
Safe and Stabilizing Distributed Multi-Path Cellular
Flows

Taylor T. Johnsona,∗, Sayan Mitrab

aComputer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
bCoordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

We study the problem of distributed traffic control in the partitioned plane,
where the movement of all entities (robots, vehicles, etc.) within each geo-
graphic partition (cell) is the same. Each cell is controlled by software to move
entities across the cell to route entities from sources to targets without colli-
sions. We present a formal model of a distributed traffic control protocol that
guarantees minimum separation between entities, even as the software control-
ling some cells fails by crashing. The distributed traffic control protocol relies
on two principles: (a) temporary blocking entity transfers between adjacent
cells for maintenance of safety and (b) local geographical routing for guaran-
teeing progress of entities to their targets. Establishing liveness in distributed
traffic control systems is challenging, but liveness analysis will be necessary
to apply distributed algorithms in applications like coordinating robot swarms
and intelligent highway systems. Once new failures stop occurring, in the case
of a single target cell, the protocol is guaranteed to self-stabilize and entities
with feasible paths to the target cell make progress towards it. For multiple
targets, failures may cause deadlocks in the system, so we identify a class of
non-deadlocking failures where all entities are guaranteed to make progress to
their respective targets. Our assertional proofs may serve as templates for the
analysis of other distributed traffic control protocols. We also present simu-
lation results to validate the formal model, and to provide estimates of entity
throughput as a function of entity velocity, safety separation distance, single-
target path complexity, failure-recovery rates, and multi-target path complex-
ity.

Keywords: distributed systems, swarm robotics, formal methods, traffic
control, liveness

∗Corresponding author
Email addresses: taylor.johnson@acm.org (Taylor T. Johnson), mitras@illinois.edu

(Sayan Mitra)

Preprint submitted to Theoretical Computer Science A February 16, 2015

1. Introduction

Highway and air traffic flows are nonlinear switched dynamical systems
that give rise to complex phenomena such as abrupt phase transitions from
fast to sluggish flow [1, 2, 3]. Our ability to monitor, predict, and avoid such
phenomena can have a significant impact on the reliability and capacity of
physical traffic networks. Traditional traffic protocols, such as those imple-
mented for air traffic control are centralized [4], where a coordinator periodi-
cally collects information from the vehicles, decides and disseminates way-
points, and subsequently the vehicles try to blindly follow a path to the way-
point. Wireless vehicular networks [5, 6, 7, 8] and autonomous vehicles [9, 10]
present new opportunities for distributed traffic monitoring [11, 12, 13] and
control [14, 15, 16, 17, 18, 19]. While these protocols may still rely on some
centralized coordination, they should scale and be less vulnerable to failures
compared to their centralized counterparts. In this paper, we propose a fault-
tolerant distributed traffic control protocol, formally model it, and prove its
correctness, namely that it satisfies certain safety and progress properties.

A traffic control protocol is a set of rules that determines the routing and
movement of certain physical entities, such as vehicles, robots, or packages,
over an underlying graph, such as a road network, air-traffic network, or ware-
house conveyor system. Any correct traffic control protocol guarantees:

(a) safety: that the entities always maintain some minimum physical separa-
tion, and

(b) progress: that the entities eventually arrive at a given a destination (or tar-
get) vertex.

In a distributed traffic control protocol, each entity determines its own next
waypoint, or each vertex in the underlying graph determines the next way-
points for the entities in an appropriately defined neighborhood.

In this paper, we study the problem of distributed traffic control in a par-
titioned plane where the motions of entities within a partition are identically
coupled. The problem is as follows (refer to Figures 1 and 2). The environment is
the geographical space of interest and is partitioned into regions or cells. Each
entity is assigned to a certain finite type or color. For each color, we assume
for ease of exposition that there is one source cell and one target cell of the same
color. A source cell of color c produces entities of color c, and a target cell of
color c only consumes entities of color c, so the traffic control progress goal is to
move entities of color c to the target of color c. The motion of all entities within
a cell is the same, in the sense that they all either move identically, or they all
remain stationary (we discuss the motivation for this below). If some entities
within some cell i touch the boundary of a neighboring cell j, those entities
are transferred to cell j. Thus, the role of the distributed traffic control proto-
col is to control the cell motion so that: (a) entities always have the required
safe separation, and (b) entities eventually reach their respective targets, when
feasible.

2

The identical coupling requirement mentioned above—that entities within
a cell move identically—may appear strong at first sight. After all, under low
traffic conditions, individual drivers control the movement of their cars within
a particular region of the highway, somewhat independently of other drivers
in that region. However, on highways under high-traffic, high-velocity con-
ditions, it is known that similar coupling may emerge spontaneously, causing
the vehicles to form a fixed lattice structure and move with near-zero relative
speed [1, 20]. In the steady-state, highway vehicles have emergent behavior
that could be modeled in a manner similar to the system presented here, as
there are various regions on the highway where all vehicles are traveling at
the same speed. In other scenarios, coupling arises because passive entities are
moved around by active cells. For example, this occurs with packages being
routed on a grid of multi-directional conveyors [21, 22], or molecules moving
on a medium according to some controlled chemical gradient.

Even where the entities are active and cells are not, the entities can coop-
erate to emulate a virtual active cell expressly for the purposes of distributed
coordination. This idea has been explored for mobile robot coordination in [23]
using a cooperation strategy called virtual stationary automata [24, 25]. Within
robotics, discrete abstractions of the environment in which the robots operate
are commonly used [26, 27, 28]. Typically, the robots are assumed to operate ac-
cording to the same dynamics within a given cell, under the assumption there
is a single robot in each cell. Our framework is more general in that it allows
multiple entities per cell, but with the restriction that the entities move identi-
cally. Our framework covers both scenarios where the entities are passive and
the cells are active (such as in warehouse conveyance) and where the entities

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

1S

2

3

4

5T

6

7

8

9

10

11S

12

13

14

15

16

17

18T

x

y

Figure 1: Source cells (1 and 11) pro-
duce entities that flow toward the target
cell (18 and 5) of the appropriate color.
Source-to-target paths overlap at cells 8
and 13. In this execution, the blue entity
on cell 7 is waiting until no red entities
are on the overlapping cells (8 and 13).

6T 11

12

13

14

15

16S

20T10S

Figure 2: If cell 10
moves its entities onto
the shared one-lane
“bridge” (cells 11,
12, 13, 14, 15), then
all entities would be
deadlocked.

3

are active and the cells are passive, but the entities coordinate to move iden-
tically (such as in some robot coordination). Alternative frameworks such as
where the entities move completely independently are beyond the scope of this
framework, but would require coordination between entities to ensure safety.

The distributed traffic control protocol we present in this paper guarantees
safety at all times, even as some cells fail permanently by crashing or transiently
by crashing and recovering. The protocol also guarantees eventual progress of
entities toward their targets, provided that: (a) there exists a path through non-
faulty cells to the entities’ respective targets, and (b) failures have not intro-
duced unrecoverable deadlocks. Specifically, the protocol is self-stabilizing [29,
30], in that once new failures stop occurring, the composed system automati-
cally returns to a state from which progress can be made. The distributed traffic
control protocol relies on the following four mechanisms to enable safety and
eventual progress of entities to their targets.

(a) A routing rule maintains local routing tables to each target at each non-
faulty cell. This routing protocol is self-stabilizing and allows the protocol
to tolerate these cell failures.

(b) A mutual exclusion and scheduling mechanism ensures moving entities over
distinctly colored overlapping paths do not introduce deadlocks. The lock-
ing and scheduling mechanism ensures one-way traffic can make progress
over shared routes (traffic intersections).

(c) A signaling rule between neighboring cells guarantees safety while pre-
venting deadlocks. Roughly speaking, the signaling mechanism at a cell
fairly chooses among neighboring cells that contain entities, indicating if it
is safe for one of these neighboring cells to apply a movement in the direc-
tion of the cell performing the signaling. This permission-to-move policy
turns out to be necessary, because movement of neighboring cells may oth-
erwise result in a violation of safety in the signaling cell, if transferal of
entities between neighboring cells occurs.

(d) A movement policy causes all entities on a cell to either move with the same
constant velocity in the direction of their destination, or remain stationary
to ensure safety. This policy abstracts more complex motion modeling as
discussed above.

We establish these safety and progress properties through systematic asser-
tional reasoning. For safety properties, we establish inductive invariants, and
for route stabilization properties, we use global ranking functions. To show
that all entities reach their destinations (when feasible), we use a combination
of ranking functions and fairness-based reasoning on infinite executions. These
proof techniques may serve as templates for the analysis of other distributed
traffic control protocols, where liveness is particularly challenging to reason
about, and is exacerbated when sub-components may fail. Our analysis is gen-
erally independent of the size of the environment, number of cells, and number

4

of entities. Additionally, only neighboring cells communicate with one another
and the communication topology is fixed (aside from failures).

Throughput is roughly the average rate at which entities arrive at their
target. We present simulation results that illustrate the influence (or the lack
thereof) of several factors on throughput. (a) Throughput decreases expo-
nentially with path length until saturation, as which point it decreases roughly
linearly with path length. (b) Throughput decreases roughly linearly with re-
quired safety separation and cell velocity. (c) Throughput decreases roughly
exponentially until it saturates as a function of path complexity measured in
number of turns along a path. (d) Throughput decreases roughly exponentially
with failure rate, and increases linearly with recovery rates, under a model
where crash failures are not permanent and cells may recover from crashing.
(e) Throughput decreases roughly exponentially until it saturates as a func-
tion of the percentage of overlapping cells between different colored targets.
Overall, the simulator and simulations validate the formal model and theoret-
ical claims, as it also employs runtime monitoring of the safety, liveness, and
progress properties to check that they are satisfied over executions.

Contributions over Previous Work. We build on our previous work where we
analyze a similar problem [31], but have significantly generalized our results
in this paper.

(A) We consider general convex tessellations (including certain triangulations
and rectangular tessellations) that define the partitioning, while we con-
sider uniform square partitions in [31]. We also present results on parti-
tioning schemes that cannot work for the problem formulation, as there
are certain partitions that violate necessary geometric assumptions.

(B) We allow entities of multiple colors, each destined for a different target,
while in [31], we only allow entities of one color, all of which were destined
for the nearest target. This generalization lets different source-to-target
paths overlap, creating traffic intersections, and requires several changes
to the distributed traffic control protocol, including adding mutual exclu-
sion and fair scheduling mechanisms used to control traffic intersections.
This generalization is significant because it makes the problem and solu-
tion applicable to a much wider class of realistic systems, such as swarm
robots and intelligent highway systems.

(C) We reimplemented the simulator [31] to account for these generalizations
and extended our simulation results, in particular to characterize the cost
on throughput due to the additional coordination required to allow multi-
ple targets.

Paper Organization. The rest of the paper is organized as follows. First, Sec-
tion 2 introduces the model of the physical environment and system. Next
in Section 3, we present the distributed traffic control algorithm. Then in Sec-
tion 4, we define and prove the safety and progress properties. Section 4.1 sum-

5

marizes the formal results, then Section 4.2 formally establishes safety. Subse-
quently, we establish a progress property that shows entities eventually reach
their targets in spite of failures (when possible). First in Section 4.3, it is shown
that the routing protocol to find any target from any cell with a physical path
through non-faulty cells to that target is self-stabilizing. Then in Section 4.4,
we show how overlapping paths to different targets (traffic intersections) can
be scheduled. Finally, in Section 4.5, it is shown that entities on any cell with a
feasible physical path to their target eventually reach their target. Simulation
results and interpretation are presented in Section 5, followed by related work,
a discussion, and a conclusion, respectively in Sections 6, 7, and 8.

2. Overview and Physical System Model

In this section, we describe the physical environment and system model.
For a set K, we define K⊥

4
= K ∪ {⊥} and K∞

4
= K ∪ {∞}. For N ∈ N, let

[N]
4
= {1, . . . , N}. The ||·|| brackets are used for the Euclidean norm of a vector.

2.1. Cells and Partitioning
The system consists ofN convex polygonal cells partitioning a planar polyg-

onal environment. Let ID 4
= [N] be the set of unique identifiers for all cells in

the system.The planar environment Env is some given simply connected poly-
gon. A partition P of Env is a set of closed, convex polygonal cells {Pi}i∈ID
such that:

(a) the interiors of the cells are pairwise disjoint,

(b) the union of the cells is the original polygonal environment, and

(c) cells only touch one another at a point or along an entire side.

The first two conditions are the standard definition of a partition, while the
third restricts any cell from being adjacent along one of its sides to more than
one other cell. For example, the definition of a polygon triangulation satisfies
these requirements. Thus, cell i occupies a convex polygon Pi in the Euclidean
plane. The boundary of cell i is denoted by ∂Pi. We denote the vertices (ex-
treme points) of Pi as Vi. We denote the number of sides of Pi as ns(i). Let
Side(i, j)

4
= ∂Pi ∩ ∂Pj be the common side of adjacent cells i and j—we will

refer to Side(i, j) as both (a) an index for referring to a given side and (b) a line
segment (set of points).

2.2. Neighbors and Communications
Cell i is said to be a neighbor of cell j if the cells share a common side. The

set of identifiers of all neighbors of cell i is denoted by Nbrsi. This definition
of neighbors naturally induces a graph G = 〈V,E〉 where the vertices V of the
graph are the cells and there is an edge e ∈ E between cells i and j if and only
if cells i and j are neighbors. This graph represents a communication graph

6

for the cells that may communicate directly with one another, and is connected
without failures. Let ∆ be the worst-case diameter of this graph1. For each cell
i ∈ ID and each neighboring cell j ∈ Nbrsi, let the side normal vector from i to
j, denoted n(i, j), be the unit vector orthogonal to Side(i, j) and pointing into
cell j from the common side Side(i, j).

Each cell is controlled by software that implements the distributed traffic
control protocol described in the next section. We consider synchronous pro-
tocols that operate in rounds. At each round, each cell exchanges messages
bearing state information with its neighbors. Then, each cell updates its soft-
ware state and decides the (possibly zero) velocity with which to move any
entities on it. Until the beginning of the next round, the cells continue to oper-
ate according to this velocity, which may lead to entity transfers.

