
Cyber-Physical Specification Mismatch Identification with
Dynamic Analysis

Taylor T. Johnson
University of Texas at Arlington, USA

Stanley Bak
Air Force Research

Laboratory, USA

Steven Drager
Air Force Research

Laboratory, USA

ABSTRACT
Embedded systems use increasingly complex software and
are evolving into cyber-physical systems (CPS) with sophis-
ticated interaction and coupling between physical and com-
putational processes. Many CPS operate in safety-critical
environments and have stringent certification, reliability, and
correctness requirements. These systems undergo changes
throughout their lifetimes, where either the software or phys-
ical hardware is updated in subsequent design iterations.
One source of failure in safety-critical CPS is when there
are unstated assumptions in either the physical or cyber
parts of the system, and new components do not match
those assumptions. In this work, we present an automated
method towards identifying unstated assumptions in CPS.
Dynamic specifications in the form of candidate invariants of
both the software and physical components are identified us-
ing dynamic analysis (executing and/or simulating the sys-
tem implementation or model thereof). A prototype tool
called Hynger (for HYbrid iNvariant GEneratoR) was de-
veloped that instruments Simulink/Stateflow (SLSF) model
diagrams to generate traces in the input format compati-
ble with the Daikon invariant inference tool, which has been
extensively applied to software systems. Hynger, in conjunc-
tion with Daikon, is able to detect candidate invariants of
several CPS case studies. We use the running example of
a DC-to-DC power converter, and demonstrate that Hyn-
ger can detect a specification mismatch where a tolerance
assumed by the software is violated due to a plant change.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions

General Terms
Verification

Keywords
Cyber-physical systems, dynamic analysis, specifications

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICCPS ’15 April 14 - 16, 2015, Seattle, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3455-6/15/04...$15.00.
http://dx.doi.org/10.1145/2735960.2735979.

1. INTRODUCTION
Systems interacting with their physical environments are

becoming increasingly dependent upon computers and soft-
ware, such as in emerging cyber-physical systems (CPS).
For instance, typical modern cars utilize hundreds of mi-
croprocessors, many communications buses, and a complex
interconnection between sensors, actuators, and processors.
In the design and development process for most engineered
systems, the vast majority of resources are devoted to ensur-
ing systems meet their specifications [1]. However, in spite
of significant technical advances for design verification and
validation—such as model checking, software/hardware-in-
the-loop (SIL/HIL) testing, automatic test case generation
for software, and sophisticated simulators—there are fre-
quent product recalls across industries for safety concerns
due to software problems and systems integration between
the cyber and physical subcomponents.
The verification community typically focuses on develop-

mental verification, where a model of a system is devel-
oped and properties (specifications) are (manually, semi-
automatically, or automatically) checked for that system.
However, many product recalls and safety disasters induced
by software bugs are not a result of design errors, but are
the result of either: (a) implementation errors, or (b) reuse,
upgrade, and maintenance errors. Initiatives like a priori
model-based design (MBD) are important research efforts
and may someday lead to synthesizing provably correct im-
plementations from specifications. However, most systems
being designed today still utilize a development process that
has engineers write software and systems are integrated from
numerous components in a potentially error-prone process.
In this paper, we develop methods to address such chal-

lenges that arise in the product evolution and upgrade pro-
cess in CPS. We develop a method to enable dynamic analy-
sis using well-established software engineering tools for large
classes of Simulink/Stateflow (SLSF) models that are fre-
quently used in CPS engineering. In particular, our method
infers candidate invariants of SLSF models. Invariants are
properties of a system that always hold, while conditional in-
variants may hold at certain program points, for example, at
the beginning or end of a function call (pre/post conditions).
This is important because such models are amenable to for-
mal verification using existing research tools and hybrid sys-
tems model checkers, and finding invariants can aid this pro-
cess, as they represent potential abstractions with a possi-
bly less complex representation than the set of reachable
DISTRIBUTION A. Approved for public release; Distribu-

tion unlimited. (Approval AFRL PA #88ABW-2014-4829,
17 OCT 2014).

states. The SLSF block diagrams may be black box compo-
nents, white box components, or even system implementa-
tions (such as when SLSF is used in SIL/HIL simulation). In
the case when the underlying SLSF models are known, they
may be formalized using hybrid automata [2]. Candidate
invariants inferred with our Hynger (for HYbrid iNvariant
GEneratoR) software tool in conjunction with Daikon [3, 4]
may be formally checked as actual invariants using a hybrid
systems model checker [5].

Contributions. The primary contributions of this paper
are: (a) the formalization of the cyber-physical specifica-
tion mismatch problem, (b) a methodology for performing
template-based automated invariant inference of white box
(known) and black box (unknown) CPS models using dy-
namic analysis, (c) the Hynger software tool, which sup-
ports instrumenting large classes of SLSF diagrams for dy-
namic analysis using tools like Daikon, (d) a proof-of-con-
cept power electronics CPS case study using Hynger to auto-
matically identify cyber-physical specification mismatches.
Overall, these results can be used to help bridge the worlds
of actual embedded systems software (e.g., detailed SLSF
diagrams and generated C code) with hybrid systems mod-
els. Before presenting the details of our approach, we first
illustrate the pitfalls of CPS design reuse by citing examples
of critical mistakes in existing, certified systems.

2. CYBER-PHYSICAL DESIGN REUSE
In this section, we review cases where CPS design reuse

has led to mistakes in existing systems. This motivates the
need for our method and our Hynger tool, which can be used
to find and formalize unstated assumptions in CPS.
A recent example of a design-reuse problem is the NHTSA

recall of 1.5 million Honda vehicles (including one of the
author’s) due to electronic control module (ECM) software
problems that could damage the car’s transmission, result-
ing in possible stalls. The root cause of the safety defect was
the result of a physical component (a bearing in the trans-
mission) being upgraded to an improved design between dif-
ferent model-year vehicles without appropriate ECM soft-
ware updates [6]. Specifically [6]: “Beginning with model
year 2005 4-cylinder Accord and Element vehicles, specifi-
cations for the secondary shaft bearing outer race material
and shape were modified in order to accommodate increased
engine torque. These modifications, which improved the
long-term durability of the component but reduced its re-
sistance to shock, are not appropriately addressed in the
automatic transmission control module software of the af-
fected vehicles.” This problem was widespread in part be-
cause there was a five year delay before the problem was
identified, and it was used across model makes and years
(e.g., from 2005−2010 model year Accords, 2007−2010 CR-
Vs, and 2005−2008 Elements). This difficulty in root-cause
analysis emphasizes the point such problems are probably
underreported, and the reuse of components in CPS can
lead to widespread serious problems.
Similar design-reuse problems have famously occurred in

aviation—the Ariane 5 flight 501 disaster was a result of
reusing Ariane 4’s software without appropriate updates for
the increased thrust of the new rocket [7, 8]. The following
quotations from the inquiry into the cause of Ariane 5 flight
501’s failure [8] highlight the issues with cyber-physical reuse
and specification mismatches (emphasis added):

• “The design of the Ariane 5 SRI [Inertial Reference
System] is practically the same as that of an SRI which
is presently used on Ariane 4, particularly as regards
the software.”
• “The value of BH [Horizontal Bias] was much higher
than expected because the early part of the trajectory
of Ariane 5 differs from that of Ariane 4 and results
in considerably higher horizontal velocity values.”
• “Ariane 5 has a high initial acceleration and a tra-
jectory which leads to a build-up of horizontal veloc-
ity which is five times more rapid than for Ariane 4.
The higher horizontal velocity of Ariane 5 generated,
within the 40-second timeframe, leads to the excessive
value which caused the inertial system computers to
cease operation.”
• “InAriane 4 flights using the same type of inertial ref-
erence system there has been no such failure because
the trajectory during the first 40 seconds of flight is
such that the particular variable related to horizontal
velocity cannot reach, with an adequate operational
margin, a value beyond the limit present in the soft-
ware.”
• “The reason for the three remaining variables, includ-
ing the one denoting horizontal bias, being unprotected
was that further reasoning indicated that they were ei-
ther physically limited or that there was a large margin
of safety, a reasoning which in the case of the variable
BH turned out to be faulty.”

