ∧ q[2] = start ∧ q[3] = start ∧ x = 1) ∨

(q[1] = cs ∧ q[2] = idle ∧ q[3] = idle ∧ x = 0) ∨ (q[1] = idle ∧ q[2] = cs ∧ q[3] = idle ∧ x = 0) ∨

(q[1] = idle ∧ q[2] = idle ∧ q[3] = cs ∧ x = 0) ∨ (q[1] = cs ∧ q[2] = start ∧ q[3] = idle ∧ x = 0) ∨

(q[1] = start ∧ q[2] = cs ∧ q[3] = idle ∧ x = 0) ∨ (q[1] = start ∧ q[2] = idle ∧ q[3] = cs ∧ x = 0) ∨

(q[1] = cs ∧ q[2] = start ∧ q[3] = start ∧ x = 0) ∨ (q[1] = start ∧ q[2] = cs ∧ q[3] = start ∧ x = 0) ∨

(q[1] = start ∧ q[2] = start ∧ q[3] = cs ∧ x = 0) ∨ (q[1] = cs ∧ q[2] = idle ∧ q[3] = start ∧ x = 0) ∨

(q[1] = idle ∧ q[2] = cs ∧ q[3] = start ∧ x = 0) ∨ (q[1] = idle ∧ q[2] = start ∧ q[3] = cs ∧ x = 0). (4.5)

This DNF representation has 20 clauses (conjunctive formulas), where each clause rep-

resents one state x ∈ Reach(AN). This representation is inefficient because it explicitly

enumerates all the permutations of automata indices, and does not exploit the fact that

several of the reachable states are equivalent modulo the automaton indices. For a given

state x ∈ QN, the set of corresponding states X ⊆ QN that are equivalent modulo indices is

obtained by substituting any index i of all local variables v[i] ∈ VL[i] with an index j ∈ [N].

Definition 4.1 Two states x, x′ ∈ QN of AN, are equivalent modulo indices if there exists

a bijection π : [N]→ [N] such that for each v[i] ∈ Vi, x.v[i] = x′.v[π(i)]. For a state x ∈ QN

of AN, the set of states X′ that is equivalent modulo indices to x is the set

{x′ ∈ QN | x and x′ are equivalent modulo indices}.

This is the same type of definition as the existence of an automorphism used in [114–116],

but we do not add this additional structure as we will not utilize tools from group theory.

For the MUX-SEM example with a state x satisfying (q[1] = start ∧ q[2] = idle ∧ q[3] =

idle ∧ x = 1) (Equation 4.2), the states equivalent modulo indices to x are those satisfying

70

any of the following formulas:

(q[1] = start ∧ q[2] = idle ∧ q[3] = idle ∧ x = 1), or (4.6)

(q[1] = idle ∧ q[2] = idle ∧ q[3] = start ∧ x = 1), or (4.7)

(q[1] = idle ∧ q[2] = start ∧ q[3] = idle ∧ x = 1), (4.8)

which respectively correspond to Equations 4.2, 4.3, and 4.4. Of course, a state is equivalent

modulo indices to itself by picking the bijection π to be the identity mapping (for example,

as in Equation 4.6). For Equations 4.7 and 4.8, we can explicitly define a bijection π as:

π(i) = (i mod N) + 1.

For a formula φ, we will overload π and write π(φ), which modifies φ by applying π to

each index variable i in φ. Continuing with the MUX-SEM example, applying this π to

(q[1] = start ∧ q[2] = idle ∧ q[3] = idle ∧ x = 1) (Equation 4.2) yields:

π((q[1] = start ∧ q[2] = idle ∧ q[3] = idle ∧ x = 1))

= (q[2] = start ∧ q[3] = idle ∧ q[1] = idle ∧ x = 1)

= (q[1] = idle ∧ q[2] = start ∧ q[3] = idle ∧ x = 1) (equals Equation 4.3).

The anonymized state representation takes this idea a step further by utilizing symbolic

names for process indices along with counters, and a formula representing the valuations

of any global variables. Consider Equations 4.2, 4.3, and 4.4. An equivalent description

of the local variable valuations is to say there is one automaton in start and two automata

in idle, without referring to which automaton is in which state. More explicitly, this set of

states is the set of states where (a) there are two classes of automata, (b) one class has one

automaton, say i, with q[i] = start, (c) the other class has two automata, such that for each

automaton i, q[i] = idle, and (d) the global variable valuation satisfies x = 1. We now define

this representation in general.

Definition 4.2 For a fixed N ∈ N and an automaton template A(N, i), consider the au-

71

tomaton network AN (Definition 2.2). An anonymized state representation S is a tuple

〈Classes, G〉, where:

(a) Each anonymized class C ∈ Classes is a tuple C
∆
= 〈Count, I, Form〉, where:

(i) I is a natural number called the class’s rank, which is equal to the number of

distinct symbolic index variables appearing in Form: I = |ivars(Form)|.

(ii) Form is a quantifier-free Passel assertion over the variables VL[i1] ∪ . . . ∪ VL[iC.I],

where i1, . . ., iI are I distinct symbolic index variables.

(iii) Count is a natural number called the class’s count, and satisfies N ≥ Count ≥ |I|.

The count is the number of automata of class C.

Additionally, the sum of all the class counts in S equals N:

N =
∑

C∈S.Classes

C.Count,

where C.Count is the count of class C.

(b) G is a quantifier-free Passel assertion over the global variables VG.

When necessary to refer to various components of an anonymized state representation S,

we write:

S =

〈
Classes︷ ︸︸ ︷

〈Count1, I1, Form1〉︸ ︷︷ ︸
C1

, 〈Count2, I2, Form2〉︸ ︷︷ ︸
C2

, . . .

 , G

〉
.

We use the (.) notation to refer to particular elements of tuples. For example, C.Count refers

to the count of a particular anonymized class C, and likewise, C.Form refers to its formula.

When the number of index variables C.I is clear from context, we drop it from the C tuple

and write 〈Count, Form〉.

We say two anonymized classes C1 and C2 are equivalent and write C1 ≡ C2 iff they have

the same class formulas, class counts, and class variable counts:

C1.Count = C2.Count ∧ C1.I = C2.I ∧ C1.Form ⇔ C2.Form. (4.9)

72

Here, equivalence between the class formulas is a semantic and not syntactic notion, and

means the formula C1.Form ⇔ C2.Form is valid (Section 2.4.2, Definition 2.3). We say two

anonymized state representations S1 and S2 are equivalent and write S1 ≡ S2 iff they have

the same state counts, the classes in their sets of classes are equivalent, and their global

formulas are equivalent:

∀ C1 ∈ S1.Classes ∃ C2 ∈ S2.Classes C1 ≡ C2 ∧ G1 ≡ G2.

For an anonymized class C, the requirement of Definition 4.2 that C.Count ≥ |C.I| means

the number of automata satisfying the Form is at least as large as the number of distinct

index variables appearing in Form. For example, this requirement means:

〈2, 2, q[i] = cs ∧ q[j] = idle〉 , is an anonymized class, but

〈1, 2, q[i] = cs ∧ q[j] = idle〉 , is not an anonymized class.

This also restricts class counts of zero.

The interpretation of an anonymized state representation corresponds to a set of states of

QN, which is written as J〈Classes, G〉K. Since the class formulas of S are over the variables

of automata with symbolic indices, the interpretation instantiates the symbolic indices with

specific elements of [N], which yields the set of states that are equivalent modulo indices.

Definition 4.3 For an anonymized state representation

S =

〈〈Count1, I1, Form1〉︸ ︷︷ ︸
C1

, . . . , 〈Countk, Ik, Formk〉︸ ︷︷ ︸
Ck

 , G

〉
,

we assign all possible values in [N] to the set of symbolic index variables i1, . . ., iIk as follows.

Let

p =

{p1
1, . . . , p

I1
1 }︸ ︷︷ ︸

p1

, . . . , {p1
k, . . . , p

Ik
k }︸ ︷︷ ︸

pk


be a partition of [N], such that, for any pj ⊆ p,

73

(a) |pj| = Countj and

(b) pj is partitioned into Ij sets p1
j , . . ., p

Ij
j , where we recall that Ij is the rank of Cj.

We note that (a)
∑

pj∈p |pj| = N since p partitions [N], and (b) Countj ≥ Ij (by Defini-

tion 4.2, (iii)). Then, the set of states of network AN represented by S corresponding to

partition p are:

JSpK
∆
= {x ∈ QN | x |= G ∧ Form1(p1) ∧ . . . Formk(pk)}, (4.10)

where each Formj(pj) is:

Formj(pj)
∆
= ∀i1j ∈ p1

j , . . . , i
Ij
j ∈ p

Ij
j : Formj(i

1
j , . . . , i

Ij
j). (4.11)

We have written Formj(i
1
j , . . . , i

Ij
j) to highlight that Formj is over Ij symbolic index variables.

Note that Formj(pj) is equivalent to a finite-length conjunction since each p
Ij
j is finite. The

complete set of states of network AN represented by S are:

⋃
p

JSpK for any partition p respecting Equation 4.10. (4.12)

For MUX-SEM, the anonymized state 〈{〈1, 1, q[i] = start〉 , 〈2, 1, q[i] = idle〉} , x = 1〉 corre-

sponds to the following set of states of QN:

J〈{〈1, 1, q[i] = start〉 , 〈2, 1, q[i] = idle〉} , x = 1〉K

= {x ∈ Q3 | x |= (q[1] = start ∧ q[2] = idle ∧ q[3] = idle ∧ x = 1) ∨

(q[1] = idle ∧ q[2] = start ∧ q[3] = idle ∧ x = 1) ∨

(q[1] = idle ∧ q[2] = idle ∧ q[3] = start ∧ x = 1) },

where the formulas correspond respectively to Equations 4.2, 4.3, and 4.4. Consider the

following anonymized representation with count three and rank two:

J〈{〈3, 2, q[i1] = base ∧ q[i2] = base ∧ x[i2] ≥ x[i1] + LS〉} , true〉K .

74

One particular allowed partition is:

p =

 {1}︸︷︷︸
p1

1

, {2, 3}︸ ︷︷ ︸
p2

1

 .

For this p, the states represented by Sp are:

JSpK = {x ∈ Q3 | x |= ∀i11 ∈ p1
1, i

2
1 ∈ p2

1 : q[i1] = base ∧ q[i2] = base ∧ x[i2] ≥ x[i1] + LS}

= {x ∈ Q3 | x |= (q[1] = base ∧ q[2] = base ∧ q[3] = base ∧

x[2] ≥ x[1] + LS ∧ x[3] ≥ x[1] + LS) }.

Note that {{1, 2, 3}} is not an allowed partition since it is partitioned into one set, but

I = 2, and Definition 4.3 requires each pj ∈ p be partitioned into Ij partitions. For instance,

the following are the other allowed partitions: {{2}, {1, 3}}, {{3}, {1, 2}}, {{1, 2}, {3}},

{{1, 3}, {2}}, and {{2, 3}, {1}}. All these allowed partitions define the full set of states JSK

that the anonymized state S represents. We note that this is equivalent to all the states

equivalent modulo indices to the states JSpK for a particular partition p.

Every set of states in QN has a finite representation as an anonymized state representation.

This can be seen by the following. Sets of states in QN may be represented as quantifier-free

Passel assertions, so consider such an assertion φ(1, . . . ,N), where we explicitly reference the

numerical indices used in the assertion. We can create an anonymized state representation

S with a single class C as follows. Let C.Count = N and C.Form = φ(i1, . . . , iN), where

φ(i1, . . . , iN) is φ(1, . . . ,N) replacing the numerical indices with symbolic ones. Of course,

this does not make the anonymized representation of the set of states more efficient since

φ(i1, . . . , iN) is the same size as φ(1, . . . ,N).

The set of reachable states of MUX-SEM represented using anonymized state representa-

75

tions (Definition 4.2) for MUX-SEM for N = 3 is:

〈{〈3, q[i] = idle〉} , x = 1〉 ,

〈{〈1, q[i] = start〉 , 〈2, q[i] = idle〉} , x = 1〉 , (4.13)

〈{〈2, q[i] = start〉 , 〈1, q[i] = idle〉} , x = 1〉 ,

〈{〈3, q[i] = start〉} , x = 1〉 ,

〈{〈1, q[i] = cs〉 , 〈2, q[i] = idle〉} , x = 0〉 ,

〈{〈1, q[i] = cs〉 , 〈1, q[i] = idle〉 , 〈1, q[i] = start〉} , x = 0〉 ,

〈{〈1, q[i] = cs〉 , 〈2, q[i] = start〉} , x = 0〉 .

This representation of reachable states has seven elements.

The reachable states of AN represented as anonymized states is denoted by AnonReach,

and is:

AnonReach
∆
= {S | x ∈ Reach(AN) ∧ x ∈ JSK}.

The set of reachable class formulas ReachForms for AN are all the quantifier-free Passel

assertions appearing in any anonymized class of any state S in any anonymized reachable

state AnonReach, conjuncted with the global formula G of S. That is:

ReachForms
∆
= {C.Form | x ∈ Reach(AN) ∧ x ∈ JSK ∧ C ∈ S.Classes}.

For the MUX-SEM example with N = 3, the set of reachable anonymized class formulas

ReachForms is:

{q[i] = idle ∧ x = 1, q[i] = start ∧ x = 1, q[i] = cs ∧ x = 0, (4.14)

q[i] = idle ∧ x = 0, q[i] = start ∧ x = 0}.

Thus, for MUX-SEM there are a total of |ReachForms| = 5 distinct formulas used to rep-

resent the reachable states. This highlights how the anonymized representation can enable

76

computation of reach sets for large N. The number of classes may remain constant beyond a

certain N, at which point only one natural number per class is needed to represent larger and

larger instances. For MUX-SEM, the five formulas of Equation 4.14 are enough to represent

the reachable states for any network AN for N ≥ 1.

4.3 Reachability Using Anonymized States

Having illustrated the anonymized representation, we now describe an on-the-fly algorithm

for computing the reachable states of finite instances of AN using this representation. Pseu-

docode for the algorithm appears in Figure 4.3. We first make some assumptions about the

format of the class formulas.

Assumption 4.4 For an anonymized state S, for each class C ∈ Classes, we assume the

class formula C.Form is in conjunctive normal form, and for each index i ∈ i1, . . . , iC.I, C.Form

contains an equality q[i] = l for some location l ∈ L.

This assumption ensures that all of the class formulas in the anonymized states correspond

to convex sets and that each class has the control location specified, since the continuous

dynamics are specified for each location in L (recall Definition 2.1). The CNF assumption is

not restrictive: if a new class is created during the execution of the algorithm that contains

disjunctions, then multiple classes with CNF formulas are created.

The algorithm inputs are: (a) a template hybrid automaton A(N , i), (b) an initial condi-

tion assertion Initi, and (c) a constant natural number N. The algorithm operates on frontiers

of reachable states represented by the set Frontier. The set of reachable states computed so

far is represented by the set AnonReach. At initialization (line 3), Frontier is set to be an

anonymized state representation containing one anonymized class with a count equal to N

and class formula equal to the body of the index-quantified Passel assertion over the local

variables, InitL[i]. The global assertion of the initial anonymized representation is initial-

ized with InitG[i], which is the body of the index-quantified Passel assertion over the global

77

1 function symreach(A(N , i), Initi, N) {

AnonReach ← ∅
3 Frontier ← {〈{〈N, InitL[i]〉} , InitG[i]〉} // c r e a t e i n i t i a l anonymized s t a t e

5 // repea t u n t i l no new s t a t e s are added to the f r o n t i e r
while Frontier 6= ∅ {

7 FrontierNew ← ∅ // i n i t i a l i z e next f r o n t i e r
AnonReach ← AnonReach ∪ Frontier // add f r o n t i e r to r e a c h a b l e s t a t e s

9 // compute s u c c e s s o r s o f each anonymized s t a t e r e p r e s e n t a t i o n in the f r o n t i e r
foreach anonymized state S in Frontier {

11 FrontierNew ← FrontierNew ∪ discreteSuccessors(S,AnonReach,FrontierNew)

13 FrontierNew ← FrontierNew ∪ contSuccessors(S,AnonReach,FrontierNew)
}

15 Frontier ← FrontierNew
}

17 }

Figure 4.3: On-the-fly reachability algorithm using anonymized states. The input arguments
are an automaton specification A(N , i), an initial condition assertion Initi, and a constant
natural number N. The anonymized representation of the reachable states are computed as
a fixed-point computation starting from the anonymized representation of the initial states.
The algorithm computes the set of anonymized reachable states AnonReach.

variables. For example, for MUX-SEM, this initializes:

Frontier = {〈{〈N, 1, q[i] = idle〉} , x = 1〉}.

Next, the main loop (line 6) removes an anonymized state representation S from Frontier,

computes the successors of S, and continues until no new anonymized state representations

are added to Frontier. New anonymized state representations are added to the frontier using

the set FrontierNew (line 7).2 The set of anonymized reachable states is maintained by the set

AnonReach (line 8).

The loop starting at line 10 computes the successors for each anonymized state represen-

tation S in Frontier, which are the states reachable from S in one step. It is composed of

two parts: (a) computing the discrete successors corresponding to transitions (line 11), and

(b) computing the continuous successors corresponding to trajectories (line 13).

2This description makes the algorithm a breadth-first traversal of the reachable states.

78

1 function discreteSuccessors(S,AnonReach,FrontierNew) {

StatesNew ← ∅
3 foreach anonymized class C in S.Classes {

foreach index i in {i1, . . . , iC.I} {

5 foreach transition t in Transi {

SNew ← post(t, S, C)
7 if SNew /∈ (AnonReach ∪ StatesNew ∪ FrontierNew) {

StatesNew ← StatesNew ∪ {SNew}
9 }

}

11 }

}

13 return StatesNew
}

Figure 4.4: Discrete successors of anonymized state representation S, which takes an
anonymized state representation S, the current anonymized reachable states AnonReach,
and the current new frontier FrontierNew, and returns a set of new anonymized state repre-
sentations (if any), which are the discrete successors of the anonymized state representation
S over all the transitions of A(N , i).

4.3.1 Discrete Successors

The discrete successors are computed as shown in Figure 4.4. The function discreteSuccessors

has three inputs: an anonymized state representation S, the anonymized reachable states

computed thus far AnonReach, and the new frontier computed thus far FrontierNew. The

output of discreteSuccessors are the anonymized states StatesNew that may be reached from

any class C ∈ S.Classes of the state S, through any transition t ∈ Transi. These new states

StatesNew are added to the new frontier FrontierNew, then this repeats for any other states on

the frontier Frontier from the previous iteration (see Figure 4.3, line 11).

The function begins with a loop iterating over each class C in the classes of the anonymized

state representation S.Classes (line 3). There is a subsequent loop over each index variable

i in the set of index variables in the class formula, {i1, . . . , iC.I} (line 4). We continue with

the MUX-SEM example for N = 3 supposing S = 〈{〈3, 1〉 q[i] = idle} , x = 1〉. For MUX-SEM,

S.Classes has one element, so C = 〈3, q[i] = idle〉x = 1 and the only index variable is i.

Next is an iteration over the (syntactic) transitions Transi of A(N , i) (line 5). For each

transition t ∈ Transi, the discrete post-states with respect to t from S by an automaton

i with states satisfying C.Form, written post(t, S, C), are computed next (Figure 4.5 called

at line 6). Note that Transi has a dependence upon i.

The first step of of the discrete post is to compute the new class formula and count (line 3).

79

function post(t, S, C) {

2 // compute new c l a s s
CNew.Form ← QuantElim(∃Vi : C.Form ∧ S.G ∧ grd(t, i) ∧ eff(t, i))

4 // s u b s t i t u t e primed v a r i a b l e s with unprimed v a r i a b l e s
CNew.Form ← Substitute(CNew.Form,V

′
i,Vi)

6 // p r o j e c t away l o c a l v a r i a b l e s (f o r g l o b a l c o n s t r a i n t)
SNew.G ← QuantElim(∃Vi : CNew.Form)

8 // p r o j e c t away g l o b a l v a r i a b l e s (f o r l o c a l c o n s t r a i n t)
CNew.Form ← QuantElim(∃VG : CNew.Form)

10 CNew.Count ← 1
// remove o ld c l a s s from new anonymized s t a t e r e p r e s e n t a t i o n c l a s s e s

12 SNew.Classes ← S.Classes \ {C}
// add o ld c l a s s to new anonymized s t a t e r e p r e s e n t a t i o n i f i t s count w i l l be p o s i t i v e

14 if C.Count 6= 1 {

SNew.Classes ← S.Classes ∪ {〈C.Count− 1, C.Form〉}
16 }

// add new c l a s s to new anonymized s t a t e r e p r e s e n t a t i o n
18 SNew.Classes ← SNew.Classes ∪ {CNew}

SNew ← mergeClasses(SNew)
20 return SNew

}

Figure 4.5: Discrete post of an anonymized state representation S for an automaton with
index i and states satisfying C.

For a transition t ∈ Transi and an anonymized class C, the quantifier elimination step of line 3

computes the subsequent class from C under the transition t, made by the automaton with

index i.

Recall that grd(t) is a Passel assertion over Vi, and eff(t) is a Passel assertion over

Vi ∪V′i, where V′i contains primed versions of each variable in Vi.
3 This computation can be

carried out using quantifier elimination procedures over the types of the variables appearing

in the guard, and effect of the transition t, and then syntactically unpriming all primed

variables (representing successors) following quantifier elimination (line 5). This step is an

overapproximation, since it is computing the successors of each class regardless of the number

of automata with states satisfying the anonymized class formula Form, and just presuming

there is some automaton with variable valuations satisfying Form.

For the MUX-SEM example, we have C = 〈3, q[i] = idle ∧ x = 1〉. The only enabled

transition is t(idle, start), since (q[i] = idle ∧ x = 1) ⇒ (q[i] = idle) is satisfiable. For the

3We assume that there are no universal guards.

80

MUX-SEM example with t = t(idle, start), line 3 is:

∃ q[i] ∈ L, x ∈ B : (q[i] = idle ∧ x = 1) ∧ (q[i] = idle) ∧ (q[i]′ = start ∧ x′ = x)

≡ q[i]′ = start ∧ x′ = 1.

Unpriming (line 5) yields the class formula q[i] = start ∧ x = 1 with a count of 1, yielding

the anonymized class 〈1, q[i] = start ∧ x = 1〉. We assume post(t, C,) yields a class with count

one (line 10), and we handle combining classes with equal formulas shortly.4

The new anonymized state representation SNew is constructed using the classes of the

anonymized state representation S of the current iteration along with the new anonymized

class, CNew (lines 12 through 19). First, the classes for SNew are set to be the anonymized classes

of S, without the anonymized class of the current iteration, C (line 12) For MUX-SEM, this

yields:

SNew.Classes = {},

since the only element in S.Classes is 〈3, q[i] = idle〉.