2.3. Entities and Colors
Each cell may contain a number of entities. Each entity occupies a circular

area and represents a physical object (or overapproximation thereof) such as an
aircraft, car, robot, or package. Every entity that may ever be in the system has
a unique identifier drawn from an index set I . This assumption is for presenta-
tion only, and the protocol does not rely on knowing entity identifiers. For an
entity p ∈ I , we denote the coordinates of its center by p 4

= (px, py) ∈ R2.
The open circular area (disc) centered at p of radius r representing entity

p is denoted B(p, r). The radius of an entity is l , and rs is the minimum re-
quired inter-entity safety gap. We define the total safety spacing radius as
d

4
= rs + l . Looking ahead, the safety specification will ensure the centers

of any entities come no closer than d apart from one another. For simplicity of
presentation, we work with uniform entity radii l and safety gaps rs . If they
differ, we would take l and rs to be the maximums over all entities. We instan-
tiate B(p, l), which represents the physical space occupied by entity p, and we
also instantiate B(p, d), which is entity p’s total safety area.

Entity Colors, Source Cells, and Target Cells. There are |C| types (or colors) of en-
tities, where C is some finite, ordered set. The color of some entity p ∈ I is
denoted as color(p). For each c ∈ C, there is a source cell sidc and a target cell
tidc. All other cells are ordinary cells. For simplicity of presentation, we assume
there is a unique source and target, but the algorithms and the results gener-
alize for when sidc and tidc are sets. Entity p’s color color(p) designates the
target cell entity p should eventually reach. The source sidc produces entities
of color c and the target tidc consumes entities of color c. Entities appear at
sources and disappear at targets. The sets of target and source identifiers are
denoted IDT ⊆ ID and IDS ⊆ ID , respectively.

1The diameter of this graph is not static, it may change due to failures, but the worst case is
always a path graph, so ∆ = N − 1.

7

98 99 100 101 102 103
0

1

2

3

4

5

1T

2S

3 4

5 6

7

8

9 10

11 12

13

14

15 16

17 18

19

20

x

y

Figure 3: Safety regions (areas between red [in-
nermost] and blue [outermost] polygons) and
transfer regions (areas between cyan [middle]
and blue [outermost] polygons) for the squares
and triangles composing the snub square tiling
tessellation. The magenta (outermost) circles
are incircles used to compute the cyan (middle)
transfer and red (innermost) safety regions.

95 100 105
0

2

4

6

8

10

1

2

3S

4S

5S 6S
7

8
9 10T

11
12

13

14

15T 16

17
18

19

20

21
22

23T 24T

x

y

Figure 4: Blue and red paths overlap at
cells 2, 3, and 4, corresponding to the
color-shared cells definition. Blue enti-
ties on cells 7 and 8 have traversed the
intersection and then the red source (4)
produces entities. Red (cell 4) and blue
(cell 3) sources producing entities si-
multaneously would cause a deadlock.

Entity Movement. All the entities within a cell move identically—either they
remain stationary, or they move with some constant velocity 0 < v < l in the
direction of one of the sides of the cell. Here v is the maximum cell velocity, or
the greatest distance traveled by any entity over one synchronous round. We
require v > 0 to ensure progress. We require that v < l to ensure entities do
not collide when transfers of entities between different cells occur. The actual
cell velocity may differ in each cell so long as each is upper bounded by v .
This movement is determined by the algorithm controlling each cell. When a
moving entity touches a side of a cell, it is instantaneously transferred to the
neighboring cell beyond that side, so that the entity is entirely contained in the
new cell.

2.4. Safety and Transfer Regions
The safety region on side s of a cell is the area within the cell where new

entities entering the cell from side s can be placed. For a side s of some cell i,
the safety region on side s SRi(s) is the area on Pi at most 3d distance measured
orthogonally from side s. Analogously, the transfer region on side s of a cell is
the area within a cell where (the centers of) entities reside when those entities
will be transferred to the neighboring cell on that side. The transfer region on
side s is denoted TRi(s) and is the region in the partition Pi at most l distance
measured orthogonally from side s. That is, TRi(s) and SRi(s) are respectively
the set of points at most l or 3d distance from side s of Pi. For a cell i, the
transfer region TRi and safety region SRi are respectively the unions of TRi(s)
and SRi(s) for each side s of Pi. We refer to the inner side(s) of TRi, TRi(s),

8

SRi, or SRi(s), as the side(s) touching the inside of the annulus, and denote
them by ITRi, ITRi(s), etc.

For example, in Figure 3, the transfer region for the square cell 3 is the
square annulus between the smaller cyan square and the larger blue square
(the boundary ∂P3 of cell 3). Similarly, for the triangular cell 1 in Figure 3, the
transfer region is the triangular annulus between the smaller cyan triangle and
the larger blue triangle. Thus, the distance measured orthogonally between the
sides of the cyan polygons representing the boundary of the transfer region,
and the sides of the blue polygons is always l . In Figure 3, for the square cell 3,
the safety region is the square annulus between the smaller red square and the
larger blue square.

2.5. Geometric Assumptions on Environment and Its Partition
We assume that the polygonal environment Env and its partition P have

shapes and sizes such that each cell in the partition is large enough for an entity
to lie completely on it. Particularly, we require for each cell i ∈ ID that the
transfer region TRi is nonempty. We also make the following assumptions to
ensure that the transfer of entities between cells is well-defined.

Assumption 1. (Projection Property): For each i ∈ ID , for each side s of Pi, there
exists a constant vector field over Pi that drives every point in Pi to some point on side
s without exiting Pi.

By definition, the cells form a partition. However, in part because there is
“empty space” between the transfer regions of the cells, the transfer regions do
not form a partition. Even if we remove this empty space by translating the
transfer regions so the sides of transfer regions of neighboring cells coincide,
they still may not form a partition. See Figure 3 for an example where the
transfer regions cannot form a partition. This is because, for the shared side s
of neighboring cells i and j, the inner sides of the transfer regions on Pi and
Pj may have different lengths, even though the shared side s obviously had
the same length for Pi and Pj . For this reason, we need the next assumption to
ensure entity transfers between different cells are well-defined.

Assumption 2. (Transfer Feasibility): For any i ∈ ID and any j ∈ Nbrsi, con-
sider their common side Side(i, j). The length of the inner side ITRi(Side(i, j)) line
segment equals the length of the inner side ITRj(Side(i, j)) line segment.

3. Distributed Traffic Control Protocol

We first give an informal overview of the distributed traffic control protocol.
The protocol operates synchronously through a sequence of four operations:
routing, locking, signaling, and moving. For routing, each cell communicates
with its neighbors to determine the minimum path to each target, where ties are
broken by cell identifiers. For locking, due to traffic intersections (see, e.g., Fig-
ures 5 and 6), part of the path to some target must be given exclusive access

9

to the intersection, so a mutual exclusion protocol determines a lock that has
this exclusive access. To ensure safety, a traffic signaling mechanism operates
locally at each cell to give permission to neighboring cells to move toward it,
much like a typical traffic light gives cars permission to enter an intersection.
Finally, to move entities so they make progress toward their targets, the mov-
ing operation corresponds to the entity positions being physically updated due
to the cell’s velocity.

Next, we describe the discrete transition system Celli that specifies the soft-
ware controlling an individual cell Pi of the partition P .

3.1. Preliminaries
A variable is a name with an associated type. For a variable x, its type is de-

noted by type(x) and it is the set of values that x can take. A valuation (or state)
for a set of variables X is denoted by x, and is a function that maps each x ∈ X
to a point in type(x). Given a valuation x for a set of variables X , the valuation
for a particular variable v ∈ X is denoted by x.v, which is the restriction of x
to {v}. The set of all possible valuations of a set of variables X is denoted by
val(X). Many variables return cell identifiers that we use to access variables
of other cells using subscripts, and if the valuation of these variables are re-
stricted to the same state, we will drop the particular state on the subscripted
variables for more concise notation. For instance, suppose x.next i ∈ ID , then
x.nextx.nexti would be written x.nextnexti .

A discrete transition system A is a tuple 〈X,Q0, A,→〉, where:

(i) X is a set of variables and val(X) is set of the valuations of the variables,
called the set of states,

(ii) Q0 ⊆ val(X) is the set of start states,

(iii) A is a set of transition names, and

(iv) →⊆ val(X)×A× val(X) is a set of discrete transitions. For (xk, a,xk+1) ∈
→, we also use the notation xk

a→ xk+1.

An execution fragment of a discrete transition system A is a (possibly infinite)
sequence of states α = x0,x1, . . ., such that for each index k appearing in α,
(xk, a,xk+1) ∈→ for some a ∈ A. An execution is an execution fragment with
x0 ∈ Q0. A state x is said to be reachable if there exists a finite execution that
ends in x. A is said to be invariant with respect to a set S ⊆ val(X) if all
reachable states are contained in S. A set S is said to be stable if, for each
(x, a,x′) ∈→, x ∈ S implies that x′ ∈ S. A is said to self-stabilize to S if S is
stable and every execution fragment eventually enters S [32, 29, 33, 30].

3.2. Transition System for each Cell
We assume messages are delivered within bounded time and computations

are instantaneous. Under these assumptions, the system can be modeled as
a collection of discrete transition systems. The overall system is obtained by

10

1

2S

3

4

5S

6T

7

8S

9

10

11S

12

13T

14T

15T

16

17T

18T

19

20S

21

22

23

24S

25

Figure 5: Example illustrating the computa-
tion of the color-shared cells CSC (x, c) and
shared colors SC (x, c), stored in the pint [c]
and lcsi[c] variables, respectively. The color-
shared cells contain all cells on overlapping
paths, and lcsi[c] corresponds to the colors of
each disjoint set of color-shared cells. For in-
stance, cells 7 and 12 make up one set of color-
shared cells for three colors, and cell 19 makes
up another one for two other colors.

1T

2

3

4

5S

6

7

8

9

10

11S

12T

13

14

15

16

17

18

19

20

21S

22

23

24

25T

Figure 6: Example illustrating the two fairness
requirements (Assumption 4) for proving live-
ness. Cells 9, 14, 19, and 20 failed, causing the
original source-target path for blue to change
from cells 5, 10, 15, 20, 25. If source cell 5
does not place new entities fairly, then enti-
ties on cells 10 and 15 may never reach the
target. A similar situation occurs with paths
of multiple colors in the lower part of the im-
age, where source cell 11 may deadlock enti-
ties from source cell 21.

composing the transition systems of the individual cells. We first present the
discrete transition system corresponding to each cell, and then describe the
composition.

The variables associated with each Celli are as follows, with initial values of
the variables shown in Figure 7 using the ‘:=’ notation.

(a) Entitiesi is the set of identifiers for entities located on cell i. Cell i is said to
be nonempty if Entitiesi 6= ∅, and empty otherwise.

(b) color i designates the entity colors on the cell, or ⊥ if there are none2.

(c) failed i indicates whether or not i has failed.

(d) NEPrev i are the nonempty neighbors attempting to move entities (of any
color) toward cell i.

(e) tokeni is a token used for fairness to indicate which neighbor may move
toward i.

(f) signal i is the identifier of a neighbor of Celli that has permission to move
toward Celli.

2It will be established that cells contain entities of only a single color, see Invariant 3.

11

1 private variables
token : ID⊥ := ⊥

3 failed : B := false
NEPrev : Set[ID⊥] := {}

5 lock : [C → B], init ∀c ∈ C, lock := false
pint : [C → Set[ID⊥]], init ∀c ∈ C, pint[c] := {}

7 shared variables
Entities : Set[P] := {}

9 color : C⊥ := ⊥
signal : ID⊥ := ⊥

11 dist : [C → N∞], init ∀c ∈ C, dist[c] :=∞
next : [C → ID⊥], init ∀c ∈ C, next[c] := ⊥

13 path : [C → Set[ID⊥]], init ∀c ∈ C, path[c] := {}
lcs : [C → Set[C]], init ∀c ∈ C, lcs[c] := {}

transitions
16fail(i)

eff failed := true
18for each c ∈ C

dist[c] := ∞; next[c] := ⊥
20

update
22eff Route; Lock ; Signal ; Move

Figure 7: Specification of Celli listing its variables, initial conditions, and transitions. Sub-
scripts are dropped for readability.

Additionally, the following variables are defined as arrays for each color c ∈ C.
The notation next i[c] means the cth entry of the next variable of cell i, and so
on for the other variables.

(a) next i[c] is the neighbor towards which i attempts to move entities of color
c.

(b) dist i[c] is the estimated distance—the number of cells—to the nearest target
cell consuming entities of color c.

(c) lock i[c] is a Boolean variable for a lock of color c that some cells require to
be able to move entities.

(d) pathi[c] is the set of cell identifiers from any source of color c (and any
nonempty cell with entities of color c) to the target of color c. This variable
and the next two are local variables for cell i, but they are storing some
global information.

(e) pint i[c] is the set of cell identifiers in traffic intersections with cells of color
c (where pathi[c] and pathi[d] have nonempty intersection for some d 6= c).

(f) lcsi[c] is the set of colors that are involved in traffic intersections with the
color c path.

When clear from context, the subscripts in the variable names are dropped. A
state of Celli refers to a valuation of all these variables, i.e., a function that maps
each variable to a value of the corresponding type. The complete system is an
automaton, called System, consisting of the composition of all the cells. A state
of System is a valuation of all the variables for all the cells. We refer to states of
System with bold letters x, x′, etc.

Variables tokeni, failed i, lock i, NEPrev i, and pint i are private to Celli, while
Entitiesi, dist i, next i, pathi, color i, signal i, and lcsi can be read by neighbor-
ing cells of Celli. This has the following interpretation for an actual message-

12

passing implementation. At the beginning of each round, Celli broadcasts mes-
sages containing the values of these variables and receives similar values from
its neighbors. Then, the computation of this round updates the local variables
for each cell based on the values collected from its neighbors.

Variable Entitiesi is a special variable because it can also be written to by
the neighbors of i. This is how we model transfer of entities between cells. For
a state x, for some a ∈ A such that x a→ x′, for some i ∈ ID , for some j ∈ Nbrsi,
for some entity p ∈ x.Entitiesi, then entity p transfers from cell i to j when
p ∈ x′.Entitiesj . We use the notation p′ to denote the state of entity p at x′

where x
a→ x′ for some a ∈ A.