Here, software made an assumption about the physical
dynamics of the rocket, but the software was reused from
Ariane 4, while Ariane 5 had greater thrust, so this assump-
tion was invalid. Finally, when considering the future of
CPS, the DARPA SoSITE program [9] describes modular-
ized military aviation systems which are capable of rapid
component swapping and upgrade. Left unaddressed, issues
related unstated assumptions in components are likely to
get worse in such future CPS, where changes can occur in
the software and hardware.

3. BUCK CONVERTER WITH HYSTERE-
SIS CONTROL

Next, we describe a CPS case study used throughout the
remainder of the paper for illustrating concepts. The case
study is a DC-to-DC power converter (like buck, boost, and
buck-boost converters) [10], all of which have similar model-
ing, but we focus particularly on a buck converter. A buck
converter takes an input voltage of say 5V and “bucks” or
drops the voltage to some lower DC voltage, say 2.5V. These
circuits are used in many electronic devices (e.g., personal
computers, cellphones, embedded systems, aircraft, satel-
lites, cars). These circuits are also used as modular compo-
nents in a variety of novel power electronics architectures,
such as AC/DC microgrids and distributed DC-to-AC multi-
level inverters [11]. For these converters, one of the physical
specifications is that, at steady-state, the output voltage is
always bounded within a tolerance of a desired (reference)
voltage (e.g., Vout(t) = Vref (t)± ε). We will formalize spec-
ifications and mismatches in Section 4. As a prelude, we
highlight that Hynger finds this candidate invariant (that
can be shown to be an actual invariant when modeled as a
hybrid automaton [10,12,13]).
Additionally, experimental results for additional examples

Figure 1: General CPS case study architecture
overview in SLSF. The system is composed of a plant
(physical system) model, a controller (software/cy-
ber), and potentially sensor and actuator models.
The cyber model uses some of the physical model
output states to determine a control action or input.
For the buck converter, the plant model is described
as a hybrid automaton in Figure 3, the controller
appears in Figure 4, and the sensor model appears
in Figure 2.

using Hynger are presented later in Section 6, although we
do not have space to describe them in detail in this pa-
per. The general architecture of the case study we focus
on consists of a plant (physical system) model and a con-
troller (cyber model/software), along with models of actu-
ators and sensors interfacing the plant and controller. The
sensor model performs quantization and sampling, as would
occur in typical analog to digital conversion (ADC) used
to digitize analog signal measurements. The actuator mod-
els likewise perform the inverse process of digital to analog
conversion (DAC) to convert the digital (cyber) signals to
analog signals. An overview of the buck converter system
architecture appears in the root SLSF diagram of Figure 1.

3.1 Buck Converter Plant Model
We briefly describe a switched-system plant model of a

buck converter, but in-depth derivations of these models and
non-idealized versions in power electronics textbooks [14,
15]. The buck converter plant may be modeled as a hybrid
automaton as described in detail [10–13].
The buck converter has two real-valued state variables

modeling the inductor current iL and the capacitor voltage
VC . These state variables are written in vector form as: x =

Figure 2: Stateflow model of sensor with a sample-
and-hold for the buck converter case study.

Open[
i̇L
V̇C

]
=
[

0 − 1
L1

C
− 1

RC

][
iL
VC

]
start

Close[
i̇L
V̇C

]
=
[

0 − 1
L1

C
− 1

RC

][
iL
VC

]
+
[

1
L
0

]
VS

mode == 2

mode == 1

Figure 3: Hybrid automaton model of the buck
converter plant. A corresponding continuous-time
Stateflow model is used for the plant.

[iL;VC]. The dynamics of the continuous variables in each
mode m ∈ {Open,Close}—in short, o and c—are specified
as linear (affine) differential equations: ẋ = Amx + Bmu,
where u = VS . Figure 3 shows a hybrid automaton model for
the converter and is easily translated to a continuous-time
Stateflow model (see, e.g., [10]). The Am matrices consist
of L > 0, R > 0, C > 0 real-valued constants, respectively
representing inductance (in Henries), resistance (in Ohms),
and capacitance (in Farads).

3.2 Closed-Loop Buck Converter
Many control strategies exist for closed-loop feedback con-

trol of buck converters. The control strategy we will con-
sider is hysteresis control, which operates intuitively similar
to typical heating, ventilation, and cooling (HVAC) con-
trol with a thermostat. The converter is meant to trans-
form a given source voltage VS to create an output voltage
Vout approximately equal to a desired reference voltage (or
set-point) Vref . To accomplish this, the switch controlling
whether VS is connected to the output or not is toggled de-
pending on whether Vout > Vref or Vout < Vref . In practice,
to avoid switching too often, a hysteresis band is used and
switches occur when Vout > Vref + Vtol or Vout < Vref − Vtol .
The choice of Vtol , along with the system dynamics, will
determine the voltage ripple Vrip about the set-point Vref .
Typical specifications require the voltage ripple to be small,
so that the output voltage Vout is approximately Vref , that
is, Vrip is chosen so that for Vout = Vref ± Vrip, we have
Vout ≈ Vref . We note that Vtol appears in the controller Fig-
ure 4, so an assumption is made about the relationship be-
tween Vtol and Vrip in software.

Figure 4: Stateflow model of buck-converter voltage
hysteresis controller. The digitized output voltage
from the buck-converter plant is used to determine
the mode of the switch. Here, Vtol is denoted by the
variable Vtol, Vref is Vref. We highlight that the con-
troller computes a moving average by summing an
array. With Hynger and Daikon, we automatically
infer that the result of this is the sum of the sam-
ples, similar to the sum return specification shown
in Figure 6 found for the C function in Figure 5.

3.3 Dynamic Invariant Inference with Daikon
Next, we illustrate the dynamic invariant inference method-

ology used by Daikon on a purely software example. How-
ever, this purely software example (a C function) is actually
specified for the controller in the buck converter case study
in a different manner. The loop in the controller SLSF model
of Figure 4 also computes a sum of an array, and Daikon can
find this specification for both the SLSF controller model us-
ing Hynger, and the C-frontend for the following example.