Next, if the class count of C is not one, then it is added to the classes of SNew, with its count

reduced by to indicate some automaton has left the set of states satisfying the corresponding

class formula (line 14). On the other hand, if Count = 1, that means the old anonymized

class C would no longer have any automata with states satisfying its class formula, so it is

not added to the new anonymized state representation’s classes. For MUX-SEM, this yields:

SNew.Classes = {〈2, q[i] = idle〉}.

Finally, the new anonymized class CNew is added to the classes of SNew (line 18). For MUX-SEM,

this yields:

SNew.Classes = {〈2, q[i] = idle〉 , 〈1, q[i] = start〉}.

4An alternative to combining classes with equivalent formulas is to find any classes in the anonymized
state representation with equivalent formulas to the one just computed and increment their counts.

81

1 function mergeClasses(S) {

foreach anonymized class C1 in S.Classes {

3 foreach anonymized class C2 in S.Classes {

// only check e q u i v a l e n c e o f d i s t i n c t (pointer−wise) e lements in S.Classes
5 if C1 = C2 {

continue;

7 }

// attempt to prove c l a s s e s have e q u i v a l e n t c l a s s formulas
9 if C1.Form 6≡ C2.Form is UNSAT {

// i f so , merge t h e i r counts
11 C1.Count← C1.Count + C2.Count

S.Classes← S.Classes \ {C2}
13 }

}

15 }

return S

17 }

Figure 4.6: The mergeClasses function combines any classes with equivalent class formulas
and sums their counts. The input is a newly computed anonymized state S.

However, this may result in two classes with equal formulas, since the algorithm has not

yet detected if any other classes had the same formula and assumed the new class CNew had

a count of one. Next, any other classes with the same formulas in SNew are merged using

mergeClasses (Figure 4.6 called from line 19).

Merging Classes. The function mergeClasses (Figure 4.6) takes an anonymized state rep-

resentation S and returns another anonymized state representation that is guaranteed to not

have any classes with equal formulas. Thus, mergeClasses finds all formulas in the classes of

S.Classes that are equal and takes the sum of their counts for one class (line 11) and removes

the other (line 12). Proving two class formulas Form1 and Form2 are equal is accomplished

by checking that ¬(Form1 = Form2) is unsatisfiable.

After merging any classes with equivalent formulas, mergeClasses returns the (potentially

modified) anonymized state representation (line 16). This returns the anonymized state

representation back to post , which then returns the (potentially) new anonymized state rep-

resentation to discreteSuccessors (Figure 4.5, line 20). Finally, if the new anonymized state

representation is actually new—in that there are no equivalent anonymized state represen-

tations already contained in the reachable states, newly computed states, or frontier—then

it is added to the frontier (Figure 4.4, line 7). The loops of discreteSuccessors then continue,

eventually computing all the discrete successors, which is returned as a set of anonymized

82

idle
ẋ[i] = 0

start

cs
ẋ[i] ∈ [1, 2]
x[i] ≤ 5grd:g == 1

eff : g′ = 0

eff : g′ = 1 ∧ x[i]′ = 0

Figure 4.7: MUX-SEM-RA mutual exclusion algorithm for automaton A(i) for illustrating
the computation of continuous successors in the anonymized state-space representation.

state representations to symreach line 13. This ends the computation of discrete successors,

so the next step of symreach is computing continuous successors.

4.3.2 Continuous Successors

We will utilize a mutual exclusion algorithm, MUX-SEM-RA, shown in Figure 4.7 for illustrat-

ing the computation of continuous successors. The continuous successors are computed using

the function contSuccessors—shown in Figure 4.8—called from symreach (Figure 4.3, line 13).

The MUX-SEM-RA algorithm has two locations, idle and cs, one continuous local variable

x[i], and a global Boolean semaphore g. The continuous variable x[i] increases at a rate

between 1 and 2 while in location cs, up to a maximum of 5.

For an anonymized state representation S, the continuous successors contSuccessors com-

putes an overapproximation of the post-states reachable by trajectories from the anonymized

state S. The function contSuccessors takes three arguments: an anonymized state representa-

tion S, the current reachable states AnonReach, and the newly computed frontier FrontierNew.

The output of contSuccessors is a set of anonymized states, StatesNew, which represent the

updates to any continuous variables according to the semantics of trajectories (recall Sec-

tion 2.4.3). We assume that the hybrid automaton template A(i) used to construct the

network AN does not contain any stopping conditions. The next step is to call the func-

tion posttime with an anonymized state representation S from the frontier (Figure 4.9 called

at line 3).

For an anonymized state S in the frontier, posttime computes an overapproximation of the

83

1 function contSuccessors(S,AnonReach,FrontierNew) {

StatesNew ← ∅
3 SNew ← posttime(S) // compute continuous s u c c e s s o r s from S

SNew ← mergeClasses(SNew)
5 if SNew /∈ (AnonReach ∪ StatesNew ∪ FrontierNew) {

StatesNew ← StatesNew ∪ {SNew}
7 }

return StatesNew
9 }

Figure 4.8: Computation of the continuous successors from an anonymized state S. The
inputs are an anonymized state S from the frontier, the reachable states AnonReach, and the
newly computed frontier Frontier from the current iteration of the breadth-first reachability
computation.

post-states from S owing to the individual trajectories of all automata in the network for up

to the most amount of time that can elapse before any invariant is violated. The anonymized

state specifies a location m ∈ L for each automaton in the network (recall Assumption 4.4),

and each location m specifies a trajectory statement, so trajectories are defined for each

automaton in the network. For the following explanation, suppose the anonymized state of

MUX-SEM-RA from which the continuous successors being computed is:

S = 〈{〈2, 1, q[i] = idle ∧ x[i] = 0〉 , 〈1, 1, q[j] = cs ∧ x[j] = 0〉} , g = 0〉 , (4.15)

that is, there are two classes of automata, where the first class has two automata with

locations idle and x[i] equal to zero, the second class has one automaton with location cs and

x[j] equal to zero, and the global semaphore is 0.

Each new anonymized state SNew ∈ StatesNew computed corresponds to the trajectory se-

mantics updating the continuous variables of all automata in the network AN. We use the

variable postFormula as a formula encoding the trajectory semantics of all automata in the

network AN (line 3), which is initially the constraint te > 0, indicating that some positive real

amount of time te will elapse. However, for an anonymized state S, for distinct anonymized

classes C1, C2 in S.Classes, the symbolic indices appearing in the formulas may be equal,

∃i ∈ ivars(C1) and ∃j ∈ ivars(C2) such that i = j. Since postFormula will encode the

states of all automata in the network, the symbolic index variables appearing in any class

formula of any anonymized class must be distinct. Rather than performing these tedious

syntactic manipulations, we assume that for an anonymized state S, for distinct classes C1,

84

1 function posttime(S) {

// formula used to encode semantics o f t r a j e c t o r i e s f o r a l l automata in the network
3 postFormula ← te > 0

// s e t o f bound v a r i a b l e s used in computing the s u c c e s s o r s
5 bound ← ∅

// i t e r a t e over each c l a s s in the symmetric s t a t e
7 foreach anonymized class C in S.Classes {

// encode the p r e s t a t e c o nd i t i on enforced by the c l a s s formula
9 postFormula ← postFormula ∧ C.Form

// determine the l o c a t i o n s any automata may be in each c l a s s (r e c a l l Assumption 4.4)
11 foreach location m in L {

// i t e r a t e over a l l i n d i c e s (ranks)
13 foreach i in {i1, . . . , iC.I} {

// use l o c a t i o n m i f automaton i i s in m
15 if C.Form 6⇒ (q[i] = m) is UNSAT {

// add the t r a j e c t o r y semantics overapproximating the post−s t a t e s
17 postFormula ← postFormula ∧ inv(m, i) ∧ X[i] ∈ flow(m,X[i], te)

bound ← bound ∪ Vi
19 }

}

21 }

}

23 bound ← bound ∪ {te}
postFormula ← QuantElim(∃ bound : postFormula)

25 postFormula ← Substitute(postFormula,V′i,Vi)
SNew ← RemapClasses(S, postFormula)

27 return SNew
}

Figure 4.9: posttime function that computes the continuous successors from an anonymized
state S.

C2 in S.Classes, ∀i ∈ ivars(C1), ∀j ∈ ivars(C2), we have i 6= j.5 The variable bound (line 5)

is a set of variable names used for computing the continuous successors using quantifier

elimination.

First, we iterate over each class C in the prestate anonymized representation S’s classes,

S.Classes (line 7). The constraints on the prestates are specified by each class formula,

which are conjuncted with postFormula (line 9). Each anonymized class formula C.Form

of an anonymized state representation S specifies the location(s) the automata are in (re-

call Assumption 4.4), so the first step is to determine the dynamics that will modify each

class formula. This is accomplished by first determining the appropriate flow-rate conditions

to use for each class in S.Classes, which can be detected by finding which Form imply the

location variable q[i] is in some location m ∈ L. If the control location of automaton i is

found to be equal to location m, then the trajectory statement of location m is used to define

the semantics of the time-evolution of i’s continuous variables (line 17). The control location

5This is a tedious, but trivial invariant that we maintain in our implementation, so we make this assump-
tion for clarity of presentation only.

85

determination is performed by first iterating over the locations (line 11), and next iterating

over all the index variables in the class formula (line 13). The determination of the control

location of each class is accomplished by the check of line 15.

If any process in any class is in control location m, then a formula encoding the trajectory

semantics of location m are conjuncted to the formula postFormula (line 17). The semantics

of trajectories result in all the automata’s continuous variables evolving over time te, so the

formula encoding the trajectory statements of all automata is conjuncted (line 17). At this

point, postFormula contains the constraints on variables specified by the class formula,

the global variables, flow conditions, and any invariants defining the trajectory semantics

(recall Section 2.4.3). Finally, the unprimed variables are added to the set of bound variables

to be eliminated (line 18). This process continues for all anonymized classes in S and all

indices. For the MUX-SEM-RA example with anonymized state from Equation 4.15, this

process yields:

postFormula = q[i] = idle ∧ x[i] = 0 q[i]′ = q[i] ∧ x[i]′ = x[i] + 0 ∗ te ∧ q[j] = cs ∧

x[j]′ ≥ x[j] + 1 ∗ te ∧ x[j]′ ≤ x[j] + 2 ∗ te ∧ x[j]′ ≤ 5 ∧ q[j]′ = q[j] ∧

g = 0 ∧ g′ = g ∧ te > 0, and

bound = {q[i], x[i], q[j], x[j], g}. (4.16)

Once all classes and all corresponding indices have had trajectory statements added to

postFormula, the elapsing time variable te is added to the bound variables (line 23). The

post-states are computed by existentially quantifying and eliminating the variables in the

set bound (line 24) and then renaming primed variables with their unprimed counterparts

(line 25).6 For the MUX-SEM-RA example with postFormula and bound from Equation 4.16,

this yields the formula:

postFormula = q[i] = idle ∧ x[i] = 0 ∧ q[j] = cs ∧ 0 < x[j] ≤ 5 ∧ g = 0. (4.17)

6This may result in a DNF formula. If this is the case, each conjunctive clause is created as a new
anonymized state representation by iterating over the conjunctive clauses so that all class formulas are CNF
formulas.

86

function RemapClasses(S, postFormula) {

2 SNew.Classes = ∅
// p r o j e c t postFormula onto the v a r i a b l e s o f i n d i c e s in each c l a s s in S

4 foreach anonymized class C1 in S.Classes {

bound ← ∅
6 foreach anonymized class C2 in S.Classes {

if C1 6≡ C2 {

8 foreach i in {i1, . . . , iC2.I} {

bound ← Vi
10 }

}

12 }

// postTmp w i l l be a formula only over the v a r i a b l e s o f i n d i c e s o f c l a s s C1

14 postTmp ← QuantElim(∃ bound : postFormula)

// c r e a t e new c l a s s with formula corresponding to post−s t a t e s
16 CNew.Form = postTmp

// copy the p r e s t a t e c l a s s count o f the corresponding c l a s s
18 CNew.Count = C1.Count

// add new c l a s s to the new anonymized s t a t e ’ s c l a s s e s
20 SNew.Classes ← SNew.Classes ∪ CNew

}

22 SNew.N ← S.N
return SNew

24 }

Figure 4.10: Function for remapping variables in postFormula to their prestate index names
and class counts to create the new anonymized state representation SNew. The function first
projects onto the variables with index names of each class in the prestate and then uses the
prestate count to ensure class counts remain constant over trajectories.

Finally, we call the function RemapClasses with S—the prestate anonymized representation—

and postFormula—the formula encoding the post-state constraints—to remap subformulas

of postFormula to their prestate classes (Figure 4.10 called at line 26). This is done to

ensure the class counts are constant when computing post-states due to trajectories.

The function RemapClasses recreates the classes from the prestate S from which the contin-

uous successors are being computed. That is, it determines the appropriate class counts for

each new subformula in postFormula corresponding to an anonymized class in the prestate

S. Essentially, RemapClasses determines which indices appearing in postFormula correspond

to which classes in the prestate S, so that the appropriate class counts can be determined,

and accomplishes this in two steps. Since we assumed all classes contain distinct index vari-

ables, this is done by iterating over each class C in the prestate S.Classes, then projecting

onto the C.I symbolic indices for C and using the count C.Count.

First, we iterate over all classes in the prestate anonymized state S (line 4). Next, we

project away all the variables of automata with indices coming from different classes (i.e.,

other than C1) from postFormula (lines 6 through 14). This is done by collecting all the

87

variable names corresponding to other classes (line 6), then projecting them away using

quantifier elimination, yielding a formula postTmp (line 14).

Next, the new anonymized class CNew is created using the postTmp formula and the class

count of the prestate class C1 (line 18). Lastly, CNew is added to the set of anonymized classes

for the new anonymized state representation SNew. This process repeats for all the classes

in the prestate anonymized state representation S from which the continuous successors are

being computed. Once this has been done for all classes in S.Classes, the new anonymized

state representation SNew is returned by RemapClasses (line 23). For the MUX-SEM-RA ex-

ample with postFormula from Equation 4.17, this yields the new anonymized state:

SNew = 〈{〈2, 1, q[i] = idle ∧ x[i] = 0〉 , 〈1, 1, q[j] = cs ∧ 0 ≤ x[j] ≤ 5〉} , g = 0〉 .

The new anonymized state representation SNew is subsequently returned by posttime (Fig-

ure 4.9, line 27). Finally, as in the discrete successors case, if the new anonymized state

representation SNew is actually new—in that there are no equivalent anonymized state rep-

resentations already contained in the reachable states, newly computed states, or frontier—

then it is added to the frontier (Figure 4.8, line 5).

The process of computing discrete and continuous successors then continues for any re-

maining anonymized state representations in Frontier, then repeats for any states added to

the new frontier FrontierNew.

4.4 Analysis of Reachability Algorithm Using Anonymized States

This section presents analysis of properties for the reachability algorithm using anonymized

states (Figure 4.3).

The next invariant of the algorithm in Figure 4.3 states that no two class formulas in a

reachable anonymized state representation S are equal, and it follows from the definition of

mergeClasses (Figure 4.6), which merges any two classes with equal formulas prior to them

being added to AnonReach.

Invariant 4.5 For any S ∈ AnonReach, for every C1, C2 ∈ S.Classes, C1.Form 6≡ C2.Form.

88

The next invariant states there is never an anonymized state in the new frontier FrontierNew

that is already in the anonymized reachable states AnonReach. This is maintained by both

the computations of the discrete successors discreteSuccessors and contSuccessors since only

anonymized state representations that are not equivalent to any anonymized state represen-

tation in the union of AnonReach, Frontier, and the new anonymized state representations

StatesNew are added to FrontierNew (Figure 4.4, line 7 and Figure 4.8, line 5).

Invariant 4.6 For any S1 ∈ FrontierNew, for any S2 ∈ AnonReach, S1 6≡ S2.

The next invariant states that no two anonymized state representations in the anonymized

reachable states are equivalent.7 It follows immediately from Invariant 4.6.

Invariant 4.7 For any distinct S1, S2 ∈ AnonReach, S1 6≡ S2.

The next invariant states that the sum of all the class counts Count equals N. It fol-

lows from the definitions of discreteSuccessors and contSuccessors, since discreteSuccessors

always decreases class counts by the same amount it increases them—so the sum remains

invariant—and contSuccessors does not change class counts, only class formulas. Addition-

ally, mergeClasses changes class counts, but their sum remains the same since it removes any

duplicate classes after adding their counts (Figure 4.6, lines 11 through 12).

Invariant 4.8 For any S ∈ AnonReach,

N =
∑

C∈S.Classes

C.Count.

Theorem 4.9 states partial correctness of the reachability algorithm, namely soundness,

which is that the concretization of the set of anonymized reachable states AnonReach contains

the actual set of reachable states for the particular finite instantiation. The theorem follows

since both the continuous and discrete successors are computed as overapproximations, as

described when defining discreteSuccessors and contSuccessors.

7Of course, if we view AnonReach as a set, then this is by definition, however, AnonReach is a data-
structure in the algorithm, so this is an invariant the algorithm must maintain.

89

parameter name=’lb’ type=’real’ value = 1.0 // minimum r a t e
2 parameter name=’ub’ type=’real’ value = 2.0 // maximum r a t e

parameter name=’B’ type=’real’ value = 5.0 // guard constant
4

automaton name=’MUX-INDEX-RECT’

6 variable name=’q[i]’ type=’L’ // l o c a t i o n l o c a l v a r i a b l e
variable name=’x[i]’ type=’real’ // continuous l o c a l v a r i a b l e

8 variable name=’g’ type=’index’ // g l o b a l l o c k v a r i a b l e

10 location name=’rem’

flowrate: x[i]_dot >= lb and x[i]_dot <= ub

12 location name=’try’
flowrate: x[i]_dot >= lb and x[i]_dot <= ub

14 location name=’cs’
flowrate: x[i]_dot >= lb and x[i]_dot <= ub

16
transition from=’rem’ to=’try’

18 grd: g = ⊥ and x[i] >= B

eff : g′ = i and x[i]′ = 0.0

20 transition from=’try’ to=’cs’
grd: g = i and x[i] >= 2*B

22 eff : x[i]′ = 0

transition from=’cs’ to=’rem’

24 grd: x[i] >= 3*B

eff : x[i]′ = 0

26 property: forall i, j (i != j and q[i] = cs) implies (q[j] != cs)
initially: forall i (q[i] = rem and x[i] = 0 and g = ⊥)

Figure 4.11: Passel input file specifying automaton template A(i) for mutual exclusion
algorithm MUX-INDEX-RECT.

Theorem 4.9 For a fixed N ∈ N, for the network AN composed of N instantiations of the

hybrid automaton template A(N, i), the anonymized reachable states AnonReach computed by

the algorithm in Figure 4.3 are an overapproximation of the reachable states of AN:

Reach(AN) ⊆ JAnonReachK .

The approximation comes from two sources. First, index-typed variables are abstracted to

be equal or not equal to some index only. Second, the rectangular dynamics are overapprox-

imated. In the case that no index-typed variables are included, the computation is exact, so

Reach(AN) = JAnonReachK.

4.4.1 Example with Anonymized Reachable State-Space Cardinality
Independent of N

This section describes a simple timed mutual exclusion algorithm that has an anonymized

reach set that is independent of N. The hybrid automaton template A(N , i) specifying the

90

rem
ẋ[i] ∈ [lb, ub]

start

try
ẋ[i] ∈ [lb, ub]

cs
ẋ[i] ∈ [lb, ub]

grd: g = ⊥ ∧ x[i] ≥ B
eff : g′ = i ∧ x′ = 0 grd: g = i ∧ x[i] ≥ 2B

eff : x′ = 0

grd: x[i] ≥ 3B
eff : g′ = ⊥∧

x′ = 0

Figure 4.12: MUX-INDEX-RECT mutual exclusion algorithm of Figure 4.11.

MUX-INDEX-RECT example appears in Figure 4.11 and graphically in Figure 4.12. Specifi-

cally, the number of anonymized classes in ReachForms does not increase as a function of N.

Additionally, for any S ∈ AnonReach, the sum of the class counts of S is 1, N, or N− 1. This

is in contrast to the MUX-SEM example described previously, which has some S with counts

in {1, . . . ,N}, so their runtimes and memory usages increase as a function of N. Due to this

state-space size independence from N, our experiments have been successful for computing

the reachable states for compositions of millions of automata.

4.5 Summary

In this chapter, we present an on-the-fly forward reachability algorithm that computes an

anonymized representation of the reachable states for finite instantiations of parameterized

networks of hybrid automata. The anonymized representation avoids generating all per-

mutations of automata indices and states, and in Section 7.6, we show it to be effective

at computing the reachable states of networks with hundreds of automata for some special

examples.

91

Chapter 5

Proving Inductive Invariants

In this chapter, we present a uniform verification method for safety properties of parame-

terized networks of hybrid automata of the type defined in Chapter 2, Definition 2.2. Each

automaton is equipped with a finite collection of pointers to other automata that enables

it to read their state. This chapter presents a small model result for such networks that

reduces the verification problem for a system with arbitrarily many processes to a system

with finitely many processes. The result is applied to verify and discover counterexamples of

inductive invariant properties for distributed protocols like Fischer’s mutual exclusion algo-

rithm and the Small Aircraft Transportation System (SATS). The method is implemented

to check inductive invariants automatically in the Passel verification tool (see Chapter 7).

Passel automatically proves safety properties for parameterized networks of hybrid automata

by using a combination of invariant synthesis and inductive invariant proving. This chapter

describes the inductive invariance checks, and synthesizing candidate invariants is described

in Chapter 6.1

5.1 Introduction

This chapter presents a method for uniform verification of parameterized networks of hybrid

automata, that is, networks composed of arbitrarily many instantiations of some template

automaton. For uniform verification, a property ζ(N) and a hybrid automaton template

A(N , i)—writtenA(i) in short—are given. The property must be independent of the number

and the identities of the modules, and we must verify that ζ(N) holds for any system built

1This chapter is based in part on prior work [3], portions of which are reprinted here with permission.

92

from arbitrarily many instances of A(i). That is,

∀ N ∈ N, A1‖A2‖ . . . ‖AN |= ζ(N), (5.1)

where the precise meaning of the parallel composition of operator ‖ is as given in Defini-

tion 2.2 in Chapter 2 of this dissertation.

To perform verification of an arbitrary number of hybrid automata, we develop and use

a small model result for the subclass of hybrid automaton networks with rectangular dy-

namics. In formal logic, small model theorems are used to prove decidability of satisfiability

checking for formulas of different logical classes. Many prefix classes of FOL were shown

to be decidable by showing that the class has the finite model property : every satisfiable

formula also has a finite model [159]. They have been applied to verification of concurrent

and multi-threaded programs [41–43,96–98,160]. The idea behind applying them in verifica-

tion is to identify classes of systems and specifications with the small model property, which

reduces an infinite problem to a finite one. In many cases, the proof of the finite model

property comes with an explicit bound on the size of the finite structure that may satisfy (or

violate) the property in question. For uniform verification, small model theorems provide a

finite threshold N0 such that if, for all N ≤ N0, AN ∆
= A1‖ . . . ‖AN |= ζ(N), then Equation 5.1

also holds. In the context of verification of discrete parameterized networks, small model

theorems were developed in [41,42] and also studied in [43,45,46], and have only previously

been studied in the context of purely discrete system to the best of our knowledge.

