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The Simplex Architecture ensures the safe use of an unverifiable complex/smart controller by using it in
conjunction with a verified safety controller and verified supervisory controller (switching logic). This ar-
chitecture enables the safe use of smart, high-performance, untrusted, and complex control algorithms to
enable autonomy without requiring the smart controllers to be formally verified or certified. Simplex incor-
porates a supervisory controller that will take over control from the unverified complex/smart controller if
it misbehaves and use a safety controller. The supervisory controller should (1) guarantee the system never
enters an unsafe state (safety), but should also (2) use the complex/smart controller as much as possible
(minimize conservatism). The problem of precisely and correctly defining the switching logic of the super-
visory controller has previously been considered either using a control-theoretic optimization approach, or
through an offline hybrid systems reachability computation. In this work, we show that a combined online/of-
fline approach that uses aspects of the two earlier methods along with a real-time reachability computation,
also maintains safety, but with significantly less conservatism, allowing the complex controller to be used
more frequently. We demonstrate the advantages of this unified approach on a saturated inverted pendulum
system, where the verifiable region of attraction is over twice as large compared to the earlier approach. Ad-
ditionally, to validate the claims that the real-time reachability approach may be implemented on embedded
platforms, we have ported and conducted embedded hardware studies using both ARM processors and At-
mel AVR microcontrollers. This is the first ever demonstration of a hybrid systems reachability computation
in real-time on actual embedded platforms, and required addressing significant technical challenges.
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1. INTRODUCTION
Modern cyber-physical systems are large complex systems of systems, where argu-
ments about the behavior of the whole system rely on guarantees about the individual
components. Individual components, however, may be designed using machine learn-
ing methods such as neural networks that are currently not amenable to formal anal-
ysis, or the components may simply be too large and complex for complete verification.
As such autonomy is incorporated into these increasingly smart systems that have the
ability to learn from their environments and interactions through sophisticated com-
plex/smart controllers, approaches are necessary to provide guarantees about their
behavior.

One approach to provide formally verified behavior despite the use of unverified,
complex, and smart control logic is the Simplex Architecture [Sha 2001]. Similar to
how a driving instructor’s car may have two steering wheels and two sets of brakes,
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Fig. 1: The Simplex Architecture pro-
duces a verified system despite the use
of an unverified complex/smart con-
troller. The decision module should
switch between the controllers to pro-
vide overall system safety.

Operational
Constraints

Property
Violation
Region

Distance d

xTP x<1
Complex 

Controller
Region

Fig. 2: The LMI Simplex design ap-
proach uses switching logic based on
an ellipsoid within the system con-
straints in order to produce a verified
system.

a Simplex system contains two controllers and supervisory switching logic. As long
as the instructor intervenes to prevent dangerous situations, the untrusted student is
allowed to drive. Similarly in Simplex, an unverified controller can actuate the system,
as long as the verified one takes over quickly at potentially unsafe times.

In the Simplex Architecture, shown in Figure 1, unverified control logic (the com-
plex/smart controller) is wrapped with a verified controller (the safety controller) and
switching logic (the decision module). The complex/smart controller typically has bet-
ter performance, or is concerned with mission critical requirements, whereas the safety
controller is designed with simplicity and provability in mind, and may concern itself
only with safety-critical aspects. When the system is in danger of entering an unre-
coverable state, the decision module must switch control to the safety controller. In
this way, the complex/smart controller can be used while still maintaining the formal
guarantees of the safety controller. The key challenge when designing a system with
the Simplex Architecture is to properly create the decision module logic.

It is easy to design safe decision module switching logic; one can simply always use
the safety controller. This is undesirable, however, as mission-critical objectives might
be delayed or ignored since the complex/smart controller is never used. The key chal-
lenge, which is the focus of this paper, is to reduce the conservatism in the decision
module design. Control should not be switched too late, though, as the safety controller
may not be able to safely recover the system.

In earlier Simplex designs, the switching logic was designed in one of two ways.
From a control theoretic perspective, verified switching logic can be synthesized from
the solution of a linear matrix inequality (LMI) along with the system dynamics and
constraints [Seto and Sha 1999]. Alternatively, approaches based on hybrid systems
reachability can be used to produce a provably safe decision module [Bak et al. 2011].
These earlier approaches will be reviewed in Section 2. In this paper, we propose the
use of a unified approach, where the offline LMI result is combined with an online
reachability computation to produce a significantly less conservative Simplex system
that is still safe. We elaborate on this approach and prove its safety in Section 3.

The proposed approach requires computing reachability online for short time inter-
vals. Previous hybrid systems reachability algorithms, however, were not designed for
real-time computation and furthermore almost always require the use of numerous
complex libraries for either performing simulations or for representing sets of reach-
able states as some geometric data structure (such as support functions, polytopes,
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zonotopes, symbolic expressions, etc.). For this reason, in Section 4, we propose a real-
time reachability algorithm based on mixed face lifting [Dang 2000] that is compatible
with the imprecise computation model in the real-time scheduling literature [Lin et al.
1987]. Real-time reachability has applications beyond Simplex, and is presented as a
general online reachability approach. Next, we evaluate the proposed unified Simplex
design in Section 5, on both x86 and embedded microprocessors. In order to provide
a direct comparison, we use the existing system model from earlier Simplex work of
an inverted pendulum system with saturation. The run-time approach significantly
expands the space where the complex/smart controller may be used. Other research
efforts related to Simplex and reachability are then presented in Section 6, followed by
conclusions and directions for future work in Section 7.

2. BACKGROUND AND CONTRIBUTIONS
There have been several verified design methodologies for systems that use the Sim-
plex Architecture. Before going into their details, we first present useful definitions.

The system is defined with a set of operational constraints, such as limits of ac-
tuators, physical restrictions, invariant safety properties that cannot be violated, or
linearization boundaries where the model is considered valid.

DEFINITION 1. States that do not violate any of the operational constraints are
called admissible states. Those that violate the constraints are called inadmissible
states.

From this definition, we can define the set of states that are recoverable for a particular
control strategy, assumed to be a given safety controller in the Simplex architecture.

DEFINITION 2. The set of recoverable states is a subset of the admissible states,
such that if the given safety controller is used from these states, all future states will
remain admissible.

The recoverable states are used in the switching rule instead of the admissible states
due effectively to inertia in the system. That is, they are used to ensure that the safety
controller and actuators have enough time to prevent the system from leaving the
admissible states. Further, the intuition of defining the recoverable states as a subset
of the admissible states is as follows. To enhance performance, we wish to stay within
a small subset of highly desirable admissible states. The set of recoverable states is
the subset of the set of admissible states that a safety control is guaranteed not to
leave. However, the safety controller may not be able to keep the system inside the
subset of recoverable states, namely the desirable states, and hence the complex/smart
controller is needed. Their relation is illustrated in Figure 2, where the white ellipsoid
is the recovery set.

With these definitions, we now describe two earlier approaches for verified Simplex
design. The first is based on solving linear matrix inequalities (LMIs), and the second
is based on reachability analysis of hybrid systems.

2.1. Verified Design using LMIs
The first proposed way to design a verified decision module is based on solving linear
matrix inequalities (LMIs) [Seto and Sha 1999; Boyd et al. 1994], which has been used
to design Simplex systems as complicated as automated landing maneuvers for an F-
16 [Seto et al. 1999]. In this approach, system dynamics are approximated by a linear
model using the standard control-theoretic approach, where ẋ = Ax + Bu for state
vector x and input u.

In this approach, the operational constraints, as well as saturation limits are ex-
pressed as linear constraints in an LMI. These constraints, along with linear dynam-
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ics for the system are input into a convex optimization problem that produces both
linear proportional controller gains K as well as a positive-definite matrix P . The con-
troller produced is a linear-state feedback controller, u = Kx, yielding the closed-loop
dynamics ẋ = (A+BK)x. Given state x, when input Kx is used, the P matrix defines
a Lyapunov potential function (xTPx) which is positive-definite with negative-definite
derivative (so it is monotonically decreasing over time), thus guaranteeing stability of
the linear system using Lyapunov’s direct or indirect (if the plant is nonlinear and was
linearized) methods. Furthermore, the matrix P is constructed by the method such
that it defines an ellipsoid in the state space where all the constraints are satisfied
when xTPx < 1. Since the states where saturation occurs were used as constraints
in the method, any states inside the ellipsoid result in control commands that are not
beyond the actuator limits (where saturation would occur).

In this way, when the gains K define the safety controller, the ellipsoid of states
xTPx < 1 is a subset of the recoverable states. The situation is shown visually in Fig-
ure 2. The feasible region is a subset of the admissible states defined by the input
constraints (saturation), as well as the operational constraints. The stabilizable region
(also known as the region of attraction) is the region of the state-space within which a
given controller can stabilize the system. For the purpose of LMI-Simplex, this is also
known as the recoverable region or the recoverable states as defined in Definition 2.
For linear systems with constraints, this region may be under-approximated by solving
an LMI of the determinant maximization form [Vandenberghe et al. 1998]. For a ma-
trix that describes an ellipsoid xTPx = 1, this has the effect of maximizing the product
of the radii of the ellipsoid (which is related to the determinant of the matrix P ). The
volume of an ellipsoid, then, is proportional to this product. In this way, the optimiza-
tion is maximizing the volume of the ellipsoid such that all states inside do not leave
the ellipsoid, and all the constraints are satisfied for every state in the ellipsoid.

