
Anonymized Reachability of Hybrid Automata
Networks

Taylor T. Johnson1 and Sayan Mitra2

1 University of Texas at Arlington, Arlington, TX 76019, USA
taylor.johnson@uta.edu

2 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
mitras@illinois.edu

Abstract. In this paper, we present a method for computing the set of reachable
states for networks consisting of the parallel composition of a finite number of the
same hybrid automaton template with rectangular dynamics. The method utilizes
a symmetric representation of the set of reachable states (modulo the automata
indices) that we call anonymized states, which makes it scalable. Rather than
explicitly enumerating each automaton index in formulas representing sets of
states, the anonymized representation encodes only: (a) the classes of automata,
which are the states of automata represented with formulas over symbolic indices,
and (b) the number of automata in each of the classes. We present an algorithm
for overapproximating the reachable states by computing state transitions in this
anonymized representation. Unlike symmetry reduction techniques used in finite
state models, the timed transition of a network composed of hybrid automata
causes the continuous variables of all the automata to evolve simultaneously. The
anonymized representation is amenable to both reducing the discrete and contin-
uous complexity. We evaluate a prototype implementation of the representation
and reachability algorithm in our satisfiability modulo theories (SMT)-based tool,
Passel. Our experimental results are promising, and generally allow for scaling
to networks composed of tens of automata, and in some instances, hundreds (or
more) of automata.

Keywords: hybrid automata network, reachability, verification, symmetry

1 Introduction
Networks consisting of automata that communicate via shared variables are useful
for modeling distributed algorithms such as mutual exclusion algorithms, media ac-
cess control (MAC) such as time-division multiple access (TDMA) protocols, and dis-
tributed cyber-physical systems (CPS) such as air-traffic control systems [17]. However,
as the state-space of the network consisting of parallel compositions of these automata
grows exponentially in the number of automata N, automated analysis is challenging.
It is particularly challenging for timed and hybrid systems, where the number of con-
tinuous variables (dimensions) also grows. Such networks are often specified in a sym-
metric manner—such as being composed of instantiations of an automaton template
A(N, i)—and are often amenable to methods that exploit symmetries. Formal analy-
sis and state-space construction methods that exploit symmetries have been thoroughly

investigated for many classes of system models, because such methods ameliorate the
state-space explosion problem [1, 2, 5, 6, 9–11, 14, 15, 20–22].

For example, several methods exploiting symmetry have been developed and imple-
mented for the Murϕ verification system [8] for discrete systems, such as the scalarset
data structure [14], and the repetitive id data structure [15]. Advances in tools like UP-
AAAL [3] and PAT [23] that exploit state-space symmetries have enabled scaling to
larger models. For instance, the scalarset data structure from Murϕ was extended for
timed systems and implemented in UPAAAL [11,12], and a clock-symmetry reduction
method has been implemented in the PAT model checker [21]. Quasi-equal clocks and
variables for timed [13] and hybrid (multi-rate) [4] automata networks also allow reduc-
tions in state-space explosion, but do not require automata in the network to be identical
(modulo identifiers), as we do. We focus on safety properties, and to the best of our
knowledge, before this paper, such symmetry techniques have not yet been applied to
systems with general continuous dynamics like the rectangular differential inclusions
we consider (e.g., [4] analyzes multi-rate automata and does not allow differential inclu-
sions). The method described in this paper and implemented in our Passel verification
tool [16,18,19] uses the SMT solver Z3 [7]. The method is used as a subroutine in meth-
ods for performing uniform verification of parameterized networks of hybrid automata
(e.g., verification for all network sizes, ∀N ∈ N, A(N, 1)‖ . . . ‖A(N,N) |= ζ(N)),
although we highlight that this paper addresses fixed, constant choices of N only.

2 Hybrid Automata Network Syntax and Semantics

We specify the behavior of each participant in the network using a syntactic structure
called a hybrid automaton template, denoted by A(N, i).3 The special symbols N and
i are natural numbers that respectively refer to the number of automata, and the ith

automaton. For a natural number n, the set [n] is {1, . . . , n}. For a set S, the set S⊥ is
S ∪ {⊥}. Fixing a particular value of N gives concrete instances of [N] and [N]⊥.

Terms and Formulas. We use a class of formulas to: (a) specify the syntactic com-
ponents of a hybrid automaton templateA(N, i), and (b) represent sets of states symbol-
ically in the reachability computation. Formulas are built-up from constants, variables,
and terms of several types. The grammar for formulas is:

ITerm ::= ⊥ | 1 | N | i | p[i]
DTerm ::= lc | q | q[ITerm]

RTerm ::= 0 | 1 | rc | x | x[ITerm]

RPoly ::= RTerm | RPoly1 + RPoly2 | RPoly1 − RPoly2 | (RPoly1 ∗ RPoly2)

Atom ::= ITerm1 = ITerm2 | DTerm1 = DTerm2 | RPoly < 0

Formula ::= Atom | ¬Formula | Formula1 ∧ Formula2 | ∃x Formula

The grammar is composed of index terms (ITerm) with type [N]⊥, discrete terms (DTerm)
with type L, and real terms (RTerm) with type R. For a discrete term, lc is constant from
L and q is a discrete variable. For a real term, rc is a real numerical constant and x is a
real variable. Index (p[i]), discrete (q[ITerm]), and real (x[ITerm]) pointer variables are

3 Readers interested in additional technical details are referred to [16, Chapters 2 and 4].

names for arrays composed of N elements of the corresponding type, respectively refer-
enced at an index variable i, or an evaluation of an index term ITerm. Atoms (Atom) are
composed of ordered relations between real polynomials (RPoly), as well as equality
relations between index terms and discrete terms. Formulas are composed of Boolean
combinations of atoms and shorter formulas. Comparison operators are expressed us-
ing negation (¬) and conjunction (∧) in formulas. Combining the Boolean operators ∧
and ¬ with the < operator, other comparison operators like =, 6=, ≤, >, and ≥, can
be expressed. We assume the language contains the standard quantifiers and Boolean
operators, even if not explicitly specified in the grammar (e.g., universal quantification
∀, implication⇒, disjunction ∨, less-than-or-equal ≤, etc.).