The contributions of this chapter are:

(a) A small model theorem for hybrid automata networks that guarantees the existence of

a bound N0, such that, if an instantiation ofAN violating ζ(N) exists for someN > N0,

then AN0 must also violate ζ(N0). Thus, the verification problem from Equation 5.1 is

solved if, for all N ≤ N0, no instantiation AN violates ζ(N).

(b) The theorem is applied in the Passel verification tool that we use to automatically

check inductive invariants up to the bound N0 by querying the satisfiability modulo

theories (SMT) solver Z3 [136].

93

(c) To the best of our knowledge, this is the first result on automatic uniform verification

of parameterized networks of hybrid automata, although there are other techniques for

uniformly verifying networks of timed automata [32,33,47,49,50].

The input to Passel is a hybrid automaton specification A(i) and a candidate safety prop-

erty ζ(N). Then, the bound N0 is computed from the syntactic description of A(i) and

ζ(N). In addition to these hybrid protocols, we have also verified several purely discrete

algorithms—cache coherence protocols and mutual exclusion algorithms like the simplified

bakery algorithm— studied in [51, 76]. The experiments (see Section 7.7) indicate that it

is feasible to develop automatic methods relying on our small model result that apply both

to distributed cyber-physical systems and classic distributed algorithms. The success of our

experiments in part relies on the strengths of state-of-the-art SMT solvers like Z3, which

allow for quantified formulas and have quantifier elimination and instantiation procedures

for real and integer arithmetic [161, 162]. One weakness of the method is that it will fail

unless an inductive invariant is given. The user must provide candidate inductive invariants

that are strong enough to imply the desired invariant property. Alternatively, methods can

be used to attempt to find such candidates automatically, and we present some in Chapter 6.

Outline. In Section 5.1.1, we outline the general methodology of proving inductive in-

variants for parameterized networks of hybrid automata, which requires a set of candidate

inductive invariants to either be provided by a user or synthesized in some way. In Sec-

tion 5.2, we present the syntax for a restricted class of Passel assertions—introduced earlier

in Section 2.3.2—which we call LH-assertions. When LH-assertions are used for specifying

various syntactic components of the hybrid automaton, we show a small model theorem

in Section 5.2. We then show in Section 5.3 how inductive invariant properties for param-

eterized networks of hybrid automata can be asserted in terms of LH-assertions, and we

conclude in Section 5.4.

94

1 function inductiveInvariance(A(N , i), ζ(N), Init, N, P) {

// s y n t h e s i z e candidate i n d u c t i v e i n v a r i a n t s from f i n i t e i n s t a n c e s
3 ψ(i1, . . . , iP) ← synthesis(A(N, i), Init, N, P)

Γ(N) ← ∀̇i1, . . . , iP ∈ [N] : ψ(i1, . . . , iP)
5

// i n d u c t i v e invar iance check f o r any N
7 if (∀N ∈ N Init(N)⇒ Γ(N) is valid and // per Definition 2.4 (A)

∀N ∈ N transitionConsecution(A(N , i), N , Γ(N)) is valid and // per Definition 2.4 (B)
9 ∀N ∈ N trajectoryConsecution(A(N , i), N , Γ(N)) is valid and // per Definition 2.4 (C)

∀N ∈ N Γ(N)⇒ ζ(N) is valid) { // per Definition 2.8
11 return ζ(N) is invariant for all N

}

13 else {

return potential counterexample

15 }

}

Figure 5.1: Inductive invariance proof method with auxiliary invariant synthesis. The inputs
are an automaton specification A(N , i), a desired safety property ζ(N), an initial condition
assert Init, and two constants, N and P. The output is either a proof of the safety property
ζ(N) for all N ∈ N, or a potential counterexample. The latter either indicates A(N , i) has
a bug and does not satisfy ζ(N) or that the synthesized invariants are not strong enough to
prove ζ(N).

5.1.1 Proving Inductive Invariants

Passel attempts to automatically verify safety properties of AN that hold for any N ∈ N by

checking and synthesizing inductive invariants. This chapter describes methods for checking

if an assertion Γ(N) is an inductive invariant for any N (Definition 2.4). For this chapter,

we assume such candidate assertions are given, but Chapter 6 presents methods for finding

(synthesizing) candidate inductive invariants, which can then be checked using the methods

in this chapter. The overall methodology of finding and checking inductive invariants is

described by the pseudocode of Figure 5.1.

5.2 Small Model Theorem

In this section, we present the main small model result (Theorem 5.2) for the restricted class

of Passel assertions called LH-assertions. Thus, for a specific inductive invariant Γ(N), The-

orem 5.2 provides a threshold on size of models, written N0. If for all N ≤ N0, Γ(N) is

an inductive invariant for AN, then Γ(N) is indeed an inductive invariant for all N ∈ N.

This makes it possible to verify inductive invariants for parameterized networks of hybrid

95

automata AN by verifying Γ(N) for a finite number of instances of AN. If the syntactic com-

ponents of the hybrid automaton template A(N , i) are specified with this restricted class,

then the small model theorem can be applied (Theorem 5.2).

Definition 5.1 An LH-assertion is an index sentence—refer to Section 2.3.2—of the form

∀t1 ∈ R ∀i1, . . . , ik ∈ [N] ∃t2 ∈ R ∃j1, . . . , jm ∈ [N] : ϕ(t1, i1, . . . , ik, t2, j1, . . . , jm),

where ϕ is a quantifier-free Passel assertion containing no unbounded integer variables.

It is essential that the order (shape) of quantifiers is as specified (∀∗∃∗) for establishing

small model theorems like Theorem 5.2. We mention that te and tp are only used to re-

spectively model an elapse of time of length te and enforcing invariants for all trajectories of

lengths 0 ≤ tp ≤ te (refer to the semantics of continuous trajectories defined in Section 2.4.2).

We provide several example LH-assertions:

∀i, j : i 6= j =⇒ (q[j] = q[j] =⇒ |x[j]− x[i]| > a), (5.2)

∀i, j : i = j ∨ q[i] = q[j] ∨ (x[j]− x[i]− a < 0) ∨ (x[i]− x[j]− a < 0), and (5.3)

∀i ∃j : p[i] = j ∧ |x[i]− x[p[i]]| > a. (5.4)

We reiterate that we only use LH-assertions with te and tp for checking the inductive invari-

ance conditions for continuous trajectories as shown in Section 5.3. Reading these assertions

as statements about networks of automata, the first one states that all automata with iden-

tical values of the discrete local variable q[i] have a minimum gap of a between the values of

their x[i] variables. The first assertion is an abbreviation of the second. The last assertion

states every automaton has a pointer p[i] to another automaton and that there is a minimum

separation of a between its x[i] value and the x[p[i]] value of the automaton to which p[i]

points.

Theorem 5.2 Let Γ(N) be an LH-assertion of the form ∀te ∈ R ∀i1, . . . , ik ∈ [N] ∃tp ∈ R

∃j1, . . . , jm ∈ [N] : ϕ(te, i1 . . . , ik, tp, j1, . . . , jm), where ϕ is a quantifier-free formula in-

volving the index variables i1, . . ., ik, j1, . . ., jm, real variables te and tp, and global and

96

local variables in Vi, where i ∈ ivars(ϕ). Then, ∀N ∈ N : Γ(N) is valid iff for all

n ≤ N0 = (e + 1)(k + 2), Γ(N) is satisfied by all n-models (recall Definition 2.3), where

e is the number of index array variables in ϕ and k is the largest subscript of the universally

quantified index variables in Γ(N).

Proof : If ∀N ∈ N : Γ(N) is valid, then all its models satisfy it by the definition of validity.

For the other direction, we assume that all models of size n, for n ≤ (e + 1)(k + 2),

satisfy Γ(n). It suffices to show that ψ
∆
= ∀N ∈ N : Γ(N) is valid. Suppose for the sake of

contradiction that ψ is not valid. Then there exists a model M of size n > (e + 1)(k + 2)

that satisfies ¬ψ ≡ ∃N , te, i1, . . . , ik : ∀tp, j1, . . . , jm : ¬ϕ. We will show that for any model

of size n > (e+ 1)(k+ 2), there exists a model of size n− 1 that contradicts the assumption

that all n-models satisfy Γ(n).

The n-model M assigns a real value to the variable te and values in {1, . . . , n} to the

index variables i1, . . ., ik (in addition to providing interpretations for the other variables

and arrays). The values assigned to the universally quantified variables tp, j1, . . ., jm in the

model M are not important, because any value of these variables would satisfy ¬ψ. The set

of values assigned to i1, . . . , ik can contain at most k distinct values. Consider an index term

with one of the forms 1, N , or im, where im is an existentially quantified index variable in

¬ψ: any such term can take at most k + 2 distinct index values. Thus, an index array term

p[im] can take at most k+2 distinct values. Since there are at most e index arrays, the set of

all possible index arrays and terms can take at most (e+1)(k+2) distinct values. Therefore,

there exists a value in {1, . . . , n}, say u, that is not assigned to any index variable or to any

of the referenced values of the index arrays, in M .

Now, we define an (n − 1)-model M ′ by removing u from {1, . . . , n} and shifting values

assigned by M appropriately. The constant n is interpreted as n− 1 in M ′. For each index

variable ij, if ij < u, then we assign M ′(ij) = M(ij), and otherwise we assign M ′(ij) =

M(ij) − 1, where the notation M(v) is the assignment of v in model M . For each (index,

discrete, or real) array z̄, for each i ∈ {1, . . . , n − 1}, if i < u then we assign M ′(z[i]) =

M(z[i]), and otherwise we assign M ′(z[i]) = M(z[i+ 1]). Finally, it is routine to check that

M ′ assigns the same binary value to each Atom in ϕ as M , and therefore M ′ also satisfies

¬ψ. This contradicts the assumption that all models of size n, for n ≤ (e+ 1)(k+ 2), satisfy

97

Γ(n).

We close this section with the following result that lets us check the conditions of induc-

tiveness over trajectories as assertions with the small model property. We model rectangular

dynamics using an additional existential quantifier over reals in the time transition. The dis-

cussion that follows is how we are able to convert the relation flow used to define the set of

continuous trajectories with a function flowf defined below. An alternative would be to track

upper and lower bounds of rectangular variables using two clocks, and convert to a timed

automata as done in [30]. To define T N we first define the function flow(v[i],m, t) which

returns a valuation v′[i], such that for each v ∈ Vi if v’s type is not real, then v′[i].v = v[i].v,

but otherwise, v′[i].v = v[i].v + flowrate(m, v)t.

Proposition 5.3 Consider the flow function defined by flowf (v[i],m, t), which returns a

valuation v′[i], such that for each v ∈ Vi if v’s type is not real or its update type is not

continuous, then v′[i].v = v[i].v, but otherwise, v′[i].v = v[i].v + flowrate(m, v)t, where

flowrate(m, v)t = δt, for any δ ∈ [a, b]. Alternatively, consider the flow relation defined by

flowr(v[i],m, t), which returns a set of valuations V [i], where for each v′[i] ∈ V [i], such that

for each v ∈ Vi if v’s type is not real or its update type is not continuous, then v′[i].v = v[i].v,

but otherwise, v[i].v + at ≤ v′[i].v ≤ v[i].v + bt.

Recall from Section 2.4.3 that a pair (v,v′) ∈ T N iff:

∃ te ∈ R≥0 : ∀ i : [N] : ∃ l ∈ Loc :

∧ ∀tp ≤ te : flow(v[i], l, tp) |= inv(l, i)

∧ ∀tp ≤ te : flow(v[i], l, tp) |= stop(l, i)⇒ tp = te

∧ v′[i] ∈ flowr(v[i], l, te).

98

Consider the alternative definition of T Nf , where a pair (v,v′) ∈ T Nf iff:

∃ te ∈ R≥0 : ∀ i : [N] : ∃δ ∈ R≥0∃ l ∈ Modei :

∧ ∀tp ≤ te : flow(v[i], l, tp) |= inv(l, i)

∧ ∀tp ≤ te : flow(v[i], l, tp) |= stop(l, i)⇒ tp = te

∧ v′[i] = flowf (v[i], l, te).

Then, the sets of trajectories under these definitions are the same, T N = T Nf .

Proof : We show T N ⊆ T Nf and T Nf ⊆ T N . It is clear that T Nf ⊆ T N . For T N ⊆ T Nf ,

take any trajectory τ ∈ T N . The valuation of any variable v at state v′ along τ satisfies

v[i].v + at ≤ v′[i].v ≤ v[i].v + b[t]. Consider a trajectory under the other semantics, where

the first state along this trajectory x satisfies x[i].v = v[i].v for each i ∈ [N] and each variable

v. Suppose δ = 1
t

∫ t
0
v(t)dt, where v(t) is the actual choice of flowrate(m,v[i].v) over the

length of the trajectory. This integral must exist, and thus we have picked δ as the average

flow rate over the trajectory of length t. Since flowrate(m,v[i].v) ∈ [a, b] for a = lflowrate

and b = uflowrate, which is a convex set, and δ ∈ [a, b] is also a convex set, we have that

for this choice of δ, x[i].v + δt ∈ τ . Thus, τ ∈ T Nf .

5.3 Applying the Small Model Theorem to Check Inductive

Invariants

For an automaton networkAN , an inductive invariant assertion is a logical sentence involving

the variables in Vi (recall Definition 2.4). We require the invariant assertions to have all the

universal quantifiers precede the existential quantifiers. Thus, an invariant assertion is of the

form Γ(N)
∆
= ∀i1, . . . , ik ∈ [N] : ∃j1, . . . , jm ∈ [N] : ϕ, where ϕ is a quantifier-free formula

involving the index variables i1, . . . , ik, j1, . . . , jm, and the global and array variables in Vi

for each i ∈ ivars(ϕ).

99

For example, in the case of SATS, the assertion specifying a safe separation of aircraft is:

∀i, j ∈ [N] : (i 6= j ∧ q[i] = base ∧ q[j] = base ∧ next[j] = i)⇒ x[i]− x[j] ≥ LS.

That is, if there is an aircraft i attempting to land, the aircraft immediately ahead of it is

at least LS distance away.

In the remainder of this section, we show how inductive invariant assertions for param-

eterized networks of hybrid automata can be stated as LH-assertions. For the purposes of

this presentation, we assume that there are no global variables. It can be checked in a

straightforward manner that these derivations hold for systems with global variables. We

recall (Definition 2.4) that an assertion Γ(N) is an inductive invariant for the parameterized

network AN if, for all N ∈ N,

(A) initiation: for each state v ∈ ΘN ⇒ v |= Γ(N),

(B) transition consecution: for each (v,v′) ∈ DN , v |= Γ(N)⇒ v′ |= Γ(N), and

(C) trajectory consecution: for each (v,v′) ∈ T N , v |= Γ(N)⇒ v′ |= Γ(N).

We derive an LH-assertion for each of the above conditions.

From the definition of the initial states, v ∈ ΘN iff ∀i ∈ [N] : v[i] |= Initi, where recall

that Initi is a formula involving the variables in Vi. Thus, condition (A) is equivalent to

checking:

(∀i ∈ [N] : Initi)⇒ (∀i1, . . . , ik ∈ [N] : ∃j1, . . . , jm ∈ [N] : ϕ).

Moving the quantifiers of Γ(N) to the front, we obtain:

∀i1, . . . , ik ∈ [N] : ∃j1, . . . , jm ∈ [N] : (∀i ∈ [N] : Initi ⇒ ϕ),

≡ ∀i1, . . . , ik ∈ [N] : ∃i, j1, . . . , jm ∈ [N] : (Initi ⇒ ϕ),

which is an LH-assertion.

From the definition of discrete transitions DN (recall Section 2.4.3), condition (B) can be

100

written:

(Γ(N) ∧(∃h ∈ [N] : ∃t ∈ Transh : grd(t, h) ∧ eff(t, h))

∧ ∀j ∈ [N] : j 6= h⇒ id(j))⇒ Γ(N)′.

Here, id(i) is a shorthand for the formula
∧
x[i]∈Vi

x[i]′ = x[i], and Γ(N)′ is the formula

obtained by replacing each variable in Γ(N) with its primed version. Moving the quantifier

to the front and rearranging we obtain:

∀h, t : ∃j :(Γ(N) ∧ grd(t, h) ∧ eff(t, h) ∧ (j 6= h⇒ id(j))⇒ Γ(N)′).

Exposing the quantifiers in Γ(N) and Γ(N)′:

∀h, t :∃k : ((∀i1, . . . , ik : ∃j1, . . . , jm : ϕ) ∧ grd(t, h) ∧ eff(t, h) ∧

(j 6= h⇒ id(j))⇒ (∀ i′1, . . . , i′k : ∃ j′1, . . . , j′m : ϕ′)).

Moving quantifiers to the front of the formula across the implication, we obtain:

∀h,t, j1, . . . , jm, i′1, . . . , i′k : ∃j, i1, . . . , ik, j′1, . . . , j′m :

((ϕ ∧ grd(t, h) ∧ eff(t, h) ∧ (j 6= h⇒ id(j)))⇒ ϕ′).

As t is universally quantified over the finite set of transitions Transi, it is removed by writing

the above as a finite conjunction, and is an LH-assertion.

Finally, by the definition of trajectories T N , condition (C) can be written as:

Γ(N) ∧ (∃te ∈ R : ∀h ∈ [N], tp ∈ R : ∃m ∈ Loc : inv(m, h) ∧ (stop(m, h)⇒ t2 = t1)∧
x∈X[h]

x[h] + tplflowrate(m, h, x) ≤ x[h]′ ≤ x[h] + tpuflowrate(m, h, x))

⇒ Γ(N)′, (5.5)

where inv and stop have all continuously updated real array variables replaced with primed

101

versions using a time-elapse of tp, and X[h] are the continuously updated real local variables.

The conversion of Equation 5.5 to an LH-assertion is essentially the same as the discrete

case, but more tedious. The easiest way to see this is first to convert to prenex normal

form (PNF). In summary, these derivations show how we can check inductive invariants

as LH-assertions for networks of hybrid automata using the small model result introduced

above.

5.4 Summary

In this chapter, we develop a small model theorem for parameterized networks of hybrid

automata. We use this theorem to establish inductive invariant properties for several case

studies in Chapter 7. To the best of our knowledge, this is the first positive result on au-

tomatic parameterized verification of hybrid automata, beyond previous results for timed

automata [32, 33, 47–50, 92, 94, 106]. The modeling framework and process of inductive in-

variant checking are amenable to automation, so we have implemented the ability to au-

tomatically check the inductive invariance conditions in the prototype software verification

tool Passel using the SMT solver Z3. One weakness of the inductive invariance method is

that the user is required to specify a strong enough inductive invariants to imply the desired

safety property—for instance, mutual exclusion in Fischer is not an inductive invariant, and

safe separation in SATS is not either—so one must find a stronger property that implies the

desired safety property and is an inductive invariant). While Passel aids the user in this task

by providing counterexample models, she/he must still manually perform the strengthening,

so methods to automatically generate or strengthen invariants—such as invisible invari-

ants [41–43,45,46]—or k-induction [163,164] would be useful. We explore finding invariants

automatically using an extension of the invisible invariants approach in Chapter 6.

102

Chapter 6

Finding Inductive Invariants

In this chapter, we present methods for finding candidate inductive invariants for parame-

terized networks of hybrid automata. The invariant synthesis method generates quantified

inductive invariants by transforming the set of reachable states of finite instantiations of the

network. This is an extension to hybrid automata of the invisible invariants method for syn-

thesizing inductive invariants for parameterized networks of discrete automata [41, 42]. We

use this extended method in a fixed-point procedure we use to generate inductive invariants

of a certain class of assertions for the parameterized network of hybrid automata. These can-

didate inductive invariants are then checked using the method described in Chapter 5, and

prove the safety property of interest if the inductive invariants imply the safety property.

6.1 Introduction

For finding candidate inductive invariants for hybrid networks, our approach builds upon the

invisible invariant method used for discrete transition systems [41–43,46,165]. The invisible

invariants method combines the standard inductive invariance proof method—recall Defini-

tion 2.4—with reachability computations to automatically perform uniform verification of

safety, that is, to prove a safety property ζ(N) for any network AN of any size N (Defini-

tion 2.5). The invisible invariant method starts by computing the set of reachable states for

a small instantiation of the network. Say for N = 3, the reach set (or its approximation) for

the network A3 ∆
= A(1)‖A(2)‖A(3) is computed. Then this set is projected onto a smaller

instance of size P < N. Finally, this projected subset is generalized to produce a candidate

invariant for a network of arbitrary size. The user’s choice of P determines the shape of

the generated invariant. For P = 1 the invariant asserts properties about the variables of

103

a single automaton, for P = 2 the properties may include linear inequalities involving pairs

of automata, and so forth. In our methodology, the user may choose the projection to be

made onto a subset of the variables of the automata in the P-sized network, such as only

the real or discrete variables. This choice proves to be crucial in some of the case studies. If

the generated candidate invariant is inductive and sufficient to prove some safety property

ζ(N), then a completely automatic inductive invariance proof is obtained.

The project-generalize method is incomplete even for discrete systems [42]. The candidate

invariants generated by our method may not be inductive nor are they guaranteed to prove

ζ(N). However, we use the project-generalize method as a subroutine in a fixed-point

algorithm that is guaranteed to terminate with either an automated proof of ζ(N) or a

potential counterexample as to why ζ(N) may be violated. The algorithm may generate an

inductive invariant with a user chosen number (P) of universally quantified automata indices

for arbitrarily large networks. We implement the algorithm in Passel to yield the first

fully automatic proof of correctness for several nontrivial hybrid networks. Notable among

these are the core of SATS air-traffic control protocol [2, 26, 27], as well as Fischer’s mutual

exclusion protocol with drifting clocks.1 The synthesis method finds non-trivial invariants

that imply collision avoidance in SATS and mutual exclusion in Fischer.

We overcame several conceptual and technical challenges to extend the invisible invari-

ant method to networks of hybrid automata. First, unlike the methods for discrete mod-

els [41–43, 46, 165] which primarily use BDDs for representing states—as implemented in

TLV [166]—we require a symbolic representation for expressing multiple types of variables

and state updates involving real arithmetic for modeling real-valued variables and their con-

tinuous evolution. In Passel, the states, transitions, and continuous trajectories are repre-

sented using Passel assertions represented as satisfiability modulo theories (SMT) formulas.