This approach is used to determine the proper behavior of the decision module. As
long as the system remains inside the ellipsoid, any unverified, complex/smart con-
troller can be used. If the state approaches the boundary of the ellipsoid, control can
be switched to the safety controller that will drive the system towards the equilibrium
point where xTPx = 0. Care must be taken to ensure control is switched to the safety
controller before the state leaves the ellipsoid. If the decision module simply checks
the Lyapunov potential of the current state, then, once the state is outside of the ellip-
soid, the system is not guaranteed to be recoverable without violating the operational
constraints. Thus, a smaller subset of the state space must be used to define the states
where the complex controller is allowed to actuate the system. In Figure 2, the distance
d defines this extra buffer that can be determined offline by computing the maximum
gradient for any control command inside the ellipsoid, multiplied by the period of the
decision logic. As long as d is no smaller than the maximum distance traveled in the
state-space over the time of one full control period, then d is large enough to ensure
switching to the safety controller can recover the system.

For safety it is sufficient to consider only a single switch to the safety controller and
never switching back. If switching back is desired, this should not be done arbitrarily
as the composed switched system might be unstable. Specifically, the safety controller
should be used at least until a state within the complex/smart controller region (as
shown in Figure 2) is reentered, before switching back to the complex/smart controller.

2.2. Verified Design using Reachability
An alternative method for verified Simplex design is based on reachability analysis
of hybrid systems [Bak 2013b], which has been used, for example, to create a Sim-
plex system to prevent off-road vehicle rollover [Bak et al. 2010]. In this approach, the
dynamics are defined using a hybrid automaton, which is a formal model for a sys-
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tem with both continuous and discrete behaviors. Mathematically, a hybrid automa-
ton [Alur et al. 1995] is a tuple, H = (X , L,X0, I, F, T ), where:

— X is the set of continuous states. For a system with n real-valued dimensions, the
continuous state is Rn.

— L is the set of discrete states (locations). The state of a hybrid automaton is an
element of X = L×X .

— X0 is a set of initial states, which is a subset of X.
— I is a set of invariants that defines the continuous states that are possible for each

location. It is a function L→ 2X .
— F is a set of flows, each of which defines the differential equations in each location.

It is a function X → 2R
n

.
— T is a set of discrete transitions, each of which defines switching between discrete

locations. A transition is composed of a guard condition for when the transition is
enabled, and a reset map that can reassign the continuous states from the prede-
cessor mode to the successor mode. In general, it is a relation T ⊆ X ×X.

Semantically, a hybrid automaton behaves by advancing time according to the differ-
ential equations defined in the mode of the current discrete state l ∈ L, then allowing
any enabled transitions to be taken, and repeating, yielding a sequence of states called
an execution. A state x ∈ X is reachable is there exists a finite execution ending in
x. The set of reachable states contains every reachable state. The guard conditions on
the outgoing transitions define when the location can change. The invariants of the
locations can be used to force transitions by preventing time from elapsing further in
the current mode. Together, these allow nondeterminsim in the discrete behavior. A
hybrid automaton can be graphically depicted as a finite-state machine with differen-
tial equations in each discrete state. The model also allows for nondeterminism in the
continuous behavior because a single state x ∈ X may be associated a set of derivatives
for each variable, via the set of flows F .

This modeling framework is very expressive, and computing exactly the sets of states
a hybrid automaton may enter, called the reachable set of states, is undecidable [Hen-
zinger et al. 1995]. Thus, analysis of hybrid systems often restricts either the contin-
uous dynamics or the discrete dynamics [Alur and Dill 1994; Lafferriere et al. 2000;
Branicky 1998]. In this paper, the reachability algorithm proposed in Section 4 con-
siders restricted hybrid automata models where (a) the state invariants are disjoint
and cover the continuous states Rn, (b) there are no reset maps in the transitions be-
tween discrete states, and (c) the guards of incoming transitions are defined by the
state invariants.

In addition to restrictions on dynamics, practical reachability approaches often over-
approximate the set of reachable states [Kapinski and Krogh 2002; Dang et al. 2010;
Frehse et al. 2011], which is sufficient for proving safety properties. If a sound over-
approximation of the reachable set of states for a hybrid automaton does not contain
any unsafe states, then the system is verified as safe since no unsafe states are in the
actual reachable set of states either. That is, the system is safe if the intersection of the
over-approximation of the set of reachable states and the set of unsafe states is empty.
This approach may, however, lead to spurious counterexamples where the error due to
the over-approximation contains unsafe states, but the actual reachable set of states
does not.

We define REACH∞(x,HA) to be the set of states reached in any amount of time from
state x in hybrid automaton HA, REACH≤t(x,HA) is the set of states reached from x in
up to t time, and REACH=t(x,HA) is the set of states reached after exactly t time has
elapsed. Also, we naturally extend REACH to initial sets of states, where the resultant
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set of reachable states is the union of the set of reachable states from each state in the
initial set.

In terms of Simplex design, the behavior of an optimal decision module can be de-
fined in terms of reachability. Optimal here means that the given safety controller
takes over only if it has to; if it did not take over, then the system remains in admis-
sible states and can enter the subset of recoverable states that can be pre-computed
offline e.g., using LMIs. Furthermore, it never takes over when the complex/smart
controller could safely be used. The switching condition (formalized as the transition’s
guard and invariant in the hybrid automaton) between the safety controller and com-
plex/smart controller modes is defined using the following theorem [Bak et al. 2011].

THEOREM 3. The optimal switching condition for Simplex is given when, at
every control iteration, the complex/smart controller is used if and only if
(1) REACH≤δ(x, CC) ∩ U = ∅ and (2) REACH∞(REACH=δ(x, CC), SC) ∩ U = ∅, where
x ∈ X is the current state and U ⊆ X is the set of inadmissible (unsafe) states.

The inner REACH=δ in part (2) is the time-bounded reachability of the system for one
decision logic switching interval time, δ, while using the complex/smart controller (CC).
The outer REACH∞ is the infinite-time reachability for the system under control of the
safety controller (SC).

Intuitively, this check is examining what happens if the complex/smart controller
is used for a single control interval of time δ, and then the safety controller is used
thereafter. If this set of states contains an inadmissible state (either before the switch
as in part (1) or after as in part (2)), then the complex/smart controller cannot be
used for one more control interval, and instead the safety controller must be used
right away. Assuming the system starts in a recoverable state, this guarantees it will
remain in the recoverable set for all time.

Several factors prevent the direct use of Theorem 3. The first is that the reason to
apply Simplex is that a precise model of the complex/smart controller is not available,
but rather an over-approximation must be used which can be computed, for exam-
ple, based on the plant model and actuator limits. Second, as discussed before, com-
puting reachability exactly for a general hybrid automaton is undecidable. However,
estimates of the set of recoverable states (Definition 2), can still be computed using
over-approximations, where the conservativeness of the resultant decision module de-
pends on the amount of over-approximation. Third, the switching condition is defined
in terms of a specific state x, which is not useful for offline computation since every
state would need to be enumerated. Instead, the condition can be rewritten in terms
of backwards reachability from the set of inadmissible states, which can then be com-
puted offline [Bak et al. 2011; Bak 2013b]. As with the LMI approach, the output is a
set of states which forms a guaranteed subset of the recoverable states.1. These con-
siderations are combined in order to provide a condition for effectively computing the
decision module logic as follows.

COROLLARY 4. A safe switching condition for Simplex is given when, at every
control iteration, the complex/smart controller is used if the current state x /∈
BACKREACH∗≤δ(BACKREACH∗(U, SC), CC′).

Here, BACKREACH∗ is an over-approximation of the exact set of backward reachable
states for all time (that is, to a fixed-point). The inner BACKREACH∗ defines the states

1The set of backward reachable states can be computed for deterministic systems (including linear systems)
by negating the differential equations and inverting the transitions in the hybrid automaton and using
standard forward reachability techniques. This technique is known as back-reachability.
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where, if the system were to start from the set of unsafe states U and use the safety
controller, it could still violate one or more of the safety constraints. Then, the outer
BACKREACH∗≤δ is the set of states that, within one control interval, can reach an un-
recoverable state. Since the unrecoverable states contain the unsafe states, and since
the outer BACKREACH∗≤δ checks up to δ time rather than exactly δ time, a separate
condition is not needed to check if the the complex/smart controller itself reaches the
unsafe states, as in part (1) of Theorem 3.

The pessimism in the resultant decision logic depends on both the accuracy of the
reachability computation as well as on how much CC′ over-approximates the exact
complex/smart controller model CC. The condition in Corollary 4 is more useful than
the one in Theorem 3 because it can be effectively computed using existing hybrid sys-
tems reachability algorithms. The set of states on the right-hand side can be computed
offline and encoded in some form (for example, using linear bounds [Bak 2009]) and
then, online, the decision module need only check if the current state exists within the
encoded set of states. If it does, then the safety controller must be immediately used.
If it does not, then the complex/smart controller can be used for one control interval,
after which the condition will be checked again on the new state.