Variables. A hybrid automaton A(N, i) has a set of variables, each of which is a
name used for referring to state and is a term in the grammar just defined. As specified in
the grammar, each variable v is associated with a type—denoted type(v)—that defines
a set of values the variable may take. The type of a variable may be: (a) L: a finite set
of locations names, (b) [N]⊥: a set of automaton indices—called pointers—with the
special element ⊥ that is not equal to any automaton’s index, or (c) R: the set of real
numbers. A variable may be a local variable with a name of the form variable_name[i],
or global, in which case its name does not have a symbolic index [i]. For example,
q[i] : L, p[i] : [N]⊥, and x[i] : R respectively define location, pointer, and real typed
local variables, while g : [N]⊥ is a global variable of pointer type. The sets of local
and global variables are denoted by VL(i) and VG(i), respectively. The valuation of
a variable v is a function that associates the variable name v to a value in its type
type(v). For a set of variables V, val(V) is the set of valuations of each v ∈ V. For a
set of variables V, V′ ∆= {v′|v ∈ V} and V̇

∆
= {v̇|v ∈ V ∧ type(v) = R}. V′ is used

for specifying resets of discrete transitions and V̇ is used for specifying continuous
dynamics. For a formula φ, let: (a) vars(φ) be the set of variables appearing in φ,
(b) ivars(φ) be the set of distinct index variables appearing in φ.

Let N be a symbol representing an arbitrary natural number and i be a symbol
representing an arbitrary element of [N]. For the remainder of the paper, we fix N and
refer to it implicitly in the remaining definitions. When clear from context, we drop the
parameter N, for instance, a hybrid automaton template A(N, i) is written A(i), etc.

Definition 1. A hybrid automaton template A(N, i) is specified by the syntactic com-
ponents: (a) V(i): a finite set of variable names with associated types. (b) L: a finite set
of location names. (c) Init(i): an initial condition formula over V(i). (d) Trans(i): a fi-
nite set of discrete transition statements, each of which is a tuple 〈from, to,grd, rst〉,
where from, to ∈ L, grd is a formula over V(i) called a guard and rst is a for-
mula over V(i) ∪ V′(i) called a reset. The guard is an enabling condition that must
be satisfied so that a transition may be taken, and the reset models the update of state.
(e) Traj(i): for each element in L, there is a trajectory statement, each of which is a
tuple 〈loc, inv, frate〉, where loc ∈ L, inv is a formula over the real variables X(i)
called an invariant, and frate is a formula over X(i)∪ Ẋ(i) called a flowrate that spec-
ifies how the real variables evolve over time. The invariant is an assertion that must be
satisfied while A(i) is in loc, and the flow rate associates each real-valued variable of
A(i) with a rectangular differential inclusion.

Let X(i) ∆
= {v ∈ V(N, i)|type(v) = R} be the set of variables of A(i) with real type.

g = ⊥ ∧ x[i] = 0
rem

ẋ[i] ∈ [lb, ub]
try

ẋ[i] ∈ [lb, ub]

cs
ẋ[i] ∈ [lb, ub]
inv: x[i] ≤ 6B

grd: g = ⊥ ∧ x[i] ≥ B
rst: g′ = i ∧ x′[i] = 0

grd: g = i ∧ x[i] ≥ 2B
rst: x′[i] = 0

grd: x[i] ≥ 3B
rst: g′ = ⊥ ∧ x′[i] = 0

Fig. 1. Hybrid automaton template A(i) for MUX-INDEX-RECT mutual exclusion algorithm.

MUX-INDEX-RECT (Figure 1) is a timed mutual exclusion algorithm with an im-
precise real clock x[i] that evolves between rates lb ≤ ub. There is a global variable g
with type [N]⊥. Each automaton i starts in rem with x[i] = 0 and g = ⊥, then after
waiting B time i may enter try which also sets the global variable g to the identifier i.
After waiting at least 2B time, it may enter the critical section cs and stay there for at
least 3B and at most 6B time before returning to rem and setting g = ⊥.
2.1 Semantics of Hybrid Automata Networks
For a hybrid automaton template A(i), we define a transition system to formalize the
semantics of the network where N instantiations of A(i) operate concurrently.

Definition 2. Let N be a symbol representing an arbitrary natural number. A hybrid
automata network is a tuple AN ∆

= 〈VN, QN, ΘN, TN〉, where: (a) VN are the vari-
ables of the network, VN ∆

= VG ∪
⋃N
i=1 VL(i), (b) QN ⊆ val(VN) is the state-space,

(c)ΘN ⊆ QN is the set of initial states, and (d) TN ⊆ QN×QN is the transition relation,
which is partitioned into sets of discrete transitions DN ⊆ QN × QN and continuous
trajectories T N ⊆ QN ×QN.

A state x of AN is a valuation of all the variables in VN and is denoted by boldface
v, v′, etc. The set of all states is called the state-space and is denoted QN. If a state
v ∈ QN satisfies a formula φ—that is, the corresponding variable valuations result in
φ evaluating to true—we write v |= φ. For a formula φ with vars(φ) ⊆ V(i), the
corresponding states x ∈ QN satisfying φ are JφK ∆

= {x ∈ QN|v |= φ}. For instance,
the initial states ΘN ∆

= JInit(i)K are the states satisfying Init(i). For some state v, the
valuation of a particular local variable x[i] ∈ VL(i) for automaton A(i) is denoted
by v.x[i], and v.g for some global variable g in VG(i). For a set of variables V, the
valuations of each v ∈ V at state v is denoted by v.V. For a formula φ and a set of
variables V ⊆ vars(φ), let φ↓ V be the projection of φ onto the variables V, such that
vars(φ↓ V) = V and JφK ⊆ Jφ↓ VK, which can be computed by eliminating the existen-
tial quantifiers from the formula ∃vars(φ)\V : φ. The evolution of the states ofAN are
describing by a transition relation TN ⊆ QN ×QN. For a pair (v,v′) ∈ TN, we use the
notation v → v′, where v is called the pre-state and v′ is called the post-state. There
are two ways variables may be updated by TN. Discrete transitions DN model instanta-
neous changes and continuous trajectories T N model evolution over a real time interval.
When necessary to disambiguate state updates owing to either discrete transitions and
continuous trajectories, we write v→DN v′ or v→T N v′, respectively.