This is made possible by our observation that for rectangular hybrid automata with convex

invariants and stopping conditions, the (possibly nondeterministic) trajectories can be en-

coded by transition rules that involve a finite number of existentially quantified real-valued

variables. With this representation, checking the inductive invariance conditions (Defini-

1Previous parameterized verification of Fischer’s protocol assumed clocks evolving at unit rate ẋ = 1 [32,
47,49], while we model rectangular dynamics ẋ ∈ [1− ρ, 1 + ρ].

104

tion 2.4) is done with satisfiability queries, which we perform in Passel using the Z3 SMT

solver [136]. Passel uses the hybrid automata model checker PHAVer [39] for computing the

reach sets for finite instances of the network, although it can also be accomplished using the

SMT-based reachability method we present in Chapter 4. Second, the reach set of a finite

instance is encoded in a disjunctive normal form (DNF) formula that grows exponentially

with the number of instances in the network, as well as with the number of discrete locations

and continuous variables of each automaton component. Naively checking satisfiability of

these formulas becomes infeasible beyond the simplest of examples. To overcome this, we

exploit logical equivalences—such as existential quantification distributing over disjunction—

to decompose the problem into smaller, equivalent representations of the reach set encoding.

This makes it possible to compute projections and generalizations of different pieces of the

invariant separately, which are then combined together in a final step.

In the following sections, N and P are fixed natural numbers with P < N and N ≥ 2 (e.g.,

P = 2, N = 3), and we recall N is a symbol denoting an arbitrary natural number.

6.2 Synthesizing Inductive Invariants with the

Project-and-Generalize Subroutine

This section describes methods for synthesizing inductive invariants for parameterized net-

works of hybrid automata. If a safety property ζ(N) itself is not an inductive invariant for

AN , as is often the case, then we attempt to find stronger inductive invariants that imply

ζ(N). We recall the general inductive invariance proof methodology from Chapter 5 of Fig-

ure 5.1, where either a user must supply a sufficiently strong candidate inductive invariant

to prove a safety property, or the verification tool may try to come up with one. In this

section, we first present the project-and-generalize subroutine, and then an algorithm that

uses it for synthesizing inductive invariants.

The project-and-generalize subroutine is shown in Figure 6.1. This subroutine takes two

input parameters N and P. The subroutine first computes the reachable states of a network

AN of size N, and then through a sequence of transformations generates a candidate inductive

invariant with P universally quantified index variables for a network AN of arbitrary size N .

105

function projectAndGeneralize(AN, θ(N,P), N, P) {

2 V ← ∪i∈[N]\[P]Vi
R ← Reach(AN, θ(N,P)) // assume in DNF: R = r1 ∨ r2 ∨ . . .

4 foreach r in R {

// p r o j e c t onto v a r i a b l e s o f p r o c e s s e s 1, 2, . . . ,P
6 QF [r] ← QuantElim(∃V : r)

// s y n t a c t i c a l l y s u b s t i t u t e 1, 2, . . . ,P to symbols i1, . . . , iP
8 foreach n in {1, 2, . . . ,P} {

QF [r] ← Substitute(QF [r], "n", "in")
10 }

// a b s t r a c t index−va lued v a r i a b l e v a l u a t i o n s t h a t are > P
12 foreach variable v in Vi with type(v) = [N]⊥ {

foreach n in {P + 1,P + 2, . . . ,N} {

14 QF [r] ← Substitute(QF [r], "v = n", "v 6= i1 ∧ . . . ∧ v 6= iP")
}

16 }

}

18 ψ(i1, . . . , iP) ←
∨
r∈RQF [r]

return ψ(i1, . . . , iP)
20 }

Figure 6.1: Inductive invariant synthesis subroutine. The input arguments are the network
AN (previously composed from the specification A(N, i)), a formula θ describing an initial
set of states, a constant integer N, and a constant integer P, where N > P. The method
computes the set of reachable from θ for a network of N automata, then transforms this reach
set into an assertion ψ(i1, . . . , iP) over the variables of automata with (symbolic) indices i1,
i2, . . ., iP.

Reachability Computation (line 3). The reach set Reach(AN) or its overapproximation

is computed for the hybrid network AN with N automata. For general hybrid automata,

computing the exact reach set is undecidable, however, there are several tools available for

computing bounded-time overapproximations like HyTech [37], PHAVer [39], or SpaceEx [40].

This step can use any such tool. In the results presented in this dissertation (see Section 7.8),

Passel uses PHAVer [39], however, it also supports the SMT-based reachability approach we

present in Chapter 4. The output of this step is Reach(AN) as a disjunctive normal form

(DNF) formula over the variables of A(1), . . ., A(N).

Assumption 6.1 For a given hybrid automaton template A(i) and natural number N, the

reachability computation of the network AN (Definition 2.2) at line 3 terminates and is exact,

yielding Reach(AN).

106

function synthesis(A(N, i), Init(N), N, P) {

2 A ← A1‖A2‖ . . . ‖AN

θ(N,P) ← Init(N)
4 θold(N,P) ← ⊥

// f i x e d−po in t check
6 while θ(N,P)⇒ θold(N,P) is valid {

ψ(i1, . . . , iP) ← projectAndGeneralize(AN, θ(N,P), N, P)

8 θold(N,P) ← θ(N,P)

θ(N,P) ← ∀̇i1, . . . , iP ∈ [N] : ψ(i1, . . . , iP)
10 }

return ψ(i1, . . . , iP)
12 }

Figure 6.2: Inductive invariant synthesis fixed-point method. The input arguments are
an automaton specification A(N , i), an initial condition assertion Init, a constant natural
number N, and a constant natural number P, where P < N. The fixed-point computation
starts with the initial states specified by Init, then iteratively computes and transforms the
reachable states of the network AN to a fixed-point. The output of the method is a candidate
inductive invariant ψ(i1, . . . , iP).

Projection of Reach(AN) (loop lines 4 through 17). The loop iterates over each clause

r ∈ Reach(AN).2 Given a clause r in Reach(AN), we project away the variables of any

automata with indices greater than P. Recall that P specifies the number of universally

quantified index variables in the invariant to be synthesized. Passel computes the projection

using quantifier elimination procedures—represented by function QuantElim (line 6)—over

the types of the variables Vi. These formulas (predicates over Booleans, linear real arithmetic,

bounded integers, and their combinations) admit quantifier elimination. Based on the value

of P, the quantifier elimination on line 6 is applied to QF [r]
∆
= ∃ ∪i∈[N]\[P] Vi : r, which

projects away the variables of all automata with indices higher than P. In general, Passel

projects away some subset of the variables Vi, for example, onto only the variables with

discrete types or real types.

For example, in Fischer, one of the clauses in Reach(AN) is:

r
∆
= (q[1] = wait ∧ q[2] = wait ∧ −5 ≤ −x[1] + x[2] ≤ 0 ∧ g = 2 ∧ x[2] ≥ 0). (6.1)

2Since existential quantification distributes over disjunction, we consider each clause at a time.

107

For P = 1, after executing QuantElim, the variables of automaton 2 are eliminated to yield:3

QF [r]
∆
= ∃V2 : r ≡ ∃q[2] ∈ L,∃x[2] ∈ R : r ≡ (q[1] = wait ∧ 5 ≥ x[1] ≥ 0 ∧ g = 2).

(6.2)

Generalization of Projected Clauses (lines 8 through 16). Next, the Substitute

function syntactically substitutes expressions in QF [r]. The generalization syntactically

replaces all valuations of index variables equal to a value in [P] with fresh index symbols

i1, i2, . . . , iP (lines 8 through 10). Continuing with the r from the Equation 6.2 example, the

index 1 is replaced with i1 yielding:

QF [r]
∆
= (q[i1] = wait ∧ 5 ≥ x[i1] ≥ 0 ∧ g = 2). (6.3)

The valuations of index-valued variables in Reach(AN) that exceed P are transformed to be

not equal to any of the symbols i1, . . ., iP (lines 12 through 16).4 In the example, QF [r] has

index 2 for valuations of the index-valued global variable g after projection and replacing

1 with i1. We abstract such valuations by looking at each index-valued variable v, if the

valuation v = k where k ≤ P, then set v = ik, and otherwise for k > P or k = ⊥, set

v 6= i1 ∧ . . . ∧ v 6= iP. Continuing the example r from Equation 6.3, we have:

QF [r]
∆
= (q[i1] = wait ∧ 5 ≥ x[i1] ≥ 0 ∧ g 6= i1),

which contains symbolic indices i1, . . ., iP, but no numerical indices.

Combining Clauses. Following these transformations of all r’s, we take the disjunction

of QF [r] for all r ∈ R (line 18). This is the formula ψ(i1, . . . , iP). A quantified formula is

then created as (Figure 6.2, line 9):

θ(N,P) = ∀̇i1, i2, . . . , iP ∈ [N] : ψ(i1, i2, . . . , iP),

3We note that q[2] and x[2] are constants for the quantifier elimination and not functions mapping indices
to their types, as otherwise this would fall into second-order logic.

4We assume only equalities over any index typed variables appear in r, which is not a restriction since
[N]⊥ is a finite set.

108

where ∀̇ indicates that all the quantified indices are distinct. Since N is a finite number

(e.g., 3), we could convert θ(N,P) to a conjunction. However, for an arbitrary N like in the

inductive invariance checks in Figure 5.1, Passel uses the quantifiers as in Figure 5.1, line 4.

Summary. In summary, each iteration of the loop in Figure 6.2, lines 6 through 10, which

calls the function projectAndGeneralize, computes the reach set Reach(AN)—a subset of the

state-space QN—then projects this onto a smaller state-space QP, and then lifts this back to

QN. Although our description above is in terms of the syntactic objects and logical formulas,

these operations can be described in terms of mappings between the subsets of QN and QP.

We reason about monotonicity of this procedure in terms of these mappings. With N fixed

for Figure 6.1, projectAndGeneralize defines a mapping f : Pow(QN)→ Pow(QN) that takes

a set of states Jθ(N,P)K and returns a set of states Jψ(i1, . . . , iP)K.

Proposition 6.2 Let f : Pow(QN)→ Pow(QN) be the mapping corresponding to the oper-

ations of projectAndGeneralize. Under the set inclusion partial order (⊆), f is monotonic.

Proof : We show for any x, y ⊆ QN, if x ⊆ y, then f(x) ⊆ f(y). We prove this for each of the

four operations that constitute projectAndGeneralize—that is, the reachability computation

(line 3), the projection (line 6), the abstraction of index-valued variables (line 12), and the

generalization (line 12).

Fix some x ⊆ QN and y ⊆ QN satisfying x ⊆ y. First, the reachability computation

(line 3) defines a mapping π : Pow(QN) → Pow(QN), where π(x) = Reach(AN,x), and

we have π(x) ⊆ π(y). Most common algorithms computing (sound) overapproximations of

Reach(AN) are also monotonic.

Next, we consider some clause r ∈ R (from the loop on line 4), where R is the DNF

representation of Reach(AN, .). That is, JrK ⊆ Reach(AN, .) ⊆ QN. The projection (line 6)

defines a mapping ρ : Pow(QN)→ Pow(QP), where P < N. That is, for any r′ ⇒ r, Jr′K⊆ JrK

⊆ QN and Jρ(r′)K ⊆ Jρ(r)K ⊆ QP, and hence ρ is monotonic. Next, the abstraction of index-

valued variables in line 12 defines a mapping α : Pow(QP)→ Pow(QP). Since α substitutes

explicit values of index-valued variables, for instance, v = n for some n > P with symbolic

v 6= i1 ∧ . . . v 6= iP, it maps to an equal or larger set of states by considering every possible

109

valuation of i1 through iP, so α is monotonic. Since each transformation in the loop line 4 is

monotonic for each clause r in R, the transformation of R is also monotonic. Finally, consider

the generalization on line 9, which defines a mapping γ : Pow(QP) → Pow(QN). For any

x,y ⊆ QP, if x ⊆ y, then γ(x) ⊆ γ(y) is satisfied, since γ is just the identity mapping

(modulo renaming). Since all operations are monotone under the set inclusion partial order

and the compositions of monotonic functions are monotonic, the composition, f = γ ◦ α ◦

ρ ◦ π is monotonic.

Next, we state that projectAndGeneralize terminates.

Proposition 6.3 Under Assumption 6.1, the function projectAndGeneralize terminates.

Proof : Under Assumption 6.1, so line 3 terminates and returns a formula R describing the

set of reachable states Reach(AN) in disjunctive normal form (DNF). The reach set R is a

disjunction of conjuncts, of which there are a finite number, so line 4 is called at most a

finite number of times. Next, each iteration of all the operations in the loop line 4 terminate.

Real arithmetic and Boolean algebras admit quantifier elimination, as do their combinations,

so line 6 terminates [167–170]. Each of the loops starting with lines 8 and 12 involves a finite

number of syntactic manipulations (substitutions) of finite-length formulas, and hence each

terminate. Finally, line 9 involves syntactic manipulations (quantification) of finite-length

formulas, and hence terminates.

6.3 Project-and-Generalize Example

In this section, we go through the synthesis procedure using the TMUX example from Fig-

ure 6.3. Suppose we want to synthesize inductive invariants with P = 1 universally quantified

index variables of the form ψ(N) = ∀i1 ∈ [N] : φ(i1), where φ(i1) is a quantifier-free formula

over the variables Vi1 . We accomplish this by computing reachability of finite instantiations

N, and transforming this set into an inductive invariant for any N ∈ N. First, the reach

set Reach(AN) of a network with a finite fixed number N > P ∈ N of automata is computed

110

automaton name=’TMux’

2 // l o c a l v a r i a b l e s
variable name=q[i] type=’L’ // c o n t r o l l o c a t i o n

4 variable name=x[i] type=’real’ // continuous v a r i a b l e
// g l o b a l v a r i a b l e s

6 variable name=g type=’index ’ // g l o b a l l o c k

8 location name=’rem’

flowrate: x[i]_dot >= 1.0 and x[i]_dot <= 2.0

10 location name=’try’
flowrate: x[i]_dot >= 3.0 and x[i]_dot <= 4.0

12 location name=’cs’
flowrate: x[i]_dot >= 5.0 and x[i]_dot <= 6.0

14
transition from=’rem’ to=’try’

16 grd: g = ⊥ and x[i] >= 5.0

ugrd: x[j] >= 10.0

18 eff : x[i]′ = 0.0 and g′ = i

transition from=’try’ to=’cs’
20 grd: g = i and x[i] >= 10.0

eff : x[i]′ = 0.0

22 transition from=’cs’ to=’rem’

grd: x[i] >= 15.0

24 eff : g′ = ⊥ and x[i]′ = 0.0

26 property: forall i j ((i != j and q[i] = cs) implies (q[j] != cs))
initially: forall i (q[i] = rem and x[i] = 0 and g = ⊥)

Figure 6.3: Passel input file specifying A(N , i) for simple mutual exclusion algorithm TMUX.

(line 3).5 For the example, we denote local variables using underscore notation instead of

brackets for brevity, e.g., x[1] is x1. For the example, suppose N = 2 so we have a formula

Reach(AN) corresponding to the reach set:

Reach(AN)
∆
= (q1 = rem ∧ q2 = rem ∧ g = ⊥ ∧ x1 ≥ 0 ∧ x2 ≥ 0) ∨

(q1 = try ∧ q2 = rem ∧ g = 1 ∧ 4x2 ≥ x1 + 40 ∧ x1 ≥ 0) ∨ (6.4)

(q1 = rem ∧ q2 = try ∧ g = 2 ∧ x2 ≥ 0 ∧ 4x1 ≥ x2 + 40) ∨ (6.5)

(q1 = rem ∧ q2 = cs ∧ g = 2 ∧ x2 ≥ 0 ∧ 6x1 ≥ x2 + 75) ∨

(q1 = cs ∧ q2 = rem ∧ g = 1 ∧ 6x2 ≥ x1 + 75 ∧ x1 ≥ 0).

Note that Reach(AN) is in disjunctive normal form (DNF).

Next, for each conjunct r in Reach(AN), we project away the variables of any automata

with indices greater than P = 1, since we want to synthesize an inductive invariant with

5For hybrid automata with dynamics specified by general (e.g., nonlinear or even linear) ordinary differ-
ential equations, this may be undecidable or yield an overapproximation of the reach set.

111

P (one) universally quantified index variables (line 6).6 This projection can be computed

using quantifier elimination procedures over the types of the variables Vi, and is how we

accomplish this in Passel. For example, suppose r is from Equation 6.4, that is,

r
∆
= (q1 = try ∧ q2 = rem ∧ g = 1 ∧ 4x2 ≥ x1 + 40 ∧ x1 ≥ 0).

Next, by projecting away the variables of automaton 2 at line 6, we have:

QF [r] = ∃V2 : r

= ∃q2 ∈ L,∃x2 ∈ R : r

= (q1 = try ∧ g = 1 ∧ x1 ≥ 0).

Based on the value of P, the projection on line 6 is:

QF [r]
∆
= ∃VN \ (

⋃
i∈[P]

Vi) : r,

which projects away the variables of all automata with indices higher than P when eliminating

VN. In general, we project away some subset of the variables VN, for example, onto all the

real or discrete variables. We have found in practice that it is useful to project away all

but variables except the discrete ones (variables with types L and [N]⊥), only the control

location variables and real variables, and combinations of these with and without projecting

any global variables away. Passel uses all these heuristics.

Next, we syntactically manipulate QF [r] in order to determine a quantified assertion for

any choice of the number of automata N . We define the generalization by syntactically

replacing all valuations of index variables equal to a value in [P] with fresh index variables

(symbols) i1, i2, . . . , iP (line 8). For the TMux example, we replace 1 with i1 yielding:

QF [r]
∆
= (qi1 = try ∧ g = i1 ∧ xi1 ≥ 0).

6Since existential quantification distributes over disjunction, we consider each conjunct at a time. This
is one difference in our method from the original invisible invariants methods, and since that approach was
implemented using BDDs, all of these operations were done on the whole reach set, whereas our representation
of state is through formulas over Booleans, (bounded) integers, and reals.

112

For this QF [r] ∈ Reach(AN), we are finished. However, QF [r] may still contain index two

for valuations of the index-valued global variable g after replacing one with i1, for instance

in Equation 6.5:

r
∆
= (q1 = rem ∧ q2 = try ∧ g = 2 ∧ x2 ≥ 0 ∧ 4x1 ≥ x2 + 40),

QF [r]
∆
= (qi1 = rem ∧ g = 2 ∧ xi1 ≥ 10.0).

Thus, we must take additional care in generalizing any index-valued variables (line 12). Since

some of the valuations of index-valued variables in Reach(AN) will exceed P (since P < N),

we must transform these valuations to symbols equal (or not equal) to i1, . . . , iP. The process

described by line 12 is: for any index-valued variable v, if the valuation v = k where k ≤ P,

then set v = ik, and otherwise for k > P or k = ⊥, set v 6= i1 ∧ . . . ∧ v 6= iP. For the TMux

example for r from Equation 6.5, we have:

QF [r]
∆
= (qi1 = rem ∧ g 6= i1 ∧ xi1 ≥ 10.0),

which is now ensured not to contain any indices or index-valued variable valuations other

than the symbols i1, . . ., iP.

Finally, we take the disjunction of the QF [r]’s for all r ∈ R (line 18). For the TMux

example, this yields the assertion:

φ(i1)
∆
= (qi1 = rem ∧ g 6= i1 ∧ xi1 ≥ 0)∨

(qi1 = rem ∧ g 6= i1 ∧ xi1 ≥ 10.0)∨

(qi1 = rem ∧ g 6= i1 ∧ xi1 ≥ 12.5)∨

(qi1 = try ∧ g = i1 ∧ xi1 ≥ 0)∨

(qi1 = cs ∧ g = i1 ∧ xi1 ≥ 0).

Finally, a quantified formula θ(N,P) (Figure 6.2, line 9) is created as:

θ(N,P) = ∀̇i1, i2, . . . , iP ∈ [N] : ψ(i1, i2, . . . , iP),

113

where ∀̇ indicates that all the quantified index variables are distinct (i.e., i1 6= i2 . . . 6= iP). At

this point, since N is a fixed, finite number (e.g., 3), we could convert θ(N,P) to a conjunction,

but for an arbitrary N , we would need the quantifiers. To summarize, projectAndGeneralize

computes the reach set—a subset of the state-space QN—then projects this onto a smaller

state-space QP, and then lifts back to QN, with the hope that it will be an inductive invariant

in QN for networks AN of arbitrary size N .

6.4 Inductive Invariant Synthesis Fixed-Point Procedure

In this section, we present an algorithm (see Figure 6.2) that uses projectAndGeneralize for

synthesizing inductive invariants of hybrid automata networks. First, we compute the com-

position AN of a fixed number N of automaton A(N, i), by first instantiating each A1, . . .

AN and then taking their composition. This composed automaton is an input argument for

projectAndGeneralize (line 2). The synthesis procedure repeatedly calls projectAndGeneralize

to generate assertions ψ(i1, . . . , iP). We fix N, P, and AN, and denote the mathematical

function computed by projectAndGeneralize(AN, θ(N,P),N,P) by f(θ(N,P)) and suppress the

other arguments. The first iteration of f uses the set of initial states ΘN as the initial

state argument of projectAndGeneralize, then subsequent iterations use the set of states cor-

responding to the generated assertion θ(N,P) from line 9 as a new set of initial states. Since

N is a fixed integer, the formula θ(N,P)
∆
= ∀̇i1, . . . , iP ∈ [N] : ψ(i1, . . . , iP) from line 9 is

equivalent to a finite conjunction. Once synthesis reaches a fixed-point (shown below), the

final assertion is used as a candidate inductive invariant for the network composed of an

arbitrary number N of automata A(N , i).

We first recall Kleene’s fixed-point theorem [171].

Theorem 6.4 Let Λ = (S,⊆) be a complete partial order, and let f : Λ→ Λ be a monotone

function. Then f has a least fixed-point, which is the least fixed-point (supremum) of the

ascending Kleene chain of f , ⊥ � f(⊥) � f(f(⊥)) � . . . � f ∗N,P(⊥).

Here, Λ = (Pow(QN),⊆) is described by the subset partial order relation (�=⊆) on the set

of subsets of the state-space (S = Pow(QN)). The function f : Pow(QN) → Pow(QN) is

114

described by the procedures of projectAndGeneralize, as used earlier in Proposition 6.2, where

it is called repeatedly in the loop at line 6.

Proposition 6.5 Under Assumption 6.1, the synthesis function (Figure 6.2) terminates and

its output ψ is the least fixed-point f ∗N,P of the function f .

Proof : With Assumption 6.1, by Proposition 6.3, projectAndGeneralize terminates. The par-

tial order Λ = 〈Pow(QN),⊆〉 is complete and f is monotonic under ⊆ (by Proposition 6.2),

therefore, by Kleene’s fixed-point theorem (Theorem 6.4), the loop terminates and the com-

puted ψ is the least fixed-point of f .