2.3. Contributions
In this paper, building on our prior work [Bak et al. 2014], we show how to combine
the LMI-based Simplex method with a real-time reachability method into a unified
framework to ensure safety while drastically decreasing the overconservative use of
the safety controller. Specifically, if it is possible to use the set of recoverable states
computed using the LMI method for the switching condition, we do so. If not and
the system is at a state outside the recoverable states based on the LMI ellipsoids,
then we try to check safety using a novel real-time reachability method, in contrast to
the previous offline reachability approach. Together, we illustrate how this unified ap-
proach gives both real-time guarantees and reduces conservatism of when the safety
controller is used. A main contribution of our approach is the first ever demonstra-
tion of a reachability method in real-time, enabled by our careful design and imple-
mentation that does not use any dynamic memory allocation nor rely on sophisticated
(non-portable) libraries that many other methods use, such as the Parma Polyhedral
Library (PPL) [Bagnara et al. 2008], recent satisfiability-modulo theories (SMT) ap-
proaches [Gao et al. 2013], or validated integration tools [Duggirala et al. 2013]. To
validate the feasibility of actually implementing the method in real-time embedded
hardware, we have ported our prototype method from [Bak et al. 2014] that was im-
plemented on x86-64 platforms to several embedded platforms (namely a 32-bit ARM-
based system and an 8-bit Atmel AVR ATmega32u4-based Arduino system). This ef-
fort validates our claims from [Bak et al. 2014], which were not previously validated in
embedded hardware. The key result of this paper is the first ever demonstration of a hy-
brid systems reachability algorithm implemented in embedded hardware that can meet
real-time guarantees, which required carefully designing the reachability algorithm as
described in this paper. We have additionally added significant further details of the
approach and case study to the paper over [Bak et al. 2014], including code snippet
examples for the case study.

3. UNIFIED APPROACH FOR SIMPLEX DESIGN
The two existing approaches for Simplex design previously discussed each have their
own limitations. The LMI approach works when the system model is linear. If there
are actuator limits, and the input to the actuators u (from ẋ = Ax+ Bu) can saturate,
the output of the optimization will be a set of states where the command used by the
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safety controller is within the saturation limits. This is done by adding a constraint
based on the state-feedback gain as part of the optimization (the input is u = Kx,
which is bounded by the linear constraints Kx ≤ MAX_INPUT and Kx ≥ MIN_INPUT).

The set of states output by the LMI approach is safe, but may be pessimistic, since
a saturated safety controller may still be able to recover the system. Furthermore,
the resultant switching condition is based on a Lyapunov function which—due to con-
vexity and quadratic restrictions required in the optimization algorithms—has level
sets that are ellipsoidal. This is a sufficient but not necessary condition for stability
and therefore the switching set is almost certainly conservative. We demonstrate this
pessimism in our evaluation in Section 5.

The reachability-based Simplex approach is not restricted to linear systems, and can
have its conservatism decreased by increasing the accuracy of the reachability compu-
tation2. One downside of this approach is that over-approximation error occurs from
the need to abstract the complex/smart controller hybrid automaton by a hybrid au-
tomaton which takes into account any possible complex/smart controller command. A
second issue is the difficulty of succinctly and accurately encoding the result of the com-
putation, which in general may be a large non-convex set in many dimensions. Lastly,
hybrid systems reachability methods introduce over-approximation error, which can
be large when the initial set of states is large and the reachability time bound is large.
The back-reachability formulation of Theorem 3 includes a time-unbounded reacha-
bility computation from the set of inadmissible states, which can require significant
computation time.

We now present an alternative design for a verified Simplex system. The proposed
technique makes use of aspects from both of the previous verified design approaches
in order to overcome some of their individual limitations.

First, we formalize the connection of the ellipsoid from of the LMI approach with
that of a reachability computation of a hybrid automaton (which by the ellipsoid’s con-
struction remains in a single, unsaturated mode):

LEMMA 5. The output of the LMI approach, the potential function P and controller
gains K, define a safety controller SC and a subset of the recoverable set of states R =
{x|xTPx < 1}, where REACH∞(R, SC) ∩ U = ∅.
This is true because the potential function is guaranteed to satisfy the constraints
passed to the LMI solver, including avoidance of the inadmissible states, when
XTPX < 1. When the controller gain vector K output by the approach is used (which
defines the safety controller update u = Kx), the potential function is strictly decreas-
ing over time (i.e., it is a Lyapunov function). Therefore, it is guaranteed for unbounded
time that any state starting inside R will remain inside R. Since there are no inad-
missible states in R, no inadmissible states will ever be reached.

We can now define an alternate condition for safe switching logic:

THEOREM 6. A safe switching condition for Simplex is given when, at ev-
ery control iteration, the complex/smart controller is used if, for some α time,
(1) REACH≤δ(x, CC) ∩ U = ∅, (2) REACH≤α(REACH=δ(x, CC), SC) ∩ U = ∅, and
(3) REACH=α(REACH=δ(x, CC), SC) ⊆ R.

PROOF. Intuitively, this switching condition states that the complex/smart con-
troller may be used if: (1) the complex/smart controller cannot reach an unsafe state
before the next decision interval (at time δ), (2) if the safety controller takes over at
the next decision interval, it will avoid unsafe states until δ + α times passes, and (3)
after δ + α time, a state in R will be reached.

2Over-approximating reachability approaches typically have an accuracy / computation time trade off.
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More formally, assume by contradiction that this is not a safe switching condition,
so an inadmissible state is reached at some time. This time will be either less than δ,
more than δ and less than δ + α, or more than δ + α. The first two of these cases are
ruled out directly by conditions (1) and (2), so only the third case needs to be examined.

From Lemma 5 REACH∞(R, SC) ∩ U = ∅. If R′ ⊆ R, REACH∞(R′, SC) ⊆
REACH∞(R, SC), then the smaller set of states R′ = REACH=α(REACH=δ(x, CC), SC) ⊆
R will also satisfy the condition REACH(R′, SC)∩U = ∅. Therefore, every state reached
after δ + α is also admissible.

Since all three cases do not contain an inadmissible state, our assumption that an
inadmissible state is reached is violated, yielding a contradiction, and therefore this is
a safe switching condition.

In summary, the proposed approach is as follows: when the system is well-inside the
ellipsoid that represents the largest safe sublevel set of the Lyapunov function, we do
not need to invoke an extensive reachability analysis using the safety controller, as
we know the state is recoverable (even for the next control period). When the system
state is near the boundary of the ellipsoid, the reachability analysis is used to allow
the system to cross the boundary of the ellipsoid as long as the reachability compu-
tation shows that (1) no system constraints are violated when this is done (i.e., none
of the reachable states violate a system constraint), and (2) the state can be guaran-
teed to be brought back into the ellipsoid (i.e., the reachable states return inside the
ellipsoid). This allows the complex controller to be used in a larger region compared
with the LMI-approach because it can soundly reason about the behavior of the system
outside of the ellipsoid (remember that the Lyapunov function from the LMI method
is only a sufficient condition for safe switching). This condition can also be less conser-
vative than the pure reachability approach because the computation needed is from
a single state x, rather than the possibly large set of inadmissible states. Addition-
ally, it involves reasoning over a finite-time horizon (α + δ), rather than infinite-time
reachability needed in the method based on Theorem 3.

There are still two issues which need to be addressed before the condition in Theo-
rem 6 is usable. First, since we cannot compute reachability exactly for complex hybrid
automata due to decidability reasons [Henzinger et al. 1995], we will instead compute
an over-approximation. This will result in a conservative switching set depending on
the accuracy of the computation. Second, this computation is defined from the system’s
current state x, which is not available offline. In order to resolve this issue, we propose
an online, real-time reachability computation method in the next section. After that,
in Section 5, we will evaluate the conservatism in the switching set due to the over-
approximation in the proposed algorithm.

4. REAL-TIME REACHABILITY ALGORITHM
Hybrid systems reachability computations have been traditionally computed offline,
and are both memory and processor intensive operations. In Section 3, we have il-
lustrated several reasons to perform the reachability computation at runtime. This
requires a reachability algorithm capable of use within a real-time system. In this sec-
tion, we describe a real-time reachability algorithm with the following key features:

— High-performance for a quick runtime for short reachability times.
— The ability to check the three conditions from Theorem 6.
— No dynamic data structures (or large memory preallocation) or recursion, for us-

ability in a real-time system.
— No dependence on complex external libraries (only the C standard library) that most

if not all other reachability approaches use.
— Iterative improvement in accuracy with increased computation time.
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The last point is important because it allows the reachability task to be scheduled in
the framework of imprecise real-time system computation [Liu et al. 1994]. In this
framework, each task produces a partial result that is usable and improved upon as
more computation time is added (this is sometimes called an anytime algorithm). In
particular, the proposed reachability algorithm is based on the milestone approach [Lin
et al. 1987], where partial results are recorded at various points during the execution,
and the last-recorded values are used when the final result is needed. This is in con-
trast to the traditional real-time systems execution model where each task has a fixed
worst-case execution time (WCET) [Liu and Layland 1973].