Discrete Transitions. Discrete transitions model atomic, instantaneous updates of
state due to one automaton in the network AN. Informally, a discrete transition from
pre-state v to post-state v′ models the discrete transition of one particular hybrid au-
tomaton A(i) by some transition t ∈ Trans(i). There is a discrete transition v →

v′ ∈ DN iff: ∃i ∈ [N] ∃t ∈ Trans(i) : v.V(i) |= grd(t, i) ∧ v′.V(i) |= rst(t, i) ∧
(∀j ∈ [N] : j 6= i⇒ v′.V(j) = v.V(j)). From the pre-state v, any automaton A(i) in
the networkAN that has some transition where v satisfies its guard may update its post-
state according to the transition’s reset, while the variable valuations of all the other
automata in AN remain unchanged.4

Continuous Trajectories. Continuous trajectories model update of state over in-
tervals of real time. Informally, there is a trajectory v → v′ ∈ T N iff some amount
of time—te—can elapse from v, such that, (a) the states of all automata in the net-
work AN are updated to v′ according to their individual trajectory statements, and
(b) while ensuring the invariants of all automata along the entire trajectory. Formally,
trajectories are defined as solutions of differential equations or inclusions specified
in the trajectory statements of A(i). For a state v, a location m, a real time t, and
a real variable v ∈ X(i), let flow(v,m, v, t) = v.v +

∫ t
τ=0

frate(m, v)dτ . Since
frate may specify a differential inclusion, flow is a set-valued function. There is
a trajectory v → v′ ∈ T N iff: ∃te ∈ R≥0 ∀tp ∈ R≥0 ∀i ∈ [N] ∃m ∈ L :
tp ≤ te ∧ flow(v,m,X(i), tp) |= inv(m, i) ∧ v′.X(i) ∈ flow(v,m,X(i), te). For
each i ∈ [N] and each real variable x[i], v.x[i] must evolve to the valuations v′.x[i],
in exactly te time in some location m ∈ L according to the flow rates allowed for x[i]
in location m. In addition, all intermediate states along the trajectory must satisfy the
invariant inv(m, i).

Executions and Invariants. An execution of the network AN models a particular
behavior of all the automata in the network. An execution of AN is a sequence of states
α = v0,v1, . . . such that v0 ∈ ΘN, and for each index k appearing in the sequence,
(vk,vk+1) ∈ TN. A state x is reachable if there is a finite execution ending with x.
The set of reachable states for AN is Reach(AN). The set of reachable states for AN

starting from an arbitrary subset V0 ⊆ QN is Reach(AN,V0). An invariant for AN is
any set of states that contains Reach(AN).

3 Anonymized State-Space Representation

For any fixed N ∈ N, let i be a symbol representing an arbitrary element of [N], and for
the hybrid automaton template A(N, i), the composed automaton modeling a network
of size N is AN (Definition 2). We present an algorithm for computing Reach(AN)
that takes advantage of the symmetries in the template A(i) instantiated in AN. The
representation of Reach(AN) is anonymized, so numerical automaton indices—1, 2, . . .,
N—are not explicitly enumerated and are instead modeled using symbolic indices—i1,
i2, . . ., iN. Frequently, the number of symbolic indices needed to represent equivalent
states is significantly smaller than the number N of numerical indices. For example, in
MUX-INDEX-RECT (Figure 1), a single symbolic index is sufficient independent of N.
For a given state x ∈ QN, the set of corresponding states X ⊆ QN that are equivalent
modulo indices is obtained by substituting any numerical index i of all local variables
v[i] ∈ VL(i) with a symbolic index j with type [N].

4 The guard may depend on the variables of some automaton j 6= i, so automata may commu-
nicate via global variables and local variables, for details, see [16, Chapter 2].

Definition 3. Two states x, x′ ∈ QN of AN, are equivalent modulo indices if there
exists a bijection π : [N]→ [N] such that for each v[i] ∈ V(i), x.v[i] = x′.v[π(i)]. For
a state x ∈ QN of AN, the set of states ε(x) that is equivalent modulo indices to x is:
ε(x)

∆
= {x′ ∈ QN | x and x′ are equivalent modulo indices}.

We note this is the same type of definition as the existence of an automorphism used
in [6, 9, 14]. A state is equivalent modulo indices to itself by picking the bijection π to
be the identity mapping. For a formula φ, we will overload π and write π(φ), which
modifies φ by applying π to each index variable i ∈ ivars(φ). The anonymized repre-
sentation takes this idea a step further by utilizing symbolic names for process indices
along with counters, and a formula representing the valuations of any global variables.
We use the (.) notation to refer to particular elements of tuples. For example, C.Count
refers to the count of anonymized class C, C.Form refers to C’s formula, etc. If C is clear
from context, we refer to C.Count as Count, etc.

Definition 4. An anonymized state S of the networkAN is a tuple 〈Classes, G〉, where:
(a) Each anonymized class C ∈ Classes is a tuple C ∆

= 〈Count, I, Form〉, where:
(i) Form is a quantifier-free formula over the variables VL(i1) ∪ . . . ∪ VL(iI),

where i1, . . ., iI are I distinct symbolic index variables.
(ii) I ≥ 1 is a natural number called the class’s rank, which is equal to the number

of distinct symbolic index variables appearing in Form: I ∆
= |ivars(Form)|.

(iii) Count is a natural number called the class’s count, and satisfies N ≥ Count

≥ |I|. The count is the number of automata of class C. Additionally, the sum of
all the class counts in S equals N: N =

∑
C∈S.Classes C.Count, where C.Count

is the count of class C.
(b) G is a quantifier-free formula over the global variables VG.