Proposition 6.6 For a hybrid automaton network AN with initial assertion Init
∆
= ∀i ∈ [N] :

Initi, there exists an assertion θ(N,P)
∆
= ∀̇i1, . . . , iP ∈ [N] : ψ(i1, . . . , iP) such that the least

fixed-point f ∗N,P is θ(N,P).

Proof : By the synthesis routine, each iteration has f with the shape ∀̇i1, . . . , iP ∈ [N] :

ψ(i1, . . . , iP). By Proposition 6.5, f ∗N,P is the least fixed-point of f , and is thus the strongest

assertion with the given shape that can be computed as the fixed-point of f .

The next proposition allows us to conclude whether AN has any inductive invariants of

the shape generated using P quantified indices that is sufficient for proving ζ(N), by checking

if the least fixed-point f ∗N,P is an inductive invariant and implies ζ(N).

Proposition 6.7 Given N, P ∈ N, the following statements are equivalent:

(a) there exists an inductive invariant θ(N,P) with the shape ∀i1, . . . , iP ∈ [N] : ψ(i1, . . . , iP)

such that θ(N,P)⇒ ζ(N), and

(b) the least fixed-point f ∗N,P ⇒ ζ(N).

Proof : (b)⇒ (a): By (b), f ∗N,P(Init)⇒ ζ(N), then it follows that θ(N,P)⇒ ζ(N). (a)⇒ (b):

By (a), there is some θ(N,P) such that θ(N,P) ⇒ ζ(N). Since f ∗N,P is the least fixed-point,

we have f ∗N,P ⇒ θ(N,P), so we also have f ∗N,P ⇒ ζ(N).

115

Up to this point, everything has been for a fixed sized network AN of N automata. If the

class of systems under consideration satisfies a small model theorem (Theorem 5.2), then

it is possible to state a completeness result, namely that synthesis generates an inductive

invariant of a particular shape (quantifier order) for networks AN composed of an arbitrary

number N of automata. For example, one such result appears in [43] as Theorem 5. This

result can be applied to parameterized networks of initialized rectangular hybrid automata

(IRHA) by converting the initialized rectangular hybrid automaton template to a finite-state

automaton using the method of [30].

6.5 Summary

This chapter presents two methods for finding candidate inductive invariants for param-

eterized networks of hybrid automata. The first method, project-and-generalize—inspired

directly from the original works on finding invariants for discrete networks using the invisible

invariants method [41,42]—computes the reachable states for small instantiations of the net-

work, then transforms this set by projecting and generalizing it to a candidate invariant with

a certain shape of quantification for the parameterized network. The method is necessarily

incomplete, in that it fails to generate candidate invariants for networks even of a particular,

restricted shape of quantification (for example, all universally quantified indices, ∀i1, i2, . . .).

For this reason, we use the method as a subroutine in a fixed-point synthesis procedure used

to generate candidate invariants of a certain shape namely ∀i1, i2, . . . : φ(i1, i2, . . .). If this

invariant does not prove a desired safety property, the user can manually refine the proof of

inductive invariance by searching for candidates with other shapes (for example, ∃i∀j∃k).

While it is possible to dualize the search (see [43]) to find candidates of the form ∃∗ instead of

∀∗, finding candidates with alternating shapes would require different techniques, although

some completing techniques for discrete systems might be applicable, such as [172]. We

implement the methods in the Passel verification tool that we describe in detail in Chap-

ter 7. We experimentally evaluate the methods in Section 7.8, where they have been applied

successfully to fully automatically prove safety for several case studies like Fischer’s mutual

exclusion and SATS.

116

Chapter 7

Passel and Experimental Evaluation

Passel—which is a collective noun meaning a large group of people or things of indetermi-

nate number—is a software tool developed as a part of this dissertation for modeling and

verifying safety properties for parameterized networks of hybrid automata. In this chapter,

we describe some of the engineering and design choices made in developing Passel, as well

as several other case studies modeled and verified using Passel.1 We present promising ex-

perimental results where the invariant synthesis procedures of Chapter 6, combined with the

inductive invariance checks of Chapter 5, have been useful in automatically proving safety

properties of examples like Fischer’s mutual exclusion protocol with rectangular dynamics

instead of clocks, the SATS conceptual air-traffic control protocol, and others. We also

present promising experimental results for the symmetry-reduced reachability computation

of finite instantiations of networks of hybrid automata of Chapter 4.2

7.1 Introduction

In this chapter, we present Passel, a software tool that embodies the uniform verification

techniques for parameterized networks of hybrid automata discussed in the previous chap-

ters. Given a safety property ζ(N) parameterized by the size N of the network, and a

rectangular hybrid automaton template A(N , i), Passel attempts to verify that for any

natural number N , the parameterized network of size N obtained by the parallel com-

position A(1)‖ . . . ‖A(N) satisfies ζ(N). Rectangular hybrid automata admit continuous

dynamics of the form ẋ ∈ [a, b], which can exactly describe continuous variables with con-

1Passel, the specification files for the examples evaluated, and output logs illustrating anonymized repre-
sentations of reachable states, inductive invariance proofs, and synthesized inductive invariants are available
for download from https://publish.illinois.edu/passel-tool/.

2This chapter is based in part on prior work [3], portions of which are reprinted here with permission.

117

https://publish.illinois.edu/passel-tool/

stant slope, such as drifting clocks. Rectangular dynamics can also approximate more com-

plex linear and nonlinear differential equations arbitrarily closely up to some bounded time

and over bounded regions of the state-space. We assume that the property to be verified

ζ(N) is an index sentence, that is, all of the index variables are quantified (recall Sec-

tion 2.3.2). For instance, collision avoidance is specified by the index sentence ζ(N) =

∀i, j ∈ [N] : i 6= j ⇒ ‖x[i]− x[j]‖ ≥ S, where x[i],x[j] ∈ R3 and S > 0, and mutual

exclusion is specified by ζ(N) = ∀i, j ∈ [N] : (i 6= j ∧ q[i] = cs)⇒ q[j] 6= cs.

The core of Passel has procedures for checking and finding inductive invariants for hy-

brid networks of arbitrary size, as described respectively in Chapters 5 and 6. For checking

quantified inductive invariants, Passel uses quantifier elimination and instantiation, or ex-

ploits small model properties of the inductive invariant assertions of hybrid networks, such

as Theorem 5.2. Additionally, Passel implements the reachability computation techniques

introduced in Chapter 4 for finite instantiations of hybrid automata networks.

7.2 Overview

The inputs to Passel are:

(a) a syntactic description of a template hybrid automaton, A(N , i), including its variables,

discrete transitions, locations with invariants and rates, initial conditions (such as

presented in Figures 2.1, 2.3, and 4.11),3

(b) a list of safety properties P that should be proved,

(c) an optional list of any parameters used in the protocols,

(d) an optional list of assumptions on the variables and parameters.

These inputs are specified in an extension of the HyXML specification language developed

for specifying hybrid automata [173], as defined in Section 2.3.

Passel supports several modes of operation, including:

3While UPAAAL [38] allows for specifying timed automaton templates like A(N , i) and then computes
AN for a fixed N, all the hybrid systems model checkers (e.g., [37, 39, 40]) require the user to specify each
A1, . . ., AN, and the model checker may then compose these.

118

(a) bounded model checking with respect to each property in P using anonymized reach-

ability (Chapter 4),

(b) checking if each property in P is an inductive invariant (Chapter 5),

(c) creating a PHAVer, [39] input model for a finite instantiation of size N (for use on its

own or in the invariant synthesis method of Chapter 6),4

(d) performing the invisible invariants [41–43,45,46] procedure using PHAVer (that is, only

one iteration of the projectAndGeneralize method of Figure 6.1 from Chapter 6), and

(e) performing the invariant synthesis fixed-point computation using PHAVer (that is, us-

ing the synthesis method of Figure 6.2, which iterates projectAndGeneralize of Figure 6.1

to a fixed-point).

7.3 Implementation

The current implementation of Passel uses the SMT solver Z3 [136] for proving validity,

checking satisfiability, and performing quantifier elimination. Passel is written in C# and

uses the managed .NET API to version 4.2 of Z3. Passel proves validity of a formula φ by

checking unsatisfiability of ¬φ. First, the variables Vi used in defining A(N , i) are specified

to the SMT solver. Passel automatically generates and asserts trivial data-type lemmas that

the SMT solver requires. Next, the list of assumptions given to Passel are asserted as axioms

to the SMT solver.

Passel configures Z3 to use a variety of options, in particular, it requires either having

model-based quantifier instantiation (MBQI) enabled or quantifier elimination enabled, as

otherwise we may receive unknown as a response from Z3 for some satisfiability checks.

Within the SMT solver, we model array variables of automata as uninterpreted functions

mapping a subset of the integers (i.e., the set of process indices) to the type of the variable.

We tried using the theory of arrays for this instead of uninterpreted functions, but the

4We took great care in the development and integration of Passel and PHAVer to ensure consistency of
semantics.

119

performance was significantly worse. Global variables are modeled as constants of their

types.

Reachability Using Anonymized States. The reachability method using anonymized

states of Chapter 4 is implemented in Passel as a fixed-point procedure, shown in the pseu-

docode in Figure 4.3. The initial condition Initi is converted to an anonymized state and

added to the frontier of states, implemented as a hashset. For each anonymized state in the

frontier, any enabled transition is taken, and any resulting anonymized states are added to

the frontier, so long as it is not already in the set of anonymized reachable states, which is

also implemented as a hashset.

Proving Inductive Invariants. Passel implements an automatic method for checking

the conditions for inductive invariance (Definition 2.4) for parameterized networks of hybrid

automata, as shown in the function inductiveInvariance in Figure 5.1. The inductive invariance

conditions (Definition 2.4) are encoded using formulas appearing essentially as they do in

the definitions of the discrete and continuous transition relations in Section 2.4. We did not

need to use any special encoding to represent our systems for Z3, so the queries we ask are

almost exactly the same as the formulas appearing in Section 5.3. Given the finite bound

N0 from Theorem 5.2, we could potentially have composed the system for each instantiation

2 ≤ N ≤ N0 and used existing tools (for instance, HyTech [37] or PHAVer [39]), but the LH-

assertions specifications were more natural to state in an environment that allows quantifiers.

Additionally, our prior experience in model checking such parameterized systems [2] indicated

that the bound allowed in practice due to memory requirements may be less than the bound

N0, and may prevent verification.

Each property ζ(N) ∈ P is checked as an inductive invariant by proving—checking the

unsatisfiability of—the inductive invariance conditions as formalized for parameterized net-

works of hybrid automata in Section 5.1.1. If each of these conditions is proved, then ζ(N)

is an inductive invariant, and it is asserted as an axiom. Then, the process repeats with the

next property in P . The order of operation in which these properties are attempted to be

proved matters. Thus, if any property is proved as an inductive invariant, then all other

120

properties either not processed or previously disproved will be repeated.

The operation of checking an inductive invariant is as follows. The user specifies a set P

of candidate inductive invariants. Based on the protocol specification, we receive from The-

orem 5.2 a bound N0 on the number of automata N for which we must check each property.

Many of the invariant properties we are interested in are not inductive (e.g., mutual exclu-

sion in Fischer’s protocol is not inductive, nor even k-inductive [103]), so having a set of

candidate invariants allows us to discharge each until we have a set of proven lemmas that

imply the desired invariant. For each candidate Γ(N) ∈ P , we check if Γ(N) is an inductive

invariant by attempting to prove Γ(N)′ after each transition, where Γ(N)′ is Γ(N) with all

variables replaced with their primed counterparts (i.e., post-states). If Γ(N) is successfully

proved, we assert Γ(N) as a lemma and check some other candidate in P until we have

proved—or failed to prove—each property in P . We emphasize that if we do not prove a

property, it does not necessarily mean that the property does not hold, only that it may

not be inductive. Thus, if we terminate with a proof that a desired safety property ζ(N)

holds, then it indeed holds, but if not, then we cannot conclude it is violated, only that the

candidate invariants P were not sufficient to prove ζ(N). For sanity checking (of soundness),

we should not be able to prove any property is an inductive invariant that is not.

The main difficulty in safety verification using inductive invariance is specifying a rich

enough set of properties P . We perform satisfiability checks with model construction enable,

thus if a transition or time elapse violates the candidate property, we record it and display

it to the user so she/he may use this information to refine the candidate manually. For

example, for Fischer, a detailed inductive invariant refinement is performed in [103]. The

set of properties P for Fischer is shown in Equation 2.6. However, we also had to add

more properties, partly because we are working with a different semantics compared to the

timeout automata considered in [103].

Finding Inductive Invariants. The inductive invariant synthesis methods that Passel

implements (see Chapter 6 and refer to Figures 6.1 and 6.2) rely on projection and syn-

tactic manipulations. The projection is implemented using quantifier elimination and the

syntactic operations include expression replacement and quantifier introduction. We note

121

that we attempted to implement the invariant synthesis fixed-point method in Passel using

the fixed-point engine built into Z3 [174, 175], but found it unsuitable for timed examples.

In practice, it is useful to project away all variables—Figure 6.1, line 6—except the discrete

ones (variables with types L and [N]⊥), only the control location variables and real variables,

and combinations of these with and without projecting any global variables away, so Passel

does this. Passel models the local variables of A(i) as unary functions, mapping indices to

the variables type—for each local variable x ∈ Vi, x : [N] → type(x), where N is not fixed

a priori, but has some assumption specified, such as N ≥ 2 or N ≥ 2 ∧ N ≤ 73. However,

when eliminating quantifiers for the projection part, Passel first converts these to constants,

as otherwise it would result in a second-order logic formula that the SMT solver cannot

process.

7.4 Additional Examples

We have analyzed several examples in Passel, several of which have been presented as ex-

amples in this dissertation, such as Figures 2.1, 2.3, and 4.11. Our examples include

distributed algorithms, cache coherence protocols, and other purely discrete parameterized

systems. Our main purpose in developing Passel was for the verification of timed and hybrid

parameterized systems, so we also have several of these types of examples, including timed

distributed mutual exclusion algorithms like Fischer from Chapter 2 and the SATS example

from Chapter 2.

The buggy version of SSATS replaces the precondition l[next[i]] with l[last] and x[next[i]]

with x[last] in Figure 2.3, line 27, which ensures the spacing between i and the last aircraft

is large enough. However, this may not be the aircraft immediately ahead of i, for instance,

if two aircraft have moved to the base, so the safe separation properties do not hold. The

properties specifying a safe separation are (SD) and (SE).

We checked property (SD) only for rectangular dynamics (that is, Figure 2.3, line 19 is

as written) and (SE) only for timed dynamics (that is, the rectangular dynamics in Fig-

ure 2.3, line 19 are replaced by ẋ[i] = 1 or ẋ[i] = vmin = vmax). This is because SATS with

rectangular dynamics does not satisfy (SE). The properties are:

122

(SA) ∀i ∈ [N] : q[i] = fly⇒ last 6= i,

(SB) ∀i, j ∈ [N] : next [j] = i⇒ q[i] 6= fly,

(SC) ∀i, j ∈ [N] : (q[i] = hold ∧ next [j] = i)⇒ q[j] = hold,

(SD) ∀i, j ∈ [N] : (q[i] = base ∧ q[j] = base ∧ next [j] = i) ⇒ x[i] ≥ LS + (vmax − vmin)

LB−x[j]
vmin

, and

(SE) ∀i, j ∈ [N] : (i 6= j ∧ q[i] = base ∧ q[j] = base ∧ next [j] = i)⇒ x[i]− x[j] ≥ LS.

7.4.1 Fischer’s Mutual Exclusion Protocol with Auxiliary Variables

Figure 7.1 is a description of Fischer-Aux-Timed, which is Fischer’s mutual exclusion protocol

with auxiliary real-valued variables that are used to track the earliest and latest times at

which a state transition can occur [107]. This style of modeling has been extensively used;

see, for example, [24, 103]. The correct version of Fischer’s mutual exclusion protocol has a

constraint A < B, and the buggy version has A ≥ B.

We checked the following properties for Fischer-Aux-Timed:

(FA) ∀i, j ∈ [N] : x[i] = x[j],

(FB) ∀i ∈ [N] : q[i] = set⇒ last[i] ≤ x[i] + A,

(FC) ∀i ∈ [N] : q[i] = set⇒ x[i] ≤ last[i],

(FD) ∀i, j ∈ [N] : (q[i] = check ∧ g = i ∧ q[j] = set)⇒ first[i] > last[j],

(FE) ∀i, j ∈ [N] : q[i] = cs⇒ (g = i ∧ q[j] 6= set), and

(FF) ∀i, j ∈ [N] : (i 6= j)⇒ (q[i] 6= cs ∨ q[j] 6= cs),

where (FF) specifies mutual exclusion. These properties represent a manual strengthen-

ing proof of inductive invariance, where (FE) is stronger than mutual exclusion and also

inductive.

123

1 parameter name=’A’ type=’real’ value = 5.0 // s ma l l e r t iming parameter
parameter name=’B’ type=’real’ value = 35.0 // l a r g e r t iming parameter

3 parameter name=’lb’ type=’real’ value = 1.0 // lower c l o c k r a t e
parameter name=’ub’ type=’real’ value = 2.0 // upper c l o c k r a t e

5
automaton name=’Fischer -Aux’

7 variable name=’q[i]’ type=’L’ // c o n t r o l l o c a t i o n l o c a l v a r i a b l e
variable name=’x[i]’ type=’real’ // continuous l o c a l v a r i a b l e

9 variable name=’first[i]’ type=’real’ // f i r s t time l o c a l v a r i a b l e
variable name=’last[i]’ type=’real’ // l a s t time l o c a l v a r i a b l e

11 variable name=’g’ type=’index’ // g l o b a l l o c k v a r i a b l e

13 location name=’rem’

flowrate: x[i]_dot = 0.0

15 location name=’try’
inv: x[i] <= last[i]

17 stop: x[i] = last[i]

flowrate: x[i]_dot >= lb and x[i]_dot <= ub

19 location name=’wait’
flowrate: x[i]_dot >= lb and x[i]_dot <= ub

21 location name=’cs’
flowrate: x[i]_dot = 0.0

23
transition from=’rem’ to=’try’

25 grd: g = ⊥
eff : last[i]′ = x[i] + A

27 transition from=’try’ to=’wait’
eff : g′ = i and first[i]′ = x[i] + B

29 transition from=’wait’ to=’cs’
grd: g = i and x[i] >= first[i]

31 transition from=’wait’ to=’rem’

grd: g != i and x[i] >= first[i]

33 eff : first[i]′ = 0.0

transition from=’cs’ to=’rem’

35 eff : g′ = ⊥

37 property: forall i j ((i != j and q[i] = cs) implies (q[j] != cs))
initially: forall i (q[i] = rem and x[i] = 0 and last[i] = A

39 and first[i] = 0 and g = ⊥)

Figure 7.1: Passel input file specifying A(N , i) for Fischer’s mutual exclusion algorithm with
auxiliary variables Fischer-Aux-Timed.

7.5 Experimental Setup

All experiments were conducted on a modern laptop with a 2.2 GHz quad-core Intel Core

i7-2670QM processor and 16 GB RAM, running 64-bit Windows 8. Passel is written in

C# and used the Z3 SMT solver version 4.1 [136] through the C# API. The experiments

were performed under a 32-bit Ubuntu virtual machine using VMWare Player on the same

laptop, with access to two cores and 4 GB RAM. Passel was executed using Mono. Passel

takes a syntactic specification for a single template hybrid automaton A(N , i) in a variant

of HyXML [173], as described in detail in Section 2.3.

In the synthesis experiments, Passel used PHAVer (version 0.38) for the reachability com-

124

putation Reach(AN) of a finite networkAN of N automata. PHAVer was run under an Ubuntu

virtual machine using VMWare Player on the same laptop, with access to two cores and 4

GB RAM. Input files for PHAVer were generated by Passel from the data structure inside

Passel encoding the syntactic structure of A(i). We measured time and memory usage of

Passel and PHAVer with memtime. For some measurements of Passel subroutines—like those

presented for synthesis and checking inductiveness in Table 7.2—we used internal timers in

Passel for benchmarking.

7.6 Experimental Results for Reachability Using Anonymized

States

In this section, we describe the experimental results using Passel’s implementation of the

reachability method using anonymized states of Chapter 4.

Figure 7.2 shows a runtime comparison between PHAVer and Passel for several examples as

a function of N, the number of automata in the finite instantiation of the network. Figure 7.3

shows a memory usage comparison for the examples also as a function of N.

Nondeterministic Finite-State Automaton. The first example specifies a simple non-

deterministic finite-state automaton example with 5 states and 10 transitions. This artificial

example is created purely to demonstrate the strength the anonymized state representation.

For the NFA example, PHAVer is only able to compute the reachable states up to N = 6

before running out of memory due to its representation of all the permutations of reachable

states. Even at N = 6, PHAVer uses about 600 MB memory and required over 3 minutes to

compute the reachable states. While A6 only has 56 = 15625 states, PHAVer utilizes an inef-

ficient explicit-state representation. In comparison, the reachability method from Chapter 4

implemented in Passel computed the reachable states for the same example in an order of

magnitude less time (about 20 seconds) and used about an order of magnitude less memory

(about 75 MB). Furthermore, Passel was able to compute the set of reachable states up to

N = 30 in a little over an hour, while using about 220 MB memory.

The memory usage for the NFA example shown in Figure 7.3 illustrates the strength of

125

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1 6 11 16 21 26 31

R
u

n
ti

m
e

(s
)

N

NFA Passel NFA Phaver MUX-SEM Passel MUX-SEM Phaver

MUX-INDEX-RA Passel MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver

MUX-SEM-RA Passel MUX-SEM-RA Phaver

Figure 7.2: Anonymized reachability runtime comparison of PHAVer and Passel for several
examples. The vertical axis is logarithmic and has units of seconds. The horizontal axis is
the number of automata N.

Passel’s anonymized reachability method. While Passel initially uses much more memory

than PHAVer—in part due to loading a variety of libraries, including the API to Z3—its

scaling as a function of N is far superior. This is highlighted by Passel using about a third

of the memory at N = 30 of 220 MB compared to PHAVer’s usage of over 600 MB memory

at N = 6, even though the problem size in terms of N is 5 times larger.

MUX-SEM Mutual Exclusion. This is a standard mutual exclusion algorithm imple-

mented using a semaphore, which we also use in Chapter 4 for explaining the anonymized

state representation and reachability algorithm. See Figures 4.1 and 4.2 for the complete

specification. To illustrate the difference between the state-space representations, at N = 7,

Passel has 15 reachable discrete states represented as an anonymized state representation

126

1.00

10.00

100.00

1000.00

10000.00

1 6 11 16 21 26 31

M
em

o
ry

 (
M

B
)

N

NFA Passel NFA Phaver MUX-SEM Passel MUX-SEM Phaver

MUX-INDEX-RA Passel MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver

MUX-SEM-RA Passel MUX-SEM-RA Phaver

Figure 7.3: Anonymized reachability memory usage comparison of PHAVer and Passel for
several examples. The vertical axis scale is logarithmic and has units of megabytes. The
horizontal axis is the number of automata N.