We now present the real-time reachability algorithm that is suitable for real-time,
online, computation that satisfies the above requirements. We distinguish between
reach-time, which is the time we are computing reachability for, and runtime, which
is the duration of (wall) time the method is allowed to run. Recall that the types of
hybrid systems we consider are ones where the state invariants are disjoint and cover
the continuous state Rn, there are no reset maps in the transitions between discrete
states, and the guards of incoming transitions are defined by the state invariants. In
these piecewise systems, the state of the hybrid automaton can be determined solely
by the continuous state, although different differential equations can be used in dif-
ferent parts of the state space. This is applicable to many state-feedback continuous
systems with saturation (such as those using gain scheduling controllers) since the
states where saturation occurs are typically disjoint from the unsaturated states (be-
cause the actuator command is a function of the state), and the continuous states do
not jump along the saturation boundary.

To employ the real-time reachability algorithm, as in our earlier work [Bak et al.
2011], the user defines the system dynamics through a function (a function written
in the C language in this implementation) that returns the minimum and maximum
derivative in each dimension given an arbitrary box of the state space. The derivative
needed in the algorithm is always in the outward direction of the box of states being
tracked. The tracked box has 2n faces, where n is the number of dimensions. For each
of the n dimensions, these faces are represented by a minimum face, and a maximum
face. That is, there are total 2n minimum and maximum faces, each of which refers to
particular faces of a hyperrectangle used to represent portions of the set of reachable
states. If the minimum face is being considered, the minimum of the derivative is used,
as this may (but not necessarily so) push the tracked states outward from the hyper-
rectangle. If the maximum face is being considered, the maximum of the derivative
is used for the same reason. Nonlinear dynamics are permitted in this approach, so
long as the user-provided function maximizes or minimizes the nonlinear derivatives
within an arbitrary box. Notice that this does not require solving the differential equa-
tions (which is generally a harder problem), since the bounds are on the derivatives
themselves. Furthermore, we require the derivatives are defined in the entire state
space, and that they are bounded.

The real-time reachability algorithm is based on mixed face lifting [Dang and Maler
1998; Dang 2000]. This approach is a flow-pipe construction method, which means that
snapshots of the reachable set of states are computed at increasing points in reach-
time, and reasoning is done about which states can be encountered between snapshots.

To create a real-time implementation, we use boxes (n-dimensional hyper-
rectangles) as our representation of the set of states. Over long reach-times, this repre-
sentation can be problematic because, if the actual reachable set of states is not a box,
error is introduced by over-approximating it as one (called the wrapping effect [Moore
1966]). However, since we only need to compute reachability for short reach-times (δ+α
from Theorem 6), a simpler, faster, representation is preferred to better long-term error
control. In mixed face lifting, the dynamics along each face are over-approximated by
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Algorithm 1 The real-time reachability algorithm uses a desired reach-time step to
tune its runtime based on the available computation time.

1 Box currentBox := in i t ia lBox

3 while ( reachTimeRemaining > 0)
Box [ ] nebs = constructNeighborhoods ( currentBox , reachTimeStep )

5
crossReachTime := minCrossReachTime ( nebs )

7 advanceReachTime := min( crossReachTime , reachTimeRemaining )
currentBox := advanceBox ( nebs , advanceReachTime )

9
reachTimeRemaining := reachTimeRemaining − reachTimeToAdvance

11 end while

the maximum derivative along that face. The reach-time is then advanced uniformly
along all faces (i.e., in all directions).

We modify the original mixed face lifting algorithm to make it usable in a real-
time setting. In particular, instead of using the desired error in order to control the
neighborhood width around each face [Dang 2000], we use a desired reach-time step
to control neighborhood widths. This parameter allows us to tune the total number
of steps used in the method, and therefore alter the runtime. After the given reach-
time is obtained, the desired step size is decreased (which reduces the width of the
neighborhoods, and therefore the derivative error at each step) and the computation is
restarted. In our algorithm, initially we use a time step which is some factor, say one
tenth, of the desired reach time. The decrease is computed by dividing the time step
by two. In this way, the algorithm will produce progressively more accurate answers,
for as much runtime as the task is given.

The high-level algorithm, given a fixed desired step size (reachTimeStep), is given
in Algorithm 1. For a box, there are two faces for every dimension (one for each of the
minimum and maximum faces along that dimension), and there are two corresponding
face neighborhoods (regions where the face may advance through during the current
time step) for every dimension. The neighborhoods, nebs, are constructed based on the
desired reach-time step. This neighborhood construction process will be elaborated on
shortly.

Next, the minimum reach-time for any point along each face to cross the correspond-
ing neighborhood in the corresponding direction is computed. What this means is that,
for example in the two-dimensional example of Figure 3, the minimum reach-time for
any point along the left face of currentBox to cross to the left side of nebs[0] in the
x direction is computed, as well as the minimum reach-time for any point along the
right face to cross nebs[1], as well as the neighborhoods in the y directions, and then
the minimum of all of these is returned. This is computed by looking at the minimum
or maximum derivative within the box for each neighborhood (from the user-provided
derivative bounds function), as well as the width of the neighborhood along the corre-
sponding dimension.

Finally, the currentBox at the next reach-time step is computed based on the neigh-
borhoods and computed reach-time to advance (which may be reduced if it exceeds
reachTimeRemaining). This is done by advancing each face by the maximum deriva-
tive in the outward direction in its neighborhood (from the user-provided derivative
bounds function) multiplied by advanceReachTime.

The novel aspect of this face lifting reachability algorithm is that the widths of the
neighborhoods are tunable by the reachTimeStep parameter. The neighborhood con-
struction (the constructNeighborhoods function) proceeds in three steps:
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currentBox
nebs[0] nebs[1]

nebs[2]

nebs[3]y

x

Fig. 3: The neighborhood
widths are determined by
reachTimeStep and the
derivatives along the faces of
currentBox.

nebs[1]

Fig. 4: Although the derivative along the face
may be inward-facing, the derivative in the
neighborhood can still be outward facing. The
first condition of step 3 in the neighborhood
construction process checks for this and recon-
structs the neighborhoods if such a situation oc-
curs. Here, nebs[1] would be updated to an
outward-facing neighborhood, which would re-
quire subsequent reconstruction of the other
neighborhoods (because the edges overlap).

(1) The maximum outward derivative along each face of currentBox is computed. One
neighborhood is constructed for each face, where the width of the corresponding
neighborhood is based on the derivative (the width is the derivative multiplied by
the passed-in desired reachTimeStep).

(2) The neighborhood boxes are all constructed based on the computed widths, such
that the edges overlap as shown in Figure 3. We call a neighborhood constructed
on the inside of the corresponding face an inward-facing neighborhood (such as
nebs[1] in the figure).

(3) The outward derivatives in the constructed neighborhoods are computed with the
user-provided function. If either (1) an inward-facing neighborhood contains an
outward-facing derivative, or (2) a derivative has doubled in value since the previ-
ous derivative computation for that neighborhood (which initially is the flat neigh-
borhood), the width of the neighborhood is recomputed and the process repeats by
returning to step 2.

The check in step 3 ensures two things. The first condition is necessary in case a
derivative was inward-facing in a previously-constructed neighborhood, but outward-
facing in the new, larger neighborhood. This case is shown visually in Figure 4. The
second condition guarantees that the reach-time to progress from a point on the face
through the corresponding face neighborhood is at least reachTimeStep/2. Due to
this, we can bound the maximum number of iterations of the while loop as the desired
reach time divided by reachTimeStep/2. Since the edges of the neighborhoods over-
lap, the neighborhoods of the other faces need to be reconstructed as well, which is
why the algorithm backtracks to step 2.

The number of times the neighborhood construction backtracks from step 3 to step 2
is also bounded. This is because a face can flip from inward-facing to outward-facing
only once, and since it was assumed there is a maximum derivative in the state space,
the observed derivative can only double a finite number of times.

The imprecise computation version of the algorithm proceeds by running Algo-
rithm 1 repeatedly, decreasing reachTimeStep after each repetition. In our imple-
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mentation, after each execution reachTimeStep was halved, although strategies
other than halving are also possible (this is a trade off between the time between
milestones and the error reduction obtained at each iteration). When the deadline is
reached (or the real-time reachability task is stopped), the most recent reachability
result is used as the output. For this reason, the exact number of iterations of the
neighborhood construction loop is not too useful, as long as it has an upper bound, and
we can adjust it with reachTimeStep.

If the derivative doubles several times, the tracked box will be pessimistic, since
the conservatism comes from over-approximating a derivative in a neighborhood by
its maximum value. For this reason, we also set a threshold in the loop for how large
the tracked boxes are allowed to get (not shown), and if it is exceeded we immediately
halve reachTimeStep and restart the loop. If the number of backtracks to step 2 is
small (which is true in practice), each advancement of time takes O(n) where n is the
number of dimensions in the system.

From the four desired properties of a real-time reachability algorithm mentioned
earlier, this algorithm is quick (no exponential complexity operations), requires no dy-
namic memory or recursion, and can iteratively provide a better answer. In order to
satisfy the remaining desired condition, we need to provide the ability to check the
three conditions from Theorem 6. Rather than first computing the reachable set of
states and then checking the conditions in that set (which would require dynamic stor-
age to store the reachable set), we instead modify the core algorithm in Algorithm 1
to do the checks during the computation. Conditions (1) and (2) of the theorem deal
with the safety of reachable states at intermediate reach-times. This can be checked
inside the while loop by taking the convex hull of currentBox before and after the
advanceTime call, and passing that to a function which ensures the hull does not con-
tain a state which violates the system constraints. For checking condition (3), the final
currentBox value can be used. Furthermore, these checks can be done at each itera-
tion of the refinement; if a reachTimeStep is found such that the three conditions of
the theorem are satisfied, no further refinement is necessary (and the complex/smart
controller can be used).