For an anonymized class C, requirement (iii) of Definition 4 that Count≥ |I|means
the number of automata satisfying Form is at least the rank (the number of distinct index
variables appearing in Form). When the rank I is clear from context, we drop it from the
C tuple and write 〈Count, Form〉. We say two anonymized classes C1 and C2 over the
same symbolic indices (ivars(C1.Form) = ivars(C2.Form)) are equivalent and write
C1 ≡ C2 iff they have equivalent class formulas and equal class counts:5

Definition 5. Two classes C1 and C2 are equivalent, written C1 ≡ C2 iff C1.Count =
C2.Count ∧ C1.Form ≡ C2.Form.

Here, equivalence between the class formulas is a semantic and not syntactic notion,
and means the formula C1.Form ≡ C2.Form is valid.We say two anonymized states
S1 and S2 are equivalent and write S1 ≡ S2 iff they have the same state counts, the
classes in their sets of classes are equivalent, and their global formulas are equivalent.
See Footnote 5 for an example from MUX-INDEX-RECT.

5 It is possible for classes with different ranks to represent the same states. For example, consider
states arising from MUX-INDEX-RECT, S1 = 〈{〈2, 2, q[i1] = rem ∧ q[i2] = rem〉} , g =
⊥〉 and S2 = 〈{〈2, 1, q[i1] = rem〉} , g = ⊥〉, which both represent there are two automata
with location rem and g is ⊥, i.e., JS1K = JS2K. However, a class of a particular rank may
not be expressible as a different rank. For example, there is no way to express the following
using rank 1 classes: 〈{〈2, 2, q[i1] = rem ∧ q[i2] = rem ∧ x[i1] ≥ x[i2]〉} , g = ⊥〉, which
expresses that there are two automata in rem with one’s clock at least as large as the other’s.

Definition 6. Two anonymized states S1 and S2 are equivalent, written S1 ≡ S2, iff
∀ C1 ∈ S1.Classes ∃ C2 ∈ S2.Classes C1 ≡ C2 ∧ G1 ≡ G2.

We make the following assumption about the format of class formulas.

Assumption 1. For an anonymized state S, for each class C ∈ Classes, the class
formula C.Form is in conjunctive normal form (CNF). For each index i ∈ {i1, . . . , iC.I},
C.Form contains an equality q[i] = loc for some location loc ∈ L.

For example, Equation 1 (arsing from MUX-INDEX-RECT) satisfies this assumption.
This assumption ensures that each class corresponds to a concrete state, and has a con-
trol location specified to determine the transitions and trajectories that may be possible
(recall Definition 1). Under Assumption 1, the interpretation of an anonymized state S

corresponds to a set of states of QN, which we write as JSK and define formally next.
Since the class formulas of S are over the variables of automata with symbolic indices,
the interpretation instantiates the symbolic indices with specific elements of [N], which
yields the set of states that are equivalent modulo indices.

Definition 7. For an anonymized state

S = 〈{〈Count1, I1, Form1〉︸ ︷︷ ︸
C1

, . . . , 〈Countk, Ik, Formk〉︸ ︷︷ ︸
Ck

}, G〉,

we instantiate the set of symbolic indices {i1, . . ., iIk} with all possible values in [N] as
follows. A consistent partition of [N],

P = {{P 1
1 , . . . , P

I1
1 }︸ ︷︷ ︸

P1

, . . . , {P 1
k , . . . , P

Ik
k }︸ ︷︷ ︸

Pk

},

is a partition of [N], such that, for any Pj ∈ P , (a) |Pj | = Countj and (b) Pj is
partitioned into Ij sets P 1

j , . . ., P Ij
j (and we recall that Ij is the rank of Cj).

For a consistent partition P , we note that (a)
∑
Pj∈P |Pj | = N, since P partitions [N],

and (b) Countj ≥ Ij (by Definition 4, (iii)). For example, consider the anonymized
state (arsing from MUX-INDEX-RECT, Figure 1) with count three and rank two:

〈{〈3, 2, q[i1] = try ∧ q[i2] = rem ∧ x[i1] ≥ x[i2] +B〉} , g = i1〉. (1)

One consistent partition is: P = {P1, P2} where P1 = {1} and P2 = {2, 3}. The
set {{1, 2, 3}} is not a consistent partition since it is partitioned into one set, but the
rank I = 2, and Definition 7 requires each Pj ∈ P be partitioned into Ij partitions.
For an anonymized state S, the set of consistent partitions ConsPart(S) are all consis-
tent partitions of [N]. Continuing MUX-INDEX-RECT for Equation 1, ConsPart(S)
is {{{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3},
{1}}}. All these partitions define the set of states JSK the anonymized state S repre-
sents. This is the same as all the states equivalent modulo indices to the states JSP K for
a particular consistent partition P .

Definition 8. For an anonymized state S and a consistent partition P ∈ ConsPart(S),
the set of states of network AN represented by S corresponding to P are:

JSP K ∆
= {x ∈ QN | x |= G ∧ Form1(P1) ∧ . . . ∧ Formk(Pk)}, (2)

where each Formj(Pj)
∆
= ∀i1j ∈ P 1

j , . . . , i
Ij
j ∈ P

Ij
j : Formj(i

1
j , . . . , i

Ij
j). The set of

states of network AN represented by S with all consistent partitions is:

JSK ∆
=

⋃
P∈ConsPart(S)

JSP K . (3)

We have written Formj(i
1
j , . . . , i

Ij
j) to highlight that Formj is over Ij symbolic in-

dex variables. Note that Formj(Pj) is equivalent to a finite-length conjunction since
each P Ij

j is a finite set. The next lemma states that this definition of interpretations of
anonymized states yields the same set of states as equivalence modulo identifiers.

Lemma 1. For an anonymized state S, for any x ∈ JSK, for any x′ ∈ ε(x), x′ ∈ JSK.

Continuing the MUX-INDEX-RECT Equation 1 example with the consistent partition
P = {{1}, {2, 3}}, the states represented by SP are:

JSP K = {x ∈ Q3 | x |=∀i11 ∈ P 1
1 , i

2
1 ∈ P 2

1 : q[i1] = try ∧ q[i2] = rem ∧
x[i1] ≥ x[i2] +B ∧ g = i1}

= {x ∈ Q3 | x |=(q[1] = try ∧ q[2] = rem ∧ q[3] = rem ∧
x[1] ≥ x[2] +B ∧ x[1] ≥ x[3] +B ∧ g = 1) }.