S, whereas PHAVer represents this with 576 states. The entire state-space of MUX-SEM for

N = 7 has 4374 discrete states, without using the anonymized representation.

For N = 11, PHAVer runs out of memory, so comparisons beyond this value are not

possible. As shown in Figure 7.3, for N = 10, PHAVer uses over 2.5 GB memory and

completes in about 45 minutes, while Passel uses more than order of magnitude less memory

at about 70 MB and nearly three orders of magnitude less runtime at about 3.5 seconds.5

Because of the anonymized representation of the state-space, Passel is able to compute the

reachable states of N = 30 in under ten seconds (Figure 7.2) using about 70 MB memory

(Figure 7.3). As shown in Figures 7.4 and 7.5, Passel is able to easily scale to hundreds of

automata for MUX-SEM with modest runtime and memory usage.

5Note that Z3 has some nondeterministic heuristics built-in that cause some of the memory fluctuations
seen in the Passel results.

127

0.10

1.00

10.00

100.00

1000.00

10000.00

1 26 51 76 101 126 151 176 201 226 251 276

Passel Time (s) Phaver Time (s) Poly. (Passel Time (s))

Figure 7.4: Anonymized reachability runtime comparison of PHAVer and Passel for
MUX-SEM. The vertical axis scale is logarithmic. The horizontal axis is the number of
automata N. This illustrates scaling to hundreds of automata.

MUX-INDEX-RECT Mutual Exclusion. For the timed mutual exclusion algorithm that

we previously described in Chapter 4 (Figure 4.11). PHAVer runs out of memory for N = 8.

As shown in Figures 7.2 and 7.3, for N = 7, PHAVer uses over 1.3 GB memory and completes

in over 3 hours, while Passel uses over an order of magnitude less memory at about 70 MB

and nearly four orders of magnitude less runtime at about three seconds. Because of the

anonymized representation of the state-space, Passel is able to compute the reachable states

of N = 30 in a few seconds using about 70 MB memory, and Passel is able to easily scale

to thousands of automata for MUX-INDEX-RECT. This is because the number of elements

in the anonymized state-space representation does not grow as a function of N, as discussed

in Section 4.4.1.

128

1.00

10.00

100.00

1000.00

10000.00

1 26 51 76 101 126 151 176 201 226 251 276

Passel Memory (MB) Phaver Memory (MB)

Poly. (Passel Memory (MB))

Figure 7.5: Anonymized reachability memory usage comparison of PHAVer and Passel for
MUX-SEM. The vertical axis scale is logarithmic. The horizontal axis is the number of
automata N. This illustrates scaling to hundreds of automata.

MUX-SEM-RA Mutual Exclusion. The MUX-SEM-RA mutual exclusion example is just

like the MUX-SEM purely discrete mutual exclusion example, except it includes a single

continuous local variable for each automaton A(i). This example illustrates the additional

memory and runtime requirements between a discrete and hybrid automaton, as the for-

mulas required to represent the continuous state variables are more complex. As we can

see from Figure 7.2, at N = 6, PHAVer requires approximately an order of more runtime

to compute the reachable states of MUX-SEM compared to MUX-SEM-RA, at slightly less

than one second and around eight seconds seconds, respectively. In comparison, for N = 6,

Passel requires about four seconds to compute the reach set of MUX-SEM and around eight

seconds to compute the reach set of MUX-SEM-RA, a growth of a factor of two, compared to

PHAVer’s order of magnitude growth. The memory comparison in Figure 7.3 is even better

129

for Passel, even at N = 30 is using under 100 MB memory for MUX-SEM-RA, while PHAVer

ran out of memory at N = 9, where it used about 700 MB memory.

SSATS Simplified Small Aircraft Transportation System. The SSATS simplified

Small Aircraft Transportation System example is the most challenging example we eval-

uate. PHAVer was able to compute the reachable states of SSATS up to N = 5 using around

350 MB (as shown in Figure 7.3) and requiring a few minutes (Figure 7.2). In comparison,

Passel was able to compute the anonymized reachable states of SSATS for up to N = 20

using only about 200 MB memory, although this took about 2.5 hours to complete.

Summary. In summary, comparing all the examples, the anonymized reachability method

of Chapter 4 implemented in Passel allow us to compute the reachable states of networks

composed of many more automata than PHAVer. The real advantage is the memory growth,

where even for networks of tens and hundreds of automata, Passel never uses more than

a few hundred megabytes of memory as shown in Figures 7.3 and 7.5. The runtime re-

quired by Passel could be reduced by performing some operations more efficiently in the

implementation—particularly the checks to determine if a new anonymized state represen-

tation is actually new or not—which we plan to implement for future work.

7.7 Experimental Results for Proving Inductive Invariants

This section presents experimental results in using Passel to automatically prove the induc-

tive invariance conditions (Definition 2.4) using the methodology of Chapter 5. Table 7.1

summarizes the runtime of Passel in automatically checking inductive invariants for several

examples. These results summarize Passel’s performance when checking a given proof of an

inductive invariant Γ(N) that implies some desired safety property ζ(N). This in contrast

to Table 7.2, where the inductive invariance checks require more time, since in this case,

Passel is checking many candidate inductive invariants, some of which are unnecessary in

establishing a proof of safety.

As the results indicate, when Passel is used to prove that given candidate inductive invari-

130

Table 7.1: Experimental results for proving inductive invariants. Example properties and
results for 2 ≤ N ≤ 100, which exceeds the threshold from Theorem 5.2 for each property
and example. SATS properties are shown in Section 2.3.8 and Fischer properties are shown
in Section 7.4.1. A check in the “Correct” column means that a property was shown to be
an inductive invariant, while an “7” indicates not, and similarly for buggy versions of the
protocols as indicated in the “Buggy” column. Times are the runtimes in seconds. QI is the
number of quantifier instantiations.

Example Property Correct Time QI Buggy Time QI
SSATS (SA) X 0.47 166 X 24.429 63

(SB) X 0.591 373 X 0.595 197
(SC) X 0.586 703 7 1.041 113485
(SD) X 0.757 8298 7 1.256 1659

SSATS-Timed (SA) X 0.349 66 X 0.34 61
(SB) X 0.304 673 X 0.317 460
(SC) X 0.244 373 7 1.763 140512
(SE) X 0.467 3032 7 2.204 26958

Fischer-Aux-Timed (FA) X 0.498 305 X 0.491 305
(FB) X 0.33 204 X 0.325 204
(FC) X 0.376 544 X 0.33 544
(FD) X 0.396 618 7 0.533 2548
(FE) X 0.435 1306 7 0.532 1202
(FF) X 0.414 1036 7 0.437 3162

ants are actually inductive invariants, and are sufficient to prove a desired safety property,

Passel performs efficiently. As mentioned in Section 7.3, Passel uses Z3’s methods for han-

dling quantified assertions, particularly MBQI and quantifier elimination. The QI columns

in Table 7.1 present the number of quantifiers instantiated by the MBQI module. The

downside is that these results represent a partially manual effort: the candidate inductive

invariants must be specified. Next, we present results on fully automating this process by

also finding candidate invariants in Section 7.8.

7.8 Experimental Results for Finding Inductive Invariants

This section presents experimental results using the invariant synthesis methods described

in Chapter 6. The invariant synthesis methods are evaluated on several timed and hybrid

examples, with the summary of results shown in Table 7.2. We also evaluated a variety

of correct and buggy versions of sanity-check protocols (like the purely discrete MUX-SEM

example from [41], Fischer’s mutual exclusion protocol Fischer, and other protocols we have

previously verified). We use a choice of N = 3 for the reachable set computations Reach(AN),

131

Table 7.2: Experimental invariant synthesis results. All time units are seconds and memory
units are megabytes. Checks (X) in columns ∀i : ψ(i)? and ∀̇i, j : ψ(i, j)? mean that
the single and doubly quantified synthesized invariants θ(N) are inductive, and 7 means
not. Checks (X) in column ζ(N)? means Passel succeeded in generating a quantified
strengthening that implied the desired safety property for all N ∈ N (and 7, not). Column
synth time reports the runtime to synthesize candidate invariants ∀i : ψ(i) and ∀̇i, j : ψ(i, j),
and column inv time reports the runtime to prove the candidate assertions are inductive
invariants for any N , and that ∀i : ψ(i) ∧ ∀̇i, j : ψ(i, j) ⇒ ζ(N).

PHAVer Passel

synth inv

Name time mem ∀i : ψ(i)? ∀̇i, j : ψ(i, j)? ζ(N)? time time

RFischer1 1.81 9.94 X X X 9.69 138.98

RFischer (Bug)2 9.88 12.62 X X 7 34.30 6578.32

TFischer3 1.31 9.43 X X X 8.52 64.95

TFischer (Bug)4 2.12 12.52 X X 7 19.59 4169.07

Simple SATS5 1.72 10.61 X X X 4.54 14.70

Sided SATS6 7.47 22.98 X X X 13.95 81.10

TMux7 0.71 6.74 X X X 3.19 20.01

MUX-SEM8 0.2 5.61 X X X 1.68 1.39

MUX-INDEX9 0.2 6.39 X X X 1.38 1.51

but did not see any benefit (in terms of being able to prove inductive properties for more

examples) to using greater values in our experiments. We reiterate that when Passel proves

the inductive invariance conditions, the only assumption on N is N ≥ 2, unless we have a

small model theorem with bound N0—such as Theorem 5.2—and then Passel can assume

1 ≤ N ≤ N0.

We analyze correct and buggy versions of Fischer’s mutual exclusion algorithm Bench-

marks 1, 2, 3, and 4, as presented earlier in Figure 2.1. Benchmarks 1 and 2 have rectangular

dynamics, so lb < ub and ẋ[i] ∈ [lb, ub], while Benchmarks 3 and 4 have timed dynamics, so

lb = ub and ẋ[i] = lb = ub, which results in fewer synthesized candidate invariants (since

there are fewer possible states in the reach set). The timed buggy version has A ≥ B, while

the correct version requires A < B. We use numerical values A = 5 and B = 7 for the

correct timed version, and A = 5 and B = 4 for the buggy version, and lb = ub = 1 for the

dynamics of both timed cases. While the invariant synthesis procedure requires numerical

values (since PHAVer uses numerical libraries for computing the reach set), Passel can use

132

symbolic values (e.g., just an assertion A < B is required for the correct version). The

rectangular buggy version has A = 5 and B = 6, while the correct version uses A = 5 and

B = 50, and lb = 3 and ub = 7 for the dynamics of both cases. With timed dynamics, Fischer

maintains mutual exclusion for A < B, but with rectangular dynamics, mutual exclusion

requires B > A ∗ ub. Passel automatically proves mutual exclusion of the correct timed and

rectangular versions for any N ∈ N as shown in Benchmarks 1 and 3. The key invariant

Passel synthesizes for Fischer is related to timing, and for the timed version is:

∀̇i, j ∈ [N] : (q[i] = wait ∧ q[j] = try ∧ g = i)⇒ (B − A) > (x[i]− x[j]).

The buggy versions (Benchmarks 2 and 4) are included as sanity checks, and Passel could not

prove mutual exclusion of these since it does not hold, although Passel did synthesize many

inductive invariants. The runtimes of buggy versions are large, because Passel attempted to

prove many candidate invariants. For example in the timed buggy version, 460 candidate

invariants were synthesized and Passel proved 98 of them, although these failed to imply

mutual exclusion since it is not an invariant.

Passel also proves safety of Benchmarks 5 to 6, which model two simplified versions of the

Small Aircraft Transportation System (SATS) [26], where the safety property ζ is that no two

aircraft collide. We previously performed a manual deductive strengthening proof for this

protocol in [3]—reprinted here as Equation 2.6—and automatically checked it using Passel

(see Table 7.1). We also analyzed the protocol using the backward reachability technique

of Chapter 3 in [2] and here in Section 3.2. Collision avoidance is, for any two aircraft

approaching a runway, there is at least a positive real distance LS between their positions

along a one-dimensional line (the path to the runway):

∀̇i, j ∈ [N] : (q[i] ∈ {br,bl,fin} ∧ q[j] ∈ {br,bl,fin} ∧ x[i] > x[j])⇒ x[i]− x[j] ≥ LS.

The locations BR, BL, etc. specify the aircraft are attempting to land, and x[i] > x[j] ensures

aircraft i is ahead of j. The aircraft travel along the line with velocities ẋ[i] ∈ [vmin, vmax],

133

and the key invariant synthesized used to establish collision avoidance is

∀̇i, j ∈ [N] :(q[i] ∈ {br,bl,fin} ∧ q[j] ∈ {br,bl,fin})⇒ x[i] ≥ (LB + LF − x[j])

(vmin(vmax − vmin))
,

where LB and LF are the lengths of different paths on the way to the runway. Synthesizing

this invariant, and others, allowed Passel to prove the collision avoidance property fully

automatically.

7.9 Summary

In this chapter, we present and evaluate the Passel verification tool, which has been success-

ful at automatically proving safety properties of parameterized networks of hybrid automata

with rectangular dynamics.6 Passel implements three approaches for verifying safety prop-

erties. The first is the the reachability algorithm using anonymized states from Chapter 4.

As shown in Section 7.6, this approach has shown very promising results for several ex-

amples, such as computing the reachable states for hybrid networks composed of hundreds

of automata. While this method cannot solve the general uniform verification problem for

parameterized networks since it works with compositions of a finite number N of automata,

it can be used in the invariant synthesis procedures described in Chapter 6, and serves as a

useful first-pass verification attempt that is easier prior to attempting uniform verification.

Additionally, the method is useful for finding counterexamples to show that properties do

not hold regardless of the choice of N , since, if for a particular N, a desired property does

not hold, then it of course cannot hold for all N ∈ N.

The second approach Passel implements is proving inductive invariance conditions auto-

matically, as described in Chapter 5. As shown in Section 7.7, Passel is able to prove the

inductive invariance conditions efficiently. The third approach Passel implements is finding

inductive invariants, as described in Chapter 6. The method is an extension of the invisible

invariants method used in a fixed-point procedure for automatically synthesizing inductive

invariants. Passel then checks these synthesized candidates using the method described

6Passel and examples are available: https://publish.illinois.edu/passel-tool/.

134

https://publish.illinois.edu/passel-tool/

in Chapter 5. As shown in Section 7.8, Passel has performed the first fully automatic ver-

ification of several parameterized networks of hybrid automata, such as Fischer’s mutual

exclusion with rectangular dynamics, part of a conceptual air-traffic control protocol, and

several others.

135

Chapter 8

Conclusion

This dissertation presents the formal modeling and methods for analyzing parameterized net-

works of hybrid automata, and this chapter concludes the dissertation with a brief summary

and directions for future research.

8.1 Summary

This dissertation presents a framework for formally modeling and analyzing safety properties

for parameterized networks of hybrid automata. For a more detailed summary of the disser-

tation and its contributions, refer back to Section 1.2. Chapter 2 presents a new modeling

framework for parameterized networks of hybrid automata, along with the input syntax for

the Passel verification tool developed as a part of this dissertation. The framework allows

automata to communicate through a finite number of pointer-like discrete variables, but

not through continuous signals. This makes the semantics of composed networks cleaner,

but prevents modeling components that can either read continuous signals or signals from

arbitrarily many ports. In Chapter 3, we present our results using a backward reachability

method and tool MCMT for verifying safety properties of parameterized networks of the

subclass of timed automata. We apply this method to an air traffic control case study that

motivates our work in subsequent chapters, as the framework allowed in MCMT does not

support the generality allowed by our modeling framework of Chapter 2.

The anonymized reachability method of Chapter 4 implemented in Passel has yielded

promising results, such as being able to compute the reachable states for parameterized

networks composed of hundreds of automata. As shown in Chapter 7, Passel has yielded

promising experimental results and enabled the first automatic verification of parameterized

136

networks of hybrid automata for several case studies—such as Fischer’s mutual exclusion

protocol with rectangular dynamics, a simplified version of the Small Aircraft Transportation

System (SATS), and several other examples—using the methods of Chapters 5 and 6.

8.2 Future Work

This section describes future research directions based on the results of this dissertation.

8.2.1 Modeling and Specification Extensions

One limitation of the modeling framework developed in Chapter 2 is that it restricts con-

tinuous communication between automata, unlike for instance, hybrid input/output au-

tomata [9]. This prevents the current framework from being used to specify systems where

the dynamics of one automaton depend directly upon the state of another. Generalizing the

modeling framework to allow for continuous communication would allow for modeling and

verifying systems where the dynamics of one automaton directly depends upon the state of

another, such as in standard benchmarks like the heater benchmark [176].

Another direction is to expand the class of properties from safety properties to stability

or liveness properties. Given that there is some existing work on automating liveness using

invisible invariants like approaches, this may be the most direct avenue for extension [96–98,

160]. The class of liveness properties considered in these works are eventuality properties, for

instance, eventually an aircraft lands in SATS. These properties require automatically finding

ranking functions that decrease regardless of the number of participants, which is challenging

and often requires human ingenuity. Stability properties often need the control-theoretic dual

of ranking functions—Lyapunov functions—that also often require human intervention to

find. However, there are standard techniques for computing Lyapunov functions for certain

classes of dynamics, and there is much active work in developing techniques for applicable

to hybrid systems, so developing these techniques for the parameterized setting would be an

exciting direction.

137

8.2.2 Passel Extensions

There are many enhancements and extensions that could be made for Passel that build upon

the extension to its theoretical basis. For instance, Passel currently supports analyzing sys-

tems with timed (ẋ = 1) or rectangular (ẋ ∈ [a, b]) dynamics, so allowing more general

continuous dynamics—such as linear (ẋ = Ax) or nonlinear (ẋ = f(x), for a sufficiently

smooth function f) differential equations or inclusions—would expand the class of systems

Passel can analyze. While allowing for general linear or nonlinear differential equations

would likely be intractable—due to decidability results and that the solutions are in general

transcendental—some subclasses, such as the class of linear systems with polynomial solu-

tions, may be integrated. The first class of more general dynamics would the subclass of

linear systems with polynomials solutions, which can more easily be encoded in SMT solvers

than the more general transcendental solutions [177]. From the implementation perspective,

Z3 has a new solver for real nonlinear arithmetic, although it is not fully integrated with the

other solvers, so in the future this may become a tractable approach [178, 179]. An alter-

native would be to utilize the SAT modulo ODE approaches [156–158], or the way theorem

provers like PVS and MetiTarski handle transcendentals and sinusoids by utilizing truncated

Taylor series expansions [180,181].

8.2.3 Effective Abstractions

One of the most interesting but challenging directions for uniform verification of parame-

terized networks of hybrid automata is in developing effective abstraction techniques. For

instance, network invariants (refer to Sections 1.3.2 and 1.3.3 for an overview) are developed

for parameterized networks of timed automata in [49]. We originally attempted extending

environment abstraction [80] (see Section 1.3.2 for an overview) to timed systems, but ran

into several challenges along the way, such as how to determine the predicates to use in

the abstraction. Abstraction techniques developed for hybrid systems such as [182] may be

applicable and could lead to automatic uniform verification of more complex hybrid systems

than what can be accomplished using the techniques developed in this dissertation.

138

8.2.4 Applications Requiring Additional Modeling Features

We have analyzed numerous case studies (purely discrete, timed, and rectangular hybrid)

in Passel. For additional timed protocols, the wireless clock synchronization protocol [183]

would serve as a nice example. The Lynch-Shavit timed mutual exclusion algorithm [184]

has a large discrete state-space, and would push the limits of the discrete-state analysis in

the tool. The fault-tolerant Draper clock synchronization algorithm could be analyzed [185].

There are several other potential timed case studies [186–188]. There are many other CPS

case studies that could be formalized and modeled, and we are currently working to find

several more examples, potentially some of the protocols from [189–194]. We could also

formulate our previous satellite collision avoidance case study as a parameterized problem

(we only analyzed it for the case of two satellites previously) [195]. Some of these examples

may need to be modeled using linear (ẋ[i] = Ax) or nonlinear dynamics (ẋ[i] = f(x[i])),

which would also require theoretical extensions and may be interesting to investigate. For

example, the subclass of systems with polynomial vector fields could be integrated [177].

Being able to automatically verify properties in the StarL robot platform we have helped

develop [196] (or the robots on partitions [17] or robot flocking [16]) would be the highest

goal, but many challenges have to be overcome to develop and analyze reasonable models

of these system. The classes of systems studied in this dissertation were inspired by our

earlier case studies on DCPS [16, 17]. In [17], we analyzed a distributed robotics system

in the partitioned plane, where all robots in a particular partition are coupled and move

identically, and the software controlling any partition could fail permanently by crashing.

We analyzed a distributed flocking protocol in [16], where the actuators of agents could

fail by becoming stuck, causing agents to either remain stationary forever, or move in some

direction forever. We have not been fully able to analyze these examples automatically, but

we have made inroads to their eventual solutions. The current limitations are that these

examples involve more complex dynamic communications topologies and linear dynamics.

While we could overapproximate the linear dynamics using rectangular differential inclusions,

the resulting abstraction was either too coarse to be useful, or too complex to be analyzed.

139

Bibliography

[1] T. T. Johnson, S. Mitra, and C. Langbort, “Stability of digitally interconnected linear systems,” in
Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference
(CDC ECC 2011), Orlando, Florida, USA, Dec. 2011, pp. 2687–2692.

[2] T. T. Johnson and S. Mitra, “Parameterized verification of distributed cyber-physical systems: An
aircraft landing protocol case study,” in ACM/IEEE 3rd International Conference on Cyber-Physical
Systems, Apr. 2012.

[3] T. T. Johnson and S. Mitra, “A small model theorem for rectangular hybrid automata networks,”
in Proceedings of the IFIP International Conference on Formal Techniques for Distributed Systems,
Joint 14th Formal Methods for Open Object-Based Distributed Systems and 32nd Formal Techniques
for Networked and Distributed Systems (FMOODS-FORTE), ser. LNCS. Springer, June 2012, vol.
7273.

[4] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile autonomous vehicles,”
AIAA Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[5] A. B. Bosse, W. J. Barnds, M. A. Brown, N. G. Creamer, A. Feerst, C. G. Henshaw, A. S. Hope,
B. E. Kelm, P. A. Klein, F. Pipitone, B. E. Plourde, and B. P. Whalen, “SUMO: Spacecraft for the
universal modification of orbits,” in Proc. of SPIE, vol. 5419, 2004, pp. 36–46.

[6] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “CodeBlue: An ad hoc sensor network infras-
tructure for emergency medical care,” in Mobisys 2004 Workshop on Applications of Mobile Embedded
Systems (WAMES ’04), J.-P. Hubaux and M. Srivastava, Eds., Boston, MA, 2004.