3.3. Actions and the Composed System
System is a discrete transition system modeling the composition of all the

cells, and has two types actions: fails and updates. A fail(i) transition models
the crash failure of the ith cell and sets failed i to true , dist i[c] to ∞ for each
c ∈ C, and next i[c] to ⊥ for each c ∈ C. Cell i is called faulty if failed i is true ,
otherwise it is called non-faulty. The set of identifiers of all faulty and non-
faulty cells at a state x is denoted by F (x) and NF (x), respectively. A faulty
cell does nothing—it never moves and it never communicates3.

An update transition models the evolution of all non-faulty cells over one
synchronous round. For readability, we describe the state-change caused by an
update transition as a sequence of four functions (subroutines), where for each
non-faulty i,

(a) Route computes the variables dist i and next i,

(b) Lock computes the variables pathi, pint i, lcsi, and lock i,

(c) Signal computes (primarily) the variable signal i, and

(d) Move computes the new positions of entities.

We note that in the single-color case considered in [31], the Lock subroutine is
unnecessary. The entire update transition is atomic, so there is no possibility
to interleave fail transitions between the subroutines of update. Thus, the state
of System at (the beginning of) round k + 1 is obtained by applying these four
subroutines to the state at round k. Next, we describe the distributed traffic
control protocol that is implemented through these subroutines.

3.3.1. Route Subroutine
For each cell and each color, the Route subroutine (Figure 8) constructs a

distance-based routing table to the target cell of that color. This relies only
on neighbors’ estimates of distance to the target. Recall that failed cells have
dist [c] set to∞ for every color c ∈ C. From a state x, for each i ∈ NF (x), the

3That disti =∞ can be interpreted as i’s neighbors not receiving a timely response from i.

13

if ¬failedi then
2 colori := {c ∈ C | ∃p ∈ Entitiesi ∧ color(p) = c}

if i /∈ IDT then
4 for each c ∈ C

disti[c] :=
(

min
j∈Nbrsi

distj [c]

)
+ 1

6 if disti[c] =∞ then nexti[c] := ⊥
else nexti[c] := argmin

j∈Nbrsi

〈distj [c], j〉

Figure 8: Route subroutine for Celli. This subroutine computes a minimum distance vector
routing spanning tree rooted composed of non-faulty cells for each color, rooted at each target.

variable dist i[c] is updated as 1 plus the minimum value of distj [c] for each
neighbor j of i. If this results in dist i[c] being infinity, then next i[c] is set to ⊥,
but otherwise it is set to be the identifier with the minimum dist [c] where ties
are broken with neighbor identifiers.

Next, we introduce some definitions used to relate the system state to the
variables used in the protocol. For a state x, we inductively define the color
c target distance ρc of a cell i ∈ ID as the smallest number of non-faulty cells
between i and tidc:

ρc(x, i)
4
=


∞ if x.failed i,

0 if i = tidc ∧ ¬x.failed i,

1 + min
j∈x.Nbrsi

ρc(x, j) otherwise.

A cell is said to be target-connected to color c if ρc is finite. We define the set of
cells that are target-connected to tidc as

TC (x, c)
4
= {i ∈ NF (x) | ρc(x, i) <∞}.

For a state x and a color c ∈ C, we define the routing graph as GR(x, c)
4
=

〈VR(x, c),ER(x, c)〉, where the vertices and directed edges are, respectively,

VR(x, c)
4
= NF (x) and

ER(x, c)
4
= {(i, j) ∈ VR(x, c) | ρc(x, j) = ρc(x, i) + 1}.

Under this definition, GR(x, c) is a spanning tree rooted at tidc. We will show
that the graph induced by the next i[c] variables self-stabilizes to the routing
graph GR(x, c) at some state x (Corollary 7). We previously introduced ∆ as
the worst-case diameter of the communication graph, and will refer to ∆(x) as
the actual diameter at some state x. We note that ∆(x) ≤ ∆.

3.3.2. Lock Subroutine
The Lock subroutine (Figure 9) executes after Route, and schedules traf-

fic over intersections (the cells where source-to-target paths of different colors

14

1 if ¬failedi
for each c ∈ C

3 if i = sidc ∨ colori = c ∨ i ∈ pathi[c] then
pathi[c] := pathi[c] ∪ {i} ∪ {nexti[c]}

5 for each j ∈ Nbrsi // gossip the entity graph
pathi[c] := pathi[c] ∪ pathj [c]

7 pinti[c] := {j ∈ pathi[c] ∩ pathi[d] | ∃c 6= d ∈ C} // compute the set of color-shared cells
if pinti[c] 6= ∅

9 lcsi[c] := {d ∈ C | c 6= d ∧ pathi[c] ∩ pathi[d] 6= ∅}
// routing graphs stabilized and i needs a lock for color c

11 if detectRoutesStabilized() ∧ i ∈ pinti[c] ∧ ¬locki[c]
Initiate mutual exclusion algorithm between all color-shared cells in pinti[c] using lcsi as input.

13 Eventually, a color d is returned. On return, if d = c then locki[c] := true
// detect if color-shared cells are empty

15 if detectRoutesStabilized() ∧ i ∈ pinti[c] ∧ locki[c]
Initiate distributed snapshot algorithm to decide if all color-shared cells are empty after previously

17 being nonempty with entities of color c. On return, if all cells are empty then
locki[c] := false

Figure 9: Lock subroutine for Celli. This subroutine computes the color-shared cells—the cells
in intersections—for each color, and then ensures liveness by giving a lock to only one color
on each intersection.

overlap). To avoid deadlock scenarios, Lock maintains an invariant that entities
of at most one color are on these intersections.

Moving entities over intersections requires some global coordination as il-
lustrated by the following analogy. Consider the policy used to coordinate en-
tities going in opposite directions over a one-lane bridge (see Figure 2), where
there is a traffic signal on each side of the bridge. The protocol chooses one
traffic light, allowing some entities to safely travel over the bridge in one di-
rection. After some time, the protocol switches the lights (first turning green to
red, and after the bridge is empty, turning red to green) allowing traffic to flow
in the opposite direction. Then this process repeats.

Two parts of the previous example require global coordination and are in-
cluded in the Lock subroutine. The first is how to choose the direction in which
entities are allowed to travel—this is accomplished through the use of a mu-
tual exclusion algorithm. The second is when to allow entities to travel the
other direction—this is accomplished by determining when the intersection is
empty. We now describe this global coordination more formally.

For defining the locking algorithm, we first define intersections. For this,
we introduce the notion of an entity graph. Cell i is said to be in the entity graph
of some color c at state x if one of the following conditions hold: (a) i is sidc,
(b) in state x, i has entities of color c, or (c) in state x, i is the neighbor closest—
as defined by the number of cells—to tidc of a cell already in the entity graph.
We define the color c entity graph at state x as GE (x, c)

4
= 〈VE (x, c),EE (x, c)〉,

which is the following subgraph of the color c routing graph GR(x, c). The
vertices of GE (x, c) are inductively defined as, VE (x, c)

4
=

{i ∈ NF (x) | i = sidc ∨ x.color i = c ∨ (∃j ∈ VE (x, c).(i, j) ∈ ER(x, c))}.

15

The edges of GE (x, c) are EE (x, c)
4
= {(i, j) ∈ VE (x, c) × VE (x, c) | (i, j) ∈

ER(x, c)}. For example, if all cells are empty and non-faulty, then VE (x, c) is
the sequence of cell identifiers defined by following the minimum distance (as
defined by ρc) from the source to the target of color c. That is, each GE (x, c) is
a simple path graph from source to target4.

Now we describe how the entity graph of each color c is computed by each
cell i as the pathi[c] variable. If i is on the entity graph of color c, then we add i
and i’s next variable for color c to the entity graph (see Figure 9, lines 3 and 4).
Once the next i[c] variables stabilize (Corollary 7) and after an additional order
of diameter rounds, the variable pathi[c] contains all the nodes of the entity
graphs since we gossip these graphs (line 6). That is, the graph formed by the
pathi[c] variables self-stabilizes to equal GE (x, c), and contains the sequence of
identifiers from any source or nonempty cell of color c to the target of color c
(Corollary 8).

Next, the variable pint i[c] is computed to be the set of cell identifiers on the
color c entity graph that overlaps with any other colored entity graph (line 7).
The cells involved in such non-empty intersections represent physical traffic
intersections, and are called color-shared cells. These cells require coordinated
locking for traffic flow to progress. Cell i is in pint i[c] if and only if it will need
a lock for color c.

For a color c, the c color-shared cells are the identifiers of those cells inter-
secting the entity graph of some other color. First, we define the c shared colors
as the colors involved in intersections between entity graphs. For a state x and
for any c ∈ C:

SC (x, c)
4
= {d ∈ C | c 6= d⇒ VE (x, c) ∩VE (x, d) 6= ∅}.

Note that we always have c ∈ SC (x, c). Formally, we define the c color-shared
cells, for a state x and for each c ∈ C, as

CSC (x, c)
4
= {VE (x, d) | d ∈ SC (x, c) ∧ d 6= c}.

Note that, if there is no intersection between color c and some other color d,
then there are no color-shared cells (∅). In Figure 1, CSC (x, red) = CSC (x, blue)
= {8, 13}, that is, the red and blue color-shared cells are cells 8 and 13. Consider
now Figure 5 with 6 colors at some state x. Then SC (x, c) is {blue, red, green}
for c equal to blue, red, or green, SC (x, c) is {yellow, purple} for c equal to yel-
low or purple, and SC (x, c) is {brown} for c equal to brown. Here, CSC (x, red)
= CSC (x, blue) = CSC (x, green) = {7, 12}, CSC (x, purple) = CSC (x, yellow)
= {19}, and CSC (x, brown) = ∅. The pint i[c] variables stabilize to be CSC (x, c),
at some state x, for any color c (see Corollary 9).

Next, we determine the colors that will need to coordinate to schedule traf-
fic through the color-shared cells. For these colors, a mutual exclusion algo-

4Once cells have failed, this may self-stabilize to be a tree from any cell with entities of color c
to the target of color c.

16

if ¬failedi ∧ detectRoutesStabilized() then
2 cn := {d ∈ C | ∃j ∈ Nbrsi s.t. nextj [d] = i

∧colorj = d}
4

if colori = ⊥ then c := choose from cn
6 else c := colori

8 NEPrevi :=
{j ∈Nbrsi | nextj [c] = i ∧Entitiesj 6= ∅}

10

if tokeni =⊥ then
12 tokeni := choose from NEPrevi

14let j = tokeni

if ∀ p ∈ Entitiesi | p /∈ SR(i, j)
16∧ (colori 6= ⊥ ⇒ colori = colorj)

∧ (j ∈ pinti[c]⇒ lockj [c])
18then

signali := j
20if |NEPrevi|> 1 then

tokeni := choose from NEPrevi \ {j}
22elseif |NEPrevi|= 1 then

tokeni := choose from NEPrevi

24else tokeni := ⊥
else signali := ⊥; tokeni := j

Figure 10: Signal subroutine for Celli. Cell i signals fairly to some neighbor cell j if it is safe
for j to move its entities toward i.

rithm is initiated between all cells for each disjoint set of cell colors in pint i[c].
The lcsi[c] variables stabilize at some state x to equal SC (x, c), for any color c.

In general, up to |C| colors could be involved in intersections, as well as all
the smaller combinations. For instance, consider again Figure 5 with 6 colors
at some state x. Here, the blue and red entity graphs overlap, green and blue
entity graphs overlap, but red and green do not, and independently, the purple
and yellow entity graphs overlap (that is, not with blue, red, nor green), but
no colors overlap with brown. Two mutual exclusion algorithms would be
initiated, one with blue, red, and green as the input set of values, and another
with yellow and purple as the input set. No mutual exclusion algorithm is
initiated for brown since SC (x, brown) = {brown}. Upon these two mutual
exclusion instances terminating, one element of the first set, say green, would
be chosen and given a lock, and one element, say yellow, of the second set
would also be given a lock. The entities of these colors progress over the color-
shared cells toward their intended targets. Finally, once the color-shared cells
are empty again, green and yellow would each be removed from the respective
input sets for fairness, and another mutual exclusion algorithm is initiated.

3.3.3. Signal Subroutine
The Signal subroutine (Figure 10) executes after Lock . It is the key part of

the protocol for maintaining safe entity separations, guaranteeing each cell has
entities of only a single color, and ensuring progress of entities to the target.

The Signal subroutine will only be executed for non-faulty cells after routes
have stabilized, which may take rounds on the order of the diameter of the
communication graph (∆). One approach would be to wait until this stabi-
lization occurs in terms of rounds (e.g., and only execute this subroutine if
round > 2∆, or this many rounds after the last failure), but we instead suppose
there exists a crash-tolerant predicate detection algorithm to detect if routes
have stabilized [34, 35, 36]. We note that routes stabilizing is a stable predicate
(which will be formally established in Lemma 6 and Corollary 8), and we ab-
stract this predicate detection as a routine detectRoutesStabilized(). Specifically,
detectRoutesStabilized() returns true if and only if routes have stabilized (de-

17

fined in Lemma 6), otherwise it returns false. This predicate detection is not
necessary for safety, only for ensuring progress.

Roughly, each cell implements Signal through the next policies: (a) only
accept entities from a neighbor when it is safe to do so, (b) only accept entities
with the same color as the entities currently on the cell (or an arbitrary color
if the cell is empty), (c) if a lock is needed, then only let entities move if it is
acquired, and (d) ensure fairness by providing opportunities infinitely often
for each nonempty neighbor to make progress.

First i computes a temporary variable cn, which is the set of colors for any
neighbor that has entities of some color, with the corresponding next variable
set to cell i. Next, cell i picks a color c from this set if it is empty, or the color of
its own entities if it is nonempty, and will attempt to allow some cell with this
chosen color to move toward itself. Then, cell i sets NEPrev i to be the subset
of Nbrsi for which next has been set to i and Entities is nonempty. If tokeni

is ⊥, then it is set to some arbitrary value in NEPrev i, but it continues to be
⊥ if NEPrev i is empty. Otherwise, tokeni = j for some neighbor j of i with
nonempty Entitiesj . This is accomplished through the conditional in line 6 as
a step in guaranteeing fairness.

Next, it checks if there is any entity p with center p in the safety region
of Celli on the side corresponding to tokeni. If there is such an entity, then
signal i is set to⊥, which blocks the neighboring cell with identifier tokeni from
moving its entities in the direction of i, thus preventing entity transfers and
ensuring safety. Otherwise, if there is no entity with its center in the safety
region on side tokeni, then signal i is set to tokeni to allow tokeni to move its
entities toward i. Subsequently, tokeni is updated to a value in NEPrev i that is
different from its previous value, if that is possible according to the rules just
described (lines 20–22).