Applying Lemma 1, JSK = ε(JSP K).

4 Anonymized Reachability of Hybrid Automata Networks
Next we describe an on-the-fly algorithm for overapproximating the reachable states of
a network AN using anonymized states. We note that the CNF requirement (Assump-
tion 1) is not restrictive: if a new class is created during the execution of the algorithm
that contains disjunctions, it is split into multiple classes with CNF formulas. Recall
from Section 2.1, that φ↓ V is the projection of φ onto the variables V.

Pseudocode for the reachability algorithm, areach appears in Figure 2. The algo-
rithm operates on frontiers of reachable states represented by Frontier, which is initial-
ized (line 3) to a singleton set with one class with count N and formula Init(i)↓ VL(i),
which is Init(i) projected onto the local variables. The global formula is initialized with
Init(i)↓ VG(i), which is Init(i) projected onto the global variables. The set of reachable
anonymized states computed so far is the set AnonReach. Next (line 4), we remove an
anonymized state S from Frontier, compute anonymized post-states from S, and con-
tinue until no new anonymized states are added to Frontier. Anonymized post-states
are added to the frontier using the set FrontierNew (line 5). Computing successors (post-
states)—the states reachable from S in one step—is composed of two parts: (a) com-
puting the discrete successors corresponding to transitions (line 9), and (b) computing
the continuous successors corresponding to trajectories (line 10).

1 function areach(A(i), Init(i), N)
AnonReach ← ∅

3 Frontier ← {〈{〈N, Init(i)↓ VL(i)〉} , Init(i)↓ VG(i)〉} / / i n i t i a l anonymized s t a t e
while Frontier 6= ∅ / / r e p e a t u n t i l no new s t a t e s are added t o t h e f r o n t i e r

5 FrontierNew ← ∅ / / i n i t i a l i z e n e x t f r o n t i e r
AnonReach ← AnonReach ∪ Frontier / / add f r o n t i e r t o r e a c h a b l e s t a t e s

7 / / compute s u c c e s s o r s o f each anonymized s t a t e i n t h e f r o n t i e r
foreach anonymized state S in Frontier

9 FrontierNew ← FrontierNew ∪ discPost(S) / / Figure 4
FrontierNew ← FrontierNew ∪ contPost(S) / / Figure 5

11 FrontierNew ← mergeAndDrop(FrontierNew,AnonReach) / / Figure 3
Frontier ← FrontierNew

13 return AnonReach

Fig. 2. On-the-fly anonymized reachability algorithm. The inputs are an automaton template
A(i), an initial condition Init(i), and a constant natural number N. The anonymized reachable
states AnonReach are computed as a fixed-point starting from the anonymized initial states.

Equivalent Class Merging Subroutine. We first describe the mergeAndDrop sub-
routine (Figure 3). It takes a set of anonymized states FrontierNew and returns a set of
anonymized states guaranteed to (a) not have any equivalent classes (lines 7 through 8)
and (b) be new (not already represented in AnonReach) (line 3). Invariant 1 states no
two class formulas in any reachable anonymized state are equivalent, and Invariant 2
states no two anonymized states in AnonReach are equivalent (Definition 6).
Invariant 1. For any S ∈ AnonReach, C1, C2 ∈ S.Classes, C1.Form 6≡ C2.Form.
Invariant 2. For any distinct S1, S2 ∈ AnonReach, S1 6≡ S2.

Discrete Successors. The function discPost (Figure 4) computes the discrete suc-
cessors from an anonymized state S in the frontier (Figure 2, line 9). The post-states
StatesNew are added to the frontier FrontierNew. First, we iterate over each class C in
S.Classes (line 3), and then we iterate over each index variable i in the set of in-
dex variables in the class formula, {i1, . . . , iC.I} (line 5). Next, we iterate over the
(syntactic) transitions Trans(i) of A(i) (line 6). For a transition t ∈ Trans(i) and an
anonymized class C, line 7 computes the subsequent class from C by transition t, made
by the automaton with index i. This computation can be carried out using quantifier
elimination procedures over the types of the variables appearing in the guard and reset
of the transition t, and then syntactically unpriming all primed variables (represent-
ing successors) following quantifier elimination using Substitute (line 9). This step is
an overapproximation, since it computes the successors of each class regardless of the
number of automata with states satisfying the anonymized class formula Form, and just
presumes there is some automaton with variable valuations satisfying Form.

The anonymized post-state SNew is constructed using the classes of the anonymized
pre-state S along with the new anonymized class, CNew (lines 14 through 19). First, the
classes for SNew are set to be the anonymized classes of S, without the anonymized

1 function mergeAndDrop(FrontierNew,AnonReach)
foreach S in FrontierNew

3 if S ∈ AnonReach then FrontierNew = FrontierNew \ {S}
else

5 foreach distinct pair of anonymized classes 〈C1, C2〉 in S.Classes
if ¬(C1.Form ≡ C2.Form) is UNSAT then

7 C1.Count← C1.Count + C2.Count / / i f e q u i v a l e n t , sum c o u n t s
S.Classes← S.Classes \ {C2} / / i f e q u i v a l e n t , drop e q u i v a l e n t c l a s s

9 return FrontierNew

Fig. 3. mergeAndDrop combines classes with equivalent class formulas and sums their counts.