[7] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Duggins, T. Galatali,
C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev,
M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.-W.
Seo, S. Singh, J. Snider, A. Stentz, W. R. Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown,
D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and
D. Ferguson, “Autonomous driving in urban environments: Boss and the urban challenge,” Journal of
Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[8] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid automata: An algorithmic approach
to the specification and verification of hybrid systems,” in Hybrid Systems, R. L. Grossman, A. Nerode,
A. P. Ravn, and H. Rischel, Eds. London, UK: Springer-Verlag, 1993, pp. 209–229.

[9] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,” Inf. Comput., vol. 185, no. 1, pp.
105–157, 2003.

[10] Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control (HSCC
’11). New York, NY, USA: ACM, 2011.

[11] Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control
(HSCC ’12). New York, NY, USA: ACM, 2012.

[12] C. Belta and F. Ivancic, Eds., Proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control (HSCC ’13). ACM, 2013.

140

[13] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.

[14] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid, distributed, and now formally
verified,” in Formal Methods, ser. LNCS, M. Butler and W. Schulte, Eds. Springer, 2011.

[15] S. Gilbert, N. Lynch, S. Mitra, and T. Nolte, “Self-stabilizing robot formations over unreliable net-
works,” ACM Trans. Auton. Adapt. Syst., vol. 4, pp. 1–17, July 2009.

[16] T. T. Johnson and S. Mitra, “Safe flocking in spite of actuator faults using directional failure detectors,”
Journal of Nonlinear Systems and Applications, vol. 2, no. 1-2, pp. 73–95, Apr. 2011.

[17] T. T. Johnson, S. Mitra, and K. Manamcheri, “Safe and stabilizing distributed cellular flows,” in
Proceedings of the 30th IEEE International Conference on Distributed Computing Systems (ICDCS).
Genoa, Italy: IEEE, June 2010.

[18] E. W. Dijkstra, “Solution of a problem in concurrent programming control,” Commun. ACM, vol. 8,
no. 9, p. 569, Sep. 1965.

[19] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine, “The algorithmic analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
no. 1, pp. 3–34, 1995.

[20] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about hybrid automata?”
in ACM Symposium on Theory of Computing, 1995, pp. 373–382.

[21] D. Liberzon, Switching in Systems and Control. Boston, MA, USA: Birkhäuser, 2003.

[22] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The Theory of Timed I/O Automata, ser.
Synthesis Lectures in Computer Science. Morgan & Claypool, 2006.

[23] S. Mitra, “A verification framework for hybrid systems,” Ph.D. dissertation, Massachusetts Institute
of Technology, Cambridge, MA 02139, Sep. 2007.

[24] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1996.

[25] T. S. Abbott, K. M. Jones, M. C. Consiglio, D. M. Williams, and C. A. Adams, “Small aircraft
transportation system, higher volume operations concept: Normal operations,” NASA, Tech. Rep.
NASA/TM-2004-213022, Aug. 2004.

[26] T. S. Abbott, M. C. Consiglio, B. T. Baxley, D. M. Williams, K. M. Jones, and C. A. Adams, “Small
aircraft transportation system higher volume operations concept,” NASA, Tech. Rep. NASA/TP-2006-
214512, L-19215, Oct. 2006.

[27] C. Muñoz, V. Carreño, and G. Dowek, “Formal analysis of the operational concept for the small
aircraft transportation system,” in Rigorous Development of Complex Fault-Tolerant Systems, ser.
LNCS, M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna, Eds. Springer Berlin / Heidelberg,
2006, vol. 4157, pp. 306–325.

[28] K. R. Apt and D. C. Kozen, “Limits for automatic verification of finite-state concurrent systems,” Inf.
Process. Lett., vol. 22, no. 6, pp. 307–309, 1986.

[29] I. Suzuki, “Proving properties of a ring of finite-state machines,” Inf. Process. Lett., vol. 28, no. 4, pp.
213–214, July 1988.

[30] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about hybrid automata?”
Journal of Computer and System Sciences, vol. 57, pp. 94–124, 1998.

[31] G. Lafferriere, G. J. Pappas, and S. Sastry, “O-minimal hybrid systems,” Mathematics of Control,
Signals, and Systems (MCSS), vol. 13, pp. 1–21, 2000.

[32] A. Carioni, S. Ghilardi, and S. Ranise, “MCMT in the land of parameterized timed automata,” in
Proc. of VERIFY 2010, July 2010.

141

[33] R. Bruttomesso, A. Carioni, S. Ghilardi, and S. Ranise, “Automated analysis of parametric timing-
based mutual exclusion algorithms,” in NASA Formal Methods, ser. LNCS, A. Goodloe and S. Person,
Eds., vol. 7226. Springer Berlin / Heidelberg, 2012, pp. 279–294.

[34] M. Archer, H. Lim, N. Lynch, S. Mitra, and S. Umeno, “Specifying and proving properties of timed
I/O automata using Tempo,” Design Automation for Embedded Systems, vol. 12, pp. 139–170, 2008.

[35] A. Platzer, “Quantified differential dynamic logic for distributed hybrid systems,” in Computer Science
Logic, ser. LNCS, vol. 6247, 2010, pp. 469–483.

[36] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specification of hybrid systems in Charon,”
in Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science, N. Lynch and
B. Krogh, Eds. Springer Berlin Heidelberg, 2000, vol. 1790, pp. 6–19.

[37] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech: A model checker for hybrid systems,” Journal
on Software Tools for Technology Transfer, vol. 1, pp. 110–122, 1997.

[38] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL: A tool suite for automatic
verification of real-time systems,” in Hybrid Systems III, ser. Lecture Notes in Computer Science,
R. Alur, T. Henzinger, and E. Sontag, Eds. Springer Berlin / Heidelberg, 1996, vol. 1066, pp.
232–243.

[39] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,” International Journal
on Software Tools for Technology Transfer (STTT), vol. 10, pp. 263–279, 2008.

[40] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler, “SpaceEx: Scalable verification of hybrid systems,” in Computer Aided Verification
(CAV), ser. LNCS. Springer, 2011.

[41] T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. Zuck, “Parameterized verification with automatically
computed inductive assertions?” in Computer Aided Verification, ser. LNCS, G. Berry, H. Comon,
and A. Finkel, Eds. Springer, 2001, vol. 2102, pp. 221–234.

[42] A. Pnueli, S. Ruah, and L. Zuck, “Automatic deductive verification with invisible invariants,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. LNCS. Springer, 2001, vol. 2031,
pp. 82–97.

[43] K. Namjoshi, “Symmetry and completeness in the analysis of parameterized systems,” in Verification,
Model Checking, and Abstract Interpretation, ser. Lecture Notes in Computer Science, B. Cook and
A. Podelski, Eds. Springer Berlin / Heidelberg, 2007, vol. 4349, pp. 299–313.

[44] S. Owicki and D. Gries, “An axiomatic proof technique for parallel programs I,” Acta Informatica,
vol. 6, pp. 319–340, 1976.

[45] I. Balaban, Y. Fang, A. Pnueli, and L. Zuck, “IIV: An invisible invariant verifier,” in Computer Aided
Verification, ser. LNCS. Springer, 2005, vol. 3576, pp. 293–299.

[46] K. McMillan and L. Zuck, “Invisible invariants and abstract interpretation,” in Static Analysis, ser.
Lecture Notes in Computer Science, E. Yahav, Ed. Springer Berlin / Heidelberg, 2011, vol. 6887, pp.
249–262.

[47] P. A. Abdulla and B. Jonsson, “Model checking of systems with many identical timed processes,”
Theoretical Computer Science, vol. 290, no. 1, pp. 241–264, 2003.

[48] P. A. Abdulla, J. Deneux, and P. Mahata, “Multi-clock timed networks,” in Proc. of 19th Annual
IEEE Symposium Logic in Computer Science, July 2004, pp. 345–354.

[49] O. Grinchtein and M. Leucker, “Network invariants for real-time systems,” Formal Aspects of Com-
puting, vol. 20, pp. 619–635, 2008.

[50] T. Göthel, “Mechanical verification of parameterized real-time systems,” Ph.D. dissertation, Technis-
che Universität Berlin, 2012.

142

[51] P. Abdulla, G. Delzanno, and A. Rezine, “Parameterized verification of infinite-state processes with
global conditions,” in Computer Aided Verification, ser. LNCS, W. Damm and H. Hermanns, Eds.
Springer, 2007, vol. 4590, pp. 145–157.

[52] P. A. Abdulla, N. Henda, G. Delzanno, and A. Rezine, “Handling parameterized systems with non-
atomic global conditions,” in Verification, Model Checking, and Abstract Interpretation, ser. Lecture
Notes in Computer Science, F. Logozzo, D. A. Peled, and L. Zuck, Eds. Springer Berlin Heidelberg,
2008, vol. 4905, pp. 22–36.

[53] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli, “Towards SMT model checking of array-based
systems,” in Automated Reasoning, ser. LNCS. Springer, 2008, vol. 5195, pp. 67–82.

[54] S. Ghilardi and S. Ranise, “MCMT: A model checker modulo theories,” in Automated Reasoning, ser.
LNCS. Springer, 2010, vol. 6173, pp. 22–29.

[55] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina, “SAFARI: SMT-based abstrac-
tion for arrays with interpolants,” in 24th International Conference on Computer Aided Verification
(CAV), Springer. Berkeley, California, USA: Springer, 2012.

[56] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zäıdi, “Cubicle: A parallel SMT-based model
checker for parameterized systems,” in Computer Aided Verification, ser. Lecture Notes in Computer
Science, P. Madhusudan and S. Seshia, Eds. Springer Berlin / Heidelberg, 2012, vol. 7358, pp.
718–724.

[57] A. Platzer and E. Clarke, “Computing differential invariants of hybrid systems as fixedpoints,” in
Computer Aided Verification, ser. Lecture Notes in Computer Science, A. Gupta and S. Malik, Eds.
Springer Berlin / Heidelberg, 2008, vol. 5123, pp. 176–189.

[58] A. Platzer and E. Clarke, “Formal verification of curved flight collision avoidance maneuvers: A case
study,” in Formal Methods, ser. LNCS, A. Cavalcanti and D. Dams, Eds. Springer, 2009, vol. 5850,
pp. 547–562.

[59] N. Lynch, “Modelling and verification of automated transit systems, using timed automata, invariants
and simulations,” in Proceedings of the DIMACS/SYCON Workshop on Hybrid Systems III: Verifica-
tion and Control. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1996, pp. 449–463.

[60] E. Dolginova and N. Lynch, “Safety verification for automated platoon maneuvers: A case study,”
in HART ’97 (International Workshop on Hybrid and Real-Time Systems), ser. LNCS, vol. 1201.
Springer Verlag, March 1997.

[61] C. Livadas, J. Lygeros, and N. A. Lynch, “High-level modeling and analysis of TCAS,” in Proceedings
of the 20th IEEE Real-Time Systems Symposium (RTSS ’99), Dec. 1999, pp. 115–125.

[62] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air traffic management: A study in
multiagent hybrid systems,” IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 509–521, Apr. 1998.

[63] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict resolution maneuvers,” Intelligent
Transportation Systems, IEEE Transactions on, vol. 2, no. 2, pp. 110–120, June 2001.

[64] A. Bayen, I. M. Mitchell, M. M. K. Oishi, and C. J. Tomlin, “Aircraft autolander safety analysis
through optimal control-based reach set computation,” Journal of Guidance, Control, and Dynamics,
vol. 30, no. 1, Jan. 2007.

[65] C. Muñoz, G. Dowek, and V. Carreño, “Modeling and verification of an air traffic concept of opera-
tions,” Software Engineering Notes, vol. 29, no. 4, pp. 175–182, 2004.

[66] C. Muñoz and G. Dowek, “Hybrid verification of an air traffic operational concept,” in Proceedings of
IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation,
Columbia, Maryland, 2005.

[67] V. Carreño and C. Muñoz, “Safety verification of the small aircraft transportation system concept
of operations,” in Proceedings of the AIAA 5th Aviation, Technology, Integration, and Operations
Conference, AIAA-2005-7423, Arlington, Virginia, 2005.

143

[68] S. Umeno and N. Lynch, “Proving safety properties of an aircraft landing protocol using I/O automata
and the PVS theorem prover: A case study,” in Formal Methods, ser. LNCS, J. Misra, T. Nipkow, and
E. Sekerinski, Eds. Springer, 2006, vol. 4085, pp. 64–80.

[69] S. Umeno and N. Lynch, “Safety verification of an aircraft landing protocol: A refinement approach,”
in Hybrid Systems: Computation and Control, ser. LNCS. Springer, 2007, vol. 4416, pp. 557–572.

[70] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification system,” in 11th International
Conference on Automated Deduction (CADE), ser. LNAI, D. Kapur, Ed., vol. 607. Saratoga, NY:
Springer-Verlag, June 1992, pp. 748–752.

[71] P. Prabhakar, P. S. Duggirala, S. Mitra, and M. Viswanathan, “Hybrid automata-based CEGAR for
rectangular hybrid systems,” in VMCAI, 2013, pp. 48–67.

[72] L. Zuck and A. Pnueli, “Model checking and abstraction to the aid of parameterized systems,” Com-
puter Languages, Systems, and Structures, vol. 30, no. 3-4, pp. 139–169, 2004.

[73] B. D. Lubachevsky, “An approach to automating the verification of compact parallel coordination
programs,” Acta Informatica, vol. 21, no. 2, pp. 125–169, 1984.

[74] E. M. Clarke, O. Grumberg, and M. C. Browne, “Reasoning about networks with many identical finite-
state processes,” in Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed
Computing (PODC ’86). New York, NY, USA: ACM, 1986, pp. 240–248.

[75] S. M. German and A. P. Sistla, “Reasoning about systems with many processes,” J. ACM, vol. 39,
no. 3, pp. 675–735, 1992.

[76] G. Delzanno, “Automatic verification of parameterized cache coherence protocols,” in Computer Aided
Verification, ser. LNCS, E. Emerson and A. Sistla, Eds. Springer Berlin / Heidelberg, 2000, vol. 1855,
pp. 53–68.

[77] F. Pong and M. Dubois, “A new approach for the verification of cache coherence protocols,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 6, no. 8, pp. 773–787, 1995.

[78] K. McMillan, “Parameterized verification of the FLASH cache coherence protocol by compositional
model checking,” in Correct Hardware Design and Verification Methods, ser. Lecture Notes in Com-
puter Science, T. Margaria and T. Melham, Eds. Springer Berlin / Heidelberg, 2001, vol. 2144, pp.
179–195.

[79] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0, 1,∞)-counter abstraction,” in Computer Aided
Verification, ser. LNCS, E. Brinksma and K. Larsen, Eds. Springer Berlin / Heidelberg, 2002, vol.
2404, pp. 93–111.

[80] E. Clarke, M. Talupur, and H. Veith, “Environment abstraction for parameterized verification,” in
Verification, Model Checking, and Abstract Interpretation, ser. LNCS, E. Emerson and K. Namjoshi,
Eds. Springer, 2006, vol. 3855, pp. 126–141.

[81] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine, “Monotonic abstraction (on efficient verifi-
cation of parameterized systems),” International Journal of Foundations of Computer Science, vol. 20,
no. 5, pp. 779–801, 2009.

[82] P. Abdulla, Y.-F. Chen, G. Delzanno, F. Haziza, C.-D. Hong, and A. Rezine, “Constrained monotonic
abstraction: A CEGAR for parameterized verification,” in CONCUR 2010, ser. Lecture Notes in
Computer Science, P. Gastin and F. Laroussinie, Eds. Springer Berlin / Heidelberg, 2010, vol. 6269,
pp. 86–101.

[83] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena, “A survey of regular model checking,” in
Concurrency Theory (CONCUR 2004), ser. Lecture Notes in Computer Science, P. Gardner and
N. Yoshida, Eds. Springer Berlin / Heidelberg, 2004, vol. 3170, pp. 35–48.

[84] A. Legay and P. Wolper, “On (omega-)regular model checking,” ACM Trans. Comput. Logic, vol. 12,
pp. 2:1–2:46, Nov. 2010.

144

[85] P. Wolper and V. Lovinfosse, “Verifying properties of large sets of processes with network invariants,”
in Automatic Verification Methods for Finite State Systems, ser. LNCS, J. Sifakis, Ed. Springer Berlin
/ Heidelberg, 1990, vol. 407, pp. 68–80.

[86] F. Balarin and A. Sangiovanni-Vincentelli, “On the automatic computation of network invariants,” in
Computer Aided Verification, ser. Lecture Notes in Computer Science, D. Dill, Ed. Springer Berlin /
Heidelberg, 1994, vol. 818, pp. 234–246.

[87] E. M. Clarke, O. Grumberg, and S. Jha, “Verifying parameterized networks,” ACM Trans. Program.
Lang. Syst., vol. 19, no. 5, pp. 726–750, Sep. 1997.

[88] P. Abdulla and B. Jonsson, “On the existence of network invariants for verifying parameterized sys-
tems,” in Correct System Design, ser. Lecture Notes in Computer Science, E.-R. Olderog and B. Steffen,
Eds. Springer Berlin / Heidelberg, 1999, vol. 1710, pp. 180–197.

[89] D. Lesens, N. Halbwachs, and P. Raymond, “Automatic verification of parameterized networks of
processes,” Theoretical Computer Science, vol. 256, no. 1-2, pp. 113–144, 2001.

[90] Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck, “Network invariants in action,” in CONCUR 2002 ?
Concurrency Theory, ser. Lecture Notes in Computer Science, L. Brim, M. Kretnsk, A. Kucera, and
P. Jancar, Eds. Springer Berlin / Heidelberg, 2002, vol. 2421, pp. 217–264.

[91] O. Grinchtein, M. Leucker, and N. Piterman, “Inferring network invariants automatically,” in Auto-
mated Reasoning, ser. Lecture Notes in Computer Science, U. Furbach and N. Shankar, Eds. Springer
Berlin / Heidelberg, 2006, vol. 4130, pp. 483–497.

[92] T. Göthel and S. Glesner, “Towards the semi-automatic verification of parameterized real-time systems
using network invariants,” in Software Engineering and Formal Methods (SEFM), 2010 8th IEEE
International Conference on, Sep. 2010, pp. 310–314.

[93] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
ser. LNCS. Springer, 2002, vol. 2283.

[94] T. Göthel and S. Glesner, “An approach for machine-assisted verification of timed CSP specifications,”
Innovations in Systems and Software Engineering, vol. 6, pp. 181–193, 2010.

[95] N. Piterman, “Verification of infinite-state systems,” Ph.D. dissertation, Weizmann Institute of Science,
2004.

[96] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck, “Liveness with invisible ranking,” in Verification, Model
Checking, and Abstract Interpretation, ser. Lecture Notes in Computer Science, B. Steffen and G. Levi,
Eds. Springer Berlin / Heidelberg, 2004, vol. 2937, pp. 109–132.

[97] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck, “Liveness with invisible ranking,” International Journal
on Software Tools for Technology Transfer (STTT), vol. 8, pp. 261–279, 2006.

[98] Y. Fang, K. McMillan, A. Pnueli, and L. Zuck, “Liveness by invisible invariants,” in Formal Techniques
for Networked and Distributed Systems, ser. Lecture Notes in Computer Science, E. Najm, J.-F. Pradat-
Peyre, and V. Donzeau-Gouge, Eds. Springer, 2006, vol. 4229, pp. 356–371.

[99] E. Emerson and V. Kahlon, “Reducing model checking of the many to the few,” in Automated De-
duction (CADE-17), ser. Lecture Notes in Computer Science, D. McAllester, Ed. Springer Berlin /
Heidelberg, 2000, vol. 1831, pp. 236–254.

[100] E. Emerson and V. Kahlon, “Model checking large-scale and parameterized resource allocation sys-
tems,” in Tools and Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, J.-P. Katoen and P. Stevens, Eds. Springer Berlin / Heidelberg, 2002, vol. 2280,
pp. 55–69.

[101] Q. Yang and M. Li, “A cut-off approach for bounded verification of parameterized systems,” in Software
Engineering, 2010 ACM/IEEE 32nd International Conference on, vol. 1, 2010, pp. 345–354.

145

[102] Y. Hanna, D. Samuelson, S. Basu, and H. Rajan, “Automating cut-off for multi-parameterized sys-
tems,” in Formal Methods and Software Engineering, ser. LNCS, J. Dong and H. Zhu, Eds. Springer
Berlin / Heidelberg, 2010, vol. 6447, pp. 338–354.

[103] B. Dutertre and M. Sorea, “Timed systems in SAL,” SRI International, Tech. Rep. SRI-SDL-04-03,
Oct. 2004.

[104] A. Platzer, “Quantified differential invariants,” in Proc. of the 14th ACM Intl. Conf. on Hybrid Sys-
tems: Computation and Control. ACM, 2011, pp. 63–72.

[105] A. Annichini, A. Bouajjani, and M. Sighireanu, “TReX: A tool for reachability analysis of complex sys-
tems,” in Computer Aided Verification, ser. Lecture Notes in Computer Science, G. Berry, H. Comon,
and A. Finkel, Eds. Springer Berlin / Heidelberg, 2001, vol. 2102, pp. 368–372.

[106] J. Faber, C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans, “Automatic verification of parametric
specifications with complex topologies,” in Integrated Formal Methods, ser. LNCS. Springer, 2010,
vol. 6396, pp. 152–167.

[107] L. Lamport, “A fast mutual exclusion algorithm,” ACM Trans. Comput. Syst., vol. 5, no. 1, pp. 1–11,
1987.

[108] D. Lesens and H. Saidi, “Automatic verification of parameterized networks of processes by abstraction,”
Electronic Notes of Theoretical Computer Science, 1997.

[109] P. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso, “On the verification of timed ad
hoc networks,” in Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes in Computer
Science, U. Fahrenberg and S. Tripakis, Eds. Springer Berlin / Heidelberg, 2011, vol. 6919, pp.
256–270.

[110] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science, vol. 126, pp.
183–235, 1994.

[111] A. Puri and P. Varaiya, “Decidability of hybrid systems with rectangular differential inclusions,” in
Computer Aided Verification, ser. Lecture Notes in Computer Science, D. Dill, Ed. Springer Berlin /
Heidelberg, 1994, vol. 818, pp. 95–104.

[112] H. Lim, D. Kaynar, N. Lynch, and S. Mitra, “Translating timed I/O automata specifications for
theorem proving in PVS,” in Formal Modeling and Analysis of Timed Systems, ser. LNCS, P. Pettersson
and W. Yi, Eds. Springer, 2005, vol. 3829, pp. 17–31.

[113] L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari, “SAL 2,” in
Computer Aided Verification, ser. Lecture Notes in Computer Science, R. Alur and D. A. Peled, Eds.
Springer Berlin Heidelberg, 2004, vol. 3114, pp. 496–500.

[114] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting symmetry in temporal logic model
checking,” Formal Methods in System Design, vol. 9, pp. 77–104, 1996.