3.3.4. Move Subroutine
Finally, the Move subroutine (Figure 11) models the physical movement of

all the entities on cell i over a given round. For cell i, let j be next i[c], where c is
color i (which may be⊥ if cell i has no entities). Every entity in Entitiesi moves
in the direction of j if and only if signal j is set to i. The direction followed
from cell i to j is u(i, j), which is any vector satisfying Assumption 1. For
example, for a square (or rectangular) cell i, one choice for u(i, j) is the unit
vector orthogonal to Side(i, j) and pointing into j. In the case of an equilateral
triangular cell i, one choice for u(i, j) is also any orthogonal vector pointing
into j.

The movement toward cell j may lead to some entities crossing the bound-
ary of Celli into Cellj , in which case, they are removed from Entitiesi. If j is not
the target matching the transferred entities’ color, then the removed entities
are added to Entitiesj . In this case (line 9), any transferred entity p is placed so
that B(p, l) touches a single point of (is tangent to) Side(i, j), the shared side
of cells i and j, and lies on the inner side of the transfer region of cell j on side
Side(i, j). Resetting entity positions is a conservative overapproximation to the
actual physical movement of entities, as this moves entities a distance greater

18

1 let c = colori

let j = nexti[c]
3 if ¬failedi ∧ signalj = i then

for each p ∈ Entitiesi
5 p := p + vu(i, j)

if p ∈ TRi then
7 Entitiesi := Entitiesi \ {p}

if j 6= tidc then
9 Entitiesj := Entitiesj ∪ {p}

p := (p + vu(i, j)) ∩ Side(i, j) // point on shared side along movement vector
11 p := (p + n(i, j)) ∩ ITRj(Side(i, j)) // inner transfer region along orthogonal line

Figure 11: Move subroutine for Celli. If i has received a signal to move from j, it updates
the positions of all entities on it to move in j’s direction, which may lead to some entities
transferring from cell i to j.

than or equal to the distance they would travel if allowed to reside on cell
boundaries. If j is the target matching the transferred entities’ color, then the
removed entities are not added to any cell and thus no longer exist in System.

Each source cells i ∈ IDS , in addition to the above, adds a finite number
of entities in each round to Entitiesi, such that (a) the addition of these entities
does not violate the minimum gap between entities at Celli, and (b) fairness is
not violated. In the remainder of the paper, we will analyze System to show that
in spite of failures, it maintains safety and liveness properties to be introduced
in the next section.

4. Safety and Liveness of Distributed Traffic Control

In this section, we present an analysis of the safety and liveness proper-
ties of the distributed traffic control protocol modeled as the transition system
System. We first summarize the results informally.

4.1. Summary of Results
Informally, the safety property requires that there is a minimum gap be-

tween entities on any cell, and the liveness property requires that all entities
that reside on cells with feasible paths to the corresponding target eventually
reach that target. In Section 4.2, we establish several invariant properties culmi-
nating in proving safety (Theorem 1): entities may never collide, even in spite
of failures. Next in Section 4.3, we prove that the routing algorithm used to
construct paths to the destinations is self-stabilizing in spite of arbitrary crash
failures (Lemma 6). Then in Section 4.4, we show (Lemma 11)—under an as-
sumption that failures do not introduce deadlock scenarios (Assumption 5)—
that the locking algorithm allows multi-color flows to mutual-exclusively take
control the color-shared cells (intersections). Finally in Section 4.5, under a fair-
ness assumption, we establish the main progress property (Theorem 2) through
two results, that any cell gets permission to move infinitely often, and that any

19

cell with a permission to move decreases the distance of any entities on it from
its destination.

4.2. Safety and Collision Avoidance
A state is safe if, for every cell, the boundaries of all entities in the cell are

separated by a distance of rs . For any state x of System, we define:

Safei(x)
4
= ∀p, q ∈ x.Entitiesi.p 6= q ⇒ ||p− q|| ≥ 2l + rs , and

Safe(x)
4
= ∀i ∈ ID ,Safei(x).

This definition allows entities in different cells to be closer than 2l + rs apart,
but their centers will be spaced by at least 2l . We proceed by proving some pre-
liminary properties of System that will be used for proving Safe is an invariant.

The first property asserts that entities’ cannot come close enough to the
sides of cells to reside on multiple cells. This is because any entity whose
boundary touches the side of a cell is transferred to the neighboring cell on
that side (if one exists), and then the entity’s position is reset to be completely
within the new cell. Assumption 2 restricts the allowed partitions to ensure en-
tity transfers are well-defined. For instance, some of the cells in the snub square
tiling in Figure 3 do not satisfy Assumption 2. Consider an entity transfer from
cell 3 to cell 5. There is no constant vector connecting the transfer regions of
cell 3 to those of cell 5. This is because the side length of the transfer region of
the triangular cell 5 is shorter than the side length of the transfer region of the
square cell 3. However, in a transfer from cell 1 to cell 2 or vice-versa, the side
lengths are the same. We also note that the assumption is only necessary for
entity transfers from a cell with a longer transfer side length to a neighboring
cell with smaller corresponding transfer side length. For example, a transfer
from cell 5 to cell 3 is feasible.

Under Assumption 2, we have the following invariant, which states that
the l -disc around each entity in a cell is completely contained within the cell.

Invariant 1. In any reachable state x, ∀i ∈ ID , ∀p ∈ x.Entitiesi, B(p, l) \ Pi = ∅.

The next invariant states that cells’ Entities sets are disjoint. This is imme-
diate from the Move function since entities are only added to one cell’s Entities
upon being removed from a different cell’s Entities .

Invariant 2. In any reachable state x, for any i, j ∈ ID , if i 6= j, then x.Entitiesi ∩
x.Entitiesj = ∅.

The following invariant states that cells contain entities of a single color
in spite of failures. This follows from the Signal routine in Figure 10, where
line 16 requires that if some neighbor j is attempting to move entities toward
cell i, then the color of i is either ⊥ or equal to the color of j.

Invariant 3. In any reachable state x, for all i ∈ ID , for all p, q ∈ x.Entitiesi,
color(p) = color(q).

20

Next, we define a predicate that states that if signal i is set to the identifier of
some neighbor j ∈ Nbrsi, then there is a large enough area from the common
side between i and j where no entities reside in Celli. Recall that Side(i, j) is the
line segment shared between neighboring cells i and j. For a state x, H(x)

4
=

∀i ∈ ID , ∀j ∈ Nbrsi, if x.signal i = j, then the following holds:

∀p ∈ x.Entitiesi, min
x∈Side(i,j)

||p− x|| ≥ 3d.

H(x) is not an invariant property because once entities move the property may
be violated. However, for proving safety, all that needs to be established is that
at the point of computation of the signal variable this property holds. The next key
lemma states this.

Lemma 4. For all reachable states x, H(x)⇒ H(xS) where xS is the state obtained
by applying the Route , Lock , and Signal functions to x.

Proof. Fix a reachable state x, an i ∈ ID , and a j ∈ Nbrsi such that x.signal i = j.
Let xR be the state obtained by applying the Route function to x, xL be the state
obtained by applying the Lock function to xR, and xS be the state obtained by
applying the Signal function to xL.

First, observe that both H(xR) and H(xL) hold. This is because the Route
and Lock functions do not change any of the variables involved in the defini-
tion of H(·). Next, we show that H(xL) implies H(xS). If xS .signal i 6= j then
the statement holds vacuously. Otherwise, xS .signal i = j, then since (a)H(xL)
holds, and (b) Figure 11, line 6 is satisfied, we have that H(xS).

The following lemma asserts that if there is a cycle of length two formed by
the signal variables—which could occur due to failures—then entity transfers
cannot occur between the involved cells in that round.

Lemma 5. Let x be any reachable state and x′ be a state that is reached from x af-
ter a single update transition (round). If x.signal i = j and x.signal j = i, then
x.Entitiesi = x′.Entitiesi and x.Entitiesj = x′.Entitiesj .

Proof. No entities enter either x′.Entitiesi or x′.Entitiesj from any other m ∈
Nbrsi or n ∈ Nbrsj since x.signal i = j and x.signal j = i. It remains to be es-
tablished that @p ∈ x.Entitiesj such that p′ ∈ x′.Entitiesi where p = p′ or vice-
versa. Suppose such a transfer occurs. For the transfer to have occurred, pmust
be such that p′ = (px, py) + vu(i, j) by Figure 11, line 5. But for x.signal i = j to
be satisfied, it must have been the case that B(p, l)∩Pi = ∅ by Figure 11, line 6
and since v < l , a contradiction is reached.

Using the previous results, we now prove that System preserves safety even
when some cells fail.

Theorem 1. In any reachable state x of System, Safe(x).

21

Proof. The proof is standard by induction over the length of any execution of
System. The base case is satisfied by the assumption that initial states x ∈ Q0

satisfy Safe(x). For the inductive step, consider any reachable states x, x′ and
an action a ∈ A such that x a→ x′. Fix i ∈ ID and assuming Safei(x), we show
that Safei(x′). If a = faili, then Safei(x

′) since no entities move.
For a = update, then there are two cases to consider by Invariant 2. First,

x′.Entitiesi ⊆ x.Entitiesi, that is, no new entities were added to i, but some
may have transferred off i. There are two sub-cases. For the first sub-case,
if x′.Entitiesi = x.Entitiesi, then all entities in x.Entities move identically
with the same velocity, so the spacing between two distinct entities p, q ∈
x′.Entitiesi is unchanged. Let j = next i[c] where c = color i by Invariant 3.
Then, ∀p, q ∈ x.Entitiesi, ∀p′, q′ ∈ x′.Entitiesi such that p′ = p and q′ = q and
where p 6= q, we have (by Figure 11, line 5):∣∣∣∣(p′x, p′y)− (q′x, q

′
y)
∣∣∣∣ = ||((px, py) + vu(i, j))− ((qx, qy) + vu(i, j))|| .

It follows by the inductive hypothesis that
∣∣∣∣(p′x, p′y)− (q′x, q

′
y)
∣∣∣∣ ≥ d. The sec-

ond sub-case arises if x′.Entitiesi (x.Entitiesi, then Safei(x
′) is either vacu-

ously satisfied or it is satisfied by the same argument just stated.
The second case is when x′.Entitiesi * x.Entitiesi, that is, there was at least

one entity transfered to i. Consider any such transferred entity p′ ∈ x′.Entitiesi
where p′ /∈ x.Entitiesi. There are two sub-cases. The first sub-case is when
p′ was added to x′.Entitiesi because i is a source, that is, i ∈ IDS . In this
case, the specification of the source cells states that the entity p′ was added to
x′.Entitiesi without violating Safei(x

′), and the proof is complete. Otherwise,
p′ was added to x′.Entitiesi by some neighbor j ∈ x.Nbrsi, so p′ ∈ x.Entitiesj
but p′ /∈ x.Entitiesi, and p′ ∈ x′.Entitiesi but p′ /∈ x′.Entitiesj . From lines 9–11
of Figure 11, we have the new position (p′x, p

′
y). The fact that p′ transferred

from Cellj in x to Celli in x′ implies that x.nextj = i and x.signal i = j—these
are necessary conditions for the transfer by Figure 10, line 15. Thus, applying
the predicate H(x) at state x and by Lemma 4, it follows that for every q ∈
x.Entitiesi, (qx, qy) /∈ SRi(s)(Side(i, j)). It must now be established that if p′ is
transferred to x′.Entitiesi, then every q′ ∈ x′.Entitiesi, where q′ 6= p′ satisfies
(q′x, q

′
y) /∈ SRi(s)(Side(i, j)), which means that any entity q already on cell i did

not move toward the transferred entity p that is now on cell i. This follows
by application of Lemma 5, which states that if entities on adjacent cells move
towards one another simultaneously, then a transfer of entities cannot occur.
This implies that the discs of all entities q′ in x′.Entitiesi are farther than rs of
the borders of any transferred entity p′, implying Safei(x

′). Finally, since i was
chosen arbitrarily, Safe(x′).

Theorem 1 shows that System is safe in spite of failures.

4.3. Stabilization of Spanning Routing Trees
Next, we show under some additional assumptions, that once new failures

cease to occur, System recovers to a state where each non-faulty cell with a fea-
sible path to its target computes a route toward it. This route stabilization is

22

then used in showing that any entity on a non-faulty cell with a feasible path
to its target makes progress toward it. Our analysis relies on the following as-
sumptions on cell failures and the placement of new entities on source cells.
The first assumption states that no target cells fail, and is reasonable and nec-
essary because if any target cell did fail, entities of that color obviously cannot
make progress.

Assumption 3. No target cells t ∈ IDT may fail.

The next assumption ensures source cells place entities fairly so that they
may not perpetually prevent any neighboring cell or any color-shared cell from
making progress. The assumption is needed because it provides a specification
of how the source cells behave, which has not been done so far. The assumption
is reasonable because it essentially says that traffic is not produced perpetually
without any break.

Assumption 4. (Fairness): Source cells place new entities without perpetually block-
ing either: (i) any of their nonempty non-faulty neighbors, nor (ii) any cell i ∈
CSC (x, c), where c is source s’s color.

Formally, the first fairness condition states, for any execution α of System,
for any color c ∈ C, for any source cell sidc, if there exists an i ∈ Nbrss, such
that for every state x in α after a certain round, i ∈ x.NEPrevs, then eventually
signals becomes equal to i in some round of α. The second fairness condition
states, for any execution α of System, for any state x ∈ α, for any color c ∈ C,
for any source cell sidc, if there exists an i ∈ NF (x) such that i ∈ CSC (x, c), and
for every state x in α after a certain round, if cell i is nonempty, then eventually
signal j becomes equal to i in some round of α, where j is a neighbor of i. Such
conditions can be ensured if we suppose some oracle placing entities on source
cells follows the same round-robin like scheme defined in the Signal subrou-
tine in Figure 10. Scenarios where each of these cases can arise are illustrated
in Figure 6.

A fault-free execution fragment α be a sequence of states starting from x
and along which no fail(i) transitions occur. That is, a fault-free execution frag-
ment is an execution fragment with no new failure actions, although there may
be existing failures at the first state x of α, so F (x) need not be empty. Through-
out the remainder of this section, we will consider fault-free executions that
satisfy Assumptions 3 and 4.