1 function discPost(S)
StatesNew ← ∅

3 foreach anonymized class C in S.Classes
Vs ← V′(i1) ∪ . . . ∪ V′(iC.I)

5 foreach symbolic index i in ivars(Vs)
foreach transition t in Trans(i)

7 CNew.Form ← (C.Form ∧ S.G ∧ grd(t, i) ∧ rst(t, i))↓ V′(i) / / make pos t−s t a t e c l a s s
/ / s u b s t i t u t e pr imed v a r i a b l e s w i t h unprimed v a r i a b l e s

9 CNew.Form ← Substitute(CNew.Form,V
′(i),V(i))

/ / p r o j e c t on to g l o b a l v a r i a b l e s f o r g l o b a l c o n s t r a i n t
11 SNew.G ← CNew.Form↓ VG(i)

/ / p r o j e c t on to l o c a l v a r i a b l e s f o r l o c a l c o n s t r a i n t
13 〈CNew.Count, CNew.I, CNew.Form〉 ← 〈1, 1, CNew.Form↓ VL(i)〉

SNew.Classes ← S.Classes \ {C} / / remove pre−s t a t e from pos t−s t a t e c l a s s e s
15 / / add pre−s t a t e c l a s s t o pos t−s t a t e c l a s s e s i f c o u n t a t l e a s t rank

if C.Count > C.I then SNew.Classes ← S.Classes ∪ {〈C.Count− 1, CI, C.Form〉}
17 / / o t h e r w i s e , pre−s t a t e c l a s s no l o n g e r e x i s t s (c o u n t l e s s than rank)

else SNew.Classes ← S.Classes ∪ {〈C.Count− 1, C.I− 1, C.Form↓ Vs \ V(i)}〉
19 SNew.Classes ← SNew.Classes ∪ {CNew} / / add c l a s s t o pos t−s t a t e

StatesNew ← StatesNew ∪ {SNew}
21 return StatesNew

Fig. 4. discPost computes the post-states of an anonymized state S due to discrete transitions for
an automaton with index i and states satisfying C’s formulas.

class of the current iteration, C (line 14). Next, if the class count of C is larger than
its rank, then it is added to the classes of the post-state, with its count reduced by
one to indicate some automaton has left the set of states satisfying the corresponding
class formula (line 16). On the other hand, if the class count is equal or less than its
rank, then the pre-state’s anonymized class C would no longer satisfy the requirements
of Definition 4, (iii), so its class formula is projected onto the variables of all automata
except those of automaton i, the one making a transition (line 18). If a class has count
or rank equal to 0, then it is removed. This process may result in two classes with
equivalent formulas, since the algorithm has not yet detected if any other classes had
the same formula and presumed the post-state class CNew had a count of one, which is
why we use mergeAndDrop (Figure 2, line 11).
Lemma 2. (Discrete Successor Soundness) For an anonymized state S, for any corre-
sponding concretized state x ∈ JSK, if x→DN x′, then x′ ∈ JdiscPost(S)K.

Continuous Successors. An overapproximation of continuous successors are com-
puted using contPost—shown in Figure 5—called from symreach (Figure 2, line 10).
For an anonymized state S in the frontier, contPost computes an overapproximation
of the post-states from S owing to the individual trajectories of all automata in the
network for up to the most amount of time that can elapse before any invariant is vi-
olated. The anonymized state specifies a location loc ∈ L for each automaton in the
network (recall Assumption 1). Each location loc specifies a trajectory statement, so
trajectories are defined for each automaton in the network. Each new anonymized state
SNew ∈ StatesNew computed corresponds to the trajectory semantics updating the real
variables of all automata in the network AN. The variable pf encodes the trajectory
semantics of all automata in the network AN (line 4), which is initially the constraint
te > 0, indicating that some positive real amount of time te will elapse. However, for an
anonymized state S, for distinct anonymized classes C1, C2 in S.Classes, the symbolic
indices appearing in the formulas may be equal, i.e., ∃i ∈ ivars(C1) and ∃j ∈ ivars(C2)
such that i = j. Since pf encodes the states of all automata in the network, the sym-

1 function contPost(S)
Vs ← V′

G
3 / / f o r m u l a t o encode t r a j e c t o r i e s f o r a l l au tomata i n t h e ne twork

pf ← (te > 0 ∧ S.G)
5 foreach anonymized class C in S.Classes / / i t e r a t e over each c l a s s i n pre−s t a t e

Vs ← Vs ∪ V′(i1) ∪ . . . ∪ V′(iC.I)
7 pf ← pf ∧ C.Form / / encode pre−s t a t e c l a s s f o r m u l a

/ / d e t e r m i n e l o c a t i o n s any automaton may be i n (r e c a l l Assumption 1)
9 foreach location loc in L

foreach i in {i1, . . . , iC.I} / / i t e r a t e over a l l i n d i c e s (r a n k s)
11 if C.Form 6⇒ (q[i] = loc) is UNSAT then / / u se loc i f au tomaton i i s i n loc

/ / add t h e t r a j e c t o r y s e m a n t i c s o v e r a p p r o x i m a t i n g t h e pos t−s t a t e s
13 pf ← pf ∧ inv(loc, i) ∧ X(i) ∈ flow(pf, loc,X(i), te)

pf ← pf↓ Vs
15 pf ← Substitute(pf,V′(i),V(i))

SNew ← RemapClasses(S, pf) / / Figure 6
17 return SNew

Fig. 5. contPost function that computes the continuous successors from an anonymized state S.

1 function RemapClasses(S, pf)
SNew.Classes = ∅

3 foreach anonymized class C in S.Classes
/ / p r o j e c t pf on to v a r i a b l e s o f i n d i c e s i n each pre−s t a t e c l a s s

5 Vs ← V(i1) ∪ . . . ∪ V(iC.I)
/ / c r e a t e new c l a s s w i t h pos t−s t a t e f o r m u l a and copy pre−s t a t e c o u n t

7 〈CNew.Count, CNew.I, CNew.Form〉 ← 〈C.Count, CNew.I, pf↓ Vs〉
SNew.Classes ← SNew.Classes ∪ CNew / / add pos t−s t a t e c l a s s t o c l a s s e s

9 SNew.N ← S.N
return SNew

Fig. 6. RemapClasses uses pf and the pre-state indices, class counts, and ranks to create the
anonymized post-state SNew. It first projects onto variables with indices of each class in the pre-
state and then uses the pre-state to ensure class counts and ranks remain constant over trajectories.

bolic index variables appearing in any class formula of any anonymized class must be
distinct. Rather than performing these tedious syntactic manipulations, we assume that
for an anonymized state S, for distinct classes C1, C2 in S.Classes, ∀i ∈ ivars(C1),
∀j ∈ ivars(C2), we have i 6= j.6