Example C Program, Formal Specification, and Can-
didate Invariants Inferred. Figure 5 shows an example
C function to illustrate the use of dynamic analysis with
Daikon to find candidate invariants. The function computes
and returns the sum of an array of integers. This exam-
ple was recreated from an example in the original Daikon
paper [3]. Additionally, a formalized correctness specifica-
tion is given in the modern ANSI/ISO C Specification Lan-
guage (ACSL) specification language, used by tools such as
Frama-C [16]. Using Daikon and a small suite of unit tests,
we were able to successfully find the invariant that at all
returns from the function sum_array, the returned value is
the sum of the elements in the array b. The suite of tests
included arrays with: (a) all the same length and same ele-
ments, (b) all the same length and uniformly randomly cho-
sen elements, (c) different lengths and all the same elements,
and (d) different lengths and uniformly randomly chosen el-
ements. Daikon successfully found the sum postcondition in
all these cases with only a few test conditions. The candi-
date invariant outputs of Daikon appear in Figure 6, where
we can see Daikon has inferred a candidate invariant that
the function returns the sum of an array. We highlight that
we find the sum return result of the moving average filter
from Figure 4 using Hynger and Daikon.

4. CYBER-PHYSICAL SPECIFICATIONS
AND MISMATCHES

The approach presented in this paper applies to systems
with formal models, informal models, and unknown model-
s/implementations. The primary assumption is that inter-
faces to the models or systems are available as SLSF blocks.
There are two main categories of blocks appearing in a SLSF
diagram that are supported by our method, white box and
black box systems. The white box systems may contain:
(a) known, informal models, (b) known, informal implemen-
tations, or (c) known, formal models (e.g., hybrid automata,
or more precisely, classes of SLSF diagrams that may be con-
verted to hybrid automata [2]). The black box systems may
be completely unknown, and may contain: (a) unknown
implementations (e.g., compiled executable binaries with no
source available, such as commercial off-the-shelf [COTS]
components and other third-party systems), (b) unknown
models, and (c) actual cyber-physical systems (e.g., embed-
ded controllers, networked computers, and physical plants,
all that may show up in HIL/SIL simulations interfaced with
SLSF).

4.1 Cyber-Physical System Models
We next define a structure of CPS models used in SLSF

to formalize the specification mismatch problem. We will
not define a formal semantics of this structure or SLSF dia-
grams here. However, in the case where the SLSF diagram is
white box and a formal semantics may be defined, a formal
framework like hybrid input/output automata (HIOA) [17]
may be used to specify the semantics, such as done in the
HyLink tool [2]. Other formalisms like actors and hierarchi-
cal state machines are commonly used for formal modeling
of other diagrammatic frameworks similar to SLSF [18–21].
Given a formal model A and candidate specification Σ (e.g.,
found using Hynger), we can check if A meets the specifica-
tion, i.e., A |= Σ by using a hybrid systems model checker
like SpaceEx [5]. For instance, in some instances, we know
when a SLSF diagram corresponds precisely hybrid automa-
ton model [2], and in these cases, we can check if candidate
invariants found with Hynger are actual invariants.
First, we define the hierarchy represented by SLSF dia-

grams and similar graphical modeling languages. A SLSF
diagram is a tuple A ∆= 〈M,E,V〉, where: (a) M is a set
of blocks (vertices) that represent block diagrams (and sub-
-blocks/models), (b) E ⊆ M ×M is a set of edges between
blocks representing a parent-child hierarchy, and (c) for each
block v ∈M , V(v) is a set of variables, and V ∆=

⋃
v∈M

V(v).
The graph G

∆= (M,E) defined by the vertices (blocks)
M and edges E is a rooted tree, where M are block di-
agrams and E represents a parent-child hierarchical rela-
tionship (e.g., sub-modules and sub-blocks). Here, the root
(i.e., top-level) block diagram of the model is the unique
root of the tree, which we will denote root(M). For a block
v ∈ M , the children of v are denoted children(v) and de-
fined as the set of blocks {w ∈M | w ∈ E(v)}. For a block
v ∈ M , the parent of v is denoted parent(v) and is defined
as the singleton set {w ∈ M | v ∈ children(w)}. Clearly,
parent(root(M)) = ∅. For a block v ∈M , the ancestors of v
are denoted ancestors(v) and defined inductively as the set
of blocks {w ∈M | v ∪ w ∈ children(v) ∪ children(w)} (or
equivalently, as the transitive closure of children(v)).
For a block v ∈ M , the set of variables of v is V(v) and

1 /∗@ requires n >= 0; // at leas t 0 elements
@ requires \val id (b+ (0. .n−1)); // a l l elements ex i s t

3 @ assigns \nothing ; // no side e f f ec t s
@ ensures \ resu l t == \sum(0 ,n−1,\lambda integer j ; b [j]) ;

5 @ ensures \ resu l t >= 0; // false , array may be negative
∗/

7 int sum_array (int b[], unsigned int n) {
int i;

9 int s = 0;
/∗@ loop invariant

11 \ fo ra l l integer j ; (0 <= i <= n) ==> s == \sum(0 , i−1,\lambda integer j ; b [j]) ; ∗/
for (i = 0; i < n; i++) {

13 s += b[i];
}

15 return s;
}

Figure 5: Example C function that sums an array b of n integers. Requirements on the function inputs
(i.e., preconditions on b and n for the function to be called) are specified as requires assertions in the ACSL
language. Correctness specifications (i.e., postconditions following the function call) are specified as ensures
assertions in the ACSL language.

============== Precondition
2 .. sum_array ()::: ENTER

b has only one value // i t ’ s a pointer to only one location of memory
4 b[] elements >= 0 // a l l elements were non−negative for th is set of traces

n == 100 // a l l t e s t s were 100 element arrays for th is set of traces
6 size(b[]) == 100 // a l l t e s t s were 100 element arrays

============== Postcondition
8 .. sum_array ()::: EXIT

b[] == orig(b[]) // no side e f f ec t s
10 return == sum(b[]) // does return the sum

sum(b[]) == sum(orig(b[]))
12 b[] elements >= 0

Figure 6: Daikon candidate invariant output (with some additional markup in C-style comments for read-
ability) for the sum_array example from Figure 5.
is partitioned into sets of input and output variables, writ-
ten respectively as VI(v) and VO(v), and we have V(v) =
VI(v)∪VO(v). A variable x ∈ V(v) is a name for referring to
some state of A, and is associated with a data type denoted
type(x). Typical data types are reals, floating points, arrays,
lists, etc. The valuation of a variable x ∈ V(v) is the set of
all values it may take and is denoted val(x). The state-space
of A is the set of valuations of all the variables V. An ele-
ment x of the state-space is called a state, and a trace is a
sequence of states. The SLSF diagram may also be internal
(local) variables, although they are not externally visible, so
we do not include them, as only input/output interfaces are
visible for external observation and instrumentation. Fur-
thermore, the set of variables of v is also partitioned into
sets of physical and cyber variables, denoted respectively as
VP (v) and VC(v), and we have V(v) = VP (v) ∪ VC(v). In
practice, this may accomplished with subtyping using e.g.
an overloaded type for floats or fixed points used for ap-
proximations of real variables (e.g., in C, typedef double
physical; typedef physical temperature;).
Note that the input and output variables are disjoint, and