Lemma 6. Consider any reachable state x of System, any color c ∈ C, and any
i ∈ TC (x, c) \ {tidc}. Let h = ρc(x, i). Any fault-free execution fragment α starting
from x self-stabilizes within h rounds to a set of states S with all elements satisfying:

dist i[c] = h, and
next i[c] = in, where ρc(x, in) = h− 1.

Proof. Fix an arbitrary state x, a fault-free execution fragment α starting from
x, a color c ∈ C, and i ∈ TC (x, c) \ {tidc}. We have to show that (a) the set of

23

states S is closed under update transitions and (b) after h rounds, the execution
fragment α enters S.

First, by induction on h we show that S is stable. Consider any state y ∈ S
and a state y′ that is obtained by applying an update transition to y. We have
to show that y′ ∈ S. For the base case, h = 1, so y.dist i[c] = 1 and y.next i[c] =
tidc. From lines 5 and 7 of the Route function in Figure 8, and that there is a
unique tidc for each color c, it follows that y′.dist i[c] remains 1 and y′.next i[c]
remains tidc. For the inductive step, the inductive hypothesis is, for any given
h, if for any j ∈ NF (x), y.distj [c] = h and y.nextj [c] = m, for some m ∈ ID
with ρc(x,m) = h− 1, then

y′.distj [c] = h and y′.nextj [c] = m.

Now consider i such that ρc(y, i) = ρc(y
′, i) = h+ 1. In order to show that S is

closed, we have to assume that y.dist i[c] = h+1 and y.next i[c] = m, and show
that the same holds for y′. Since ρc(y′, i) = h + 1, i does not have a neighbor
with target distance smaller than h. The required result follows from applying
the inductive hypothesis to m and from lines 5 and 7 of Figure 8.

Second, we have to show that starting from x, α enters S within h rounds.
Once again, this is established by induction on h, which is ρc(x, i). Consider
any state y such that ρc(x, i) = ρc(y, i). The base case only includes the target
distances satisfying h = ρc(y, i) = 1 and follows by instantiating in = tidc.
For the inductive case, assume for the inductive hypothesis that at some state
y, y.distj [c] = h and y.nextj [c] = in such that ρc(y, in) = h − 1, where in
is the minimum identifier among all such cells (since we used cell identifiers
to break ties). Observe that there is one such j ∈ y.Nbrsi by the definition of
TC . Then at state y′, by the inductive hypothesis and lines 5 and 7 of Figure 8,
y′.dist i[c] = y′.distj [c] + 1 = h+ 1.

The next corollary of Lemma 6 states that, after new failures cease occur-
ring, for all target-connected cells, the graph induced by the next [c] variables
self-stabilizes to the color c routing graph, GR(x, c), within at most the diame-
ter of the communication graph number of rounds, which is bounded by ∆(x).
This implies that the predicate detection algorithm detectRoutesStabilized() that
detects that routes have stabilized also terminates.

Corollary 7. Consider any execution α of System with an arbitrary but finite se-
quence of fail transitions. For any state x ∈ α at least 2∆(x) rounds after the last fail
transition, for any c ∈ C, every cell i target-connected to color c has x.next i[c] equal
to the identifier of the next cell along such a route.

The next corollary of Lemma 6 and Corollary 7 states that within 2∆(x)
rounds after routes self-stabilize, for each color c ∈ C, the identifiers in the
pathi[c] variables equal the vertices of the color c entity graph GE (x, c). The
result follows since routes self-stabilize and that Lock is a function of next and
path variables only, and that pathi variables are gossiped in Figure 9, line 6.

24

Corollary 8. Consider any execution α of System with an arbitrary but finite se-
quence of fail transitions. For any state x ∈ α at least 2∆(x) rounds after the last
fail transition, for every c ∈ C, every cell i target-connected to color c has pathi[c] =
VE (x, c).

The next corollary of Lemma 6 states that eventually the values of the pint [c]
variables equal the set of color-shared cells CSC (x, c) for any cell i and color c.
This is important because the mutual exclusion algorithm is initiated between
the cells in pint [c] (Figure 9, line 11).

Corollary 9. Consider any execution α of System with an arbitrary but finite se-
quence of fail transitions. For any state x ∈ α at least 2∆(x) rounds after the last fail
transition, for every c ∈ C, every cell i target-connected to color c has x.pint [c] =
CSC (x, c).

4.4. Scheduling Entities through Color-Shared Cells
In this section, we show that there is at most a single color on the set of

color-shared cells if there are no failures. We then show that any cell that re-
quests a lock eventually gets one, under an additional assumption that failures
do not cause entities of more than one color to reside on the set of color-shared
cells. Because failures cause the routing graphs and entity graphs to change,
the color-shared cells that could previously be scheduled may now be dead-
locked. Additionally, because we separately lock each disjoint set of color-
shared cells to allow entities of some color to flow toward their target, it could
be the case that the intermediate states between when the failure occurred and
when routes have self-stabilized allowed entities to move in such a way that
deadlocks the system. Such deadlocks could be avoided if a centralized co-
ordinator informs every non-faulty cell to disable their signals when a failure
is detected. The assumption states that with failures, the color-shared cells ei-
ther all have the same-colored entities, or have no entities (and combinations
thereof).

Assumption 5. Feasibility of Locking after Failures: For any reachable state x,
for any color c ∈ C, consider the color-shared cells CSC (x, c). For all distinct cells
i, j ∈ CSC (x, c) either x.color i = x.color j or x.color i = ⊥.

The next lemma states that without failures, there are entities of at most a
single color on the set of color-shared cells. The result is not an invariant be-
cause failures may cause the set of color-shared cells to change, resulting in
deadlocks, which is why we need Assumption 5. By Invariant 3, we know that
there are entities of at most a single color in each cell, so the following invariant
is stated in terms of the color color i of each cell. We emphasize that Assump-
tion 5 is unnecessary if there are no failures, as the algorithm ensures there
are entities of at most a single color on the color-shared cells by the following
lemma.

Lemma 10. If there are no failures, for any reachable state x, for any c ∈ C, for any
i ∈ CSC (x, c), if ¬x.lock i[c], then for all j ∈ CSC (x, c), we have x.color j 6= c.

25

Proof. The proof is showing an inductive invariant, supposing no failures oc-
cur. For the initial state, all cells are empty, so we have x.color i = ⊥ for any
i ∈ ID . For the inductive step, we are only considering update actions by as-
sumption. In the pre-state, we have ¬x.lock i[c] and ∀j ∈ CSC (x, c), we have
x.color j 6= c. Fix some c ∈ C and some i ∈ CSC (x, c). For any subsequent state
x′, if x′.lock i[c], the result follows vacuously. If ¬x′.lock i[c], we must show
∀j ∈ CSC (x, c) that x.color j 6= c, so fix some j ∈ CSC (x, c). If j ∈ CSC (x′, c),
the result follows, since by the inductive hypothesis, x.color j = x′.color j 6= c.
If j /∈ CSC (x′, c), the condition in Signal (Figure 10, line 17) cannot be satisfied
since ¬x′.lock i[c]. Thus, no cell with entities of color c could move toward any
cell in CSC (x′, c), and we have x′.color j 6= c.

The next lemma states that without failures, or with “nice” failures as de-
scribed by Assumption 5, that any cell requesting a lock of some color will
eventually get it, and thus it may move entities onto the color-shared cells.

Lemma 11. For any reachable state x satisfying Assumption 5, for any c ∈ C, for
any i ∈ NF (x), if i ∈ x.pint [c] and all cells in CSC (x, c) are empty, then eventually
a state x′ is reached where x′.lock i[c].

Proof. By correctness of the mutual exclusion algorithm, eventually a color d ∈
SC (x′, c) is returned and x′.lock i[d] = true (Figure 9, line 11). If c = d, then
the result follows. If c 6= d, by Lemma 10 and Assumption 5, we know that no
other color aside from c has entities on any cell j ∈ CSC (x′, c). The next time
the mutual exclusion algorithm is initiated, d is excluded from the input set to
the mutual exclusion algorithm (Figure 9, line 15), and by repeated argument,
eventually lock i[c].

4.5. Progress of Entities towards Targets
Using the results from the previous sections, we show that once new fail-

ures stop occurring, for every color c ∈ C, every entity of color c on a cell that is
target-connected eventually gets to the target of color c. The result (Theorem 2)
uses two lemmas which establish that, along every infinite execution with a
finite number of failures, every nonempty target-connected cell gets permis-
sion to move infinitely often (Lemma 13), and a permission to move allows the
entities on a cell to make progress towards the target (Lemma 12).

For the remainder of this section, we fix an arbitrary infinite execution α
of System with a finite number of failures, satisfying Assumption 5. Let xf

be any state of System at least 2∆(x) rounds after the last failure, and α′ be
the infinite failure-free execution fragment xf , xf+1, . . . of α starting from xf .
Note that in any such state xf , we have that detectRoutesStabilized() (used in
Figure 9, lines 11 and 15 and Figure 10, line 1) will return true since routes
have stabilized. For any c ∈ C, observe that the number of target-connected
cells remains constant starting from xf for the remainder of the execution. That
is, TC (xf , c) = TC (xf+1, c) = TC (. . . , c), so we fix TC (c) = TC (xf , c).

26

Lemma 12. For any c ∈ C, for any i ∈ TC (c), for some j ∈ xf .Nbrsi, if k > f ,
xk.signal j = i, and xk.next i[c] = j, for any entity p ∈ xk.Entitiesi, let the distance
function be defined by the lexicographically ordered tuple

R(x, p) = 〈ρc(x, i), ds− p〉 ,

where ds is the point on the shared side Side(i, j) defined by the line passing through
p with direction u(i, j). Then, R(xk+1, p) < R(xk, p).

Proof. The first case is when no entity transfers from i to j in the k+ 1th round:
if p′ ∈ xk+1.Entitiesi such that p′ = p, then ||ds− p′|| < ||ds− p||. In this case,
the result follows since a velocity v > 0 is applied towards cell j by Move
in Figure 11, line 5. The second case is when some entity p transfers from i to
j, so p′ ∈ xk+1.Entitiesj such that p′ = p. In this case, we have ρc(xk, j) <
ρc(xk, i), since the distance between j and tidc is smaller than the distance
between i and tidc since routes have self-stabilized by Lemma 6. In either case,
R(xk+1, p) < R(xk, p), so entity p is closer to the appropriate target.

The following lemma states that all cells with a path to the target receive a
signal to move infinitely often, so Lemma 12 applies infinitely often.

Lemma 13. For any c ∈ C, consider any i ∈ TC (c) \ tidc, such that for all k > f , if
xk.Entitiesi 6= ∅, then ∃k′ > k such that xk′ .signalnexti[c] = i.

Proof. Fix some c ∈ C. Since i ∈ TC (c), there exists h < ∞ such that for
all k > f , ρc(xk, i) = h. We prove the lemma by inducting on h. The base
case is h = 1. Fix i and instantiate k′ = f + ns(tidc). By Lemma 6, for any
t ∈ IDT , for all non-faulty i ∈ Nbrst, xf .next i[c] = t since k > f . For all
k > f , if xk.Entitiesi 6= ∅, then signal tidc

changes to a different neighbor with
entities every round. It is thus the case that |xk.NEPrev tidc

| ≤ ns(tidc) and
since Entitiestidc

= ∅ always, exactly one neighbor satisfies the conditional
of Figure 10, line 6 in any round, then within ns(tidc) rounds, signal tidc

= i.
For the inductive case, let ks = k + h be the step in α after which all non-

faulty a ∈ Nbrsi have xks
.nexta[c] = i by Lemma 6. Also by Lemma 6, ∃m ∈

Nbrsi such that xks
.distm < xks

.dist i, implying that after ks, |xks
.NEPrev i| ≤

ns(i) since xks
.next i = m and xks

.nextm 6= i. By the inductive hypothesis,
xks .signalnexti[c] = i infinitely often. If i ∈ IDS , then entity initialization
does not prevent xk.signal i = a from being satisfied infinitely often by the
second assumption introduced in Section 4.3. It remains to be established that
signal i = a infinitely often. Let a ∈ xks

.NEPrev i where ρc(xks
, a) = h+ 1.

In any of the following cases, if i ∈ xks
.pint [c] and every cell j ∈CSC (xks

, c)
is empty, then Lemma 11 implies that eventually lock i[c]. If |xks .NEPrev i| = 1,
then because the inductive hypothesis satisfies signalnexti[c] = i infinitely often,
then Lemma 12 applies infinitely often, and thus Entitiesi = ∅ infinitely often,
finally implying that signal i = a infinitely often.

If |xks
.NEPrev i| > 1, there are two sub-cases. The first sub-case is when

no entity enters i from some d 6= a ∈ xks
.NEPrev i, which follows by the same

reasoning used in the |xks .NEPrev i| = 1 case. The second sub-case is when

27

a entity enters i from d, in which case it must be established that signal i =
a infinitely often. This follows since if xk′ .tokeni = a where k′ > kt > ks
and kt is the round at which an entity entered i from d, and the appropriate
case of Lemma 4 is not satisfied, then xk′+1.signal i = ⊥ and xk′+1.tokeni = a
by Figure 10, line 25. This implies that no more entities enter i from either cell d
satisfying d 6= a. Thus tokeni = a infinitely often follows by the same reasoning
|xks .NEPrev i| = 1 case.

The final theorem establishes that entities on any cell in TC (c) eventually
reach the target in α′.

Theorem 2. For any c ∈ C, consider any i ∈ TC (c), ∀k > f , ∀p ∈ xk.Entitiesi,
∃k′ > k such that p ∈ xk′ .Entitiesnexti[c].

Proof. Fix c ∈ C, i ∈ TC (c), a round k > f and p ∈ xk.Entitiesi. Let h =
maxi∈TC (c) ρc(xf , i) which is finite. By Lemma 6, at every round after ks =
k + h for any i ∈ TC (c), the sequence of identifiers

β = i,xks .next i[c],xks .nextnexti[c][c], . . .

forms a fixed path of cells to tidc. Applying Lemma 13 to i ∈ TC (c) shows that
there exists km ≥ ks such that xkm .signalnexti[c] = i. Now applying Lemma 12
to xkm

shows p moves towards xks
.next i[c], which is also xkm

.next i[c] since
routes are stabilized. Lemma 13 further establishes that this occurs infinitely
often, thus there exists a round k′ > km such that p gets transferred to the set
xkm .Entitiesnexti[c].