Each anonymized class formula C.Form of an anonymized state S specifies the lo-
cation(s) of the automata, so the first step is to determine the dynamics that will modify
each class formula. This is accomplished by first determining the appropriate flow-rate
conditions to use for each class in S.Classes, which can be detected by finding which
Form implies the location variable q[i] is in some location loc ∈ L. If the control loca-
tion of automaton i is found to be equal to location loc, then the trajectory statement
of location loc is used to define the semantics of the time-evolution of i’s real vari-
ables (line 13). The semantics of trajectories result in all the automata’s real variables
evolving over time te, so the formula encoding the trajectory statements of all automata
is conjuncted (line 13). The post-states are computed by projecting onto the primed
variables of all classes, and then renaming primed variables with their unprimed coun-
terparts (line 15).7 We call RemapClasses with the pre-state S and pf, which encodes
the post-state constraints, to recreate classes from sub-formulas of pf (Figure 6 called

6 This is a tedious, but trivial invariant that we maintain in our implementation in Passel, so we
make this assumption for clarity of presentation only.

7 This may result in a DNF formula, and if so, each conjunctive clause is added as a new
anonymized state by iterating over the conjunctive clauses so all class formulas are CNF.

1.00

10.00

100.00

1000.00

10000.00

1 6 11 16 21 26 31

M
em

o
ry

 (
M

B
)

NNFA Passel NFA Phaver MUX-SEM Passel MUX-SEM Phaver

MUX-INDEX-RA Passel MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver

MUX-SEM-RA Passel MUX-SEM-RA Phaver

Fig. 7. Memory usage comparison of PHAVer and Passel’s anonymized reachability. Vertical axis
scale is logarithmic and has units of megabytes, and horizontal axis is number of automata, N.

at line 16). This is done to ensure the class counts are constant when computing post-
states due to trajectories.

Lemma 3. (Continuous Successor Soundness) For an anonymized state S, for any cor-
responding concretized state x ∈ JSK, if x→T N x′, then x′ ∈ JcontPost(S)K.

The next invariant states the sum of all class counts equals N. It follows from the
definitions of discPost and contPost, since discPost always decreases class counts by
the same amount it increases them—so the sum remains invariant—and contPost does
not change class counts (only formulas). Additionally, mergeAndDrop changes class
counts, but their sum remains the same since it removes any duplicate classes after
adding their counts (Figure 3, lines 7 through 8).
Invariant 3. For any S ∈ AnonReach, N =

∑
C∈S.Classes C.Count.

Theorem 1 states soundness of the algorithm: the concretization of the anonymized
reachable states AnonReach contains the reachable states for network AN. It follows
from Lemmas 2 and 3. The approximation comes from: (a) transitions are allowed as
long as some automaton satisfies a guard, (b) index-typed variables are abstracted to be
equal or not equal only, and (c) rectangular dynamics are overapproximated.

Theorem 1. (Soundness) For a fixed N ∈ N, for the networkAN composed of N instan-
tiations of the templateA(N, i), the anonymized reachable states AnonReach computed
by areach overapproximate the reachable states of AN: Reach(AN) ⊆ JAnonReachK.

5 Experimental Results

The anonymized reachability algorithm is implemented in Passel [16, 18, 19]. The cur-
rent implementation of Passel uses the SMT solver Z3 [7] for proving validity, checking
satisfiability, and performing quantifier elimination. Passel is written in C# and uses the
managed .NET API to Z3, with experimental results reported using version 4.1. Passel
proves validity of a formula φ by checking unsatisfiability of ¬φ. The variables V(i)
used in defining A(i) are specified to the SMT solver. Each local variable v[i] ∈ VL(i)

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1 6 11 16 21 26 31

R
u

n
ti

m
e

(s
)

N
NFA Passel NFA Phaver MUX-SEM Passel MUX-SEM Phaver

MUX-INDEX-RA Passel MUX-INDEX-RA Phaver SSATS Passel SSATS Phaver

MUX-SEM-RA Passel MUX-SEM-RA Phaver

Fig. 8. Runtime comparison of PHAVer and Passel’s anonymized reachability. Vertical axis is
logarithmic and has units of seconds, and horizontal axis is number of automata, N.

is modeled as an uninterpreted function v : [N] → type(v). Passel automatically gen-
erates and asserts trivial data-type lemmas that the SMT solver requires. The experi-
ments were conducted in an Ubuntu 12.04 VMWare virtual machine with 4 GB RAM
allocated running Passel through Mono, executed on a modern laptop with a quad-
core Intel i7 processor running Windows 8 with 16 GB RAM physically available. For
comparison purposes, we evaluated Passel, PHAVer (version 0.38), and SpaceEx (ver-
sion 0.9.8b). We do not present results for SpaceEx, as the only scenario—out of the
PHAVer, LeGuernic-Girard (LGG), and STC scenarios—that can compute the reach-
able states of systems with rectangular differential inclusion dynamics (ẋ ∈ [a, b] for
real constants a ≤ b) adequately is the PHAVer scenario, so the results are equivalent.

Figures 7 and 8 show, respectively, a runtime and memory usage comparison be-
tween PHAVer and Passel for several examples as a function of N, the number of
automata.8 The examples include several timed mutual exclusion algorithms (such as
MUX-INDEX-RECT from Figure 1), a simplified SATS model [16,18,19], and several
purely discrete examples. All properties were safety properties (invariants), such as mu-
tual exclusion, separation (collision avoidance) in SATS, etc. Comparing all the exam-
ples, the anonymized reachability method implemented in Passel allows us to compute
the reachable states of networks composed of many more automata than PHAVer, which
runs out of memory on all examples for N ≥ 11. The experimental results indicate the
primary advantage is reduced memory growth. Even for networks of tens of automata,
in all examples, Passel never uses more than a few hundred megabytes of memory as
shown in Figure 7.9 For protocols that are highly asymmetric, the worst-case asymptotic
memory growth may be exponential. The runtime required by Passel could be reduced

8 Passel and the examples may be downloaded from: https://publish.illinois.
edu/passel-tool/.

9 For small N, PHAVer uses less memory than Passel because Passel must load runtime compo-
nents (e.g., the .NET framework via Mono) and libraries (e.g., Z3).

https://publish.illinois.edu/passel-tool/
https://publish.illinois.edu/passel-tool/

by performing some operations more efficiently in the implementation—particularly
the checks to determine if a new anonymized state representation is actually new or
not—which we plan to implement for future work.