the cyber and physical variables are disjoint, although these
are not all mutually disjoint. For a block v ∈ V and vari-
able x ∈ V(v), we say: (a) x is an input cyber variable if
x ∈ VC(v) and x ∈ VI(v), (b) x is an output cyber vari-
able if x ∈ VC(v) and x ∈ VO(v), (c) x is an input physical
variable if x ∈ VP (v) and x ∈ VI(v), and (d) x is an out-
put cyber variable if x ∈ VP (v) and x ∈ VO(v). We extend
these notations naturally to sets of variables if all variables
in a set of variables fall into these classes, and will reference
them as such. An arbitrary set of variables may not be mu-
tually disjoint from each of the input, output, cyber, and
physical variables. Thus, for a set of variables X ⊆ V, we

say: (a) X is cyber-physical if there exist both cyber and
physical variables in X, (b) X is input-output if there exist
both cyber and physical variables in X, and (c) X is cyber
input-output, physical input-output, cyber-physical input, or
cyber-physical output for the other natural permutations.
Next, using these variable classes, we define classes of CPS

models appearing in SLSF diagrams. For a block v ∈M , we
say: (a) v is a cyber-physical block if there exist both cyber
and physical variables in V(v), (b) v is a cyber block if there
exist only cyber variables in V(v), and (c) v is a physical
block if there exist only physical variables in V(v).

Cyber-Physical Variable Interactions. Next, we will for-
malize a notion of influence between cyber and physical
models and their variables. For example, consider a typi-
cal closed-loop plant-controller architecture, where outputs
of a plant are sensed, used as inputs to a controller, and
outputs of the controller are converted by actuators as in-
puts to the plant (and potentially disturbances affect ev-
erything). Generally, we would say the plant is a physical
model, the controller is a cyber model, and the sensors and
actuators are cyber-physical models. However, it is clear
that the physical variables of the plant affect the cyber vari-
ables of the controller, and vice-versa, albeit not directly,
but through the transitive closure of input-output connec-
tions over all blocks in the SLSF model. We note that this is
related to the notion of tainted variables in program analysis
that is popular in security [22]. To formalize this notion, we
specify interconnections between input and output variables
between blocks v ∈ M at the same hierarchical level in the
diagram.
Input-output connections may only exist between mod-

els with the same parent (i.e., those in the same hierarchi-

cal structure). For a block v ∈ M , we denote all blocks
with same parent as siblings(v), which is defined as the set
{w ∈ M | parent(w) = parent(v)}. Output variables of a
block v ∈M may be connected to input variables of a block
w ∈ M . Let GV

∆= (VV, EV) be a directed graph where
the vertices VV are variables of blocks v ∈M and the edges
specify the interconnection between output variables to in-
put variables for some model w ∈ siblings(v), and we have
EV ⊆ V(v)× V(w). In general, for a fixed block v ∈M and
variable x ∈ V(v), this interconnection relation is a tree,
rooted at the output variable x and connected to possibly
many input variables of other blocks w ∈M for w 6= v. For
two blocks v, w ∈M , we say v connects to w if there exists an
output variable y ∈ VO(v) and an input variable u ∈ VI(w)
with EV(u) = y, denoted v ↪→ w. For two blocks v, w ∈ M ,
we say v has a path to w if w is in the transitive closure of
blocks that v connects to (i.e., v ↪→∗ w), denoted v ; w.
We note that the ; relation may have cycles, and such cases
arise in feedback control loops. For a block v ∈ M , for an
input variable u ∈ VI(v) and output variable y ∈ VO(v),
we say u directly influences y if the value of y changes as
a function of u.1 Finally, for two blocks v, w ∈ M such
that v ; w, for an output variable y ∈ VO(v) and an input
variable u ∈ VI(w), we say y influences u if there exists a
sequence of directly influenced variables between y and u.
Thus, we can see that a cyber variable in one model may
influence a physical variable in another model (or even its
own model if there is a cycle), and vice-versa. The software
physical variables are all cyber variables that are influenced
by physical variables, and are denoted VSP . Typical ex-
amples of software physical variables include those used for
sensed and sampled measurements, variables used in feed-
back control calculations, etc.

4.2 Cyber-Physical Specifications
Our goal is to find specifications that are invariants or

conditional invariants, so we do not consider more general
temporal logic formulas. Under this assumption, a specifi-
cation is equivalent to a predicate over the state-space of
the system. Equivalently, a specification is a multi-sorted
first-order logic (FOL) sentence (of a restricted class), so we
assume the specification may represented in the Satisfiability
Modulo Theories (SMT) library standard language [23, 24].
Under these assumptions, candidate invariants may be spec-
ified as quantifier-free SMT formulas over the variables of
the SLSF model, V, where the type of a variable corre-
sponds to the SMT sort. For a formula φ, let vars(φ) be
the set of variables appearing in φ. For a formula φ: (a) if
vars(φ) are all physical, then φ is a physical specification,
(b) if vars(φ) are all cyber, then φ is a cyber specification,
and (c) if vars(φ) consists of both cyber and physical vari-
ables, then φ is a cyber-physical specification.
Next, while we will try to infer interesting specifications φ

using dynamic analysis later in the paper, we first highlight
examples of specifications made a priori in system design, as
these are necessary to define specification mismatches. Let Σ
be a set of specifications forA, which is a set of formulas over
the variables of A. Referring to Figure 7, we separate the
specification Σ into sets of cyber and physical specification,
written respectively as ΣC and ΣP . Here ΣP denotes the
1Internally the blocks may be very sophisticated, could rep-
resent complex physical systems, could be Turing complete,
etc., so we use this abstract notion.

ऋ෩ ⊨ ො߮?
(Model
Checker)

ऋ: Cyber‐
Physical
Models

(Simulink)

Instrument
(Hynger)

Execute/
Simulate
(Simulink)

઴෡ : Infer
Candidate
Invariants
(Daikon)

઴෡۾: Project ො߮
onto Physical
Variables
(Hynger)

Cyber‐
Physical

Specification
Mismatches

઴: Actual
Invariants

દ: Test
Suite /
Initial

Conditions

Yes
߮ ∈ ઴ො߮ ∈ ઴෡

ऋ ऋ ෢

θ ∈ દ

લ

ො߮ ∈ ઴෡ ,
ऋ෩

ො߮୔ ∈ ઴෡۾,
୔ߪ ∈ ઱۾ ො߮୔ ⇒ ?୔ߪ

(SMT‐
Solver)

No

Figure 7: Hynger overview, inference of physi-
cal specifications assumed by software, and cyber-
physical specification mismatch identification.
set of physical specifications. This specification includes as-
sumptions about the physical environment, such as the value
of gravitational force, temperature bounds, time constants,
etc. The physical specification also includes assumptions
about the physical system’s behavior and subcomponents,
such as motor torque limits, temperature bounds of compo-
nents, sampling rates, velocity limits, etc. Here ΣC denotes
the set of cyber specification. The cyber specification in-
cludes assumptions about software-physical interfaces, such
as ADC resolution, DAC resolution, sampling rates, etc. It
also includes assumptions about the software system, sub-
components, and software-software interfaces, such as data
formats, control flow, event orderings, etc.
For example, the buck converter has the following physical

specifications:

σ1
P

∆= t ≥ ts ⇒ Vout(t) = Vref (t)± Vrip,

σ2
P

∆= VS(t) = VS(0)± δS ,

σ3
P

∆= Vref (t) = Vref (0)± δref ,

and ΣP
∆= {σ1

P , σ
2
P , σ

3
P }. Here, σ1

P states that after some
amount of constant startup time ts, the output of the buck
converter Vout(t) remains near a reference (desired) output
voltage Vref (t). Both σ2

P and σ3
P specify assumptions about

the buck converter’s environment, namely that its source
voltage VS and reference voltage Vref always remain near
their initial values. We note that while time may not typ-
ically be thought of as a state of the system, it can be en-
coded in this way easily, for example, by including a state
variable t with ṫ = 1. To evaluate whether A has cyber-
physical specification mismatches, we hypothesize that the
cyber specification contains (at least a subset) of the physi-
cal specification. This process is made more explicit in Fig-
ure 7 and described next.