[115] C. N. Ip and D. L. Dill, “Better verification through symmetry,” Formal Methods in System Design,
vol. 9, pp. 41–75, 1996.

[116] E. A. Emerson and A. P. Sistla, “Symmetry and model checking,” Formal Methods in System Design,
vol. 9, no. 1-2, pp. 105–131, 1996.

[117] W. D. Obal II, “Measure-adaptive state-space construction methods,” Ph.D. dissertation, University
of Arizona, 1998.

[118] W. D. Obal and W. H. Sanders, “Measure-adaptive state-space construction,” Performance Evaluation,
vol. 44, no. 1–4, pp. 237–258, 2001.

[119] E. Emerson and T. Wahl, “Dynamic symmetry reduction,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, ser. Lecture Notes in Computer Science, N. Halbwachs and L. Zuck,
Eds. Springer Berlin Heidelberg, 2005, vol. 3440, pp. 382–396.

146

[120] W. D. Obal, M. McQuinn, and W. Sanders, “Detecting and exploiting symmetry in discrete-state
Markov models,” Reliability, IEEE Transactions on, vol. 56, no. 4, pp. 643–654, Dec. 2007.

[121] T. Wahl, N. Blanc, and E. Emerson, “SVISS: Symbolic verification of symmetric systems,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in Computer Science,
C. Ramakrishnan and J. Rehof, Eds. Springer Berlin Heidelberg, 2008, vol. 4963, pp. 459–462.

[122] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening, “Symbolic counter abstraction for concurrent
software,” in Computer Aided Verification, ser. Lecture Notes in Computer Science, A. Bouajjani and
O. Maler, Eds. Springer Berlin Heidelberg, 2009, vol. 5643, pp. 64–78.

[123] D. L. Dill, “The murϕ verification system,” in Proceedings of the 8th International Conference on
Computer Aided Verification, ser. CAV ’96. London, UK, UK: Springer-Verlag, 1996, pp. 390–393.

[124] C. N. Ip and D. L. Dill, “Verifying systems with replicated components in Murϕ,” Formal Methods in
System Design, vol. 14, no. 3, May 1999.

[125] M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. W. Vaandrager, “Adding symmetry
reduction to UPPAAL,” in Formal Modeling and Analysis of Timed Systems (FORMATS ’03), ser.
LNCS, K. G. Larsen and P. Niebert, Eds., no. 2791. Springer–Verlag, 2004, pp. 46–59.

[126] M. Hendriks, “Model checking timed automata: Techniques and applications,” Ph.D. dissertation,
University of Nijmegen, The Netherlands, 2006.

[127] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” Computers, IEEE Transac-
tions on, vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[128] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without BDDs,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture Notes in Computer Science,
W. Cleaveland, Ed. Springer Berlin / Heidelberg, 1999, vol. 1579, pp. 193–207.

[129] D. Dill, “Timing assumptions and verification of finite-state concurrent systems,” in Automatic Ver-
ification Methods for Finite State Systems, ser. Lecture Notes in Computer Science, J. Sifakis, Ed.
Springer Berlin / Heidelberg, 1990, vol. 407, pp. 197–212.

[130] S. Yovine, “Model checking timed automata,” in Lectures on Embedded Systems, ser. Lecture Notes in
Computer Science, G. Rozenberg and F. Vaandrager, Eds. Springer Berlin / Heidelberg, 1998, vol.
1494, pp. 114–152.

[131] R. Alur, “Timed automata,” in Computer Aided Verification, ser. Lecture Notes in Computer Science,
N. Halbwachs and D. Peled, Eds. Springer Berlin / Heidelberg, 1999, vol. 1633, pp. 688–688.

[132] J. Moller, J. Lichtenberg, H. Andersen, and H. Hulgaard, “Difference decision diagrams,” in Computer
Science Logic, ser. Lecture Notes in Computer Science, J. Flum and M. Rodriguez-Artalejo, Eds.
Springer Berlin / Heidelberg, 2009, vol. 1683, pp. 826–826.

[133] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in Hybrid Systems: Computa-
tion and Control, ser. Lecture Notes in Computer Science, M. Morari and L. Thiele, Eds. Springer
Berlin / Heidelberg, 2005, vol. 3414, pp. 291–305.

[134] M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets of hybrid systems using a combi-
nation of zonotopes and polytopes,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 233–249,
2010.

[135] S. Ghilardi and S. Ranise, “Backward reachability of array-based systems by SMT solving: Termination
and invariant synthesis,” Logical Methods in Computer Science, vol. 6, no. 4, 2010.

[136] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc. of 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, ser. TACAS ’08/ETAPS ’08.
Springer-Verlag, 2008, pp. 337–340.

[137] A. Filippov, “Classical solutions of differential equations with multi-valued right-hand side,” SIAM
Journal on Control, vol. 5, no. 4, pp. 609–621, 1967.

147

[138] S. Viken and F. Brooks, “Demonstration of four operating capabilities to enable a small aircraft
transportation system,” in The 24th Digital Avionics Systems Conference (DASC 2005), vol. 2, Oct.
2005.

[139] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.

[140] G. Lafferriere, G. Pappas, and S. Yovine, “A new class of decidable hybrid systems,” in Hybrid Systems:
Computation and Control, ser. Lecture Notes in Computer Science, F. Vaandrager and J. van Schuppen,
Eds. Springer Berlin / Heidelberg, 1999, vol. 1569, pp. 137–151.

[141] C. L. Guernic and A. Girard, “Reachability analysis of linear systems using support functions,” Non-
linear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 250–262, 2010.

[142] R. Floyd, “Assigning meanings to programs,” Mathematical Aspects of Computer Science, vol. 19, no.
19-32, p. 1, 1967.

[143] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12, no. 10,
pp. 576–580, Oct. 1969.

[144] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal derivation of programs,” Commun.
ACM, vol. 18, no. 8, pp. 453–457, Aug. 1975.

[145] G. Chockler, N. Lynch, S. Mitra, and J. Tauber, “Proving atomicity: An assertional approach,” in
Distributed Computing, ser. Lecture Notes in Computer Science, P. Fraigniaud, Ed. Springer Berlin
Heidelberg, 2005, vol. 3724, pp. 152–168.

[146] A. Finkel and P. Schnoebelen, “Well-structured transition systems everywhere!” Theoretical Computer
Science, vol. 256, no. 1-2, pp. 63–92, 2001.

[147] B. Dutertre and L. De Moura, “The Yices SMT solver,” SRI International, Tech. Rep., 2006.

[148] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi, “Universal guards, relativization of
quantifiers, and failure models in model checking modulo theories,” JSAT, vol. 8, no. 1/2, pp. 29–61,
2012.

[149] H. Mangassarian, A. Veneris, and M. Benedetti, “Robust QBF encodings for sequential circuits with
applications to verification, debug, and test,” Computers, IEEE Transactions on, vol. 59, no. 7, pp.
981–994, July 2010.

[150] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduction and applications,” Commun.
ACM, vol. 54, pp. 69–77, Sep. 2011.

[151] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani, “Bounded model checking for timed
systems,” in Formal Techniques for Networked and Distributed Systems (FORTE), ser. LNCS, D. Peled
and M. Vardi, Eds. Springer Berlin / Heidelberg, 2002, vol. 2529, pp. 243–259.

[152] M. Sorea, “Bounded model checking for timed automata,” Electronic Notes in Theoretical Computer
Science, vol. 68, no. 5, pp. 116–134, 2002.

[153] R. Kindermann, T. Junttila, and I. Niemelä, “Beyond lassos: Complete SMT-based bounded model
checking for timed automata,” in Formal Techniques for Distributed Systems, ser. Lecture Notes in
Computer Science, H. Giese and G. Rosu, Eds. Springer Berlin Heidelberg, 2012, vol. 7273, pp.
84–100.

[154] R. Kindermann, T. Junttila, and I. Niemelä, “SMT-based induction methods for timed systems,” in
Formal Modeling and Analysis of Timed Systems, ser. Lecture Notes in Computer Science, M. Jurdziski
and D. Nickovic, Eds. Springer Berlin Heidelberg, 2012, vol. 7595, pp. 171–187.

[155] A. Cimatti, S. Mover, and S. Tonetta, “SMT-based scenario verification for hybrid systems,” Formal
Methods in System Design, pp. 1–21, 2012.

148

[156] A. Eggers, M. Fränzle, and C. Herde, “SAT modulo ODE: A direct SAT approach to hybrid systems,”
in Automated Technology for Verification and Analysis, ser. Lecture Notes in Computer Science, S. Cha,
J.-Y. Choi, M. Kim, I. Lee, and M. Viswanathan, Eds. Springer Berlin / Heidelberg, 2008, vol. 5311,
pp. 171–185.

[157] D. Ishii, K. Ueda, and H. Hosobe, “An interval-based SAT modulo ODE solver for model checking
nonlinear hybrid systems,” International Journal on Software Tools for Technology Transfer (STTT),
vol. 13, pp. 449–461, 2011.

[158] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle, “Improving SAT modulo ODE for hybrid sys-
tems analysis by combining different enclosure methods,” in Software Engineering and Formal Methods,
ser. Lecture Notes in Computer Science, G. Barthe, A. Pardo, and G. Schneider, Eds. Springer Berlin
/ Heidelberg, 2011, vol. 7041, pp. 172–187.

[159] E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Problem. Springer, 2001.

[160] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck, “Liveness with incomprehensible ranking,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. LNCS, K. Jensen and A. Podelski,
Eds. Springer, 2004, vol. 2988, pp. 482–496.

[161] Y. Ge and L. de Moura, “Complete instantiation for quantified formulas in satisfiabiliby modulo
theories,” in Computer Aided Verification, ser. Lecture Notes in Computer Science, A. Bouajjani and
O. Maler, Eds. Springer Berlin / Heidelberg, 2009, vol. 5643, pp. 306–320.

[162] N. Bjørner, “Linear quantifier elimination as an abstract decision procedure,” in Automated Reasoning,
ser. LNCS. Springer, 2010, vol. 6173, pp. 316–330.

[163] G. Brown and L. Pike, “Easy parameterized verification of biphase mark and 8N1 protocols,” in Tools
and Algorithms for the Construction and Analysis of Systems, ser. LNCS. Springer, 2006, vol. 3920,
pp. 58–72.

[164] A. Donaldson, L. Haller, D. Kroening, and P. Rmmer, “Software verification using k-induction,” in
Static Analysis, ser. LNCS, E. Yahav, Ed. Springer Berlin / Heidelberg, 2011, vol. 6887, pp. 351–368.

[165] I. Balaban, A. Pnueli, and L. Zuck, “Invisible safety of distributed protocols,” in Automata, Languages
and Programming, ser. Lecture Notes in Computer Science, M. Bugliesi, B. Preneel, V. Sassone, and
I. Wegener, Eds. Springer Berlin / Heidelberg, 2006, vol. 4052, pp. 528–539.

[166] A. Pnueli and E. Shahar, “A platform for combining deductive with algorithmic verification,” in
Computer Aided Verification, ser. Lecture Notes in Computer Science, R. Alur and T. Henzinger, Eds.
Springer Berlin / Heidelberg, 1996, vol. 1102, pp. 184–195.

[167] A. Tarski, A Decision Method for Elementary Algebra and Geometry. Santa Monica, CA: RAND
Corporation, 1951.

[168] G. Nelson and D. C. Oppen, “Simplification by cooperating decision procedures,” ACM Trans. Pro-
gram. Lang. Syst., vol. 1, no. 2, pp. 245–257, Oct. 1979.

[169] R. E. Shostak, “Deciding combinations of theories,” in 6th Conference on Automated Deduction, ser.
Lecture Notes in Computer Science, D. Loveland, Ed. Springer Berlin Heidelberg, 1982, vol. 138, pp.
209–222.

[170] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “DPLL(T): Fast decision proce-
dures,” in Computer Aided Verification, ser. Lecture Notes in Computer Science, R. Alur and D. Peled,
Eds. Springer Berlin / Heidelberg, 2004, vol. 3114, pp. 293–295.

[171] S. C. Kleene, Introduction to metamathematics. North Holland, 1980.

[172] A. Cohen and K. Namjoshi, “Local proofs for global safety properties,” Formal Methods in System
Design, vol. 34, pp. 104–125, 2009.

149

[173] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo, “A step towards verification and synthesis from
Simulink/Stateflow models,” in Proc. of the 14th Intl. Conf. on Hybrid Systems: Computation and
Control (HSCC). ACM, 2011, pp. 317–318.

[174] K. Hoder, N. Bjørner, and L. de Moura, “muZ – An efficient engine for fixed points with constraints,”
in Computer Aided Verification, ser. Lecture Notes in Computer Science, G. Gopalakrishnan and
S. Qadeer, Eds. Springer Berlin / Heidelberg, 2011, vol. 6806, pp. 457–462.

[175] K. Hoder and N. Bjørner, “Generalized property directed reachability,” in Theory and Applications of
Satisfiability Testing (SAT), ser. Lecture Notes in Computer Science, A. Cimatti and R. Sebastiani,
Eds. Springer Berlin / Heidelberg, 2012, vol. 7317, pp. 157–171.

[176] A. Fehnker and F. Ivancic, “Benchmarks for hybrid systems verification,” in Hybrid Systems: Compu-
tation and Control (HSCC ’04), ser. Lecture Notes in Computer Science, R. Alur and G. J. Pappas,
Eds. Springer Berlin Heidelberg, 2004, vol. 2993, pp. 326–341.

[177] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability computation for families of linear
vector fields,” J. Symb. Comput., vol. 32, no. 3, pp. 231–253, 2001.

[178] D. Jovanović and L. de Moura, “Solving non-linear arithmetic,” in Automated Reasoning - 6th Interna-
tional Joint Conference, IJCAR 2012, Manchester, UK. Proceedings, ser. Lecture Notes in Computer
Science, vol. 7364. Springer, June 2012, pp. 339–354.

[179] L. de Moura and G. Passmore, “Computation in real closed infinitesimal and transcendental extensions
of the rationals,” in Proceedings of 24th International Conference on Automated Deduction (CADE-
24), June 2013.

[180] M. Daumas, D. Lester, and C. Muñoz, “Verified real number calculations: A library for interval
arithmetic,” Computers, IEEE Transactions on, vol. 58, no. 2, pp. 226–237, Feb. 2009.

[181] L. Paulson, “MetiTarski: Past and future,” in Interactive Theorem Proving, ser. Lecture Notes in
Computer Science, L. Beringer and A. Felty, Eds. Springer Berlin / Heidelberg, 2012, vol. 7406, pp.
1–10.

[182] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstractions of hybrid systems,”
Proceedings of the IEEE, vol. 88, no. 7, pp. 971–984, July 2000.

[183] F. Heidarian, J. Schmaltz, and F. Vaandrager, “Analysis of a clock synchronization protocol for wireless
sensor networks,” Theoretical Computer Science, vol. 413, no. 1, pp. 87–105, 2012.

[184] N. Lynch and N. Shavit, “Timing-based mutual exclusion,” in Real-Time Systems Symposium, 1992,
Dec. 1992, pp. 2–11.

[185] W. Daly, J. Hopkins, A.L., and J. McKenna, “A fault-tolerant digital clocking system,” in Twenty-
Fifth International Symposium on Fault-Tolerant Computing (FTCS ’95), Highlights from Twenty-Five
Years, 1973, p. 419.

[186] W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer, “Model checking a fault-tolerant startup algorithm:
From design exploration to exhaustive fault simulation,” in International Conference on Dependable
Systems and Networks (DSN ’04), June 2004, pp. 189–198.

[187] G. Rodriguez-Navas, J. Proenza, and H. Hansson, “Using UPPAAL to model and verify a clock
synchronization protocol for the controller area network,” in 10th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA ’05), vol. 2, Sep. 2005, p. 8.

[188] B. Dutertre and M. Sorea, “Modeling and verification of a fault-tolerant real-time startup protocol
using calendar automata,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, ser. Lecture Notes in Computer Science, Y. Lakhnech and S. Yovine, Eds. Springer Berlin
/ Heidelberg, 2004, vol. 3253, pp. 1–6.

[189] J. Heo, D. Henriksson, X. Liu, and T. Abdelzaher, “Integrating adaptive components: An emerg-
ing challenge in performance-adaptive systems and a server farm case-study,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International, Dec. 2007, pp. 227–238.

150

[190] M. Khan, L. Luo, C. Huang, and T. Abdelzaher, “SNTS: Sensor network troubleshooting suite,”
in Distributed Computing in Sensor Systems, ser. Lecture Notes in Computer Science, J. Aspnes,
C. Scheideler, A. Arora, and S. Madden, Eds. Springer Berlin / Heidelberg, 2007, vol. 4549, pp.
142–157.

[191] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han, “Dustminer: Troubleshoot-
ing interactive complexity bugs in sensor networks,” in Proceedings of the 6th ACM Conference on
Embedded Network Sensor Systems (SenSys). New York, NY, USA: ACM, 2008, pp. 99–112.

[192] M. M. H. Khan, T. Abdelzaher, and K. Gupta, “Towards diagnostic simulation in sensor networks,”
in Distributed Computing in Sensor Systems, ser. Lecture Notes in Computer Science, S. Nikoletseas,
B. Chlebus, D. Johnson, and B. Krishnamachari, Eds. Springer Berlin / Heidelberg, 2008, vol. 5067,
pp. 252–265.

[193] M. M. H. Khan, T. Abdelzaher, J. Han, and H. Ahmadi, “Finding symbolic bug patterns in sensor
networks,” in Distributed Computing in Sensor Systems, ser. Lecture Notes in Computer Science,
B. Krishnamachari, S. Suri, W. Heinzelman, and U. Mitra, Eds. Springer Berlin / Heidelberg, 2009,
vol. 5516, pp. 131–144.

[194] M. M. H. Khan, J. Heo, S. Li, and T. Abdelzaher, “Understanding vicious cycles in server clusters,” in
31st International Conference on Distributed Computing Systems (ICDCS), June 2011, pp. 645–654.

[195] T. T. Johnson, J. Green, S. Mitra, R. Dudley, and R. S. Erwin, “Satellite rendezvous and conjunction
avoidance: Case studies in verification of nonlinear hybrid systems,” in Proceedings of the 18th Inter-
national Conference on Formal Methods (FM 2012), D. Giannakopoulou and D. Méry, Eds. Paris,
France: Springer Berlin Heidelberg, Aug. 2012, vol. 7436, pp. 252–266.

[196] P. S. Duggirala, T. T. Johnson, A. Zimmerman, and S. Mitra, “Static and dynamic analysis of timed
distributed traces,” in Proceedings of the 33rd IEEE Real-Time Systems Symposium (RTSS 2012), San
Juan, Puerto Rico, Dec. 2012.

151

	Chapter 1 Introduction
	1.1 Motivation and Background
	1.2 Dissertation Summary and Contributions
	1.2.1 Modeling Framework and the Passel Verification Tool
	1.2.2 Reachability Using Anonymized States for Finite Instantiations of Hybrid Automata Networks
	1.2.3 Proving Inductive Invariants for Parameterized Networks of Hybrid Automata
	1.2.4 Finding Inductive Invariants for Parameterized Networks of Hybrid Automata
	1.2.5 Parameterized Reachability Analysis: A Case Study on Distributed Air Traffic Control

	1.3 Literature Review
	1.3.1 Modeling and Verification of Distributed Cyber-Physical Systems
	1.3.2 Uniform Verification of Discrete Parameterized Systems
	1.3.3 Uniform Verification of Timed and Hybrid Parameterized Systems
	1.3.4 Symmetry Methods and Efficient State-Space Representations

	1.4 Dissertation Outline
	1.5 Copyright Acknowledgments

	Chapter 2 A Modeling Framework for Hybrid Automata Networks
	2.1 Introduction
	2.2 Informal Description of Hybrid Automata Networks
	2.3 Syntax for Hybrid Automaton Template A(N, i)
	2.3.1 Variables
	2.3.2 Terms, Formulas, and Passel Assertions
	2.3.3 Hybrid Automaton Template
	2.3.4 Specifying Locations
	2.3.5 Specifying Variables, Parameters, Initial Conditions, and Invariant Properties
	2.3.6 Specifying Discrete Transitions
	2.3.7 Specifying Continuous Dynamics
	2.3.8 Example: Simple Small Aircraft Transportation System (SATS) Landing Protocol

	2.4 Semantics of Hybrid Automata Networks
	2.4.1 Parameterized Network of Hybrid Automata
	2.4.2 State-Space and Semantics of Passel Assertions
	2.4.3 Transitions and Trajectories
	2.4.4 Executions, Invariants, and Inductive Invariants

	2.5 Summary

	Chapter 3 Parameterized Reachability Analysis: A Case Study on Distributed Air Traffic Control
	3.1 Introduction
	3.1.1 SATS Overview

	3.2 Formal Model of the Small Aircraft Transportation System
	3.2.1 Hybrid Automaton Template of Aircraft i in SATS
	3.2.2 SATS Transitions and Trajectories

	3.3 Verification by Backward Reachability
	3.4 Example: Finite State Automaton with Unreachable Illegal States
	3.5 SATS Properties Verified
	3.6 Summary

	Chapter 4 Reachability Using Anonymized States for Finite Instantiations of Hybrid Automata Networks
	4.1 Introduction
	4.2 Anonymized State-Space Representation
	4.3 Reachability Using Anonymized States
	4.3.1 Discrete Successors
	4.3.2 Continuous Successors

	4.4 Analysis of Reachability Algorithm Using Anonymized States
	4.4.1 Example with Anonymized Reachable State-Space Cardinality Independent of N

	4.5 Summary

	Chapter 5 Proving Inductive Invariants
	5.1 Introduction
	5.1.1 Proving Inductive Invariants

	5.2 Small Model Theorem
	5.3 Applying the Small Model Theorem to Check Inductive Invariants
	5.4 Summary

	Chapter 6 Finding Inductive Invariants
	6.1 Introduction
	6.2 Synthesizing Inductive Invariants with the Project-and-Generalize Subroutine
	6.3 Project-and-Generalize Example
	6.4 Inductive Invariant Synthesis Fixed-Point Procedure
	6.5 Summary

	Chapter 7 Passel and Experimental Evaluation
	7.1 Introduction
	7.2 Overview
	7.3 Implementation
	7.4 Additional Examples
	7.4.1 Fischer's Mutual Exclusion Protocol with Auxiliary Variables

	7.5 Experimental Setup
	7.6 Experimental Results for Reachability Using Anonymized States
	7.7 Experimental Results for Proving Inductive Invariants
	7.8 Experimental Results for Finding Inductive Invariants
	7.9 Summary

	Chapter 8 Conclusion
	8.1 Summary
	8.2 Future Work
	8.2.1 Modeling and Specification Extensions
	8.2.2 Passel Extensions
	8.2.3 Effective Abstractions
	8.2.4 Applications Requiring Additional Modeling Features

	Bibliography