5. EVALUATION
We now present an evaluation of the proposed methodology.3 The real-time reachabil-
ity approach computes the set of reachable states for the safety controller as depicted
in the automaton representing the Simplex architecture in Figure 5. We demonstrate
the method through two related case studies: a nonlinear inverted pendulum and a
linear inverted pendulum. As another benefit of the real-time reachability method de-
scribed in this paper, it can also work even if the LMI approach cannot be used. We
note that the LMI approach in general cannot be used for nonlinear systems, so its
application is limited. In order to directly show the advantage of the approach in the
linear case, we use the same case study that demonstrated the earlier, LMI-based
Simplex work [Seto and Sha 1999]. The linear inverted pendulum model is obtained
by linearizing the nonlinear inverted pendulum model, and overall, their results are
comparable and were used to validate against one another. Both models are briefly
discussed here, with more details on the nonlinear and linear models in the earlier re-
port [Seto and Sha 1999]. The system is an inverted pendulum with state constraints
and input saturation. The physical system is shown in Figure 6 and consists of a DC-
motor driven cart that moves along a 1-d track with a pendulum arm attached by an

3As it is difficult to present all the details necessary to replicate our results in the form of a paper, the source
code implementation of the real-time reachability algorithm and our models are available as supplementary
material and online at: http://www.verivital.com/rtreach/.
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Fig. 5: Hybrid automaton for the Simplex architecture on which the real-time reacha-
bility computation is performed for the safety controller mode, where a formal model
is available. Here ∆ is a control period, c is a timer, GS is a guard governing the transi-
tion from the safety to complex controllers, Gc is a guard governing the transition from
the complex to safety controllers, and FS and FC respectively denote the dynamics of
the overall closed-loop system when using the safety and complex controllers.

Fig. 6: An inverted pendulum system keeps a rod upright at an unstable equilibrium
point by controlling a cart at its base.

angular joint to the cart. The control objective is to keep the angle θ of the pendulum
arm at 0◦ measured from the vertical (i.e., to keep the arm upright).

There are four state variables: cart position p, cart velocity v = ṗ, pendulum arm
angle θ, and pendulum arm angular velocity ω = θ̇. We denote x as the state vector
and p as the position, seen together next in Equation 1:

x =


p

v

θ

ω

 =


p

ṗ

θ

θ̇

 , yielding the dynamics ẋ =


ṗ

p̈

θ̇

θ̈

 =


v

v̇

θ̇

ω̇

 . (1)

The system is subject to physical constraints. The range of p is between [−1, 1] me-
ters, ṗ is between[−1.0, 1.0] meters/second, θ is between [−15, 15]

◦, and θ̇ is uncon-
strained although the constraints on ṗ do impose limits on θ̇). We ignore static friction
(with respect to the cart wheels and ground, and with respect to the pendulum arm and
joint) and take the armature inductance (La = 18 millihenries) to be 0 henries hence
reducing the order of the system by making the armature current state variable Ia a
function of only Va. Without this simplification, two control states would be necessary.
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(a) (b) (c)

Fig. 7: Overapproximation of the set of reachable states computed by the real-time
reachability method for the nonlinear inverted pendulum model Equation 2 and Equa-
tion 3 for different amounts of computation runtime, 2 ms in (a), 6 ms in (b), and 20
ms in (c).

5.1. Nonlinear Inverted Pendulum
The inverted pendulum’s state evolves according to a nonlinear differential equation
ẋ = f(x, u). Specifically,

f(x, u) =


ṗ

p̈

θ̇

θ̈

 =


v

−
1
3 l

2m (C1+fc)− 1
2 lm cos (θ) (C2+fp)

D

ω

− M̄ (C2+fp)− 1
2 lm cos (θ) (C1+fc)

D

 . (2)

Here, Dl = 4M̄ − 3m, B̄ =
KgBm
r2 +

K2
gKiKb
r2Ra

, Bl =
KgKi
rRa

, M̄ =
m+M+(KgJm)

r2 , fc =

Bx v+Ax e
−Cx |v| sign (v), fp = Bθ ω+Aθ e

−Cθ |ω| sign (ω), D = l2m
(
M
3 + m

3 +
JmKg

3 r2

)
−

l2m2 cos (θ)2

4 , C1 = v
(
BmKg
r2 +

KbKg
2Ki

Ra r2

)
− lmω2 sin (θ)

2 , and C2 = − g lm sin (θ)
2 . The pen-

dulum model involves the following parameters: g is gravity, Ra is the armature resis-
tance, r is the driving wheel radius, Jm is the motor rotor inertia, Bm is the motor’s
coefficient of viscous friction, Bθ is the pendulum joint’s coefficient of viscous friction,
Ki is the motor torque constant, Kb is the motor back-e.m.f. constant, Kg is the gear
ratio, M is the cart mass, m is the pendulum arm mass, l is the pendulum arm length,
fc is the static friction force, and fp is the viscous friction force. After evaluating values
for constant parameters (the same as those used in [Seto and Sha 1999]), we have:

f(x, u) =


ṗ

p̈

θ̇

θ̈

 =


v

− 0.020833ω2 sin(θ)−0.059221v+0.25 cos(θ)(0.0001ω+2.45 sin(θ))
0.0625 cos(θ)2−0.604167

ω
0.000725ω+17.7625 sin(θ)−0.25 cos(θ)(−0.25 sin(θ)ω2+0.710657v)

0.0625 cos(θ)2−0.604167

 . (3)

As illustrated in Figure 7 by the decreasing size of the overapproximation of the set
of reachable states, the more runtime given to the real-time reachability algorithm,
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the more accurate the result (see also Figure 8 and Tables I, II, and III). These results
illustrate that the real-time reachability algorithm presented in this paper is effective
even for hybrid systems with nonlinear differential equations. Thus, the results are
widely applicable to many realistic systems.

5.2. Linearized Inverted Pendulum
As discussed in Section 5.1, the system is in general nonlinear, ẋ = f(x, u), but to
apply the LMI-Simplex approach as a part of the unified Simplex method described
in this paper, we next work with a model linearized around the origin, which is the
equilibrium point:

ẋ = Ax+Bu.

The linearization is justified since the control objective is to stabilize the system in a
neighborhood of the vertical equilibrium, defined in this coordinate system as θ = 0◦,
which is at the origin.

The plant system matrix and input vector used in Equation 5.2 are:

A =


0 1 0 0

0 −a22 −a23 a24

0 0 0 1

0 a42 a43 −a44

 and B =


0

b2

0

−b4

 , (4)

where a22 = 4B̄
Dl

, a23 = 3mg
Dl

, a24 = 6Bθ
lDl

, a42 = 6B̄
lDl

, a43 = 6M̄g
lDl

, a44 = 12M̄Bθ
ml2Dl

, b2 = 4Bl
Dl

,
and b4 = 6B1

lDl
, for all the parameters defined in Section 5.1. Using the parameters from

the earlier Simplex report [Seto and Sha 1999], the A and B matrices used in Equa-
tion 5.2corresponding to Equation 4 are:

A =


0 1 0 0

0 −10.95 −2.75 0.0043

0 0 0 1

0 24.92 28.58 −0.044

 and B =


0

1.94

0

−4.44

 . (5)

The system is stabilized by linear state feedback of the form ẋ = (A+BK)x. The
control input, u = Kx is the armature voltage of a DC-motor (Va) and is constrained
between [−4.95, 4.95] volts. Additionally, this control saturation prevents the system
from being globally stable. The safety controller is designed following the LMI-based
Simplex approach described in Section 2. The LMI approach outputs a set of gains for
the safety control K, such that when the input u = Kx is used, the system will remain
inside the ellipsoid also output by the method. Without saturation, the system evolves
according to ẋ = (A+BK)x.

The solution to this is x(t) = e(A+BKσ)tx0 , where x0 ∈ R4×1 is an initial condition
vector. Note that, as only θ and p are observable (in the control theoretic sense, but that
is, are measured by sensors), θ̇ and ẋ are constructed by the first-order approximations
θ̇(t) = [θ(t)−θ(t−mTs)]

mTs
and ṗ(t) = [p(t)−p(t−mTs)]

mTs
, where m is an integer greater than one

(chosen as 2 by experimentation). In the safety and experimental controllers, this first-
order approximation is accomplished by storing a buffer of previous sampled values.
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(a) (b) (c)

Fig. 8: Overapproximation of the set of reachable states computed by the real-time
reachability method for the linearized inverted pendulum model Equation 4 and Equa-
tion 5 for different amounts of computation runtime, 3 ms in (a), 7 ms in (b), and 16
ms in (c). The plots illustrate 2-d projections of the reachable sets for the linearized
inverted pendulum from the state x = [−0.1, 0.85, 0, 0]T for reach-time 0.73. Here,
the initial state is outside of the LMI-recoverable ellipsoid (xTPx = 1.56), but can
be proven to reenter the ellipsoid after 0.73 reach-time, despite the presence of input
saturation.