By an induction on the sequence of identifiers in the path β, it follows that
entities on any cell in TC (c) eventually get consumed by the target.

5. Simulation Experiments

We have performed numerous simulation studies of the distributed traffic
control protocol for validating the theoretical model and results developed in
this paper, and for evaluating the protocol’s throughput performance. In this
section, we discuss the main findings with illustrative examples taken from
the simulation results. We implemented the simulator in Matlab, and all the
partition figures displayed in the paper are created using it5. The distributed
traffic control protocol and simulator are entirely deterministic, except for (a)
the choice of the initial positions of new entities in source cells, and (b) failure
and recovery rates in scenarios that consider random failures and recoveries,
as detailed below.

5The simulator source code repository is available online: https://bitbucket.
org/verivital/cell_flows/. Videos of several scenarios such as the environ-
ments considered in this paper are available online https://www.youtube.com/user/
verivital/, specifically in the playlist https://www.youtube.com/playlist?list=
PLZVw65tJnqISpctDeLMcIsascuXLvyXnY.

28

https://bitbucket.org/verivital/cell_flows/
https://bitbucket.org/verivital/cell_flows/
https://www.youtube.com/user/verivital/
https://www.youtube.com/user/verivital/
https://www.youtube.com/playlist?list=PLZVw65tJnqISpctDeLMcIsascuXLvyXnY
https://www.youtube.com/playlist?list=PLZVw65tJnqISpctDeLMcIsascuXLvyXnY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

rs

th
ro

ug
hp

ut

v=0.05
v=0.1
v=0.2
v=0.25

Figure 12: Throughput versus safety spacing
rs for several values of v , for K = 2500,
l = 0.25 for System with an 8 × 8 unit square
tessellation.

0 1 2 3 4 5 6 7
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

number of turns along path

th
ro

ug
hp

ut

rs=0.05, v=0.2, l=0.2

rs=0.05, v=0.1, l=0.2

rs=0.05, v=0.1, l=0.1

rs=0.05, v=0.05, l=0.1

Figure 13: Throughput versus number of turns
along a path, for a path of length 8, where
K = 2500, rs = 0.05, and each of l and v
are varied for System with an 8×8 unit square
tessellation.

Let theK-round throughput of System be the total number of entities arriving
at the target over K rounds, divided by K. We define the average throughput
(henceforth throughput) as the limit of K-round throughput for large K. All
simulations start at a state where all cells are empty and subsequently entities
are added to the source cells.

5.1. Single-color throughput without failures as a function of rs , l , v
Rough calculations show that throughput should be proportional to cell

velocity v , and inversely proportional to safety distance rs and entity radius l .
Figure 12 shows throughput versus rs for several choices of v for an 8× 8 unit
square tessellation instance of System with a single entity color. The parameters
are set to l = 0.25 and K = 2500. The entities move along a line path where
the source is the bottom left corner cell and the target is the top left corner cell.
For the most part, the inverse relationship with v holds as expected: all other
factors remaining the same, a lower velocity makes each entity take longer to
move away from the boundary, which causes the predecessor cell to be blocked
more frequently, and thus fewer entities reach tid from any element of IDS in
the same number of rounds. In cases with low velocity (for example v = 0.1)
and for very small rs , however, the throughput can actually be greater than that
at a slightly higher velocity. We conjecture that this somewhat surprising effect
appears because at very small safety spacing, the potential for safety violation
is higher with faster speeds, and therefore there are many more blocked cells
per round. We also observe that the throughput saturates at a certain value of
rs (≈ 0.55). This situation arises when there is roughly only one entity in each
cell.

5.2. Single-color throughput without failures as a function of the path
For a sufficiently large number of rounds K, throughput is independent of

the length of the path. This of course varies based on the particular path and

29

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

pf

th
ro

ug
hp

ut

pr=0.05

pr=0.1

pr=0.15

pr=0.2

Figure 14: Throughput versus failure rate pf
for several recovery rates pr with an initial
path of length 8, where K = 20000, rs = 0.05,
l = 0.2, and v = 0.2 for System with an 8 × 8
unit square tessellation.

0 5 10 15
0.05

0.1

0.15

0.2

0.25

path length

th
ro

ug
hp

ut

square
triangular

Figure 15: Throughput versus increasing path
length of square (blue) and equilateral triangu-
lar (red) partitions.

instance of System considered, but all other variables fixed, this relationship is
observed. More interesting however, is the relationship between throughput
and path complexity, measured in the number of turns along a path. A turn
represents a change in direction along a path. For example, in Figure 19 there
are three turns, between cells 12 and 16, cells 15 and 14, and cells 6 and 2.
In Figure 2, there are two turns for each the blue and red paths. Figure 13
shows throughput versus the number of turns along paths of length 8. This
illustrates that throughput decreases as the number of turns increases, up to a
point at which the decrease in throughput saturates. This saturation is due to
signaling and indicates that there is only one entity per cell.

5.3. Single-color throughput under failure and recovery of cells
Finally, we considered a random failure and recovery model in which at

each round each non-faulty cell fails with some probability pf and each faulty
cell recovers with some probability pr [37]. A recovery sets failed i = false and in
the case of tid also resets dist tid = 0, so that eventually Route will correct nextj
and distj for any j ∈ TC . Intuitively, we expect that throughput will decrease
as pf increases and increase as pr increases. Figure 14 demonstrates this result
for 0.01 ≤ pf ≤ 0.05 and 0.05 ≤ pr ≤ 0.2. There is a diminishing return on
increasing pr for a fixed pf , in that for a fixed pf increasing pr results in smaller
throughput gains.

5.4. Multi-color throughput as a function of the number of intersecting cells
Now we discuss the influence of multi-color throughput. In the case where

the paths between different sources and targets do not overlap, all the results
from the single-color simulation results apply. In the case where the paths do
overlap, the mutual exclusion algorithm runs to ensure no deadlocks occur.
This additional control logic will have an influence on the throughput. For the

30

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

fraction of overlapping paths

th
ro

ug
hp

ut

Figure 16: Throughput versus fraction of path
overlap for two colors on a 1 × 16 unit square
tessellation.

0 2 4 6 8
0

0.05

0.1

0.15

0.2

number of overlapping colors

th
ro

ug
hp

ut

Figure 17: Throughput versus number of over-
lapping colors on a 1 × 3 unit square tessella-
tion.

multi-color cases, we consider the summed throughput, which is the sum of
the throughput for each color.

Figure 16 shows the roughly exponential decrease in throughput as the frac-
tion of overlapping paths increases for two colors with path length 8 and no
turns. The fraction of overlapping paths is defined as the number of vertices in
the color-shared cells CSC (x, c). As the fraction increases, the paths lie com-
pletely on top of one another, so in this case with path length 8, we have no
overlap, 1 cell overlap, etc.

5.5. Multi-color throughput as a function of the number of intersecting colors
Intersections (that is, scenarios that have at least one color-shared cell) have

a fixed cost on throughput. Specifically, the summed throughput of there being
two overlapping colors on a cell is the same as the summed throughput of
three or more. Figure 17 shows this fixed decrease in summed throughput as
the number of overlapping colors increases for a fixed path of length 3 with 3
color-shared cells, where the decrease in summed throughput from having no
overlaps to having one color overlapping is about 4.5 times. Once there are
two colors, all additional colors do not decrease the summed throughput. This
observation agrees with intuition—the decrease in summed throughput due
to an intersection is independent of the number of destinations for the entities
that must pass through that intersection.

6. Related Work

There is a large amount of work on traffic control in transportation systems
(see, e.g., [4, 38]) and robotics (see, e.g., [39]). We briefly summarize some of the
more related work, but highlight that we are presenting a formal model of an
example of such systems. Distributed air and automotive traffic control have
been studied in many contexts. Human-factors issues are considered in [40, 41]
to ensure collision avoidance between the coordination of numerous pilots and

31

a supervisory controller modeling the semi-centralized air traffic control com-
ponents. The Cell Transmission Model and variants thereof are used for model-
ing highway traffic flows and throughput, but do not allow for reasoning about
system safety or liveness [42, 43]. The Small Aircraft Transportation Protocol
(SATS) is semi-distributed air traffic control protocol designed for small air-
ports without radar, so pilots and their aircraft coordinate among themselves
to land after being assigned a landing sequence order by an automated sys-
tem at the airport [16]. SATS has been formally modeled and analyzed using
a combination of model checking and automated theorem proving [44]. SATS
and this paper share an abstraction: the physical environment is a priori parti-
tioned into a set of regions of interest, and properties about the whole system
are proved using compositional analysis. Safe conflict resolution maneuvers
for distributed air traffic control are designed in [45]. A formal model of the
traffic collision avoidance system (TCAS) is developed and analyzed for safety
in [46]. TCAS is a system deployed on aircraft that alerts pilots when other
aircraft are in close proximity and guides them along safe trajectories.

A distributed algorithm (executed by entities, vehicles in this case) for con-
trolling automotive intersections without any stop signs is presented in [18].
Some methods for ensuring liveness for automotive intersections are presented
in [47]. A method to detect the mode of a hybrid system control model of an
autonomous vehicle in intersections is developed in [48], and is used to reduce
conservatism of the maximally controlled invariant set (the set of collision-
free controls). Efficient distributed intersection control algorithms are devel-
oped in [49]. There is a large amount of work on flocking [50] and platoon-
ing [51, 52, 53, 54]. Only a few works consider failures in such systems, like the
arbitrary failures considered in [55, 56], the actuator failures considered in [54],
or in synchronization of swarm robot systems in [57].

Robot coordination based on discrete abstractions like [58, 23, 28, 27, 59, 60,
61, 62, 63, 64] can be viewed as traffic control. For instance, [23] establishes a
formal connection between the continuous and the discrete parts of these pro-
tocols, and also presents a self-stabilizing algorithm with similar analysis to the
analysis in this paper. These works also decompose the continuous problem
into a discrete abstraction by partitioning the environment, but all these works
allow at most a single entity (robot) in each partition, while our framework
allows numerous entities in each partition. If several entities are to visit some
destination in [59, 62, 63], like our targets here, that destination is represented
as the union of a set of partitions and each entity must reside in one of these
partitions. Based on the size of the entity, it may be possible that only a single
entity can geometrically fit on a cell in our partition, and we call such scenarios
single-entity partitions. We can thus include some of the results of [28, 27, 59, 63]
within our framework, but mention that these works allow linear or nonlin-
ear dynamics within a single partition, and also automatically synthesize the
distributed behavior from a given temporal logic specification. We take the
alternative approach and design the routing and control mechanism manually.

The Kiva Systems robotic warehouse [58] is a robotic traffic control system
on square partitions, and can be described in our framework by allowing a

32

single entity per cell. In these warehouse systems, there is a central coordinator
scheduling tasks, but the robots are responsible for path planning using an A∗-
like search algorithm [58]. However, several deadlock scenarios are identified
when performing such path planning [60]. The Adaptive Highways Algorithm
presented in [60] for scheduling entities relies on using the tentative trajectories
of other robots collected by the central controller. Deadlocks are also observed
in other distributed robotics path-planning algorithms on discrete partitions
in [65]. Deadlock scenarios can also arise without a discrete abstraction, such
as in the doorways considered in [66], the path formation algorithms of [67],
or the warehouse automation system of [68]. Lastly, we mention that most of
these works on traffic control from aviation, automotive, swarm robotics, and
warehouse automation applications can be modeled within the framework of
spatial computing [69, 70, 71].

7. Discussion

In this section, we discuss some ways to generalize assumptions used in
the paper and some alternative methods. In this paper, we presented a dis-
tributed traffic control algorithm for the partitioned plane, which moves en-
tities without collision to their destinations, in spite of failures. While our
algorithm is presented for two-dimensional partitions, an extension to some
three-dimensional partitions (e.g., cubes and tetrahedra) follows in an obvious
way. An extension to the more general case where there are multiple sources
and multiple targets of each color—and entities of each color move toward the
nearest target of that color—is straightforward, but complicates notation.

7.1. Self-Stabilizing Mutual Exclusion and Distributed Snapshot Algorithms
There are a variety of mutual exclusion algorithms that could be used to

determine locks (Figure 9, line 11). For this paper, we require the overall sys-
tem to be stabilizing and therefore the locking algorithm itself should be sta-
bilizing. To this end, any of the following algorithms could be adapted to our
framework: the token circulation algorithm [72], mutual exclusion [73], group
mutual exclusion [74], snap-stabilizing propagation of information with feed-
back (PIF) algorithm [75], or k-out-of-l mutual exclusion [76]. A self-stabilizing
distributed snapshot algorithm (see [30, Ch. 5]) can be used to determine if
all c color-shared cells are empty, after having had some entity of color c (Fig-
ure 9, line 15). If all cells are empty, then another round of mutual exclusion
commences, excluding color c from the input set.

7.2. Other Failure Classes
In this paper, we have considered only crash (fail-stop) failures and lim-

ited crash-recovery scenarios. Other failure models are possible to incorporate,
such as failure of the actuators or sensors in the cells or entities. One interest-
ing variant of failures are Byzantine failures, which would need to be defined
within the context of this framework. Supposing a Byzantine failure represents

33

arbitrary communications behavior of a faulty cell only (and not, e.g., moving
entities arbitrarily to neighboring cells so that they violate safety by inducing
collisions), then a Byzantine faulty cell could lie about its state to neighbors.
Several situations could arise here, such as a failed cell lying that it is safe for
the failed cell to receive entities when it is not, lying about its distance to the
target cell of a given color, etc. Some form of voting scheme (as is common in
Byzantine tolerant algorithms) could potentially be employed to avoid safety
violations, but it is hard to imagine an algorithm that could avoid progress and
liveness violations. We thus leave this as an interesting and nontrivial direction
for future work.