4.3 Cyber-Physical Specification Mismatches
A CPS model or implementation will be provided as a

SLSF diagram, denoted A as formalized above. Next, A
is instrumented using the Hynger yielding a modified SLSF
diagram Â. Now, Â is executed to generate a set of sampled,
finite-precision traces T for each initial condition θ in a set of
initial conditions Θ, which effectively corresponds to a test
suite. The traces T are analyzed using dynamic analysis
methods, such as Daikon, to generate a set of candidate
invariants Φ̂, each element ϕ̂ of which may be checked as
actual invariants if A corresponds to a formal model (e.g., a

hybrid automaton) or may be converted to one, Ã. If that
is the case, then a hybrid systems model checker may be
employed to see if ϕ̂ is an actual invariant ϕ, and the set of
actual invariants Φ is collected.
In all cases, next each candidate invariant ϕ̂ ∈ Φ̂ is pro-

jected (restricted) onto the software physical variables VSP

to yield a candidate physical invariant ϕ̂P and correspond-
ing set Φ̂P . Such a projection may be computed using quan-
tifier elimination methods available in many modern SMT
solvers, such as Z3 [25]. Now, Φ̂P corresponds to the candi-
date, inferred physical invariants from the perspective of the
cyber-physical system, each element of which may be com-
pared to each element σP of a set of actual physical specifica-
tions ΣP . Since ϕ̂P and σP are both formulas, we construct
new formulas ϕ̂P ⇒ σP and σP ⇒ ϕ̂P , each of which may
be discharged with an SMT solver. If these checks are not
valid, then these specifications are candidate cyber-physical
mismatches. These checks basically compare whether the
inferred specification and actual specification are more or
less restrictive than one another, in terms of the sizes of
correspond sets of states satisfying the predicates. We hy-
pothesize that it is generally the case that the inferred phys-
ical specification should always be stronger than the actual
physical specification, and only the check ϕ̂P ⇒ σP would
be needed. This would correspond to the case where the
software’s assumptions about the physical world are at least
as restrictive as those made in the actual physical specifica-
tion. It may also be useful to check ϕ̂P ⇐ σP , which would
correspond to cases where the inferred physical specification
is weaker than the actual physical specification. In this case,
there may be a trace that violates the actual specification,
and this may be useful in analysis like falsification to drive
simulations towards a violating behavior.

5. HYNGER: GENERATING INVARIANTS
FOR SLSF MODELS

Hynger—HYbrid iNvariant GEneratoR—is a software tool
developed for invariant inference of CPS models represented
as SLSF block diagrams2. Hynger is written primarily in
Matlab and uses the Matlab APIs to interact with SLSF
diagrams. Hynger also uses some Java code (natively inside
Matlab) to interface with Daikon, which is written in Java.
Daikon versions 5.0.0 to 5.1.8 were tested with Hynger3.
Given a SLSF model A, Hynger automatically inserts call-

back functions into the model to print model variables at
block inputs and outputs at certain events in the SLSF sim-
ulation loop, formatted in the trace input format required
by Daikon. While configurable, the default behavior of Hyn-
ger is to add instrumentation (observation) points for every
input and output signal for every block (recursively) in the
SLSF diagram. That is, Hynger walks the tree of blocks
starting from the root, and for each v ∈M , adds instrumen-
tation points for the input variables VI(v) and the output
variables VO(v) of v. Of course, this may incur a drastic
performance overhead, so if this is not desired, the user may

2A preliminary prototype of Hynger with examples is avail-
able online: http://verivital.com/hynger/. The reposi-
tory also includes Daikon input (*.dtrace) trace files gen-
erated from the examples, as well as the Daikon output can-
didate invariant (*.inv) files.
3Daikon may be downloaded: http://plse.cs.
washington.edu/daikon/.

select only a subset of the blocks to instrument and our per-
formance results (see Section 6) illustrate this distinction.
When a SLSF model is simulated with these instrumenta-
tion callback functions added by Hynger, it will generate a
trace file in the input trace format for Daikon. Hynger also
provides the capability to automatically call Daikon from
Matlab (by using an appropriate Java call to Daikon), which
will then return the set of candidate invariants from each
program point to the user.
The Hynger flow is summarized in Figure 7. The inputs

are: (a) SLSF diagrams (containing embedded software code
and a set of physical variables along with their physical dy-
namics models [e.g., ODEs]), and (b) a set of physical vari-
ables along with their dynamics models (specified as SLSF
children diagrams), and (c) a test suite for the embedded
software and initial conditions for the physical simulation
(such as noisy initial conditions, θ ∈ Θ). The output of the
Hynger tool is a set of candidate invariants, which, when
projected onto all the software physical variables VSP , rep-
resent a candidate specification the software assumes for
the physical parts of the system. Finally, candidate spec-
ifications can be checked for conformance with the actual
physical requirements by comparing the two specifications:
the actual physical specification and the candidate physical
specification from the software perspective.

6. EXPERIMENTAL RESULTS
Hynger was tested on Windows 8.1 64-bit using Matlab

2014a and 2014b, executed on a modern x86-64 laptop with
a 2.7 GHz quad-core Intel i7-4800MQ processor and 32 GB
RAM. All performance metrics reported were recorded on
this system using Matlab 2014b. We tested and evaluated
Hynger using a number of SLSF examples, including: (a) the
closed-loop buck converter with sensor and hysteresis con-
troller described in Section 3 and detailed further in [10],
(b) a solar array case study that uses a buck-boost con-
verter [11], (c) benchmarks from S-TaLiRo [26], (d) bench-
marks from Breach [28,29], (e) benchmarks created as a part
of the ARCH 2014 CPSWeek workshop (particularly [10,27])
and (f) example models provided by Mathworks. Overall,
these examples vary from fairly simple with tens of blocks
(such as the buck converter case study we detail), to complex
(with hundreds of blocks).