5.3. Feasible and Stabilizable Regions
Next, we discuss how to compute the feasible and stabilizable regions, defined pre-
viously in Section 2.1. We use YALMIP [Löfberg 2004], the SDPT-3 [Toh et al. 1999]
solver, and Matlab to solve the following semidefinite quadratic programming problem
and under-approximate the recoverable states for the safety controller. For computing
the stabilizable region for the safety controller, we find the gain vector during the opti-
mization. The problem is to maximize the volume of the ellipsoid (and thus maximize
the set of recoverable states) defined by:

R = {x | xTPx ≤ 1}. (6)

The LMI to find the positive definite P may formulated as:

min log detQ−1

subject to QĀT + ĀTQ < 0, Q > 0, αTkQak ≤ 1, k = 1, . . . , n,

where Ā = A+BK, Q = P−1, and the αk for k ∈ {1, ..., n} encode the state and control
constraints. Full details of this process are given in Appendix A2 of the LMI-Simplex
technical report [Seto and Sha 1999].

Variants of this process may either take a given gain vector K or find a gain vector
K [Seto and Sha 1999]. For our use, the output of this process is both the gain vector K
and the matrix P defining a subset of the recoverable statesR, such that when the gain
matrix is used for the safety controller, and the state is in R, the state is guaranteed
to stay in R indefinitely (since V (x) = xTPx is a Lyapunov function). Furthermore, all
the constraints (including saturation limits) are satisfied for all states in R. The gain
vectorK produced for the described pendulum system is [0.4072, 7.2373, 18.6269, 3.6725].
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5.4. Real-Time Reachability Design
In order to make use of the real-time reachability algorithm described in Section 4,
the user must provide a function that minimizes / maximizes the derivative in an
arbitrary box of the state space. The model used of the system is the version described
above, linearized about the origin. Thus, the system dynamics are ẋ = Ax+Bu. When
computing reachability for the safety controller, the gain vector K computed using the
LMI approach is used, and u = Kx. However, due to saturation, u is limited to be in
the range [−4.95, 4.95] volts.

An alternative unified design could make use of the nonlinear pendulum model
from Section 5.1, since the described reachability algorithm is not limited to linear
systems. An advantage of such a design would be that it would permit the system
state to go outside of the linearization region (in our formulation with the LMI, the
recoverable region of Definition 2 specified in Lemma 5). It would be interesting as
a future investigation to see how much more could be gained by allowing states out-
side of the linearization region, although such a gain probably strongly depends on
the system being analyzed and the size of the linearization region. For our purposes,
Lyapunov’s indirect method ensures all states within the LMI ellipsoids are locally
asymptotically stable. We recall that roughly Lyapunov’s indirect method states that
a nonlinear system is locally (in a neighborhood of the equilibrium point) asymptot-
ically stable if its lineraization about an equilibrium point is globally asymptotically
stable [Khalil 2002]. The bound specified in the proof of Lyapunov’s indirect method
gives a conservative underapproximation of the linearization region (what is typically
called the domain of attraction). More sophisticated piecewise linear Lyapunov func-
tions would yield less conservative estimates of domain of attraction.

For linear systems, the minimum and maximum derivative for any box in the state
space occurs at a corner of the box. Thus, it is sufficient to sample all the corners and
take the minimum and maximum due to convexity and existence of optima of convex
(here, linear) functions over convex sets. This will scale exponentially with the number
of dimensions (in the four-dimensional model here, there are 16 corners to sample), so
for larger-dimension systems it may become necessary to examine the signs of the
linear matrix in order to pick out the min/max corner more efficiently. One additional
complication of the linearized model is the presence of saturation. This is handled by
computing the input u at each corner, and capping it at the saturation limits before
computing ẋ = Ax + Bu. To summarize, for each corner of the passed-in box, ẋ is
computed, and then the minimum or maximum is taken over all the corners. The C
language program that computes ẋ for a given dimension, given a point (corner of the
box), is provided in Algorithm 2.

Another function that must be provided by the user is used to determine whether a
given box is contained entirely inside the recoverable region R. This is used to check
whether the final state (box) is guaranteed to be recoverable. To do this for a single
point, it suffices to know the current state x and the potential matrix P that defines
the recoverable ellipsoid (output by the LMI optimization), and checking xTPx ≤ 1. To
check this condition for a box, we check every corner point of the box.

One further function provided by the user checks is, during computation, whether
the reachable region contains an unsafe state. In our case, this is a state that is outside
of the linearization region where the model is considered valid. Since the constraints
are all linear, it suffices to check if all of the corners of each box are in the lineariza-
tion region. This computation is done at runtime to prevent saving the reachable set
of states. The box passed in to this function consists of the bounding box of subse-
quent steps of the real-time reachability algorithm, which represents the sets of states
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Algorithm 2 This function returns the derivative at a given point. The min/max
derivative function would compute the derivative at each corner of a passed-in box,
and take the minimum/maximum. The inputs are a particular dimension dim, the
number of total dimensions n, a pointer to a state vector state, which is an array
of length n, and a control saturation u_sat. For the pendulum case study, n = 4 and
u_sat = 4.95.

1 double der ivat ive_at_point ( int dim , int n , double * state , double u_sat ) {
double rv = 0;

3 double u = 0;

5 / / ca l cu late the A * x part
for ( int i = 0 ; i < n ; ++ i )

7 rv += A[dim ] [ i ] * state [ i ] ;

9 / / ca l cu late the B * u part , s tart ing with u = K * x
for ( int i = 0 ; i < n ; ++ i )

11 u += K[ i ] * state [ i ] ;

13 / / account for input saturation
i f (u < −u_sat ) u = −u_sat ;

15 e lse i f (u > u_sat ) u = u_sat ;

17 / / B * u
rv += B[dim] * u ;

19 return rv ;
}

reachable between two time steps, say ti and ti+δ, where δ is the advanceReachTime
in Algorithm 1.

5.5. Comparison between Simplex with LMI and Real-Time Reachability
We now provide a comparison between control based on the R from the LMI approach
above, and the switching condition produced by the proposed unified approach that
uses real-time reachability. For real-time reachability, we implemented the algorithm
from Section 4. In order to be usable in a real-time control system, our implementa-
tion was written in C and had no dynamic memory allocations or recursion, and used
no nonstandard external libraries. In our implementation, we would call the real-time
reachability C code from within Matlab on either Linux and Windows. For the ex-
periments described here, we first used a modern laptop with a quad-core Intel Core
i7-2800MQ processor and 32GB RAM (although the computation does not require sig-
nificant memory as described earlier). Next, we additionally evaluated the methods
on embedded platforms. The first embedded platform is a BeagleBone Black devel-
opment board with a 1GHz ARM processor and 512MB RAM running Debian Linux
with the Xenomai real-time Linux extensions. The second embedded platform is an
Arduino Yun, which has both a 400MHz MIPS processor and a 16MHz 8-bit Atmel
AVR ATmega32u4 processor, and we used the ATmega32u4 for our evaluation, in part
to validate our claims on minimal resources requirements. Together, these evaluations
validate our claims that the real-time reachability method is cross-platform and re-
quires minimal processing resources. The effort to port from the original x86 imple-
mentation [Bak et al. 2014] to both the ARM and AVR implementations took about
two weeks of development time, which from a systems development standpoint is min-
imal given the insurmountable difficulties that would exist in porting all the libraries
required in other existing hybrid systems reachability approaches.
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Fig. 9: Estimated projections are
shown of the LMI-Simplex recoverable
region R (cyan center set), real-time
reachability recoverable region (green
middle set), Simulink/Stateflow sim-
ulations that converge (yellow mid-
dle set), and simulations that diverge
(red exterior set) where θ = 0.19 rad
(~10.89◦) and θ̇ = 0.18 rad (~10.31◦) per
second.

Fig. 10: Estimation of LMI-Simplex re-
coverable region R (cyan center set),
real-time reachability recoverable re-
gion (green interior set), Simulink/S-
tateflow simulations that converge
(yellow middle set), and simulations
that diverge (red exterior set) shown
on the projection of θ and θ̇ = ω onto
the p = 0 m and v = 0 m/s plane.

One remaining input for the algorithm is the reach-time necessary for a specific state
to reenterR (the time δ+α from Theorem 6). This was approximated using Euler-based
simulation, which added a fixed overhead at the start of the computation. For states
slightly outside of R, the necessary reach-time was typically in the hundreds of mil-
liseconds. Since the reachability computation incurs error due to overapproximation,
we compute the set of reachable states for slightly more (1.2 times) than the time the
simulation took to reach R. If the Euler simulation did not enter R by some upper
bound (4 seconds reach-time), the state was considered unrecoverable. A projection of
the computed overapproximation of the set of reachable states for various runtimes is
shown in Figure 8. As more computation runtime is added, the accuracy increases, as
indicated by the size of the set decreasing.