7.3. General Triangulations and Affine Dynamics
We assume in Section 2 that the partitions satisfy several geometric assump-

tions for feasibility of entity transfers. We considered using vector fields gen-
erated by a discrete abstraction like those presented in [26, 77, 78, 79, 28, 27].
The affine vector fields generated on simplices in [26, 79] can be used to move
an entity (with potentially nonholonomic or nonlinear dynamics) through any
side of a cell in a triangulation (simplex) [26, 78] or rectangle [77]. However,
it turns out that it is impossible to maintain our notion of safety for such vec-
tor fields without additional collision avoidance mechanisms implemented on
each entity. This is due to a simple geometric observation—moving entities
through a shorter side than the side they entered through may require the en-
tities to come closer together. For example, if a cell in the triangulation has an
obtuse angle, then the vector field generated by [26] flowing from the longest
edge to the shortest edge has negative divergence. Furthermore, a vector field
having negative divergence implies the flow corresponding to any two distinct
points starting in that field come closer together, hence safety cannot be main-
tained. The distributed problems using these discrete abstractions [59, 62, 63]
avoid this by requiring at most one entity in any (triangular) partition at a time.

We also mention a simple condition to ensure that triangulations have the
required geometric partition properties (Assumptions 1 and 2). If all the trian-
gles in the triangulation are non-obtuse, then the triangulation satisfies these
assumptions. We also note that restricting allowable triangulations of an en-
vironment to ones without obtuse angles is not restrictive, since any polygon
can be efficiently partitioned into a triangulation with non-obtuse [80, 81] or
acute [82] angles.

7.4. Inter-Cell Entity Motion Coupling
In our framework, due to the presence of failures, it is nontrivial to gener-

alize from identical motion of entities within a given cell to coupled motion.
Without failures, we could generalize this notion to allow for upper and lower
bounds of entity velocity magnitudes in each cell, in which case we could re-
duce the assumption of identical coupling of entity motion within cells de-
scribed in Section 2. This represents the case where the entity velocities are all
approximately equal and is more realistic. A sufficiently large transfer region

34

could be chosen based on the maximum length of the cells and difference be-
tween minimum and maximum velocities to ensure a result that no two entities
on the cell may move closer than a constant bound toward one another while
remaining on that cell, and the safety invariant would hold.

Relaxing the identical movement assumption is nontrivial to accomplish
when failures are considered. Without failures (and thus with stable routing
graphs), we can handle this as described above using a sufficiently large trans-
fer region. With failures, it is problematic, as we would need to bound the
number of times the outgoing direction from a given cell may change, as oth-
erwise one can imagine a scenario where the route toggles between different
sides of a cell, causing the net velocity of the cells to be toward the interior of
the cell, and with different velocity bounds, some entities may move too close
together to satisfy safety. Alternatively, perhaps the failure tolerance mecha-
nism could wait and prevent entity movement if a failure is detected (which is
implied if a route changes after initial stabilization) until the routes have sta-
bilized again. This approach may reduce throughput due to waiting, but we
leave this general direction of relaxing the identical movement assumption to
coupling as an interesting direction for future research

7.5. Insufficiency of Disjoint Routing Paths
Finding disjoint paths, such as by using the algorithms from [83, 84, 85, 86],

could be another approach to solving the multi-color problem, but the lock-
ing mechanism used here solves a more general problem. Even without fail-
ures, there are many environments and choices of sources and targets for which
there are no disjoint paths between sources and targets. One such environment
is shown in Figure 4, where for two distinct colors c and d, the paths between
the respective sources and targets necessarily overlap, so an algorithm for find-
ing disjoint paths cannot be used as there are no disjoint paths between sources
and targets. However, there are disjoint paths in some cases, so no schedul-
ing would be necessary if these are found, but our routing algorithm does not
necessarily find these, as the disjoint paths may not be shortest distance. A
self-stabilizing algorithm for finding disjoint paths on planar graphs would be
an enhancement to our algorithm, as it would increase throughput in the case
that paths need not overlap.

7.6. Back-Pressure and Wormhole Routing
Back-pressure routing [87, 88] is an algorithm for dynamically routing traf-

fic over an underlying graph using congestion gradients. If we view the color
of each entity as its intended address and consider this problem from the per-
spective of queuing theory, one might think back-pressure routing could pro-
vide a throughput-optimal solution for the problem. However, our physical
motion model is incompatible with back-pressure routing. For a given cell, our
model does not allow arbitrary choice of the next neighbor for each entity on
that cell. In particular, when one cell moves its entities toward a neighboring
cell, all entities sufficiently near the shared side between the two neighbors
would transfer.

35

6 7 8 9 10 11 12 13
5

6

7

8

2

3

46

7

810

11

x

y

Figure 18: Hexagonal partition that does not satisfy
the projection property (Assumption 1). An exten-
sion to allow such partitions would require enlarg-
ing the transfer region and receiving a signal from
all of the potential next neighbors, which would re-
quire cells 3 and 7 both to signal cell 4 to move. This
is because when cell 4 moves its entities toward cell
3, it may be possible for entities to transfer to either
cells 3 or 7.

1T 2 3 4S

5 6 7 8

9 10 11 12

13 14 15 16

Figure 19: Example system on a parallel-
ogram partition with failed cells in black.
The several turns along the path from
the source to the target cause a satura-
tion of entities on cells 6, 10, and 14.
The movement vector u(i, j) is defined as
the unit vector parallel to the x axis for
movement between horizontal neighbors,
and the unit vector parallel to the vertical
sides of the parallelograms between ver-
tical neighbors.

Wormhole routing [89] is a flow control policy over a fixed underlying
graph for determining when packets move to the node on the graph. Ad-
dresses in wormhole routing are very short and come at the beginning of a
packet, so a packet can be subdivided into pieces or flits and begin being for-
warded after the address is received, yielding a snake-like sequence of flits in
transfer. One could also view the sequence of entities on a path toward the
appropriately-colored target (see Figure 19) sequence of flits flowing to a des-
tination in wormhole routing. While similar deadlock scenarios can arise in
our system and wormhole routing, wormhole routing is incompatible with our
system due to the motion model just like back-pressure routing.

8. Conclusion

We present a self-stabilizing distributed traffic control protocol for the par-
titioned plane, where each cell (partition) controls the motion of all entities
within that cell. The algorithm guarantees separation between entities in the
face of crash failures of the software controlling a cell. Once new failures cease
occurring, it guarantees progress of all entities that are neither isolated by (a)
failed cells, nor (b) cells with entities of other colors that become deadlocked
due to failures, to the respective targets. Through simulations, we presented
estimates of throughput as a function of velocity, minimum separation, single-
target path complexity, failure-recovery rates, and multi-target path complex-
ity.

For practical applications, we need algorithms that tolerate a relaxed cou-
pling between entities and allow entities some degree of independent move-
ment while preserving safety and progress. The goal would be to design ef-
ficient control algorithms for this relaxed setting under different assumptions

36

about the behavior of the free entities. Additionally, it would be interesting
to develop strategies allowing entities of different colors on a single cell. Our
strategy of preventing entities of different colors from residing on a single cell
simplified some analysis, but it also complicated some analysis, particularly
by making it harder to prove progress because deadlock scenarios may fre-
quently arise. It would be interesting to develop algorithms allowing mixing
and sorting of colors using different types of motion coupling and to reduce the
restriction of identical entity motion within cells. It would also be interesting to
design algorithms that can allow relaxing the assumption on what failures may
occur to ensure progress. For the class of crash failures considered in this paper,
the throughput of the algorithm could be improved by utilizing self-stabilizing
disjoint path routing algorithms, when it is possible to find such disjoint paths,
since we identified that it is not possible in general. This may require a more
complex routing algorithm to temporarily move entities of some colors off the
color shared cells, thus allowing some other color on the color shared cells to
make progress. Other interesting avenues for extension would be to consider
and tolerate more general forms of failures, such as Byzantine failures of the
cells that may either cause incorrect or malicious communication or physical
movements that violate safety or progress.

9. Acknowledgments

This work was supported in part by NSF CAREER grant number 1054247,
AFOSR YIP grant number FA9550-12-1-0336, and the Air Force Research Lab-
oratory’s Information Directorate (AFRL/RI) through the Visiting Faculty Re-
search Program (VFRP) under contract number FA8750-13-2-0115. The authors
thank Zhongdong Zhu for helping develop the current version of the simula-
tor, Karthik Manamcheri for helping develop an earlier version of the simula-
tor, and Nitin Vaidya for feedback and pointers to wormhole routing. The au-
thors thank Jeffrey Lale, Hershed Tilak, Jerry Sun, and Dongeek Shin for their
efforts working with and extending the earlier version of the simulator. The au-
thors are grateful for interesting discussions with Michael Loui, Daniel Liber-
zon, and PR Kumar on this work. The authors thank the anonymous reviewers
whose feedback helped improve this paper and earlier revisions [90, 31].

References

[1] D. Helbing, M. Treiber, Jams, waves, and clusters, Science 282 (1998) 2001–
2003.

[2] B. S. Kerner, Experimental features of self-organization in traffic flow,
Phys. Rev. Lett. 81 (17) (1998) 3797–3800.

[3] C. Daganzo, M. Cassidy, R. Bertini, Possible explanations of phase transi-
tions in highway traffic, Transportation Research A 33 (1999) 365–379.

37

[4] M. Nolan, Fundamentals of air traffic control, Wadsworth Publishing
Company, 1994.

[5] F. Borgonovo, L. Campelli, M. Cesana, L. Coletti, Mac for ad hoc inter-
vehicle network: services and performance, in: IEEE Vehicular Technol-
ogy Conf., Vol. 5, 2003, pp. 2789–2793.

[6] M. Karpiriski, A. Senart, V. Cahill, Sensor networks for smart roads, in:
Pervasive Computing and Communications Workshops, 2006. PerCom
Workshops 2006. Fourth Annual IEEE International Conference on, 2006,
pp. 1–5.

[7] S. S. Manvi, M. S. Kakkasageri, J. Pitt, Multiagent based information dis-
semination in vehicular ad hoc networks, Mob. Inf. Syst. 5 (4) (2009) 363–
389.

[8] S. R. Azimi, G. Bhatia, R. R. Rajkumar, P. Mudalige, Vehicular networks
for collision avoidance at intersections, SAE International Journal of Pas-
senger Cars - Mechanical Systems 4 (1) (2011) 406–416.

[9] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessan-
drini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, P. Ma-
honey, Stanley: The Robot That Won the DARPA Grand Challenge, in:
M. Buehler, K. Iagnemma, S. Singh (Eds.), The 2005 DARPA Grand Chal-
lenge, Vol. 36 of Springer Tracts in Advanced Robotics, Springer Berlin /
Heidelberg, 2007, pp. 1–43.

[10] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. R. Whittaker,
Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, D. Fer-
guson, Autonomous driving in urban environments: Boss and the urban
challenge, Journal of Field Robotics 25 (8) (2008) 425–466.

[11] X. Yang, L. Liu, N. Vaidya, F. Zhao, A vehicle-to-vehicle communication
protocol for cooperative collision warning, in: Mobile and Ubiquitous
Systems: Networking and Services. MOBIQUITOUS. The First Annual
International Conference on, 2004, pp. 114–123.

[12] J. Misener, R. Sengupta, H. Krishnan, Cooperative collision warning: En-
abling crash avoidance with wireless technology, in: 12th World Congress
on Intelligent Transportation Systems, 2005, pp. 1–11.

38

[13] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera, A. M.
Bayen, M. Annavaram, Q. Jacobson, Virtual trip lines for distributed
privacy-preserving traffic monitoring, in: MobiSys ’08: Proceeding of the
6th International Conference on Mobile Systems, Applications, and Ser-
vices, ACM, New York, NY, USA, 2008, pp. 15–28.

[14] A. Girard, J. de Sousa, J. Misener, J. Hedrick, A control architecture for
integrated cooperative cruise control and collision warning systems, in:
Decision and Control. Proceedings of the 40th IEEE Conference on, Vol. 2,
2001, pp. 1491–1496.

[15] M. Mamei, F. Zambonelli, L. Leonardi, Distributed motion coordination
with co-fields: a case study in urban traffic management, in: Autonomous
Decentralized Systems. ISADS. The Sixth International Symposium on,
2003, pp. 63–70.

[16] T. S. Abbott, K. M. Jones, M. C. Consiglio, D. M. Williams, C. A. Adams,
Small aircraft transportation system, higher volume operations concept:
Normal operations, Tech. Rep. NASA/TM-2004-213022, NASA (Aug.
2004).

[17] M. Kelly, G. Di Marzo Serugendo, A decentralised car traffic control sys-
tem simulation using local message propagation optimised with a genetic
algorithm, in: S. Brueckner, S. Hassas, M. Jelasity, D. Yamins (Eds.), Engi-
neering Self-Organising Systems, Vol. 4335 of Lecture Notes in Computer
Science, Springer, 2007, pp. 192–210.

[18] H. Kowshik, D. Caveney, P. R. Kumar, Safety and liveness in intelligent in-
tersections, in: Hybrid Systems: Computation and Control (HSCC), 11th
International Workshop, Vol. 4981 of LNCS, 2008, pp. 301–315.

[19] K. Dresner, P. Stone, A multiagent approach to autonomous intersection
management, Journal of Artificial Intelligence Research 31 (2008) 591–656.

[20] P. Weiss, Stop-and-go science, Science News 156 (1) (1999) 8–10.

[21] Kornylak, Omniwheel brochure (2008).
URL http://www.kornylak.com/images/pdf/omni-wheel.pdf.

[22] K. An, A. Trewyn, A. Gokhale, S. Sastry, Model-driven performance analy-
sis of reconfigurable conveyor systems used in material handling applica-
tions, in: Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM International
Conference on, Vol. 2, IEEE, 2011, pp. 141–150.

[23] S. Gilbert, N. Lynch, S. Mitra, T. Nolte, Self-stabilizing robot formations
over unreliable networks, ACM Trans. Auton. Adapt. Syst. 4 (2009) 1–17.

[24] S. Dolev, L. Lahiani, S. Gilbert, N. Lynch, T. Nolte, Virtual stationary au-
tomata for mobile networks, in: PODC ’05: Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed computing,
ACM, New York, NY, USA, 2005, pp. 323–323.

39

http://www.kornylak.com/images/pdf/omni-wheel.pdf.
http://www.kornylak.com/images/pdf/omni-wheel.pdf.

[25] T. Nolte, N. Lynch, A virtual node-based tracking algorithm for mobile
networks, in: Distributed Computing Systems, International Conference
on (ICDCS), IEEE Computer Society, Los Alamitos, CA, USA, 2007, pp.
1–9.

[26] C. Belta, V. Isler, G. Pappas, Discrete abstractions for robot motion plan-
ning and control in polygonal environments, Robotics, IEEE Transactions
on 21 (5) (2005) 864–874.