For MUX-INDEX-RECT, PHAVer runs out of memory for N ≥ 8. As shown in Fig-
ures 7 and 8, for N = 7, PHAVer uses over 1.3 GB memory and completes in over 3
hours, while Passel uses over an order of magnitude less memory at about 70 MB and
nearly four orders of magnitude less runtime at about three seconds. Because of the
anonymized representation, Passel is able to compute the reachable states of N = 30 in
a few seconds using about 70 MB memory, and we have experimented successfully up
to hundreds and even thousands of automata for this example.

6 Summary
In this paper, we present an on-the-fly forward reachability algorithm that computes an
anonymized representation of the reachable states for hybrid automata networks con-
sisting of N instantiations of a template A(N, i). The anonymized representation uses
symbolic automato indices instead of explicit ones to avoid generating all permutations
of automata indices and states. We showed it to be effective at computing the reachable
states of networks with tens of automata for several examples, with significantly lower
memory usage than PHAVer. The restriction to rectangular inclusion dynamics is due
in part to Passel’s implementation, but a future direction is to evaluate the anonymized
reachability method on examples with linear and nonlinear dynamics.

Acknowledgments. The authors are grateful for the anonymous reviewers’ feed-
back. This material is based upon work supported by the National Science Foundation
under Grant No. NSF CNS 10-54247 CAR. This work was supported by the Air Force
Office of Scientific Research Young Investigator Program Award FA9550-12-1-0336.

References

1. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction for concur-
rent software. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, LNCS, vol.
5643, pp. 64–78. Springer (2009)

2. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata
verification. In: Garavel, H., Hatcliff, J. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, LNCS, vol. 2619, pp. 254–270. Springer (2003)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL: A tool suite for
automatic verification of real-time systems. In: Alur, R., Henzinger, T., Sontag, E. (eds.)
Hybrid Systems III, LNCS, vol. 1066, pp. 232–243. Springer (1996)

4. Bogomolov, S., Herrera, C., Muñiz, M., Westphal, B., Podelski, A.: Quasi-dependent vari-
ables in hybrid automata. In: 17th International Conference on Hybrid Systems: Computation
and Control (2014)

5. Braberman, V., Garbervetsky, D., Olivero, A.: Improving the verification of timed systems
using influence information. In: Katoen, J.P., Stevens, P. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, vol. 2280, pp. 21–36. Springer (2002)

6. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design 9, 77–104 (1996)

7. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. pp.
337–340. TACAS ’08/ETAPS ’08, Springer-Verlag (2008)

8. Dill, D.L.: The murϕ verification system. In: Proceedings of the 8th International Conference
on Computer Aided Verification. pp. 390–393. CAV ’96, Springer-Verlag, London, UK, UK
(1996)

9. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System
Design 9(1-2), 105–131 (1996)

10. Emerson, E., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck, L. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 3440, pp.
382–396. Springer (2005)

11. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vaandrager, F.W.: Adding symmetry
reduction to UPPAAL. In: Larsen, K.G., Niebert, P. (eds.) Formal Modeling and Analysis of
Timed Systems (FORMATS ’03). pp. 46–59. No. 2791 in LNCS, Springer–Verlag (2004)

12. Hendriks, M.: Model checking timed automata: Techniques and applications. Ph.D. thesis,
University of Nijmegen, The Netherlands (2006)

13. Herrera, C., Westphal, B., Feo-Arenis, S., Muñiz, M., Podelski, A.: Reducing quasi-equal
clocks in networks of timed automata. In: Jurdzinski, M., Nickovic, D. (eds.) Formal Mod-
eling and Analysis of Timed Systems, LNCS, vol. 7595, pp. 155–170. Springer (2012)

14. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design
9, 41–75 (1996)

15. Ip, C.N., Dill, D.L.: Verifying systems with replicated components in Murϕ. Formal Methods
in System Design 14(3) (May 1999)

16. Johnson, T.T.: Uniform Verification of Safety for Parameterized Networks of Hybrid Au-
tomata. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (2013)

17. Johnson, T.T., Mitra, S.: Parameterized verification of distributed cyber-physical systems: An
aircraft landing protocol case study. In: ACM/IEEE 3rd International Conference on Cyber-
Physical Systems (Apr 2012)

18. Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata networks.
In: Proceedings of the IFIP International Conference on Formal Techniques for Distributed
Systems, Joint 14th Formal Methods for Open Object-Based Distributed Systems and 32nd
Formal Techniques for Networked and Distributed Systems (FMOODS-FORTE), LNCS,
vol. 7273. Springer (June 2012)

19. Johnson, T.T., Mitra, S.: Invariant synthesis for verification of parameterized cyber-physical
systems with applications to aerospace systems. In: Proceedings of the AIAA Infotech at
Aerospace Conference (AIAA Infotech 2013). Boston, MA (Aug 2013)

20. Obal, W.D., McQuinn, M., Sanders, W.: Detecting and exploiting symmetry in discrete-state
Markov models. Reliability, IEEE Transactions on 56(4), 643–654 (Dec 2007)

21. Si, Y., Sun, J., Liu, Y., Wang, T.: Improving model checking stateful timed csp with non-
zenoness through clock-symmetry reduction. In: Groves, L., Sun, J. (eds.) Formal Methods
and Software Engineering, LNCS, vol. 8144, pp. 182–198. Springer (2013)

22. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, E.: Modeling and verifying hierarchical
real-time systems using stateful timed csp. ACM Trans. Softw. Eng. Methodol. 22(1), 1–29
(Mar 2013)

23. Sun, J., Liu, Y., Dong, J., Pang, J.: PAT: Towards flexible verification under fairness. In:
Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, LNCS, vol. 5643, pp. 709–714.
Springer (2009)

	Anonymized Reachability of Hybrid Automata Networks