One difference between the approaches is that the LMI-Simplex method needs to
reason about one-step reachability of the plant state for any complex/smart controller
command in order to compute the distance d in Figure 2. The proposed online ap-
proach, in contrast, knows what complex-controller command will be applied and can
use that as part of the reachability computation. For this reason, we restrict the com-
parison to only examine the recoverable region for the safety controller. In this way,
we do not give our approach the advantage of knowing exactly what command the
complex/smart controller is using.

Our comparison shows three different approaches for estimating the recoverable
region (Figures 9 and 10). First, using the LMI-only Simplex we get a subset of the
recoverable region R. Next, using a simulation-based analysis in Matlab, we can see
an approximation of all recoverable states, which would be an ideal switching set. If
the simulation returns to a steady state then the initial point is marked as existing in
the recoverable set. Finally, we show the states that the real-time reachability-based
approach can guarantee as recoverable, which is somewhere between the previous two
regions. For these experiments, in order to be runnable in the control loop, the runtime
for the reachability code was capped at 20 ms.
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The stabilizable regions for p and ṗ of the controller is seen in Figure 9 and the re-
gions for θ and θ̇ of each controller are in Figure 10. One reason why the runtime reach-
ability approach can recover more states is that the recoverable set contains states
where input saturation occurs, whereas the set R contains no such states. The largest
improvements in the switching set for the real-time approach occur under this satu-
ration situation, because reachability is able to reason about the behavior of the satu-
rated system. Another reason for the improvement is that the LMI-produced switching
set must be an ellipsoid, whereas the true set of recoverable states can be an arbitrary
(even non-convex) shape. This is seen in Figure 9, where, since the projection is near
the maximum values of θ and θ̇, the LMI ellipsoid projected onto this plane is small.
In Figure 10 the LMI-Simplex recoverable region is clearly ellipsoidal (as expected
from Equation 6). In both Figures 9 and 10, the benefit of using real-time reachability
is highlighted by the larger provably safe recoverable region. In both cases, even for a
20 ms runtime, the set of states proven recoverable using real-time reachability is very
close to the simulations that converge, which means that the real-time reachability is
close to optimal in estimating the actual recoverable region.

Next, we evaluated the effect of varying the runtime in real-time reachability
method on the resultant switching set, which is summarized in Table I. For this ta-
ble, we sampled the state-space uniformly between the state bounds presented ear-
lier using 15 points in each dimension (so 154 = 50625 points) in the hyper-rectangle
−1.25 ≤ p ≤ 1.25 (m), −1.2 ≤ ṗ ≤ 1.2 (m/s), −20 ≤ θ ≤ 20 (degrees), and −30 ≤ θ̇ ≤ 30
(degrees/s). The columns LMI, Real-Time, Sim, and Unrecov list the number of recov-
erable points for each approach (in terms of recoverable states, notice that LMI ⊆ Re-
alTime ⊆ Sim), as measured by the uniform sampling. The column Recoverable is the
comparison of the number of states verified safe in the proposed unified method with
real-time reachability over the earlier LMI-Simplex approach. The improvement is an
estimate of the increased state-space size (volume) allowed using our real-time reach-
ability method, over using only the LMI-based recoverable region. Since the real-time
recoverable states contain all the LMI-Simplex states, the improvement is calculated
as: (#RealTime Points + #LMI Points)/(#LMI Points). For a runtime of 20 ms, the im-
provement in volume of the switching set is estimated at 227%, whereas based on sim-
ulations we estimate the maximum possible improvement in Recoverable to be around
247% (calculated as (#Sim Points + #RealTime Points + #LMI Points)/(#LMI Points)).

We experimented with increasing the number of samples up to 30 points in each di-
mension, which yielded similar improvements, and in the limit as the number of sam-
ples tends to infinity, we would converge to the exact improvement. However, these
approximations are reasonable based on the consistency of our experimental results
(e.g., 20 ms runtime for 15 samples is about a 227% improvement, and it is also about a
230% improvement for 30 samples). As expected, as the runtime allowed for real-time
reachability increases, the improvement increases since the real-time reachability im-
plementation uses an anytime approach and refines the precision of the reachability
computation based on available runtime. Even for small runtimes (e.g., 5ms), the im-
provement is already significant at over 200% more provably recoverable states, which
makes the approach promising for implementation in real-time control loops.

5.6. Comparison on ARM and Arduino AVR ATmega32u4 Embedded Hardware Platforms
Next, we compare the benefit of using our real-time reachability approach versus the
LMI-Simplex method on actual embedded hardware platforms. The first hardware
platform is an ARM processor in the TI Sitara system-on-chip used in the CircuitCo
BeagleBone Black development kit. The specific ARM processor is an AM335x 1GHz
ARM Cortex-A8 with the NEON floating-point accelerator and access to 512 MB DDR3
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Table I. Intel Core i7 x86-64: PC evaluation summary of experiments varying run-
time.

Runtime (ms) LMI RealTime Sim Unrecov Recoverable

5 5473 5971 14323 24858 209%
20 5473 6753 13541 24858 223%
40 5473 6974 13320 24858 227%
50 5473 7081 13213 24858 229%
75 5473 7109 13185 24858 230%
100 5473 7183 13111 24858 231%
200 5473 7273 13021 24858 233%
500 5473 7338 12956 24858 234%

1000 5473 7382 12912 24858 235%
2000 5473 7424 12870 24858 236%
3000 5473 7428 12866 24858 236%
4500 5473 7448 12846 24858 236%
6000 5473 7455 12839 24858 236%

RAM. The experiments were conducted on a Debian Linux distribution with a kernel
modification to use the Xenomai real-time Linux extensions, enabling use of real-time
operating system (RTOS) features within Linux. A summary of experimental results
are reported in Table II. Here we can see that for reasonable runtimes even on an
embedded platform (tens of milliseconds), the approach presented in this paper has
an improvement of around 1.5 to 2 times over the LMI approach. For runtimes on
the order of hundreds of milliseconds to seconds, the approach yields similar improve-
ments to the desktop implementation. For this table (as with Table I), we sampled the
state-space uniformly between the state bounds presented earlier using 15 points in
each dimension (so 154 = 50625 points) in the same hyper-rectangle used in the earlier
experiment, specifically −1.25 ≤ p ≤ 1.25 (m), −1.2 ≤ ṗ ≤ 1.2 (m/s), −20 ≤ θ ≤ 20
(degrees), and −30 ≤ θ̇ ≤ 30 (degrees/s).

The second hardware platform is the Arduino Yun. The Yun has both a 400 MHz
MIPS processor and a 16 MHz 8-bit Atmel AVR ATmega32u4. For this evaluation,
we use the 16 MHz ATmega32u4 processor, which is representative of small, mem-
ory constrained embedded devices. The ATmega32u4 has available 2.5 KB SRAM, 32
KB of flash memory, but because the real-time reachability method does not use any
dynamic memory allocation and does not rely on any non-standard libraries, we are
able to run it on the platform in spite of the processing and memory constraints. Al-
though the implementation runs with the restricted resources, the runtime is notice-
ably higher than on the with other processors. In this case, the system would only
stand to benefit if the dynamics were sufficiently slow (so a runtime of seconds would
be tolerable), or if we further optimized parts of the implementation for the limited re-
sources (changing software floating-point computations to use fixed-point, since there
is no FPU on the ATmega32u4. A summary of experimental results for the AVR are
reported in Table III. For this table (unlike in Tables I and II), we sampled the state-
space uniformly between the state bounds presented earlier using 12 points in each
dimension (so 124 = 20736 points) in the same hyper-rectangle as the earlier experi-

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 201X.



Real-Time Reachability for Verified Simplex Design 1:23

Table II. BeagleBone Black ARM: Embedded system evaluation summary of experi-
ments varying runtime.

Runtime (ms) LMI RealTime Sim Unrecov Recoverable

5 5473 2270 18024 24858 141%
20 5473 3832 16462 24858 170%
40 5473 4613 15681 24858 184%
50 5473 4617 15677 24858 184%
75 5473 5350 14944 24858 198%

100 5473 5361 14933 24858 199%
200 5473 5968 14326 24858 209%
500 5473 6721 13573 24858 223%
1000 5473 6952 13342 24858 227%
2000 5473 7107 13187 24858 230%
3000 5473 7110 13184 24858 230%
4500 5473 7216 13078 24858 232%
6000 5473 7216 13078 24858 232%

Table III. Arduino Atmel AVR ATmega32u4: Embedded system evaluation summary
of experiments varying runtime.

Runtime (ms) LMI RealTime Sim Unrecov Recoverable

100 2088 0 8226 10422 100%
500 2088 192 8034 10422 109%

1000 2088 566 7660 10422 127%
2000 2088 879 7347 10422 142%
3000 2088 882 7344 10422 142%
4500 2088 1198 7028 10422 157%

ments, specifically −1.25 ≤ p ≤ 1.25 (m), −1.2 ≤ ṗ ≤ 1.2 (m/s), −20 ≤ θ ≤ 20 (degrees),
and −30 ≤ θ̇ ≤ 30 (degrees/s). While the AVR is too resource constrained to be able
to improve the states usable in the control period time (of 20 ms) and requires on the
order of hundreds of milliseconds to seconds to yield an improvement, this is to the
best of our knowledge, the first demonstration of a reachability method in a resource
constrained embedded system of this scale. We also highlight that simply performing
a simulation on the AVR requires about hundreds of milliseconds of runtime.