Runtime Overhead from Instrumentation with Hynger
and Invariant Inference with Daikon. First, we present
aggregate performance evaluation for some of these exam-
ples in Table 1, with column descriptions appearing in the
caption. Overall, the performance overhead of instrument-
ing diagrams and performing invariant inference is around
an order of magnitude increase in the best cases, and two-to-
three orders of magnitude increase in the worst cases, which
we note is comparable with typical Daikon instrumentation
frontends like Valgrind’s overhead [4,30]. We conducted per-
formance profiling of Hynger and identified the main source
of overhead (about 75 to 90 percent) as file I/O operations.
Additionally, as Hynger has several different usage scenarios
and operating modes (where it may be used to instrument
few blocks [subsystem and function blocks by default], many
blocks [all blocks except ones such as constants, scopes, etc.],
every single block, or user-selected blocks), the table illus-
trate these differences to give some comparison of how the
methods scale on a given model.

http://verivital.com/hynger/
http://plse.cs.washington.edu/daikon/
http://plse.cs.washington.edu/daikon/

Model Solver Tmax Sim SimInst + Inv SimInst Inv Overhead BDAll BDInst BDPct
buck (Section 3) ode45 0.0083333 4.0575 32.1449 28.7098 3.4351 7.2299 14 3 21.4286
buck (Section 3) ode45 0.0083333 2.2973 30.5966 26.8555 3.7411 13.8531 14 4 28.5714
buck (Section 3) ode45 0.0083333 2.1576 54.7123 51.1736 3.5387 25.8249 14 14 100
heat25830 [26] ode45 50 2.1139 189.7082 188.235 1.4732 89.743 28 1 3.5714
heat25830 [26] ode45 50 3.604 1675.9307 1674.8379 1.0928 465.0181 28 10 35.7143
fuel1 [27] ode15s 15 3.3557 412.4223 409.2978 3.1244 122.9025 208 17 8.173
fuel1 [27] ode15s 15 1.5293 1434.4582 1428.3545 6.1038 938.0088 208 63 30.2885
fuel2 [27] ode15s 20 1.2206 254.8157 252.5842 2.2315 208.7635 135 13 9.630

Table 1: Hynger performance results for several of the examples evaluated. Solver is the ODE solver used
by SLSF. Tmax is the virtual simulation time in seconds (i.e., time from the perspective of the model). All
runtime results are in seconds and are the mean of 5 runs. Sim is the simulation runtime (s). SimInst +
Inv is the instrumented simulation time (Hynger) plus invariant generation runtime (Daikon) (s). SimInst
is the instrumented simulation runtime (Hynger) (s). Inv is the invariant generation runtime (Daikon) (s).
Overhead is the overall relative performance overhead (extra runtime) (×) using Hynger and Daikon versus
only SLSF simulation (i.e., ((SimInst + Inv)/Sim)). BDInst and BDAll are the numbers of block diagrams
instrumented and the overall number of block diagrams, respectively. BDPct is the percentage (%) of block
diagrams instrumented using different Hynger modes of operation (i.e., BDInst/BDAll).

Closed-Loop Buck Converter Cyber-Physical Specifi-
cation Mismatch. A basic cyber-physical specification mis-
match is easy to encode in the buck converter, since the soft-
ware controller inherently uses a tolerance to encode the de-
sired output voltage ripple. This hysteresis tolerance band is
typically chosen based on the system dynamics and desired
output voltage ripple to ensure the output voltage meets
the ripple specification. As a concrete example, the physical
specification may contain a constraint that Vout = Vref±Vrip,
and fix for example Vref = 5V and Vrip = 0.1V . The hys-
teresis band Vtol is then be selected based on the system
dynamics to ensure 4.9V ≤ Vout ≤ 5.1V , so as to meet the
requirements of the physical specifications defined by ΣP

in Section 4.2. If the plant changes (i.e., different circuit
elements are used), and the software is not updated with a
new hysteresis band Vtol to accommodate the plant dynam-
ics changes, then a specification mismatch manifests. This
mismatch is detected using Hynger and the methodology de-
scribed in this paper. Of course, this is a somewhat obvious
mismatch, as the controller relies on variables computed as
functions of the plant parameters (here, the R, L, and C
values, as well as the source and desired/reference output
voltage values), so if these plant components are changed,
clearly the software must be updated.

7. RELATED WORK
The idea evaluated in this work, that of inferring phys-

ical system specifications from embedded software in con-
junction with physical system models and evaluating them
for mismatches, was inspired by previous work finding pro-
gram specifications for purely software systems [31]. Cyber-
physical specification mismatch is closely related to model
inconsistency [32], architectural mismatch [33], and require-
ments consistency [34]. There are many benefits of dy-
namic analysis such as using implementations instead of
models [3,4,31] to find dynamic program specifications [31],
such as providing documentation over program evolution,
checking if specifications change drastically over program
evolution, etc. For one, models are not actually required for
analysis, and implementations may be used [3,4]. The bene-
fit of executing a system implementation is that there are no
mismatches between a model (potentially documentation-
based) and implementation, since it is not necessary to have

a model at all. The candidate specification generated may
be viewed as a form of input-output abstraction of the ac-
tual implementation. The limitation is results are unsound
without additional reasoning.
Finding specifications is a maturing field within software

engineering [3, 4, 31, 35–37]. Daikon, which is used by Hyn-
ger, processes program traces to generate invariants [3, 4].
For several languages (C, C++, etc.), this process is per-
formed without access to the source code by instrument-
ing the compiled program using Valgrind [30]. This makes
it difficult to use on non-x86/x86-64 platforms (although
Valgrind is gaining access to other architectures), which is
a serious limitation, as most embedded platforms utilize
other architectures (e.g., ARM, AVR, PIC, 8051, MSP430,
etc.). Due in part to these limitations, Hynger instruments
architecture-independent SLSF diagrams directly. In the
long run, the Hynger tool is envisioned to take an arbitrary
SLSF model, instrument it, then analyze the resulting traces
with dynamic analysis to identify broad classes of cyber-
physical specification mismatches.
The most closely related work using Daikon is to find can-

didate invariants of hybrid models of biological system [38],
and this also illustrates a proof-of-concept of using Daikon
as a trace analyzer for non-purely software systems. Daikon
can generate invariants of many forms for variables and data
structures, such as: ranges (a ≤ x ≤ b), linear (y = ax+ b),
variable ordering (x ≤ y), sortedness of lists, etc. Daikon
works by instrumenting source code and/or compiled bina-
ries with changes that allow for looking at variable values,
then Daikon essentially checks if variables satisfy some tem-
plate invariants. For instance, if an integer variable x is
observed to always be smaller than some number, say 50,
Daikon may generate a candidate invariant of x ≤ 50. Other
research tools like DySy [36] and commercial tools like Ag-
itagor [35] can be used for generating candidate invariants
for other languages.
There are also semi-formal and formal tools for analyzing

SLSF diagrams akin to the Hynger tool developed in this
work. For example, there are commercial tools such as Re-
active Systems’ Reactis and Esterel’s SLSF-to-Lustre trans-
lation tool. For discrete or discretized systems, translations
to formal models like extended input/output automata have
been developed [19]. Some recent simulation-based verifica-
tion, testing, and falsification approaches in hybrid systems

and CPS like those in S-TaLiRo, Breach, and C2E2 can
be viewed as forms of dynamic analysis (potentially with
additional annotations and proof steps) [26, 28, 29, 39–41].
Additionally, there are alternative methods for finding spec-
ifications for SLSF models [29, 39]. While such approaches
have been applied to infer parameters used in more general
specifications than just invariants (e.g., temporal proper-
ties specified in variants of dense-time temporal logic like
metric [42] and signal temporal logic [29]), our work is dif-
ferentiated in several regards. Of course, to use tools like
Daikon, template specifications are also required. However,
the class of templates allowed by Daikon include significantly
more complex software state (arrays, algebraic data types
like lists, etc.) than that possible using, e.g., STL, so we
illustrate this with the array example described earlier in
this paper (Figures 4 and 5) that shows up frequently in
CPS software (a moving-average filter). Additionally, the
templates are encoded in Daikon itself, but the user can add
new templates to Daikon. As we rely on Daikon for dynamic
analysis, our method is template-based, albeit we have ac-
cess to a large set of templates, specifically for the cyber
(software) aspects, such as potentially complex data struc-
tures that can not be handled by existing template-based
methods for SLSF specification inference [29].