[27] G. E. Fainekos, A. Girard, H. Kress-Gazit, G. J. Pappas, Temporal logic
motion planning for dynamic robots, Automatica 45 (2) (2009) 343 – 352.

[28] H. Kress-Gazit, G. Fainekos, G. Pappas, Temporal-logic-based reactive
mission and motion planning, Robotics, IEEE Transactions on 25 (6) (2009)
1370–1381.

[29] A. Arora, M. Gouda, Closure and convergence: A foundation of fault-
tolerant computing, IEEE Transactions on Software Engineering 19 (1993)
1015–1027.

[30] S. Dolev, Self-stabilization, MIT Press, Cambridge, MA, 2000.

[31] T. T. Johnson, S. Mitra, K. Manamcheri, Safe and stabilizing distributed
cellular flows, in: Proceedings of the 30th IEEE International Conference
on Distributed Computing Systems (ICDCS), IEEE, Genoa, Italy, 2010, pp.
577–586.

[32] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control,
Commun. ACM 17 (11) (1974) 643–644.

[33] M. Schneider, Self-stabilization, ACM Comput. Surv. 25 (1) (1993) 45–67.

[34] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1996.

[35] V. Garg, J. Mitchell, Distributed predicate detection in a faulty environ-
ment, in: Distributed Computing Systems, 1998. Proceedings. 18th Inter-
national Conference on, 1998, pp. 416–423.

[36] F. Gärtner, S. Pleisch, (im)possibilities of predicate detection in crash-
affected systems, in: A. Datta, T. Herman (Eds.), Self-Stabilizing Systems,
Vol. 2194 of LNCS, Springer Berlin / Heidelberg, 2001, pp. 98–113.

[37] R. E. L. DeVille, S. Mitra, Stability of distributed algorithms in the face
of incessant faults, in: Proceedings of 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), Springer,
2009, pp. 224–237.

[38] P. A. Ioannou, Automated Highway Systems, Plenum Press, New York,
NY, USA, 1997.

40

[39] F. Bullo, J. Cortés, S. Martı́nez, Distributed Control of Robotic Networks,
Applied Mathematics Series, Princeton University Press, 2009, to appear.
Electronically available at http://coordinationbook.info.

[40] N. Leveson, M. de Villepin, J. Srinivasan, M. Daouk, N. Neogi,
E. Bachelder, J. Bellingham, N. Pilon, G. Flynn, A safety and human-
centered approach to developing new air traffic management tools, in:
Proceedings Fourth USA/Europe Air Traffic Management R&D Seminar,
2001, pp. 1–14.

[41] T. Prevot, Exploring the many perspectives of distributed air traffic man-
agement: The multi aircraft control system (macs), in: Proceedings of the
HCI-Aero, 2002, pp. 149–154.

[42] C. F. Daganzo, The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory, Transportation
Research Part B: Methodological 28 (4) (1994) 269 – 287.

[43] C. F. Daganzo, The cell transmission model, part ii: Network traffic, Trans-
portation Research Part B: Methodological 29 (2) (1995) 79 – 93.

[44] C. Muñoz, V. Carreño, G. Dowek, Formal analysis of the operational con-
cept for the small aircraft transportation system, in: M. Butler, C. Jones,
A. Romanovsky, E. Troubitsyna (Eds.), Rigorous Development of Com-
plex Fault-Tolerant Systems, Vol. 4157 of LNCS, Springer, 2006, pp. 306–
325.

[45] C. Tomlin, G. Pappas, S. Sastry, Conflict resolution for air traffic manage-
ment: A study in multiagent hybrid systems, IEEE Transactions on Auto-
matic Control 43 (4) (1998) 509–521.

[46] C. Livadas, J. Lygeros, N. A. Lynch, High-level modeling and analysis of
TCAS, in: Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS ’99), 1999, pp. 115–125.

[47] T.-C. Au, N. Shahidi, P. Stone, Enforcing liveness in autonomous traffic
management, in: Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence, AAAI, 2011, pp. 1317–1322.

[48] R. Verma, D. Vecchio, Semiautonomous multivehicle safety, Robotics Au-
tomation Magazine, IEEE 18 (3) (2011) 44–54.

[49] A. Colombo, D. D. Vecchio, Efficient algorithms for collision avoidance
at intersections, in: Hybrid Systems: Computation and Control (HSCC),
ACM, 2012, pp. 145–154.

[50] R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms
and theory, IEEE Transactions on Automatic Control 51 (3) (2006) 401–420.

41

[51] P. Varaiya, Smart cars on smart roads: Problems of control, IEEE Transac-
tions on Automatic Control 38 (1993) 195–207.

[52] E. Dolginova, N. Lynch, Safety verification for automated platoon maneu-
vers: A case study, in: HART ’97 (International Workshop on Hybrid and
Real-Time Systems), Vol. 1201 of LNCS, Springer Verlag, 1997, pp. 154–
170.

[53] D. Swaroop, J. K. Hedrick, Constant spacing strategies for platooning in
automated highway systems, Journal of Dynamic Systems, Measurement,
and Control 121 (1999) 462–470.

[54] T. T. Johnson, S. Mitra, Safe flocking in spite of actuator faults using direc-
tional failure detectors, Journal of Nonlinear Systems and Applications
2 (1-2) (2011) 73–95.

[55] V. Gupta, C. Langbort, R. Murray, On the robustness of distributed al-
gorithms, in: Decision and Control. 45th IEEE Conference on, 2006, pp.
3473–3478.

[56] M. Franceschelli, M. Egerstedt, A. Giua, Motion probes for fault detection
and recovery in networked control systems, in: American Control Confer-
ence, 2008, 2008, pp. 4358–4363.

[57] A. Christensen, R. O’Grady, M. Dorigo, From fireflies to fault tolerant
swarms of robots, IEEE Transactions on Evolutionary Computation 13 (4)
(2009) 754–766.

[58] P. R. Wurman, R. D’Andrea, M. Mountz, Coordinating hundreds of coop-
erative, autonomous vehicles in warehouses, AI Magazine 29.

[59] M. Kloetzer, C. Belta, Automatic deployment of distributed teams of
robots from temporal logic motion specifications, Robotics, IEEE Trans-
actions on 26 (1) (2010) 48–61.

[60] H. Roozbehani, R. D’Andrea, Adaptive highways on a grid, in:
C. Pradalier, R. Siegwart, G. Hirzinger (Eds.), Robotics Research, Vol. 70
of Springer Tracts in Advanced Robotics, Springer, 2011, pp. 661–680.

[61] J. W. Durham, R. Carli, P. Frasca, F. Bullo, Discrete partitioning and cov-
erage control for gossiping robots, Robotics, IEEE Transactions on 28 (2)
(2011) 364–378.

[62] X. C. Ding, M. Kloetzer, Y. Chen, C. Belta, Automatic deployment of
robotic teams, Robotics Automation Magazine, IEEE 18 (3) (2011) 75–86.

[63] Y. Chen, X. C. Ding, A. Stefanescu, C. Belta, Formal approach to the de-
ployment of distributed robotic teams, Robotics, IEEE Transactions on
28 (1) (2012) 158–171.

42

[64] Y. Chen, X. Ding, A. Stefanescu, C. Belta, A formal approach to deploy-
ment of robotic teams in an urban-like environment, in: A. Martinoli,
F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E.
Parker, K. Sty (Eds.), Distributed Autonomous Robotic Systems, Vol. 83 of
Springer Tracts in Advanced Robotics, Springer Berlin Heidelberg, 2013,
pp. 313–327.

[65] R. Luna, K. Bekris, Network-guided multi-robot path planning in discrete
representations, in: Intelligent Robots and Systems (IROS). IEEE/RSJ In-
ternational Conference on, 2010, pp. 4596–4602.

[66] D. Herrero-Perez, H. Matinez-Barbera, Decentralized coordination of au-
tonomous agvs in flexible manufacturing systems, in: Intelligent Robots
and Systems. IROS. IEEE/RSJ International Conference on, 2008, pp.
3674–3679.

[67] S. Nouyan, A. Campo, M. Dorigo, Path formation in a robot swarm: Self-
organized strategies to find your way home, Swarm Intelligence 2 (1)
(2008) 1–23.

[68] A. Kamagaew, J. Stenzel, A. Nettstrater, M. ten Hompel, Concept of cel-
lular transport systems in facility logistics, in: Automation, Robotics and
Applications (ICARA). 5th International Conference on, 2011, pp. 40–45.

[69] F. Zambonelli, M. Mamei, Spatial computing: An emerging paradigm for
autonomic computing and communication, in: M. Smirnov (Ed.), Auto-
nomic Communication, Vol. 3457 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2005, pp. 227–228.

[70] J. Beal, J. Bachrach, Infrastructure for engineered emergence on sensor/ac-
tuator networks, Intelligent Systems, IEEE 21 (2) (2006) 10–19.

[71] J. Bachrach, J. Beal, J. McLurkin, Composable continuous-space programs
for robotic swarms, Neural Computing & Applications 19 (2010) 825–847.

[72] C. Johnen, G. Alari, J. Beauquier, A. Datta, Self-stabilizing depth-first to-
ken passing on rooted networks, in: M. Mavronicolas, P. Tsigas (Eds.),
Distributed Algorithms, Vol. 1320 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 1997, pp. 260–274.

[73] A. K. Datta, C. Johnen, F. Petit, V. Villain, Self-stabilizing depth-first token
circulation in arbitrary rooted networks, Distributed Computing 13 (2000)
207–218.

[74] J. Beauquier, S. Cantarell, A. Datta, F. Petit, Group mutual exclusion in tree
networks, in: Parallel and Distributed Systems, 2002. Proceedings. Ninth
International Conference on, IEEE Computer Society, 2002, pp. 111–116.

[75] A. Bui, A. Datta, F. Petit, V. Villain, Snap-stabilization and pif in tree net-
works, Distributed Computing 20 (2007) 3–19.

43

[76] A. Datta, S. Devismes, F. Horn, L. Larmore, Self-stabilizing k-out-of-l ex-
clusion on tree networks, in: Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, 2009, pp. 1–8.

[77] C. Belta, L. Habets, Controlling a class of nonlinear systems on rectangles,
Automatic Control, IEEE Transactions on 51 (11) (2006) 1749–1759.

[78] L. Habets, P. Collins, J. van Schuppen, Reachability and control synthe-
sis for piecewise-affine hybrid systems on simplices, Automatic Control,
IEEE Transactions on 51 (6) (2006) 938–948.

[79] M. Kloetzer, C. Belta, A fully automated framework for control of lin-
ear systems from temporal logic specifications, Automatic Control, IEEE
Transactions on 53 (1) (2008) 287–297.

[80] B. Baker, E. Grosse, C. Rafferty, Nonobtuse triangulation of polygons, Dis-
crete & Computational Geometry 3 (1988) 147–168.

[81] M. Bern, S. Michell, J. Ruppert, Linear-size nonobtuse triangulation of
polygons, Discrete & Computational Geometry 14 (1995) 411–428.

[82] H. Maehara, Acute triangulations of polygons, European Journal of Com-
binatorics 23 (1) (2002) 45–55.

[83] H. Mohanty, G. P. Bhattacharjee, A distributed algorithm for edge-disjoint
path problem, in: Proceedings of the Sixth Conference on Foundations of
Software Technology and Theoretical Computer Science, Springer-Verlag,
London, UK, UK, 1986, pp. 344–361.

[84] R. Ogier, V. Rutenburg, N. Shacham, Distributed algorithms for comput-
ing shortest pairs of disjoint paths, Information Theory, IEEE Transactions
on 39 (2) (1993) 443 –455.

[85] S.-J. Lee, M. Gerla, Split multipath routing with maximally disjoint paths
in ad hoc networks, in: Communications. ICC. IEEE International Confer-
ence on, Vol. 10, 2001, pp. 3201–3205.

[86] M. Marina, S. Das, On-demand multipath distance vector routing in ad
hoc networks, in: Network Protocols. Ninth International Conference on,
2001, pp. 14–23.

[87] L. Tassiulas, A. Ephremides, Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop
radio networks, Automatic Control, IEEE Transactions on 37 (12) (1992)
1936–1948.

[88] B. Awerbuch, T. Leighton, A simple local-control approximation algo-
rithm for multicommodity flow, in: Foundations of Computer Science.
Proceedings., 34th Annual Symposium on, IEEE, 1993, pp. 459–468.

44

[89] L. Ni, P. McKinley, A survey of wormhole routing techniques in direct
networks, Computer 26 (2) (1993) 62–76.

[90] T. T. Johnson, Fault-tolerant distributed cyber-physical systems: Two case
studies, Master’s thesis, Department of Electrical and Computer Engi-
neering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
(May 2010).

45

	1 Introduction
	2 Overview and Physical System Model
	2.1 Cells and Partitioning
	2.2 Neighbors and Communications
	2.3 Entities and Colors
	2.4 Safety and Transfer Regions
	2.5 Geometric Assumptions on Environment and Its Partition

	3 Distributed Traffic Control Protocol
	3.1 Preliminaries
	3.2 Transition System for each Cell
	3.3 Actions and the Composed System
	3.3.1 Route Subroutine
	3.3.2 Lock Subroutine
	3.3.3 Signal Subroutine
	3.3.4 Move Subroutine

	4 Safety and Liveness of Distributed Traffic Control
	4.1 Summary of Results
	4.2 Safety and Collision Avoidance
	4.3 Stabilization of Spanning Routing Trees
	4.4 Scheduling Entities through Color-Shared Cells
	4.5 Progress of Entities towards Targets

	5 Simulation Experiments
	5.1 Single-color throughput without failures as a function of rs, l, v
	5.2 Single-color throughput without failures as a function of the path
	5.3 Single-color throughput under failure and recovery of cells
	5.4 Multi-color throughput as a function of the number of intersecting cells
	5.5 Multi-color throughput as a function of the number of intersecting colors

	6 Related Work
	7 Discussion
	7.1 Self-Stabilizing Mutual Exclusion and Distributed Snapshot Algorithms
	7.2 Other Failure Classes
	7.3 General Triangulations and Affine Dynamics
	7.4 Inter-Cell Entity Motion Coupling
	7.5 Insufficiency of Disjoint Routing Paths
	7.6 Back-Pressure and Wormhole Routing

	8 Conclusion
	9 Acknowledgments