6. RELATED WORK
The Simplex Architecture [Sha 2001; Seto and Sha 1999] has been used extensively
to provide guarantees for systems that use untrusted logic. It has been used for sys-
tems ranging from off-road vehicles [Bak 2009], to models of airplanes [Seto et al.
1999], to fleets of remotely controlled cars [Crenshaw et al. 2007], to networked con-
trol systems [Yao et al. 2013]. Recently, variants of Simplex have been proposed to
account for physical-system (plant) failures [Wang et al. 2013], faults in the OS or
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microprocessor [Bak et al. 2009], and to check for security intrusions [Mohan et al.
2013]. Simplex is closely related to Run-Time Assurance (RTA) methods [Clark et al.
2013; Murthy 2012]. RTA methods were used to construct a safe supervisory control
system for a simulation of a high-altitude unmanned aerial vehicle [Aiello et al. 2010].
Here, a transition function that projects the current state to a future state was used
to determine the switching boundary. This transition function as well as the recov-
erable states were determined through extensive simulation and online prediction of
trajectories. The proposed real-time reachability approach in this work could be used
to provide verified bounds on the transition function used in RTA methods. This work
also mentions the interesting idea of using an online/offline design for switching mod-
ule logic by leveraging a simplified model of the plant dynamics, and taking the model
error into account when doing the switching, which could reduce the complexity of the
online reachability computation.

Earlier work has also integrated traditionally non-real-time search approaches
within real-time systems [Musliner and Durfee 1995]. In this approach, AI planning
techniques were discussed in the context of real-time systems, and two categories of
possible integation were proposed: 1. the non-real-time algorithms were adapted to
run in a real-time fashion, or 2. they were run in a supervisory mode, not as part of
the real-time control loop. Real-time reachability would fall in the former category in
this classification.

A related notion to Simplex in control theory is that of a viability kernel [Aubin
1991]. A viability kernel is a set of states where there exists a trajectory that stays
within a predefined environment. Viability kernels can be approximated for linear sys-
tems, for example, by using analysis of random directions in the state space [Gillula
et al. 2014]. Reachability analysis of hybrid systems has also been extensively re-
searched in the last 20 years [Guéguen et al. 2009]. Reachability analysis tools exist
for classes of systems with timed [Bengtsson et al. 1996], rectangular [Henzinger et al.
1997; Frehse 2008; Johnson and Mitra 2014], linear [Frehse et al. 2011; Frehse 2008],
and nonlinear [Ratschan and She 2007; Tiwari 2008; Bak 2013a; Chen et al. 2012;
Benvenuti et al. 2014; Duggirala et al. 2015] dynamics, with varying degrees of accu-
racy and scalability. Other bounded model checking (BMC) tools for hybrid systems
built on satisfiability modulo theories (SMT) solvers also exist [Eggers et al. 2011; Gao
et al. 2013]. However, to the best of our knowledge, the algorithms in earlier reach-
ability and BMC tools were all designed for offline analysis, and not for real-time,
in-the-loop computation. Specifically, real-time reachability requires performance to
be predictable, which is difficult to ensure when there are large external libraries,
huge code bases, and signifanct use of dynamic memory. For example, one popular
reachability analysis tool for affine hybrid automata is SpaceEx, which requires at
least eight external libraries: Parma Polyhedra Library (PPL) [Bagnara et al. 2008],
Boost C++ Libraries, GNU Multiple Precision Arithmetic Library (gmplib), GNU Lin-
ear Programming Kit (glpk), SUNDIALS (Solver Suite) [Hindmarsh et al. 2005], aaflib,
ublasJama, and TinyXML [Frehse et al. 2011].4 Another recent tool, C2E2 relies on
at least eleven external libraries: GNU Linear Programming Kit (glpk and pyglpk),
GNU Parser Generator (Bison), Fast Lexical Analysis (FLEX), Python, Python Pars-
ing Libraries (Python-PLY), GTK Libraries for Python (PyGTK), Plotting Libraries for
Python (Matplotlib), Packing Configurations Library (pkg-config), GNU Autoconf (au-
toconf), Python XML Library (lxml), and Parma Polyhedral Library (PPL).5 While sev-
eral of these libraries would not need to be executed in the reachability computation
(such as those related to parsing and package management), several libraries (PPL,

4http://spaceex.imag.fr/licensing-45
5https://publish.illinois.edu/c2e2-tool/download/
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gmplib, glpk, and SUNDIALS) are fundamental to the reachability computations. For
these core libraries, it would be essentially impossible to convert SpaceEx or C2E2 to a
real-time implementation, as several of these libraries are incredibly complex (specifi-
cally PPL, gmplib, glpk, and SUNDIALS).

The real-time reachability approach described in this paper primarily solves the
problem of computing the continuous successors in a hybrid automaton, although it can
also be applied invariant-disjoint hybrid dynamics. Research in computing continuous
successors is related to validated integration, which traditionally has been done using
interval analysis [Moore 1966], as well as intervals with preconditioning to reduce
wrapping-effect error [Stauning 1997]. More recently, Taylor models have also been
proposed as an alternative shown to provide superior long-term error control [Neher
et al. 2007], and this is has been integrated into a more full hybrid automaton model
checker [Chen et al. 2012]. However, the challenge for runtime approaches such as
the one proposed in this paper is more with quick computation of reasonable accuracy
rather than long-term error control, and we are unaware of any previous real-time
validated integration approaches.

Some recent work performs online reachability computation with existing, non-real-
time algorithms. This can be used, for example, when systems do not have statically-
known models [Bu et al. 2011]. This work, however, treats the reachability computa-
tion as a black-box, which may or may not complete (because it does not use a real-time
reachability algorithm). Another work also uses existing reachability approaches such
as PHAVer [Frehse 2008] in a medical safeguard system [Li et al. 2012], and results in
a system which may add safety, but only if the computation completes on time. While a
theoretical upper bound on execution time may be formulated due to decidability of the
particular class of hybrid automata considered [Li et al. 2014], the implementation of
PHAVer does not provide such guarantees, and it is not clear that such a bound would
be usable or too pessimistic. A real-time reachability algorithm that always provides
an answer like our approach could be integrated into both of these approaches.

Finally, the results of formal approaches are only as good as the model they are pro-
vided. Accurate system identification [Söderström and Stoica 1988] is therefore essen-
tial. The approach here reduces pessimism in the switching logic for a given model. Ac-
curacy and validation of the model itself is an important problem, but beyond the scope
of this work. Recent approaches from the hybrid systems community, however, have be-
gun made use of runtime monitors to do online checking of model accuracy [Mitsch and
Platzer 2014].

7. CONCLUSION AND FUTURE WORK
In this work, we have proposed an alternate unified design for Simplex that leverages
two existing design methodologies based on control-theoretic LMI optimization and
hybrid systems reachability. Our unified approach extends the region where the com-
plex/smart controller enabling smart autonomy can be used by leveraging a real-time
reachability computation, and thus decreases conservatism in the switching logic. Us-
ing a runtime of 20ms (which matches the control loop period time), we were able to
expand the set of states where the complex/smart controller could be used by 227%,
whereas we estimated, through simulation, that the maximum improvement possi-
ble was approximately 247%. Even with a reduced real-time reachability runtime of
5ms, we were able to improve upon the LMI-based Simplex design by 213%. On em-
bedded processors, we were also able to increase the complex/smart controller region
by a factor of 1.5 to 2.0, although for an 8-bit microcontroller the current implemen-
tation was not fast enough for use at the frequency of the control loop. This improve-
ment was demonstrated in an evaluation that uses the exact system previously used
to demonstrate the LMI-based Simplex design approach, an inverted pendulum with
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input saturation. The real-time reachability computation is able to predict the behav-
ior of the system despite saturation, significantly expanding the usable complex/smart
controller region.

To the best of the authors’ knowledge, this is the first work to present a viable
real-time reachability algorithm based on the real-time systems notion of imprecise
computation. The algorithm will always return an over-approximation of the set of
reachable states, with better accuracy as more computation time is given. The key
difference between online reachability compared with offline reachability, besides con-
strained runtime and resources, is that quick results are preferable to long-term er-
ror control. In our evaluation, for example, we were able to demonstrate significant
improvement in the complex/smart controller region by using tens of milliseconds of
computation time to bound the future behavior of the system for the next hundreds of
milliseconds. Together, our evaluation on actual embedded hardware platforms includ-
ing ARM processors and Atmel AVR microcontrollers illustrates the embedded usage
feasibility of using the real-time reachability method. Other reachability algorithms
also contain parameters which could be tuned to have some control over the compu-
tation time, such as the sampling time used in the Le Geurnic-Girard (LGG) scenario
in SpaceEx [Frehse et al. 2011], and we plan to investigate better approaches for real-
time reachability.

Real-time reachability has applications beyond just determining Simplex switch-
ing logic, however. We foresee future applications involving online system identifica-
tion, detecting sensor spoofing, runtime verification, and enabling a variant of model-
predictive control (MPC). To enable these applications, we are implementing code gen-
eration capabilities in the HYST model transformation and translation tool for hybrid
automata [Bak et al. 2015], which will enable creating implementations of the real-
time reachability algorithm for large classes of hybrid automata.
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