8. CONCLUSION
The results illustrate the feasibility of using dynamic in-

variant inference for analysis of embedded and cyber-physical
systems (CPS). The Hynger prototype enables a powerful
extension of dynamic invariant inference to CPS for two
main reasons. First, it enables potentially model-free and
black box invariant inference, since the internals of the SLSF
blocks may remain unknown. Supposing no model is avail-
able (in the black box case), the candidate invariants rep-
resent what may be the most formal model available. If a
formal model is available (in the white box case), then can-
didate invariants represent a candidate abstraction of that
model. If the candidate invariants are actual invariants, this
is powerful, as they represent what is likely a less complex
representation of the set of reachable states of the system.
Second, if we view the SLSF models as hybrid automata in
a formal context, it represents a first use of dynamic execu-
tion analysis for hybrid systems with sophisticated software
state and discrete complexity.

Future Work. The Daikon tool used by Hynger may only
infer extremely limited classes of nonlinear invariants by de-
fault (e.g., squares like x2), and not general polynomials
(e.g., x2 + y2 + z3), so extending the invariant templates to
be able to capture more interesting relations, particularly
for physical variables, is planned. While the Hynger tool is
a prototype, it can be envisioned to take an arbitrary SLSF
model, instrument it, feed the resulting traces to Daikon
to generate candidate invariants, then check if these can-
didate invariants are actually invariants or not (using, e.g.,
SpaceEx [5] or other hybrid systems model checkers), as well
as identify specification mismatches. Long term, Hynger
could be extended for runtime assurance tasks like detecting
and thwarting security violations and attacks, similar to the
ClearView tool that also uses Daikon [43]. ClearView’s suc-
cess for software systems illustrates that finding sets of can-
didate invariants and monitoring their evolution over time
may be useful for runtime assurance and resiliency methods

in CPS. If the candidate invariants are checked at runtime
using a real-time reachability method [44], a formal and dy-
namic runtime assurance environment may be feasible.
Overall, there are several directions for future research,

including: (a) extending the classes of invariants that may
be inferred, particularly to nonlinear (polynomial) [45] and
disjunctive/max-plus forms [46], potentially by integrating
Daikon with techniques from Dig [47], (b) checking if the in-
ferred invariants are actual invariants by using formal mod-
els of the underlying SLSF model diagrams using hybrid
systems model checkers such as SpaceEx [5], etc., (c) run-
time assurance and verification with real-time reachability
of inferred invariants [44], (d) improving and refining Hyn-
ger, particularly with regard to performance (such as using
Daikon in the online mode with direct pipes between Hynger
and Daikon, so that file I/O is minimized), and (e) analyzing
industrial-scale CPS using Hynger.

Acknowledgments
The material presented in this paper is based upon work sup-
ported by the Air Force Research Laboratory’s Information Di-
rectorate (AFRL/RI) through the Visiting Faculty Research Pro-
gram (VFRP) under contract number FA8750-13-2-0115 and the
Air Force Office of Scientific Research (AFOSR). Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect
the views of the AFRL/RI or AFOSR.

9. REFERENCES
[1] B. Beizer, Software testing techniques (2nd ed.). New York,

NY, USA: Van Nostrand Reinhold Co., 1990.
[2] K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo, “A step

towards verification and synthesis from Simulink/Stateflow
models,” in Proc. of the 14th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC). ACM, 2011, pp. 317–318.

[3] M. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” Software Engineering, IEEE
Transactions on, vol. 27, no. 2, pp. 99–123, 2001.

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao, “The Daikon system
for dynamic detection of likely invariants,” Science of
Computer Programming, vol. 69, no. 1–3, pp. 35–45, Dec. 2007.

[5] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler,
“SpaceEx: Scalable verification of hybrid systems,” in
Computer Aided Verification (CAV), ser. LNCS. Springer,
2011.

[6] National Highway Traffic Safety Administration (NHTSA),
“Honda automatic transmission control module software (recall
#11v395000),” Aug. 2011.

[7] J. L. Lions, “Ariane 5 flight 501 failure,” Paris, France, Tech.
Rep., Jul. 1996. [Online]. Available:
http://www.di.unito.it/~damiani/ariane5rep.html

[8] “Ariane 5 flight 501 failure, report by the inquiry board,” ESA
Inquiry Board, Paris, France, Tech. Rep., Jul. 1996. [Online].
Available:
https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

[9] K. McCaney, “Pentagon’s rapid plan for maintaining air
superiority,”
http://defensesystems.com/Articles/2014/05/01/DARPA-
system-of-systems-SoSITE.aspx, 2014.

[10] L. V. Nguyen and T. T. Johnson, “Benchmark: Dc-to-dc
switched-mode power converters (buck converters, boost
converters, and buck-boost converters),” in Applied
Verification for Continuous and Hybrid Systems Workshop
(ARCH 2014), Berlin, Germany, Apr. 2014.

[11] L. V. Nguyen, H.-D. Tran, and T. Johnson, “Virtual
prototyping for distributed control of a fault-tolerant modular
multilevel inverter for photovoltaics,” Energy Conversion,
IEEE Transactions on, vol. 29, no. 4, pp. 841–850, Dec. 2014.

http://www.di.unito.it/~damiani/ariane5rep.html
https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://defensesystems.com/Articles/2014/05/01/DARPA-system-of-systems-SoSITE.aspx
http://defensesystems.com/Articles/2014/05/01/DARPA-system-of-systems-SoSITE.aspx

[12] T. T. Johnson, Z. Hong, and A. Kapoor, “Design verification
methods for switching power converters,” in Power and Energy
Conference at Illinois (PECI), 2012 IEEE, Feb. 2012, pp. 1–6.

[13] S. Hossain, S. Dhople, and T. T. Johnson, “Reachability
analysis of closed-loop switching power converters,” in Power
and Energy Conference at Illinois (PECI), 2013, pp. 130–134.

[14] R. P. Severns and G. Bloom, Modern DC-to-DC Switchmode
Power Converter Circuits. New York, New York: Van
Nostrand Reinhold Company, 1985.

[15] R. W. Erickson and D. Maksimović, Fundamentals of Power
Electronics, 2nd ed. Springer, 2004.

[16] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski, “Frama-c: A software analysis
perspective,” in Software Engineering and Formal Methods,
ser. LNCS, G. Eleftherakis, M. Hinchey, and M. Holcombe,
Eds. Springer Berlin Heidelberg, 2012, vol. 7504, pp. 233–247.

[17] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O
automata,” Information and Computation, vol. 185, no. 1, pp.
105–157, 2003.

[18] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar,
P. Mishra, G. Pappas, and O. Sokolsky, “Hierarchical modeling
and analysis of embedded systems,” Proceedings of the IEEE,
vol. 91, no. 1, pp. 11–28, Jan. 2003.

[19] C. Zhou and R. Kumar, “Semantic translation of simulink
diagrams to input/output extended finite automata,” Discrete
Event Dynamic Systems, vol. 22, no. 2, pp. 223–247, 2012.

[20] S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee, “A modular
formal semantics for ptolemy,” Mathematical Structures in
Computer Science, vol. 23, pp. 834–881, 8 2013.

[21] S. Bensalem, M. Bozga, A. Legay, T.-H. Nguyen, J. Sifakis, and
R. Yan, “Component-based verification using incremental
design and invariants,” Software & Systems Modeling, pp.
1–25, 2014.

[22] E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
Security and Privacy (SP), 2010 IEEE Symposium on, May
2010, pp. 317–331.

[23] L. Moura and N. Bjørner, “Satisfiability modulo theories: An
appetizer,” in Formal Methods: Foundations and
Applications, ser. LNCS, M. M. Oliveira and J. Woodcock,
Eds. Springer Berlin Heidelberg, 2009, vol. 5902, pp. 23–36.

[24] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard:
Version 2.0,” 2010. [Online]. Available: http://smt-lib.org/

[25] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. of 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, ser.
TACAS ’08/ETAPS ’08. Springer-Verlag, 2008, pp. 337–340.

[26] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan,
“S-taliro: A tool for temporal logic falsification for hybrid
systems,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2011.

[27] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts,
“Benchmarks for model transformations and conformance
checking,” in 1st International Workshop on Applied
Verification for Continuous and Hybrid Systems (ARCH),
2014.

[28] A. Donzé, “Breach, a toolbox for verification and parameter
synthesis of hybrid systems,” in Computer Aided Verification,
ser. Lecture Notes in Computer Science, T. Touili, B. Cook,
and P. Jackson, Eds. Springer Berlin / Heidelberg, 2010, vol.
6174, pp. 167–170.

[29] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining
requirements from closed-loop control models,” in Proceedings
of the 16th international conference on Hybrid systems:
computation and control, ser. HSCC ’13. New York, NY,
USA: ACM, 2013, pp. 43–52.

[30] N. Nethercote and J. Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proceedings
of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07. New
York, NY, USA: ACM, 2007, pp. 89–100.

[31] J. W. Nimmer and M. D. Ernst, “Automatic generation of
program specifications,” in Proceedings of the 2002 ACM
SIGSOFT international symposium on Software testing and
analysis, ser. ISSTA ’02. New York, NY, USA: ACM, 2002,

pp. 229–239.
[32] A. Reder and A. Egyed, “Determining the cause of a design

model inconsistency,” Software Engineering, IEEE
Transactions on, vol. 39, no. 11, pp. 1531–1548, Nov. 2013.

[33] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural
mismatch or why it’s hard to build systems out of existing
parts,” in Software Engineering, 1995. ICSE 1995. 17th
International Conference on, Apr. 1995, pp. 179–179.

[34] M. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. Heimdahl,
and S. Rayadurgam, “Your what is my how: Iteration and
hierarchy in system design,” Software, IEEE, vol. 30, no. 2, pp.
54–60, Mar. 2013.

[35] M. Boshernitsan, R. Doong, and A. Savoia, “From Daikon to
Agitator: Lessons and challenges in building a commercial tool
for developer testing,” in Proceedings of the 2006 international
symposium on Software testing and analysis, ser. ISSTA ’06.
New York, NY, USA: ACM, 2006, pp. 169–180.

[36] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy:
Dynamic symbolic execution for invariant inference,” in
Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th
International Conference on, 2008, pp. 281–290.

[37] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland,
J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,
P. Krause, G. Lüttgen, A. J. H. Simons, S. Vilkomir, M. R.
Woodward, and H. Zedan, “Using formal specifications to
support testing,” ACM Comput. Surv., vol. 41, no. 2, pp.
9:1–9:76, Feb. 2009.

[38] F. Bernardini, M. Gheorghe, F. J. Romero-Campero, and
N. Walkinshaw, “A hybrid approach to modeling biological
systems,” in Membrane Computing, ser. LNCS,
G. Eleftherakis, P. Kefalas, G. Paun, G. Rozenberg, and
A. Salomaa, Eds. Springer Berlin Heidelberg, 2007, vol. 4860,
pp. 138–159.

[39] H. Yang, B. Hoxha, and G. Fainekos, “Querying parametric
temporal logic properties on embedded systems,” in
International Conference on Testing Software and Systems,
ser. Lecture Notes in Computer Science, B. Nielsen and
C. Weise, Eds. Springer Berlin Heidelberg, 2012, vol. 7641,
pp. 136–151.

[40] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of
annotated models from executions,” in Proceedings of the
Eleventh ACM International Conference on Embedded
Software (EMSOFT ’13). Piscataway, NJ, USA: IEEE Press,
2013.

[41] Z. Huang and S. Mitra, “Proofs from simulations and modular
annotations,” in Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control,
ser. HSCC ’14. New York, NY, USA: ACM, 2014, pp. 183–192.

[42] J. Ouaknine and J. Worrell, “Some recent results in metric
temporal logic,” in Formal Modeling and Analysis of Timed
Systems, ser. LNCS, F. Cassez and C. Jard, Eds. Springer
Berlin Heidelberg, 2008, vol. 5215, pp. 1–13.

[43] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,
G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and
M. Rinard, “Automatically patching errors in deployed
software,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP ’09).
New York, NY, USA: ACM, 2009, pp. 87–102.

[44] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time
reachability for verified simplex design,” in IEEE Real-Time
Systems Symposium (RTSS). Rome, Italy: IEEE Computer
Society, Dec. 2014.

[45] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest, “Using
dynamic analysis to discover polynomial and array invariants,”
in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA:
IEEE Press, 2012, pp. 683–693.

[46] ——, “Using dynamic analysis to generate disjunctive
invariants,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 608–619.

[47] ——, “DIG: A dynamic invariant generator for polynomial and
array invariants,” ACM Transactions on Software Engineering

and Methodology, to appear, 2014.

http://smt-lib.org/

	1 Introduction
	2 Cyber-Physical Design Reuse
	3 Buck Converter with Hysteresis Control
	3.1 Buck Converter Plant Model
	3.2 Closed-Loop Buck Converter
	3.3 Dynamic Invariant Inference with Daikon

	4 Cyber-Physical Specifications and Mismatches
	4.1 Cyber-Physical System Models
	4.2 Cyber-Physical Specifications
	4.3 Cyber-Physical Specification Mismatches

	5 Hynger: Generating Invariants for SLSF Models
	6 Experimental Results
	7 Related Work
	8 Conclusion
	9 References

